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Introduction
Air pollution affects people every day and 
especially the elderly, who are a growing 
population stratum in the United States. 
Mechanisms by which air pollution causes 
cardiovascular mortality and morbidity are not 
fully elucidated (Brook et al. 2010). Recent 
research has pointed to epigenetics as a poten-
tial mechanism for the adverse effects of air 
pollution (Breton et al. 2012; Jardim 2011; 
Madrigano et al. 2012a). Epigenetics refers to 
chromosome changes that do not modify the 
genetic code, but influence its expression. The 
most frequently examined epigenetic mecha-
nism is called DNA methyla tion because 
it involves methyla tion of cytosine in CpG 
(cytosine–phosphate–guanine) pairs.

Several studies have related air pollution 
exposure to changes in epigenetic outcomes, 
including DNA methyla tion, but they 
have used standard regression methods that 
report the change in the expected value of 

an outcome for a given change in exposure 
(Baccarelli et al. 2009; Bellavia et al. 2013; 
Soberanes et al. 2012; Tarantini et al. 
2009). However, focusing on the mean 
response may not well describe effects that 
shift the overall shape, versus the location, 
of the outcome distribution. Because 
DNA methyla tion is a biological mecha-
nism whereby cells control gene expression 
in a complex manner (stochastic dynamics, 
phase variation, and bistability) (Riggs and 
Xiong 2004), we hypothesized that mean 
regression analyses may not capture associa-
tions that occur primarily in the tails of the 
outcome distribution.

In this study, we examined whether air 
pollution affects DNA methyla tion across 
nine quantiles of the methyla tion distribu-
tion. We focused on methyla tion of candidate 
genes related to coagulation and inflamma-
tion: coagulation factor III (F3), intercellular 
adhesion molecule 1 (ICAM‑1), toll-like 

receptor 2 (TRL‑2), interferon gamma 
(IFN‑γ), and interleukin 6 (IL‑6). Previous 
research has shown that high levels of similar 
markers of coagulation and inflammation 
increase the risk of cardiovascular-related 
outcomes (Danesh et al. 1998; Hwang et al. 
1997; Mendall et al. 1996). We studied a 
cohort of elderly men who may have greater 
susceptibility to air pollution exposure because 
of their age (Shumake et al. 2013).

Materials and Methods
Study population. This prospective cohort 
study included male participants from the 
Normative Aging Study, an investigation 
established in Boston, Massachusetts, in 1963 
by the U.S. Veterans Administration (Bell 
et al. 1966). We measured DNA methyla-
tion on blood samples collected after an over-
night fast and smoking abstinence during the 
period 1999–2009. Methylation was assessed 
using blood samples collected at one to five 
visits completed at 3- to 5-year intervals. 
About 70% of the participants had more than 
one medical visit. We excluded individual 
observations if C-reactive protein levels were 
> 10 mg/L (74 observations in 71 participants) 
to reduce the potential influence of current 
infections (Simon et al. 2004), leaving a total 
of 1,798 observations in 777 participants. 
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Background: Air pollution has been related to mean changes in outcomes, including DNA 
methyla tion. However, mean regression analyses may not capture associations that occur primarily 
in the tails of the outcome distribution.

oBjectives: In this study, we examined whether the association between particulate air pollution 
and DNA methyla tion differs across quantiles of the methyla tion distribution. We focused on 
methyla tion of candidate genes related to coagulation and inflammation: coagulation factor III 
(F3), intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFN-γ), interleukin-6 (IL-6), 
and toll-like receptor 2 (TRL-2).

Methods: We measured gene-specific blood DNA methyla tion repeatedly in 777 elderly men 
participating in the Normative Aging Study (1999–2010). We fit quantile regressions for longitu-
dinal data to investigate whether the associations of particle number, PM2.5 (diameter ≤ 2.5 μm)
black carbon, and PM2.5 mass concentrations (4-week moving average) with DNA methyla tion 
[expressed as the percentage of methylated cytosines over the sum of methylated and unmethylated 
cytosines at position 5 (%5mC)] varied across deciles of the methyla tion distribution. We reported 
the quantile regression coefficients that corresponded to absolute differences in DNA methyla tion 
(expressed in %5mC) associated with an interquartile range increase in air pollution concentration.

results: Interquartile range increases in particle number, PM2.5 black carbon, and PM2.5 mass 
concentrations were associated with significantly lower methyla tion in the lower tails of the IFN-γ 
and ICAM-1 methyla tion distributions. For instance, a 3.4-μg/m3 increase in PM2.5 mass concen-
tration was associated with a 0.18%5mC (95% CI: –0.30, –0.06) decrease on the 20th percentile of 
ICAM-1 methyla tion, but was not significantly related to the 80th percentile (estimate: 0.07%5mC, 
95% CI: –0.09, 0.24).

conclusions: In our study population of older men, air pollution exposures were associated with a 
left shift in the lower tails of the IFN-γ and ICAM-1 methyla tion distributions.
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This study was approved by the Harvard 
T.H. Chan School of Public Health and 
the Veterans Administration Institutional 
Review Boards (IRB). Participants provided 
written informed consent to participate in this 
study, which was approved by the Veterans 
Administration IRB.

