Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian-American Cohort

Selmansberger M¹, Braselmann H¹, Hess J¹, Bogdanova T², Abend M³, Tronko M², Brenner A⁴, Zitzelsberger H¹, and Unger K*1

¹Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany

²Institute of Endocrinology and Metabolism, National Academy of Medical Sciences of the Ukraine, Kiev, Ukraine

³Bundeswehr Institute of Radiobiology, Munich, Germany ⁴Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, MD, USA

July 6, 2015

Abstract

BRAF status. Multivariate analysis revealed no interactions but additive effects of parameters One of the major consequences of the 1986 Cher-gender, latency and dose on CNAs. The previnobyl reactor accident was a dramatic increase ously identified radiation-associated gain of the in papillary thyroid carcinoma (PTC) incidence, chromosomal bands 7q11.22-11.23 was present predominantly in patients exposed to the radioio- in 29% of cases. Moreover, comparison of our dine fallout at young age. The present study radiation-associated papillary thyroid carcinoma is the first on genomic copy number alterations (PTC) data set with the TCGA data set on spo-(CNAs) of PTCs of the Ukrainian American co- radic PTCs revealed altered copy numbers of the hort (UkrAm) generated by Array Comparative tumor driver genes NF2 and CHEK2. Further, Genomic Hybridization (aCGH). Unsupervised we integrated the CNA data with transcriptomic hierarchical clustering of CNA profiles revealed a data that were available on a subset of the herein significant enrichment of a subgroup of patients analyzed cohort and did not find statistically sigwith female gender, long latency (> 17 years) nificant associations between the two molecular and negative lymph node status. Further, we layers. However, applying hierarchical clustering identified single CNAs that were significantly as- on a "BRAF-like/RAS-like" transcriptome sigsociated with latency, gender, radiation dose and nature split the cases into four groups, one of which containing all BRAF-positive cases vali-

^{*}unger@helmholtz-muenchen.de

dating the signature in an independent data set.

1 Summary

This study reports on genomic copy number alterations (aCGH) in the post-Chernobyl Ukrainian-American PTC cohort and a comparison of the results with previously published knowledge on post-Chernobyl PTCs and with a comprehensive multi-level omics study on sporadic PTCs.

Introduction 2

ber gain of the chromosomal bands 7q11.22- data including individual dose estimates. gained band, was shown [9]. Amongst others, cer risk.

the largest cohort of subjects who were exposed to the radioiodine-contaminated fallout from the Chernobyl accident under the age of 18 is the so called Ukrainian-American (UkrAm) cohort [10] which was established by the US National Cancer Institute and the Ukrainian National Academy of Medical Sciences [11]. All subjects of this cohort received direct thyroid I-131 measurements within two months after the accident, which built the basis for calculating individual dose es-Along with comprehensive epidemiological data available UkrAm represents an excellent cohort for the investigation of radiationassociated thyroid cancer risk. As a result of four screening examinations conducted between 1998 One of the major consequences of the 1986 Cher- and 2007 on approx. 13,000 subjects a total numnobyl nuclear accident to human health was a ber of 110 thyroid cancer cases were detected, dramatic increase in thyroid cancer incidence the majority of which were PTCs [11]. Dose esamong those who were children or adolescents timates for the entire UkrAm cohort showed an at the time of exposure [1, 2]. Several stud- arithmetic mean of 0.68 Gy, a geometric mean ies clearly related this increase to radioiodine of 0.23 Gy, and a lognormal distribution [12, 13]. exposure (mainly I-131) from the reactor acci- At present, there are two transcriptomic studies dent [3, 4, 5, 6, 7]. Numerous genomic stud- on the UkrAm cohort published by Abend et. al ies on post-Chernobyl papillary thyroid carci- (2012) [14, 15] describing dose-dependent mRNA nomas (PTCs) have been published so far. A expressions in normal tissue and tumor tissue, study by Unger et al. (2004) has shown intra- respectively. However, so far no comprehensive tumoral heterogeneity of RET/PTC rearrange- studies on the genomic level have been conducted ments in post-Chernobyl PTCs suggesting either on the UkrAm cohort. Hence, the present study a multiclonal origin of the tumors or RET/PTC on global genomic copy number changes in PTCs being a late subclonal event [8]. A compara- from patients of the UkrAm cohort complements tive study on global genomic copy number al- the existing studies. The main aim of this study terations (CNAs) in two age-matched cohorts was an explorative investigation of CNAs in 84 of post-Chernobyl PTCs and sporadic PTCs re- PTCs of the UkrAm cohort and of possible asvealed a radiation-specific genomic copy num- sociations with clinical parameters and patient 11.23, which was exclusively detected in exposed results provide the basic knowledge required for cases by array comparative genomic hybridiza- an integration of molecular data on radiationtion (aCGH) [9]. Further, a significant mRNA associated PTCs into epidemiology-based modeloverexpression of the CLIP2 gene, located in the ing of radiation-associated papillary thyroid can-

3 Material and Methods

3.1 Patient and tissue samples

We analyzed the tumor samples from 84 PTC patients of the Ukrainian-American cohort (UkrAm). The tissue samples were collected by the Chernobyl Tissue Bank (CTB) after surgical removal of the thyroid gland due to PTC diagnosis [11]. The CTB pathology panel examined all PTC tissues that were provided by the CTB. The entire UkrAm cohort comprises 13,243 persons from the Ukraine who were younger than 18 years at the time of the Chernobyl nuclear accident in April 1986. From all members, an individual direct thyroid dose measurement was conducted within two month after the accident. Individual doses were estimated and published by Likhtarov et al. 2006 [12]. Between 1998 and 2008, 110 thyroid cancers were diagnosed, including 104 PTCs.

3.2 **DNA** and **RNA** samples

turer's protocol. USA).

3.3 **BRAF V600E** mutation and **RET/PTC** rearrangements

Data on the BRAF V600E mutation status and RET/PTC rearrangements were included as published by Selmansberger et al. [16]. Additional data summarized in Leeman-Neill et al. (2013) [17] were added for individual cases after personal communication with Prof. Yuri Nikiforov (Division of Molecular Genomic Pathology, University of Pittsburgh, U.S.).

Array CGH analysis and hierar-3.4 chical clustering

Array CGH profiles were generated using Agilent Sure Print 60K oligo microarrays (Agilent, Santa Clara, CA, USA, AMADID 021924). DNA labeling and purification was carried out as described by Hess et al. (2011) [9]. Quality of labeled DNA was assessed by determining the "specific labeling efficiency", which had to exceed incorporation of a minimum of 15 pmol dye per µg DNA and the labeling yield which had to be greater than 1 μ g. A detailed description of the QA measures applied is given by Buffart Prior to nucleic acid extraction all FFPE tissue et al. (2007) [18]. Hybridization and washing sections were macro-dissected in order to max- of arrays and extraction of raw data was perimize the proportion of tumor cells in the ana- formed according to the manufacturer's protocol. lyzed tissues. The resulting cellularities i.e. pro- Raw data quality assessment, data preprocessportion of tumor cells per tissue ranged between ing, and subsequent generation of copy number 50 and 90%. All DNA and RNA samples ana- profiles were performed using the statistical platlyzed in this study were extracted from formalin form R and the MANOR, CGHbase, CGHcall fixed paraffin embedded (FFPE) tissue sections, (provided with cellularities from histology data), using the Qiagen AllPrep DNA/RNA FFPE kit and CGHregions packages, available from Bio-(Venlo, Netherlands) according to the manufac- conductor [19, 20, 21, 22]. A detailed descrip-Quantification of the nucleic tion of data preprocessing and data analysis can acid samples was conducted with a NanoDrop be found in [23]. Unsupervised hierarchical clusspectrophotometer (Thermo scientific, Waltham, tering of the obtained aCGH profiles was performed on copy number calls using Euclidean distance and was visualized using an in-house writ- fixed thresholds were used for dichotomization ten function.

3.5 Gene expression data

cation (Abend et al., 2012). scribed by Abend et al. 2012. Agi4x44PreProcess package available from Bio- mGy), and a high dose group (> 1000 mGy). conductor (Lopez-Romero; Smyth, 2005). A total number of 31 UkrAm cases was included in Multivariate testing the data set, while 23 of which also were present A substantial overlap of significantly associated hierarchical clustering using 59 genes out of the Genome Atlas Research, 2014).

3.6 Association of genomic copy number alterations with clinical data

Univariate testing

initial association testing performed using the CGHtest approach (http: //www.few.vu.nl/~mavdwiel/CGHtest.html [24]), that is based on permutation t-testing. We conducted our calculations with 10,000 permutations. All available clinical data (i.e. age at exposure, age at operation, latency, histological subtype, TNM status, thyroid dose) were tested for associations with CNAs. continuous variables such as age or thyroid dose,

and the resulting groups were subsequently tested for significant differences in the frequency of copy number changes for each region. thresholds for the parameter latency was set to Genome wide gene expression profiling data were 17 years, which is in accordance with the median generated using Agilent 44K oligo microarrays by (16.6 yrs) and mean (17.4 yrs) latency of the the Bundeswehr Institute of Radiobiology and investigated samples. Thresholds of 5 years for raw data were provided in personal communi- age at exposure (AaE) and 20 years for age at Details are de- operation (AaO) were taken from Selmansberger Quality as- et al. [25]. For the association with thyroid sessment and preprocessing of the mRNA ex-dose, three groups were formed according to pression data was carried out using the statis- Abend et al. [15] i.e a low-dose group (< 300 tical platform R and the limma package and the mGy), an intermediate dose group (300 - 1000

in our aCGH data set which allowed systematic regions between the parameters dose, gender, integration of the two data layers. The gene ex- and latency was the motivation to assess the stapression data set was subjected to unsupervised tistical interactions between these variables. The multivariate analysis was conducted using a lo-71 "BRAF-like"-signature genes as published in gistic two-way model for the binary variable Y a large study (n=391) on sporadic PTCs (Cancer (gain vs. no-gain / loss vs. no-loss). For this purpose the model $Y \cdot A + B + A * B$ (model 1) was tested, were Y is the dependent variable (i.e. occurrence of the CNA), A and B are the two parameters, and A*B is the interaction of the two parameters. Significance of the A*B interaction term was tested by the comparison to the pure additive model $Y \cdot A + B$ (model 2) to the full model 1 (with interaction term) with respect to their deviance difference [26]. First, for each CNA region the significance of the full model was tested and the p-values were FDR adjusted using the Benjamini-Hochberg approach [27]. In a second step, the significance of the interaction term of model 1 was tested for those CNA regions with a significantly better fit of model 1 compared to the null model. If there was no significant interaction observed, the additive contributions of A exact test was used. and/or B were assessed with model 2. P-values were adjusted for FDR and significance was generally accepted for FDR ≤ 0.05 . Details on the multivariate testing approach can be found in SI addendum 1.

3.7 **Dosimetry**

Individual thyroid doses on the investigated subset of 84 cases were used as published previously [12, 28, 13]. The doses are summarized in Table 1 and shown as categorized values for individual cer data set ("THCA") from the Broad Institute cases in SI Table 1 and Figure 2.