Air pollution. The relevant exposure 
window for the association of air pollution 
with DNA methyla tion is unknown. Previous 
studies suggested an association spread 
over several weeks (Baccarelli et al. 2009; 
Madrigano et al. 2011; Salam et al. 2012). In 
the same cohort, we observed some associa-
tions between air pollution exposure averaged 
up to 1 month preceding the medical visit 
and the mean of the gene-specific methyla tion 
distribution (Bind et al. 2014). Therefore, we 
chose a priori to explore a similar inter mediate-
term exposure window and focused on air 
pollution concentrations averaged over the 
monthly period preceding each participant’s 
methyla tion assessment. We examined only 
one exposure window to limit the number of 
tests. The intermediate time window could be 
a proxy for short- and long-term exposures.

The exposure variables we considered are 
4-week moving averages of particle number 
concentration (including fine and ultrafine 
particles 0.007–3 μm in diameter; number/
cubic centimeters), PM2.5 mass concentration 
(particles ≤ 2.5 μm in diameter; micrograms 
per cubic meter), and PM2.5 black carbon 
(black carbon particles ≤ 2.5 μm in diameter; 
micrograms per cubic meter). Particulate 
concentrations were measured hourly at the 
Harvard supersite located near downtown 
Boston and approximately 1 km from the 
examination center. Because the study partici-
pants lived in the Greater Boston area with a 
median distance of 20 km from the Harvard 
supersite, we assumed that the ambient air 
pollutant concentrations could serve as surro-
gates of their exposures. We measured hourly 
particle number in the 0.007- to 3-μm size 
range with a condensation particle counter 
(model 3022A; TSI Inc., Shoreview, MN), 
hourly PM2.5 elements with a tapered element 
oscillation microbalance (model 1400A; 
Rupprecht and Pastashnick, East Greenbush, 
NY), and hourly PM2.5 black carbon concen-
trations using an aethalometer (model AE-16; 
Magee Scientific Co., Berkeley, CA). From 
the hourly measurements, we calculated 
24-hr mean concentrations and then monthly 
moving averages using the corresponding 
4-week lags.

Whereas particle number is a marker 
for fresh local traffic emissions, PM2.5 black 
carbon originates from both local and trans-
ported traffic emissions. In Boston, trans-
ported sulfate particles and secondary organic 
aerosols constitute a large fraction of PM2.5 
mass (Kang et al. 2010).

DNA methyla tion. We collected each 
participant’s blood at every visit and isolated 
DNA to assess gene-specific DNA methyla-
tion using quantitative methods based on 
bisulfite polymerase chain reaction pyro-
sequencing (Yang et al. 2004). The degree of 
methyla tion was expressed as the percentage 
of methylated cytosines over the sum of 
methylated and unmethylated cytosines at 
position 5 (%5mC).

Nine candidate genes that were expressed 
in leukocytes and plausibly related to heart 
or lung disease were chosen a priori for 
high precision pyrosequencing analysis as 
part of a previous study. From those nine 
candidate genes, we focused on five (F3, 
ICAM‑1, IFN‑γ, TRL‑2, and IL‑6) whose 
associated proteins are related to coagulation 
and inflammatory pathways. We previously 
examined the mean association between air 
pollution exposure and methyla tion of the 
same set of genes (Bind et al. 2014).

We measured F3, ICAM‑1, IFN‑γ, and 
TRL‑2, methyla tion levels at two to five CpG 
positions within each gene’s promoter region 
and calculated the mean values of the posi-
tion-specific measurements. IL‑6 methyla tion 
was quantified outside the gene’s promoter 
region. Exact positions within promoter 
regions, as well as primers and conditions for 
the assays, have been previously described 
(Bind et al. 2012).

Weather variables. Ambient temperatures 
and relative humidity were measured at the 
Boston Logan Airport weather station located 
8 km from the study center over the 1999–
2010 period. Because study participants lived 
throughout the metropolitan area, we assumed 
that the monitored temperature and humidity 
can serve as surrogates of their exposures.

Statistical methods. We investigated 
whether air pollution levels averaged over the 
4-week period before the jth visit of partici-
pant i was associated with the pth percen-
tile of the DNA methyla tion distribution 
ψp(Yij). Because we had repeated methyla-
tion measures for 71% of the participants, we 
fit quantile regressions for longitudinal data 
and report the associations on the additive 
scale (Koenker 2004). This approach can be 
summarized as below:

ψp(Yij | Aij, C1ij = c1, C2ij = c2, bi,p) 
 = (β0,p + bi,p) + β1,p Aij  
  + β2,p

T c1 + β3,p
T c2, [1]

where 
• Aij, Yij, C1ij, and C2ij are the air pollu-

tion exposure, DNA methyla tion, set of 
confounding variables, and the set of risk 
factors of participant i at the jth visit, 
respectively

•  ψp(Yij) is the pth quantile of the Yij 
distribution

• bi,p is the random intercept for participant i 
included in the regression model for the pth 
quantile of the methyla tion distribution

•  βk,p are the coefficients related to the pth 
quantile regression model (k = 0 to 3)

• Variables in bold represent vectors.
In our regression models, the dependent 

variable was gene-specific DNA methyla-
tion. We reported the quantile regression 
coefficients, which correspond to differences 
in DNA methyla tion (expressed in %5mC) 
associated with an interquartile range increase 
in air pollution concentration. The alpha 
level for statistical significance was 0.05. 
We adjusted for potential time-varying 
confounders (C1) such as temperature, 
relative humidity, sine and cosine terms as 
a function of day of the season, and batch 
of methyla tion measurement. We also 
controlled for time-varying factors likely to 
influence methyla tion (C2) but not exposure, 
such as age, diabetes, body mass index, 
smoking status (former, current, vs. never 
smoker), statin use, as well as percentages of 
neutrophils and lymphocytes in differential 
blood count. We included C2 in the models 
for efficiency and blocking any potential 
backdoor path through unmeasured variables 
that would be a common cause of air pollu-
tion and C2 (Greenland et al. 1999). We 
thus assumed no unmeasured confounding 
between air pollution and methyla tion, given 
the random intercept and the C1 covariates 
(see Supplemental Material, Figure S1).

We checked for nonlinear dose–response 
relationships between the methyla tion mean 
and air pollutant concentrations, tempera-
ture, and relative humidity using general-
ized additive models and cubic splines. We 
found no deviation from linear dose–response 
relationships with respect to methyla tion: 
Using cubic splines, we observed no signifi-
cant improvement in fit relative to a linear 
model (data not shown). We conducted 
some sensitivity analyses restricting the study 
population to never and former smokers (i.e., 
using individual observations for men whose 
smoking status changed over follow-up time). 
Moreover, we assumed the missing mecha-
nisms of the exposures and outcomes to be 
at random conditional on the covariates, and 
the measurement error of air pollution to be 
primarily Berkson (Zeger et al. 2000).

Quantile regression does not specify any 
distribution for the residuals, and hence is 
distribution free. Moreover, if one takes as 
their regression coefficient estimates those 
values that minimize the sum of the absolute 
values of the residuals instead of the sum of 
squared residuals, the result is an estimate of 
covariate effects on the median, instead of the 
mean, of the outcome distribution. Quantile 
regression generalizes this approach by 
weighting the positive and negative residuals 
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differently, which forces the regression line to 
other percentiles of the distribution.

We compared the quantile regression 
estimates to the ones obtained by a standard 
mean regression model. Because three 
methyla tion distributions (i.e., F3, ICAM‑1, 
and TLR‑2) had a point mass at zero and the 
residuals’ distribution showed important devi-
ation from a Gaussian density, we assumed 
a Tweedie distribution (with a log-link) for 
these outcomes and reported associations 
on the multiplicative scale. For the other 
two outcome distributions (i.e., IFN‑γ and 
IL‑6 methyla tion), we assumed a Gaussian 
distribution for the residuals and presented 
our results on the additive scale. We fit the 
following linear mixed-effects models:
• Mean model for F3, ICAM‑1, and TLR‑2 

(multiplicative scale)

log E[Yij] = (γ0 + ui) + γ1 Aij + Σk γ4k Ckij  
 with Yij ~ Tweedie and ui ~ N(0,σu

2), [2]

• Mean model s  for  IFN‑γ  and IL‑6 
(additive scale)

Yij = (γ0 + ui) + γ1 Aij + Σk γ4k Ckij + εij  
 with εij ~ N(0,σ2) and ui ~ N(0,σu

2), [3]

where Aij, Yij, and Ckij correspond to the air 
pollution exposure, DNA methyla tion, and 
the set of variables for which we adjusted (i.e., 
confounders and risk factors) for participant i 
at the jth visit, respectively.