3.8 Unsupervised hierarchical clustering based on mRNA expression data and comparison with TCGA study on sporadic PTC

RAS score", enabling the classification of PTC according to histological data was not possible cases into "RAS-like" or "BRAF-like" [29]. A since different histopathology classifications were gene signature composed of 71 genes that built used. The clinical data table for the TCGA data the basis for calculating the BRAF-RAS score subset can be found in the supplementary Table was derived from a differential expression analy- 5. The GISTIC2 called copy number data resis between a set of tumors with BRAF V600E trieved via "firehose" were subjected to the folmutation and a set of tumors with RAS muta- lowing comparisons with our data set: a) Overtion. 59 out of these 71 genes were also present lap between regions statistically significantly asin our available gene expression microarray data sociated with BRAF mutation status (our data) set and we subjected the appropriate expression or "BRAF-like" status (TCGA data), b) overlap values of this subset to unsupervised hierarchi- between regions statistically significantly assocical clustering. Subsequently, we tested possible ated with gender in both data sets c) presence of associations of the parameters, gender, lymph gain of CLIP2 or the 7q11.22-11.23 region in the node status, latency, age at operation (AaO), TCGA subset d) presence of the groups "isolated age at exposure (AaE), CLIP2 marker status, loss of 22q", "gain of 16q" and "silent SCNA" ac-BRAF V600E mutation status, RET/PTC1 and cording to the classification given in [30] in the RET/PTC3 status and dose with grouping of UkrAm copy number data set. Association testcases according to clusters of the first and sec- ing of copy number alterations was performed

3.9 Comparison of CNAs in UkrAm PTCs and sporadic PTCs TCGA cohort

In order to compare the genomic copy number results of our study with the data on sporadic PTCs published by the TCGA consortium [30] we downloaded the latest analysis version (04/02/2015) of the GISTIC2 typed copy number data of the TCGA papillary thyroid canserver using the "firehose get" command line binary. The sample barcodes of the data that were included in the [30] paper were downloaded from CBioportal [31] as part of the clinical data table. In order to match the TCGA data set to our data set, only data from patients younger than 35 years at the time of diagnosis were included, The TCGA study presented a so-called "BRAF- resulting in a subset of 113 patients. Matching ond hierarchy (see Figure SI 1). For this, Fisher's using the R package CGHtest (http://www.few.

vu.nl/~mavdwiel/CGHtest.html) whilst associ- the quality criteria after isothermal amplificaations were considered as statistically significant tion. Figure 1 shows the cumulative frequencies if both the p-value and the false-discovery rate of CNAs in the complete data set. A subset of were below 0.05. Frequencies of alterations of the 24 out of 84 (29%) cases showed a copy number TCGA THCA subset were plotted using a cus- gain of the chromosomal bands 7q11.22-11.23. tomized version of the function "frequencyPlot" The most frequently detected DNA gains were from the CGHregions package [21].

3.10 **Integrative** analysis of **aCGH** profiles and global mRNA expression data

The integration of 24 aCGH profiles and the corresponding global mRNA expression data was carried out with tailor-made approaches imple- 4.3 mented in the sigaR R package [32, 33] using the default values provided by the package for all parameters during the different analysis steps.

Results

4.1 **BRAF V600E** mutation **RET/PTC** rearrangement rates

From the complete data set, a total number of 70 cases were typed for RET/PTC1 and RET/PTC3 rearrangement status. Overall, 31% of the cases showed a rearranged RET gene whilst 18 out of 70 cases showed RET/PTC1and 4 out of 70 cases showed RET/PTC3 rearrangement. From 70 cases we obtained valid BRAF V600E Sanger sequencing profiles, whilst 9 out of 70 cases showed a BRAF V600E mutation (13%).

4.2 aCGH analysis

High-resolution aCGH profiles from 84 PTC samples were generated. All 84 cases fulfilled on chromosome 11q with 44% and chromosome 19q with 42% of cases harboring the gain (see SI Table 2: region No. 258/259, region No. 405). The most frequently detected DNA loss was on chromosome 16q with 33% of cases showing the loss. Detailed information on all detected CNAs are listed in SI Table 2 and SI Table 3.

Unsupervised hierarchical clustering of aCGH profiles

Figure 2 shows the result of the unsupervised hierarchical clustering of 84 aCGH profiles using Euclidean distances, the distribution of the sample parameters gender, lymph node status, latency (categorized), AaO, AaE, CLIP2 marker status, BRAF V600E mutation status, RET/PTC status, and dose. The CLIP2 marker was assessed as described in detail by Selmansberger et al. (2014) [16]. The clustering revealed two main clusters (C1 and C2) and three parameters were significantly differentially distributed across C1 and C2. Firstly, there were more females in C1 compared to C2 (p=0.0054, Exact Fisher's Test), secondly, more patients with lymph node metastases were in C2 compared to C1 (p=0.025), and thirdly more patients with latency greater than 17 years in C1 compared to C2 (p=0.0028). Interestingly, the clustering can be completely rebuilt by only considering changes of chromosomes 1p, 19. Thus, profiles of cluster C1.1 showed no copy number change of chromosome 1p but gain of chromosome 20. For cluster C1.2 all but one profile

showed gains of both 1q and chromosome 20. ence of two or more parameters on a third varia loss of chromosome 19. cluster analysis.