We constructed an alternative way of 
presenting the decile-specific results by illus-
trating the actual distributional change of 
IFN‑γ methyla tion associated with an inter-
quartile range increase in particle number 
concentration. We estimated a predicted 
curve using the quantile regression coeffi-
cients and assuming a constant trend within 
decile intervals.

Results
Descriptive statistics. At baseline, the median 
age of the study population was 72 years. Also, 
27% of the participants were obese (defined 
as body mass index > 30 kg/m2), 14% were 
diabetics, and only 4% were current smokers. 
Participants’ characteristics varied according 
to their total number of visits: Individuals with 
more visits seemed healthier than participants 
with fewer visits; that is, at baseline, partici-
pants with more medical visits over the study 
period were less likely to be former smokers, 
statin users, old, obese, or diabetics (Table 1). 
Boston has a continental climate with direct 
influences from the ocean. Although it is 
mostly cold and dry in winter, it is usually 
warm and humid in summer. Ambient air 
pollutants levels in Boston are generally below 
the U.S. Environmental Protection Agency 
(EPA) standards. Over the 1999–2009 study 
period, the 24-hr PM2.5 mass concentrations 
exceeded the daily standard of 35 μg/m3 
for only 13 days: between June and August 
2002. Summary statistics of the weather and 
air pollution as well as Spearman correlations 

during the study period are presented in 
Tables 2 and 3, respectively. A substantial 
number of measurements of particle number 
concentrations (i.e., 24%) were missing due 
to a later acquisition of the condensation 
particle counter or a lack of recording measure-
ments. PM2.5 black carbon was positively 
correlated with PM2.5 mass (ρ = 0.68). We 
found no statistically significant correla-
tion between other pollutants. Temperature 
was also negatively correlated with particle 
number (ρ = –0.69), but positively corre-
lated with PM2.5 black carbon (ρ = 0.48) 
and PM2.5 mass (ρ = 0.40). The gene-specific 
methyla tion distributions varied according 
to genes (Table 4). For instance, at baseline, 
we observed wider methyla tion distribu-
tions of IFN‑γ (5th and 95th percentiles: 
75.4, 91.1) and IL‑6 (5th and 95th percentiles: 
25.4, 62.1), compared with that of F3 (5th 
and 95th percentiles: 1.0, 4.5), ICAM‑1 (5th 
and 95th percentiles: 2.2, 8.2), and TLR‑2 
(5th and 95th percentiles: 1.5, 5.3). 

Quantile regression results. Our results 
showed that the air pollution association 

Table 1. Demographic characteristics of the Normative Aging Study participants across visits.

Visits

5th, 50th, 95th percentile Obese 
(%)a

Statin user 
(%)

Diabetic 
(%)

Smoking status (%) 
(never, former, current)Age (years) % of neutrophils % of lymphocytes 

Baseline (n = 777) 62, 72, 84 48, 62, 74 15, 26, 38 27 36 14 29, 67, 4
nmissing 0 22 22 0 0 0 0
Among participants having one visit (n1 = 221)

Visit 1 64, 76, 88 48, 63, 77 13, 25, 37 30 40 18 26, 70, 4
Among participants having two visits (n2 = 217)

Visit 1 60, 73, 83 47, 62, 74 15, 25, 40 28 35 16 26, 69, 5
Visit 2 66, 77, 86 48, 64, 75 14, 24, 37 27 54 19 26, 70, 4

Among participants having three visits (n3 = 216)
Visit 1 62, 71, 82 47, 62, 72 16, 26, 39 25 36 9 29, 68, 3
Visit 2 66, 74, 86 48, 62, 74 15, 26, 38 26 52 13 28, 69, 3
Visit 3 69, 78, 89 48, 62, 76 13, 25, 39 25 62 17 27, 71, 2

Among participants having four visits (n4 = 120)
Visit 1 60, 69, 77 49, 61, 74 15, 26, 36 22 29 10 38, 58, 4
Visit 2 63, 72, 81 46, 62, 78 13, 25, 40 22 42 11 38, 58, 4
Visit 3 66, 75, 84 47, 61, 76 13, 26, 37 18 59 16 38, 59, 3
Visit 4 70, 78, 87 50, 63, 76 12, 25, 37 17 65 18 38, 60, 2

Three individuals had 5 visits, and their characteristics were fairly healthier than those of the other participants.
aBody mass index > 30 kg/m2.

Table 2. Summary statistics for the weather and air pollution variables (4-week moving average).

Variable nobservations nmissing IQR

Percentile

5th 50th 95th
Temperature (°C) 1,798 0 13 –1 14 23
Relative humidity (%) 1,798 0 8 58 69 77
Particle number (number per cm3) 1,365 433 14,599 9,352 18,426 42,291
PM2.5 black carbon (μg/m3) 1,798 0 0.26 0.46 0.74 1.04
PM2.5 mass (μg/m3) 1,798 0 3.4 6.3 9.6 15.1

Table 3. Spearman correlations for the weather and air pollution variables (4-week moving average).

Variable Temperature Relative humidity Particle number PM2.5 black carbon PM2.5 mass
Temperature 1 0.41 –0.69 0.48 0.40
Relative humidity 1 –0.05 0.55 0.24
Particle number 1 –0.07 0.07
PM2.5 black carbon 1 0.68
PM2.5 mass 1
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with DNA methyla tion was not generally 
homo geneous across quantiles (Figure 1). 
We observed that the negative association 
between particle number and F3 methyla-
tion was stronger in the upper deciles of 
the F3 methyla tion distribution. Although 
concentrations of particle number and PM2.5 
were not associated with ICAM‑1 methyla-
tion in the upper deciles of the methyla tion 
distribution, they were negatively related to 
the lowest deciles. For instance, a 3.4-μg/m3 

increase in PM2.5 was associated with a 
0.18%5mC [95% confidence interval (CI): 
–0.30, –0.06] decrease on the 20th quantile 
of ICAM‑1 methyla tion, and was not signifi-
cantly related to the 80th quantile (estimate: 
0.07%5mC; 95% CI: –0.09, 0.24). PM2.5 
black carbon concentrations were negatively 
associated with the 10th to 60th percentiles 
of the ICAM‑1 methyla tion distribution 
and positively related to the 90th percentile. 
Moreover, we observed that the negative 

association between particle number and 
IFN‑γ methyla tion was strongest in the lower 
deciles of the IFN‑γ methyla tion distribu-
tion. Particle number concentrations were not 
related to the 10th and 20th percentiles but 
were associated with the higher deciles of the 
IL‑6 methyla tion distribution. We did not 
find any associations between air pollution 
and any of the deciles of the TLR‑2 methyla-
tion distribution. In the analysis restricted 
to never and former smokers (consisting of 

Figure 1. Absolute difference in gene-specific methyla tion (expressed in %5mC with 95% CI) associated with an IQR increase in exposure [interquartile range 
(IQR) = 14,599 per cm3 for particle number (PN), 0.26 μg/m3 for PM2.5 black carbon, and 3.4 μg/m3 for PM2.5 mass], according to the deciles of the  methyla tion 
distribution. 
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Table 4. Gene-specific methyla tion (%) across visits (5th, 50th, and 95th percentiles).

Visits F3 mean ICAM-1 mean IFN-γ mean TLR-2 mean IL-6 mean
nobservations 1,533 1,424 1,736 1,424 1,749
nmissing 265 374 62 374 49
Baseline (n = 777) 1.0, 2.0, 4.5 2.2, 4.1, 8.2 75.4, 85.2, 91.1 1.5, 2.8, 5.3 25.4, 43.7, 62.1
Among participants having one visit (n1 = 221)

Visit 1 1.1, 1.9, 3.5 2.6, 4.3, 7.7 72.4, 85.2, 91.8 1.4, 2.8, 5.0 23.7, 43.8, 61.6
Among participants having two visits (n2 = 217)

Visit 1 1.0, 2.0, 4.2 2.2, 4.1, 8.4 75.4, 85.5, 90.9 1.5, 2.6, 5.1 23.7, 43.1, 65.3
Visit 2 0.8, 2.3, 4.4 2.2, 3.9, 8.2 75.8, 86.2, 91.4 1.0, 2.6, 5.7 24.7, 42.8, 59.8

Among participants having three visits (n3 = 216)
Visit 1 1.0, 2.0, 4.5 2.1, 3.8, 7.6 75.8, 84.7, 91.1 1.3, 2.8, 5.2 28.9, 43.7, 59.8
Visit 2 0.9, 2.5, 4.5 2.1, 3.6, 7.8 76.4, 86.8, 90.7 1.5, 2.6, 5.3 28.4, 43.0, 57.5
Visit 3 0.9, 1.8, 4.3 2.9, 4.2, 6.7 76.3, 86.2, 91.1 0.9, 2.1, 4.9 24.9, 42.9, 59.7