4.4 Association of copy number alterations with patient data

for the parameters BRAFV600E mutation sta- dose/gender, latency/gender and latency/dose, analysis. An overview on the univariate testing see SI Tables 2 - 6. results of parameters latency, gender and dose can be found in Table 2. 52 gained regions on chromosomes 1, 2, 3, 4, 6, 7,10, 11, 12, 15, 16, 17 and 19 and loss of a region on chromosome 7p were associated with female gender. 161 gained somes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, latency and 128 gained regions on chromosomes somal regions commonly associated with BRAF of all CNAs in this subset are shown in Figure SI tical interaction describes the simultaneous influshowed a copy number loss on chromosome 22q

Profiles of cluster 2.1 do not show any of the men- able (i.e. the occurrence of CNAs) that is nontioned alterations, whilst cluster 2.2 only shows additive. The multivariate approach revealed no These two regions, significant interactions between CNA associated therefore, seem to be most informative for the parameters latency, gender, and dose. However, grouping according to unsupervised hierarchical the majority of copy number alterations were determined by additive effects of the parameters dose, gender and latency (see Suppl. Table 2). In detail, out of the total number of 215 CNAs that were associated with BRAF V600E, gender, latency or dose, 139 copy number regions were Significant testing results from the univariate ap- not determined by additive effects of any of the proach (p < 0.05 and FDR < 0.05) were obtained parameters, 5 by simultaneous additive effects of tus, latency, gender, and dose. With regard to 44 by dose/gender and latency and gender, 13 BRAF V600E mutation gain of 6 regions on chroby latency/dose alone and 9 by latency/gender mosomes 1 and 5 were associated with positive alone. With regard to copy number losses, 205 BRAF V600E status. Although the result was regions were not determined by additive effects statistically significant, the finding is based on at all and 10 regions by latency/dose alone. For a only 9 samples with a mutation of BRAF V600E detailed overview of all statistical significant reand was therefore not suitable for multivariate gions from the univariate or multivariate analysis

Comparisons with findings from **TCGA** study on sporadic **PTCs**

and 26 deleted chromosomal regions on chromo- We compared our findings on genomic copy number alterations with that published on a 17, 19, 20, 21, and 22 were associated with long large study on sporadic PTCs conducted by the TCGA consortium (Cancer Genome Atlas Re-1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, search, 2014). Including only patients younger 19, 20, 21 and 22 were associated with the inter- than 35 years at the time of diagnosis resulted in mediate dose group. We observed many chromo- a subset of 113 cases. The cumulative frequencies V600E status, dose, gender and latency which 2. The majority of cases (94 out of 113) showed motivated us to analyze these parameters with a no CNAs at all and correspond to the "SCNAmultivariate approach in order to test for possible quiet" category which also was present in 45 out statistical interaction or additive effects. Statis- of the 84 UkrAm cases. 16/113 cases (14%)

only ("SCNA-22q-del") and 3/113 cases (2.7%) a expression from a subset of the herein investicopy number gain on 1q ("SCNA-low-1q-amp"). gated UkrAm cases (Abend et al., 2012). Our In the UkrAm dataset 7/84 cases (8%) showed exploratory omics approach aimed at the idenloss on 22q which, however, never appeared "iso- tification of molecular subtypes reflected by gelated" as described for a subgroup of tumors in nomic copy number alterations that correspond the TCGA study [30]. Further, 19/84 (23%) to clinical features and most importantly to cases showed gain of 1q in the UkrAm data set. the radiation-associated parameters dose and la-The chromosomal bands 7q11.22-11.23, which tency. contain the CLIP2 gene and was gained in ge- ionizing radiation potentially alters gene expresnomic copy number in 29% of the UkrAm cases, sion as a result of CNAs and subsequently inwas not present at all in the TCGA data sub-duces the carcinogenic process, even at compaformed unsupervised hierarchical clustering on by [9] that compared genomic copy number prothe 31 UkrAm PTC cases (Figure SI 1) based files of PTCs from patients who were exposed on the mRNA expressions of a subset of 59 genes at very young age with PTCs from age-matched from the TCGA 71-gene signature. The missing non-exposed patients the first radiation-specific 21 genes were not present in the Abend et al. CNA, gain of the chromosomal bands 7q11.22-(2012) expression data set [14]. The clustering 11.23, has been reported. Further, a signifirevealed four main clusters C1, C2, C3, and C4 cant overexpression of CLIP2 which is encoded whilst notably all cases with a BRAF V600E mu- on 7q11.23 in exposed compared to non-exposed tation accumulated in cluster C3. No statistical cases at the mRNA and protein levels has been association with any of the other tested parameters was found.

4.6 Integrative analysis on aCGH profiles and global mRNA expression data

Systematic integration of genomic copy number alterations with global gene expression did not reveal any significant associations between the copy number status of genes and corresponding expression at the mRNA level in the available data set.

Discussion

Our study is the first reporting on genomic CNAs of the published TCGA cohort of sporadic PTC in PTCs of the UkrAm cohort that integrates the [30] that we matched to the herein analyzed co-

Several previous studies concluded that With regard to gene expression we per- rably low doses of radiation [34]. In a study demonstrated [9, 16]. Of note, the sets of tumors investigated in these studies differ with respect to mean age at exposure (approx. 2 years Hess et al. and approx. 8 years UkrAm), mean age at operation (approx. 16 years Hess et al. and 25 years UkrAm), and average dose (approx. 0.15 Gy Hess et al. and 0.68 Gy UkrAm). This lead to markedly different estimates of the proportions of radiation-induced PTCs in the exposed set of the Hess et al. (2011) study (approx. 85%) and the PTCs of the UkrAm cohort (55-75%) [3, 9, 16, 6]. Consequently, we hypothesized and also confirmed a lower frequency of gain of 7q11.22-7q11.23 in the UkrAm PTCs (29%) compared to the exposed set of PTCs of the Hess et al. (2011) study (39%). In a subset findings with published data on global mRNA hort with regard to age the gain was not present