Among participants having four visits (n4 = 120)
Visit 1 0.4, 2.3, 5.2 2.1, 4.0, 9.8 76.9, 84.4, 90.7 1.9, 3.3, 5.9 28.9, 43.8, 61.8
Visit 2 1.0, 2.4, 4.8 2.0, 3.3, 9.9 76.9, 85.6, 91.4 1.7, 3.1, 6.0 25.3, 43.4, 58.4
Visit 3 1.8, 2.9, 4.5 2.5, 4.4, 6.1 75.0, 86.4, 89.3 1.5, 3.0, 6.3 28.7, 44.4, 62.9
Visit 4 0.7, 1.3, 3.1 2.8, 4.0, 8.3 77.5, 86.2, 92.7 0.9, 1.6, 4.0 26.3, 44.9, 60.5

This table does not include three individuals having five visits.
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755 participants and 1,737 individual obser-
vations), we found fairly similar results (see 
Supplemental Material, Figure S2).

The results obtained from mean regres-
sion analyses are presented in Table 5. An 
interquartile range increase in particle number 
concentration was negatively associated with 
the means of the F3 and IFN‑γ methyla tion 
distributions. PM2.5 mass concentrations were 
also negatively related to the mean of the F3 
methyla tion distribution.

We propose another way of presenting 
the decile-specific results (i.e., finding 
reported in Figure 1). We focused on the 
association between particle number and the 
IFN‑γ methyla tion distribution (presented in 
third top panel in Figure 1). Particle number 
was associated with a left shift in the lower 
tail of the IFN‑γ methyla tion distribution 
(Figure 2).

Discussion
Our findings suggest a potential impact of air 
pollution on DNA methyla tion and hetero-
geneous associations across quantiles of some 
gene-specific methyla tion distributions. In 
the same cohort, aging has been related to 
hypomethyla tion of TLR‑2 and hypermethyla-
tion of F3 and IFN‑γ (Madrigano et al. 
2012b); and compared with never and 
former smokers, current smokers had higher 
IL‑6 methyla tion and lower TLR‑2 and 
IFN‑γ methyla tion levels (Bind et al. 2014). 
Moreover, when we used mean regression to 
conduct mediation analyses in the same cohort 
(with air pollution as exposure, methyla tion 
as mediator, and cardiovascular-related blood 
markers as outcomes), we estimated a positive 
indirect effect of PM2.5 black carbon on 
fibrinogen through a decrease in F3 methyla-
tion (Bind et al. 2014). Similarly, the positive 
associations of sulfate and ozone with ICAM-1 
seemed to be partly mediated via a decrease in 
ICAM‑1 methyla tion. This quantile regression 
study showed that air pollution may be associ-
ated with only one extreme of the methyla tion 
distribution—which suggests heterogeneity 
between study participants with respect to 
potential epigenetic effects resulting from air 
pollution exposure.

Our results suggest that exposure to fine 
and ultrafine particles (size between 0.007 
and 3 μm in diameter) is associated with 

decreased methyla tion in the upper quantiles 
of F3 methyla tion and the lower quantiles of 
IFN‑γ methyla tion. F3, also known as tissue 
factor, is a major trigger of the coagulation 
cascade. F3 expression has been observed in 
vascular smooth muscle cells, endothelial cells, 
and fibroblasts (which play a role in wound 
healing) (Holy and Tanner 2010). High F3 
levels found in atherosclerotic plaques have 
been shown to be critical in the pathogen-
esis of atherothrombosis (Jude et al. 2005). 
Individuals with acute coronary syndromes, 
hypertension, dyslipidemia, diabetes, and 
cancer also have elevated F3 concentrations 
(measured, for instance, in endothelial cells, 
monocytes, macrophages, plasma) compared 
with individuals free of these diseases (Holy 
and Tanner 2010; Steffel et al. 2006). 
Furthermore, F3 induces thrombin formation 
leading to fibrin generation and activation of 
platelets (Jude et al. 2005). Platelet activation 
has, in turn, been observed after exposure to 
ultrafine particles in 57 men with coronary 
heart disease (Rückerl et al. 2007). An inter-
mediary mechanism could be through inflam-
matory cytokines and oxidized lipids which 
have been shown to up-regulate F3 expression 
(Holy and Tanner 2010; Jude et al. 2005).

IFN-γ is a cytokine that plays a central 
role in the generation and release of reactive 
oxygen species (ROS). The formation of 
ROS is associated with lack of important 
antioxidants, which causes oxidative stress 
(Schroecksnadel et al. 2006). According 
to the findings of several studies, oxidative 
stress appears to be an intermediary process 
between air pollution and cardiovascular 
disease (Barregard et al. 2008; Li et al. 2009; 
Mazzoli-Rocha et al. 2010; Schroecksnadel 
et al. 2006).

In this study, exposures to particle 
number, PM2.5 black carbon, and PM2.5 mass 
were associated with the lowest quantiles of 
ICAM‑1 methyla tion. In a previous study, we 
showed that a decrease in ICAM‑1 methyla-
tion was also related to a significant increase 
in the mean of ICAM-1 protein (Bind et al. 
2014). ICAM-1 is a glycoprotein that is 
expressed on endothelial cells and cells of the 
immune system. Elevated ICAM-1 concen-
tration increases the risk of myocardial infarc-
tion or coronary death. Our results suggest 
that air pollution exposure may decrease 
ICAM‑1 methyla tion, which may result in 
ICAM‑1 gene de-silencing and ICAM-1 
protein overexpression.

Table 5. Associations with mean gene-specific methyla tion for an interquartile range increase in air pollutant concentration.

Mean ratioa (95% CI) Mean differenceb (95% CI)

F3 ICAM-1 TLR-2 IFN-γ IL-6
Particle number 0.78 (0.72, 0.85)* 0.97 (0.92, 1.03) 1.00 (0.94, 1.08) –0.77 (–1.43, –0.11)* 0.59 (–0.55, 1.74)
PM2.5 black carbon 0.90 (0.85, 0.95)* 0.98 (0.95, 1.02) 1.03 (0.98, 1.08) –0.41 (–0.87, 0.04) 0.76 (–0.03, 1.54)
PM2.5 mass 0.96 (0.93, 1.00) 0.97 (0.94, 1.00) 1.00 (0.97, 1.03) –0.18 (–0.49, 0.13) 0.33 (–0.19, 0.84)
aMean ratio for F3, ICAM-1, and TLR-2 (multiplicative scale): Because the methyla tion distributions of F3, ICAM-1, and TLR-2 had a point mass at zero and the residuals’ distribution 
showed important deviation from a Gaussian density, we assumed a Tweedie distribution (with a log-link) for these outcomes and reported associations on the multiplicative scale. 
bMean difference for IFN-γ and IL-6 (absolute scale): For the other outcome distributions (i.e., IFN-γ and IL-6 methyla tion), we assumed a Gaussian distribution for the residuals and 
presented our results on the additive scale. *Significant at p = 0.05.

Figure 2. Empirical IFN-γ methyla tion distribution and its associated predicted distribution assuming 
an IQR increase in particle number concentration. Abbreviations: IQR, interquartile range; PN, particle 
number. The results show that instead of air pollution being associated with a shifting of the entire distri-
bution to the left, it is associated with a distortion of its shape, increasing in particular the probabilities of 
lower methyla tion levels.
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Our findings using quantile regression are 
fairly consistent with mean regression analyses 
using distributed-lag models (Bind et al. 2014) 
or moving averages (Table 5) for exposure in 
the same cohort. Concentrations of particle 
number and PM2.5 black carbon were asso-
ciated with F3 hypomethyla tion in both the 
mean and quantiles analyses. In the mean 
regression analysis using moving averages for 
exposure, concentrations of particle number 
and PM2.5 black carbon were not signifi-
cantly related to ICAM‑1 methyla tion. This 
quantile analysis reveals some association 
between particle number and the low end of 
the ICAM‑1 methyla tion distribution and no 
change at the high end of the distribution, 
demonstrating the added value of the quantile 
regression approach. In addition, for PM2.5 
black carbon, we observed significant negative 
associations with the lower percentiles of 
the ICAM‑1 methyla tion distribution and a 
positive association with the 90th percentile, 
indicating an effect of broadening the distribu-
tion at both ends, which resulted in a nonsig-
nificant change on average. Particle number 
concentration was associated with the lower 
percentiles and the mean of the IFN‑γ methyla-
tion distribution. However, the magnitude 
of the mean estimate was smaller compared 
with the estimates of the lower percentiles. 
For example, an interquartile range increase in 
particle number concentration was associated 
with a 0.8%5mC (95% CI: 0.1, 1.4; Table 5) 
and a 1.5%5mC (95% CI: 0.6, 2.4; Figure 1) 
decrease in mean and the 20th percentile of the 
IFN‑γ methyla tion distribution, respectively.