11.23 as a radiation-specific marker since so far it ferent tumor sets since RET/PTC and BRAF was detected in radiation-associated PTCs only. V600E have been associated with particular his-Classification of the UkrAm PTCs into radiation-tological subtypes or predominant histological induced or sporadic cases based on an integrated structures [35]. analysis of CLIP2 protein expression and CLIP2 (2014) [30] only differentiated "classical-type", genomic copy number revealed a frequency of "follicular-variant", "tall cell variant" and "un-75% radiation-induced cases which was in line common PTC variants" whereas our PTCs were with the above mentioned estimated frequency classified using more detailed subtype categories, of 55-75% of radiation-induced cases [16]. The which did not allow a one-to-one comparison. TCGA study on sporadic PTCs [30] already il- Another interesting result of the large-scale anallustrated the dominant and mutually exclusive ysis by the TCGA consortium is the molecular role of driver genetic alterations in PTC, in par- sub-classification of PTC into "BRAF-like" and ticular in the MAPK and PI3K pathways. Inter- "RAS-like" PTCs using the so called "BRAFestingly, the frequency of the BRAF V600E mu- RAS score". Since the "BRAF-RAS score" is tation in our investigated UkrAm cases was only derived from a 71-gene-signature, which was de-13% (9 out of 70 cases) and thus was significantly termined by differential expression analysis of tulower compared to the frequency of "BRAF- mors harboring either BRAF V600E or RAS mulike" cases of the age-matched TCGA subset tations, we hypothesized that this signature is canaling is also deregulated in radiation-associated RAS-mutated cases to a certain extent. The pub-PTCs [17], most frequently by either rearrange- lished signature has been derived from RNAseq ment of the RET gene (referred to as RET/PTC) data, whilst the UkrAm expression data origior by mutation of the BRAF gene (referred to nate from gene expression array data (Abend et as BRAF V600E mutation) in a mutually exclu- al., 2012). This might explain that the Abend et sive manner. In our study we found RET/PTC1 al. array data lack some genes since in contrast or RET/PTC3 rearrangements with a frequency to RNAseq microarrays cannot reliably detect of 31% (22 out of 71 cases) which is in the genes that are weakly expressed. However, unsulower range of earlier reported frequencies of pervised hierarchical clustering based on the re-RET/PTC in young adults. served frequencies of RET rearrangements and and, consistently, all cases with a BRAF V600E BRAF V600E mutations in our study were in mutation were present in one single cluster (C1) good agreement with the findings on PTCs of which reflects the "BRAF-like" cases. Hence, althe UkrAm cohort reported by Leeman-Neil et though we were not able to calculate a BRAFal. (2013) [17] (15% BRAF V600E mutated cases RAS score due to the fact we did not have RAS and 35% RET/PTC positive cases). In con- mutation data available we could prove the usetrast the age-matched TCGA [30] PTC subset fulness of the underlying gene expression signashowed a much lower frequency of RET/PTC ture for the discrimination of PTCs into BRAFrearrangements (13.3%) compared to UkrAm like and non-BRAF like. Moreover, this finding which is likely to be due to differences in the suggests that the BRAF V600E driven molecu-

at all. This supports the role of gain of 7q11.22- distribution of histological subtypes in the dif-Unfortunately, Agrawal et al. Likewise sporadic PTCs MAPK sig- pable to discriminate BRAF-mutated cases and In all, the ob- maining 59 genes resulted in four distinct clusters like" associated genes. Concerning a comparison in PTC [39]. In addition to these exemplarily of the genomic copy number alterations of the mentioned thyroid cancer associated genes one PTCs investigated in our study and that of the can speculate that more genes located on altered age-matched subset of the Agrawal et al. (2014) chromosomes 1q and 19 may play an important [30] study we observed marked differences. 83% role in driving radiation-induced PTC. Thereof the TCGA subset did not show any CNA at fore, we suggest an in-depth integrated analyall, referred to as "SCNA-quiet" group in the sis of these genomic regions particularly with re-53% of the UkrAm PTCs (cluster C2.1 Figure 2 affected genes. The systematic integration analcan be attributed to this group, although none ysis of the genomic copy number level with the of the UkrAm PTCs did not show no CNA at transcriptome level that we carried out in this all, but only a few smaller ones. None of the study unfortunately did not result in any posiother groups i.e. "SCNA-22q-del" and "SCNA- tive findings which might, on the one hand, be low-1q-amp" were found in our data set. This due to the limited number of cases that overis likely to be due to the fact that the subset lapped between our array CGH and the Abend of the Agrawal et al. (2014) [30] we used for et al. (2012) expression microarray data set [14]. comparison was purely sporadic and, moreover, On the other hand, it also might be an effect differed from our data set with regard to his-caused by intratumoral heterogeneity since the tological subtypes. genomic copy number unsupervised hierarchical microarray analysis were extracted from different clustering of the of the CNA profiles of the 84 parts of the tumors. Many of the CNAs from this UkrAm PTCs resulted in two main clusters with study have already been described for PTC in significantly more females, cases without lymph young patients previously [9, 40, 41]. Stein et al. node metastasis and long latency (> 17 years) [40] reported in post-Chernobyl childhood PTCs in cluster C1. This partly reflects the findings chromosomal gains on 1q, 12q, 22q and a loss on reported by Hess et al. [9] who described a sim- 21q in post-Chernobyl childhood PTCs. ilar result for CNA associations with the lymph Hess et al. (2011) and Unger et al. (2008) prenode status [36, 29, 37]. Interestingly, the groups sented overlapping CNAs [9, 41] with this study as they were defined by unsupervised hierarchi- of the UkrAm cohort (gains on 1q, 9q, 16p/q, cal clustering can also be built considering only 19p/q, 20, 21q and loss on 11p). In UkrAm copy number changes of chromosomes 1q and 19. cases CNAs could be associated with latency > Hence, these alterations are the most discrimi- 17 years, absent lymph node metastasis, and fenating ones amongst all CNAs. Chromosome 1q male gender. Association testing also revealed harbors, among many others, the genes TMP3 a region on chromosome 22q (region no. and TRIM33 (synonym RFG7) that have already includes NF2 and CHEK2), significantly associbeen shown to be associated with PTC. While ated with latency. 35% of all cases with a latency in radiation-associated PTCs TRIM33 has been > 17 years harbored the 22q gain, compared to shown to be fused to the RET gene as part of the 6% of cases with latency < 17 years. This result RET/PTC7 rearrangement [38], TMP3 has been was even more prominent when only females were