Quantile regression allows us to describe 
effects that shift the overall shape, as opposed 
to the location, of the outcome distribu-
tion. For instance, although we found some 
evidence that exposure to fine and ultrafine 
particles (size between 0.007 and 3 μm in 
diameter) shifts the low quantiles of the 
IFN‑γ methyla tion distribution toward lower 
levels, we observed no significant effect on the 
upper quantiles. Figure 2 shows the distribu-
tional change of IFN‑γ methyla tion assuming 
an interquartile range increase in particle 
number concentration. Our findings suggest 
that participants with low IFN‑γ methyla tion 
may be more susceptible to fine and ultrafine 
particles. In our study population of older 
men, air pollution exposures were associated 
with a left shift in the lower tail of the IFN‑γ 
methyla tion distribution.

Also, the heterogeneous associations 
between air pollution and methyla tion across 
quantiles of the methyla tion distribution is 
seen with mostly particle number for F3 and 
IFN‑γ and is seen with particle number, PM2.5 
black carbon, and PM2.5 mass concentrations 
for ICAM‑1. Different types of pollutants and 
size of particles may therefore have varying 
effects on gene-specific methyla tion.

Method limitations and strengths . 
Individuals in the top 50% of the F3 methyla-
tion distribution (i.e., with methyla tion levels 
between 2.0 and 4.5%5mC; Table 4) tend 
to lose about 1%5mC of methyla tion per 
IQR increase in particle number (Figure 1), 
which corresponds to almost double the loss 
observed in individuals in the bottom 50% 
(i.e., with methyla tion levels between 1.0 
and 2.0%5mC). Because a given CpG site 
in a given homozygotic cell is either (fully) 
methylated or (fully) unmethylated, we 
acknowledge that the first group of partici-
pants has roughly twice as many circulating 
methylated cells as the second, so the higher 
impact of exposure in the top 50% group 
versus the bottom 50% group may not be 
unexpected. Furthermore, the result is an 
increase by 1 or 0.5% of the proportion of 
unmethylated (possibly F3-expressing) cells 
from a baseline of 95.5–98% and 98–99% 
(Table 4), respectively, a change whose signifi-
cance is debatable. On the other hand, for 
IFN‑γ methyla tion the corresponding picture 
is that, in people with about 75–85%5mC 
methyla tion (i.e., only 15–25% of the circu-
lating cells are unmethylated; Table 4), the 
frequency of unmethylated cells increases by 
1% per IQR in PM2.5 mass concentration, 
a sizable and potentially significant increase. 
However, these arguments could be reversed if 
what matters physiologically is a large change 
on the ratio scale compared with the absolute 
scale. However, data collected in this study 
population are limited to address this issue.

Quantile regression is a distribution-free 
method and allows us to obtain estimates on 
the additive scale (expressed as a change in 
%5mC). In contrast, the standard approach 
using mean regression requires assumptions 
about the distribution of the residuals or 
the outcome. This approach using quantile 
regression can be reused in other disciplines to 
target susceptible population. In the presence 
of heterogeneity, reporting the exposure–
outcome association along the entire outcome 
distribution could also add some preciseness 
in estimates used for risk assessment. Taking 
into account the mean effect on an outcome 
that is likely to differ according to the quantile 
of methyla tion in which participants belong 
could be misleading. Epidemiological studies 
reporting associations based on conditional 
means may miss what is happening in some 
part of the study population.

Conclusions
Quantile regression suggested shifts in 
methyla tion distributions associated with air 
pollution exposure that were not captured 
by corresponding least-square estimates of 
the difference in (or ratio of) mean methyla-
tion associated with exposure. In the case of 
ICAM‑1 and IFN‑γ methyla tion, negative 

associations between particle number concen-
tration and methyla tion were concentrated on 
the lower deciles of the methyla tion distribu-
tion—that is, among individuals who already 
had low methyla tion levels, consistent with a 
shift on the lower quantiles of the methyla-
tion distribution to the left. Although the role 
of methyla tion in gene expression is complex, 
including no role, methyla tion tends to 
repress expression (Riggs and Xiong 2004). 
Hence, it is possible that individuals who 
already had a higher risk of inflammation 
may be the ones primarily affected by parti-
cles. In summary, quantile regression may 
capture associations that are only in the tails 
of the distribution and might be otherwise 
missed. This approach estimating associations 
along outcome distribution also allows us to 
describe distributional outcome changes asso-
ciated with increasing exposure. This makes 
it a valuable tool for environmental epidemi-
ology, and for providing results that might 
allow better risk assessment in future studies.
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