lar phenotype is well reflected by the "BRAF- identified as a fusion partner of the NTRK1 gene Agrawal et al. (2014) paper [30]), whereas only spect to mRNA and protein expressions of the With regard to the global nucleic acids used in array CGH and expression considered for whom 46% of cases with latency > 17 years and only 4% of cases with latency < 17 years showed the gain. This represent an important observation in terms of radiation exposure of the UkrAm cases which is further complemented by the fact that [42, 29, 43, 14] copy number gains of two genes, FAM38A and MTA1 were associated with radiation dose. Of special interest these two genes were amongst the 11 genes that showed a statistical significant association of gene expression with radiation dose in the Abend et al. [14] study. Both genes showed a significantly higher expression in the intermediate dose group (300-1000 mGy) in the initial In the same dose group we found a significant enrichment of cases with the corresponding chromosomal gain confirming the findings by Abend et al. (2012) [14] at the genomic level and pointing to further radiation-associated genetic alterations in addition to gains on 7q11.22-11.23 and associated CLIP2 alterations. In conclusion, we present the first study on CNAs of PTCs from the UkrAm cohort and show that the carcinogenesis reflecting genomic landscape of these tumors is very heterogeneous. With regard to gain of 7q11.22-11.23 which was identified as a radiation-specific copy number alteration in PTC in a previous study on radiationassociated PTC (9), we observed a comparable frequency in our data set. This let us conclude that the subset of UkrAm cases showing the gain are similar to the radiation-induced PTCs from the previous Ukrainian cohort and also are likely to be radiation-induced [9]. Additionally, we considered findings that were published in a comprehensive multi-level omics study on a large set of sporadic PTCs suggesting that a subset of cases from UkrAm cohort is also of sporadic origin.

6 Acknowledgements

We thank the International Pathology Panel of the Chernobyl Tissue Bank for confirmation of diagnosis: Professors A Abrosimov, G Fadda, G Hant, V LiVolsi, J Rosai and ED Williams; the Chernobyl Tissue Bank for collection of thyroid tissue samples; Professor G Thomas as coordinator of the Chernobyl Tissue Bank; Professor Y Nikiforov for the exchange of BRAF V600E and RET/PTC data; Aaron Selmeier for techni-This study was supported by the cal support. European Commission, EpiRadBio project, FP7 269553 and in part by the Euro-Grant No. pean Commission, DoReMi project, Grant No. 249689. The results shown here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/.

References

- [1] Cardis, E. et al. (2011). The Chernobyl accident—an epidemiological perspective. *Clin Oncol* (*R Coll Radiol*), **23**, 4, 251–60. ISSN 1433-2981 (Electronic) 0936-6555 (Linking). doi:10.1016/j.clon.2011.01.510.
- [2] Ron, E. (2007). Thyroid cancer incidence among people living in areas contaminated by radiation from the Chernobyl accident. *Health Phys*, **93**, 5, 502–11. ISSN 0017-9078 (Print) 0017-9078 (Linking). doi:10.1097/01.HP.0000279018.93081.29.
- [3] Brenner, A.V., et al. (2011). I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. *Environmental Health Perspectives*, **119**, 7, 933–939. ISSN 1552-9924 (Electronic) 0091-6765 (Linking). doi:10.1289/ehp.1002674.
- [4] Cardis, E., et al. (2005). Risk of thyroid cancer after exposure to 131I in childhood. *J Natl Cancer Inst*, **97**, 10, 724–32. ISSN 0027-8874. doi:10.1093/jnci/dji129.
- [5] Davis, S., et al. (2004). Risk of Thyroid Cancer in the Bryansk Oblast of the Russian Federation after the Chernobyl Power Station Accident. *Radiation Research*, **162**, 241–248.
- [6] Tronko, M.D., et al. (2006). A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening. *J Natl Cancer Inst*, **98**, 13, 897–903. ISSN 0027-8874. doi:10.1093/jnci/djj244.
- [7] Zablotska, L.B., et al. (2011). Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. *Br J Cancer*, **104**, 1, 181–7. ISSN 0007-0920. doi:10.1038/sj.bjc.6605967.
- [8] Unger, K., et al. (2004). Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. *The Journal of clinical endocrinology and metabolism*, **89**, 9, 4272–4279. ISSN 0021-972X. doi:10.1210/jc.2003-031870.
- [9] Hess, J., et al. (2011). Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation. *Proc Natl Acad Sci U S A*, **108**, 23, 9595–600. ISSN 0027-8424. doi:10.1073/pnas.1017137108.
- [10] Bozhok, Y., et al. (2006). A Cohort Study of Thyroid Cancer and Other Thyroid Diseases After the Chornobyl Accident. Cyto-Histopathologic Correlation and Accuracy of Fine Needle Aspiration Biopsy in Nodules Detected During the First Screening in Ukraine (1998-2000). *Cancer*, **107**, 11, 2559–2566. ISSN 0008-543X. doi:10.1002/cncr.22321.
- [11] Tronko, M., et al. (2012). Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine-US Thyroid Project). *J Radiol Prot*, **32**, 1, N65–9. ISSN 1361-6498 (Electronic) 0952-4746 (Linking). doi:10.1088/0952-4746/32/1/N65.

- [12] Likhtarev, I., et al. (2006). Questionnaire- and measurement-based individual thyroid doses in Ukraine resulting from the Chornobyl nuclear reactor accident. *Radiat Res*, **166**, 1 Pt 2, 271–86. ISSN 0033-7587 (Print) 0033-7587. doi:10.1667/rr3545.1.
- [13] Likhtarov, I., et al. (2005). Post-Chornobyl Thyroid Cancers in Ukraine. Report 1: Estimation of Thyroid Doses. *Radiation Research*, **163**, 2, 125–136. ISSN 0033-7587. doi:10.1667/RR3291.
- [14] Abend, M., et al. (2012). Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. *PLoS One*, 7, 7, e39103. ISSN 1932-6203 (Electronic) 1932-6203 (Linking). doi:10.1371/journal.pone.0039103. Abend, Michael Pfeiffer, Ruth M Ruf, Christian Hatch, Maureen Bogdanova, Tetiana I Tronko, Mykola D Riecke, Armin Hartmann, Julia Meineke, Viktor Boukheris, Houda Sigurdson, Alice J Mabuchi, Kiyohiko Brenner, Alina V eng Randomized Controlled Trial Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't 2012/08/01 06:00 PLoS One. 2012;7(7):e39103. doi: 10.1371/journal.pone.0039103. Epub 2012 Jul 25.
- [15] Abend, M., et al. (2013). Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers. *Br J Cancer*, **109**, 8, 2286–94. ISSN 0007-0920. doi:10.1038/bjc.2013.574.
- [16] Selmansberger, M., et al. (2014). CLIP2 as radiation biomarker in papillary thyroid carcinoma. *Oncogene*. ISSN 1476-5594. doi:10.1038/onc.2014.311.
- [17] Leeman-Neill, R.J., et al. (2013). RET/PTC and PAX8/PPARgamma chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. *Cancer*, **119**, 10, 1792–1799. ISSN 1097-0142. doi: 10.1002/cncr.27893.
- [18] Buffart, T.E., et al. (2007). DNA quality assessment for array CGH by isothermal whole genome amplification. *Cell Oncol*, **29**, 4, 351–9. ISSN 1570-5870 (Print) 1570-5870 (Linking).
- [19] Gentleman, R.C., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol*, **5**, 10, R80. ISSN 1465-6914 (Electronic) 1465-6906 (Linking). doi:10.1186/gb-2004-5-10-r80.
- [20] Neuvial, P., et al. (2006). Spatial normalization of array-CGH data. *BMC Bioinformatics*, **7**, 264. ISSN 1471-2105 (Electronic) 1471-2105 (Linking). doi:10.1186/1471-2105-7-264.
- [21] Sjoerd Vosse, M.v.d.W. (2009). CGHregions: Dimension Reduction for Array CGH Data with Minimal Information Loss. *R package version 152*.
- [22] Wiel, S.V.a.M.v.d. (2012). CGHbase: Base functions and classes for arrayCGH data analysis. *R package version 1200*.

- [23] Vucur, M., et al. (2013). RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase-8- and JNK-dependent compensatory cell proliferation. *Cell Reports*, **4**, 4, 776–790. ISSN 2211-1247. doi:10.1016/j.celrep.2013.07.035.
- [24] van de Wiel, M.A., et al. (2005). CGHMultiArray: exact P-values for multi-array comparative genomic hybridization data. *Bioinformatics*, **21**, 14, 3193–4. ISSN 1367-4803 (Print) 1367-4803 (Linking). doi:10.1093/bioinformatics/bti489.
- [25] Selmansberger, M., et al. (2015). Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. *Carcinogenesis*. ISSN 1460-2180. doi:10.1093/carcin/bgv043.
- [26] McCullagh, P. et al. (1989). Generalized Linear Models, Second Edition. doi:SBN-13: 978-0412317606,ISBN-10:0412317605.
- [27] Benjamini, Y. et al. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B (Methodological)*, **57**, 1, 289–300. ISSN 00359246. doi:10.2307/2346101.
- [28] Likhtarov, I., et al. (2006). Post-Chernobyl thyroid cancers in Ukraine. Report 2: risk analysis. *Radiat Res*, **166**, 2, 375–86. ISSN 0033-7587 (Print) 0033-7587. doi:10.1667/rr3593.1.
- [29] Cancer Genome Atlas Research, N. (2014). Integrated genomic characterization of papillary thyroid carcinoma. *Cell*, **159**, 3, 676–90. ISSN 1097-4172 (Electronic) 0092-8674 (Linking). doi:10.1016/j.cell.2014.09.050.
- [30] Agrawal, N., et al. (2014). Integrated Genomic Characterization of Papillary Thyroid Carcinoma. *Cell*, **159**, 3, 676–690. ISSN 0092-8674. doi:10.1016/j.cell.2014.09.050.
- [31] Gao, J., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Science Signaling*, **6**, 269, pl1. ISSN 1937-9145. doi:10.1126/scisignal.2004088.
- [32] van Wieringen, W.N., et al. (2012). Matching of array CGH and gene expression microarray features for the purpose of integrative genomic analyses. *BMC Bioinformatics*, **13**, 80. ISSN 1471-2105 (Electronic) 1471-2105 (Linking). doi:10.1186/1471-2105-13-80.
- [33] van Wieringen, W.N. et al. (2009). Nonparametric testing for DNA copy number induced differential mRNA gene expression. *Biometrics*, **65**, 1, 19–29. ISSN 1541-0420 (Electronic) 0006-341X (Linking). doi:10.1111/j.1541-0420.2008.01052.x.
- [34] Mullenders, L., et al. (2009). Assessing cancer risks of low-dose radiation. *Nat Rev Cancer*, **9**, 8, 596–604. ISSN 1474-1768 (Electronic) 1474-175X (Linking). doi:10.1038/nrc2677.
- [35] Santoro, M., et al. (2006). RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. *European Journal of Endocrinology*, **155**, 5, 645–653. ISSN 0804-4643, 1479-683X. doi:10.1530/eje.1.02289.

- [36] Alfthan, K., et al. (2004). Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. *J Biol Chem*, **279**, 18, 18559–66. ISSN 0021-9258 (Print) 0021-9258 (Linking). doi:10.1074/jbc.M313916200.
- [37] Hartmann, M., et al. (2015). Tumor Suppressor Nf2 Blocks Cellular Migration by Inhibit- ing Ectodomain Cleavage of Cd44. *Mol Cancer Res.* ISSN 1557-3125 (Electronic) 1541-7786 (Linking). doi:10.1158/1541-7786.MCR-15-0020-T.
- [38] Rabes, H.M. (2001). Gene rearrangements in radiation-induced thyroid carcinogenesis. *Med*

Pediatr Oncol, **36**, 5, 574–82. ISSN 0098-1532 (Print) 0098-1532 (Linking). doi:10.1002/mpo. 1133.

[39] Greco, A., et al. (2010). Rearrangements of NTRK1 gene in papillary thyroid carcinoma.

Mol Cell Endocrinol, **321**, 1, 44–9. ISSN 1872-8057 (Electronic) 0303-7207 (Linking). doi: 10.1016/j.mce.2009.10.009.

- [40] Stein, L., et al. (2010). Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from chernobyl pediatric patients. *Thyroid*, 20, 5, 475–87. ISSN 1050-7256. doi:10.1089/thy.2009.0008.
- [41] Unger, K., et al. (2008). Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC. *Oncogene*, **27**, 33, 4592–602. ISSN 1476-5594 (Electronic) 0950-9232 (Linking). doi:10.1038/onc.2008.99.
- [42] Wreesmann, V.B., et al. (2004). Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker. *Cancer Res*, **64**, 11, 3780–9. ISSN 0008-5472 (Print) 0008-5472 (Linking). doi:10.1158/0008-5472.CAN-03-1460.
- [43] Lambros, M.B., et al. (2010). PPM1D gene amplification and overexpression in breast cancer:
 - a qRT-PCR and chromogenic in situ hybridization study. *Mod Pathol*, **23**, 10, 1334–45. ISSN
 - 1530-0285 (Electronic) 0893-3952 (Linking). doi:10.1038/modpathol.2010.121.

Table 1: main features of patients

	n cases		AaE	AaO	Latency		Dose
female	51	mean [yrs]	8.4	25.7	17.4	arithmetic mean [Gy]	0.95
male	33	median [yrs]	9.0	26.0	16.6	geomeric mean [Gy]	0.32
Total	84						

Table 2: CNAs associated with the paramaters latency, gender and dose

Test parameter	Groups	n	Gains	Losses
Latency	< 17 years	47	3	3
	≥ 17 years	37	174	36
Gender	female	51	73	1
	male	33	-	-
Latency (Females)	< 17 years	27	3	-
	≥ 17 years	24	162	45
Dose	≤ 300 mGy	40	-	-
	301-1000 mGy	18	28	-
	> 1000 mGy	26	-	-

Figure 1: Frequency plot of CNAs of the PTCs investigated in our study. Green bars starting from the top indicate the percentage of CNA profiles with copy number gains in the data set and red bars from the bottom indicate the percentage of CNA profiles with copy number losses in the data set.

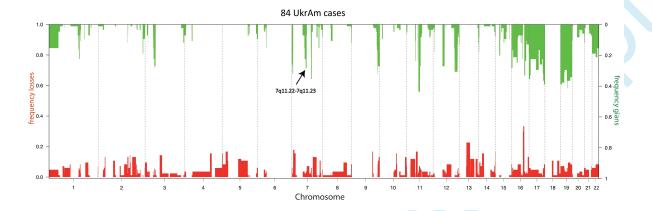
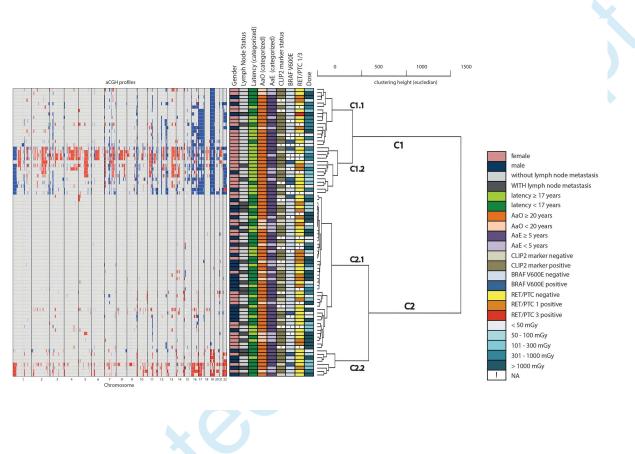



Figure 2: Unsupervised hierarchical cluster analysis of CNA profiles resulting in a heatmap corresponding to the clustered CNA profiles (left, copy number gains are depicted in blue and losses in red). The status of the parameters gender, lymph node status, latency, AaO, AaE, CLIP2, BRAF V600E, RET/PTC1/3 and dose and indicated by colored bars right of the heatmap. The clustering dendrogram is shown on the right.

