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Objective—Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery
disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the
causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD
by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks.

Approaches and Results—Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis
strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11089
controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15502
cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIOGRAM)
Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05).
These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to
extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth
factor), NOTCH, and the transforming growth factor-B/SMAD receptor complex. Many of these pathways had strengths
of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the
replicated pathways further revealed several interconnected functional and topologically interacting modules representing
novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid
metabolism). The connectivity in the observed networks was statistically significant compared with random networks
(P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc)
likely to play critical roles in the maintenance and functioning of several of the replicated pathways.

Conclusions—These findings provide novel insights into how genetic variation, interpreted in the context of
biological processes and functional interactions among genes, may help define the genetic architecture of CAD.
(Arterioscler Thromb Vasc Biol. 2015;35:1712-1722. DOI: 10.1161/ATVBAHA.115.305513.)
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(GWAYS) involving tens of thousands of subjects have
provided a wealth of new information on the genetic basis
of coronary artery disease (CAD), yet common susceptibil-
ity variants with achieved genome-wide significance explain
only a small fraction of the heritability of CAD (=10.6%)."* It
has been proposed that much of the residual genetic risk may
be attributable to rare variants with large effect.** However,

ies of established GWAS loci support the hypothesis that joint
contributions from common variants with modest effects are
likely to account for a sizeable fraction of the missing herita-
bility of complex diseases.>”

It is likely that many more common variants are linked
to CAD but have not achieved genome-wide significance in
GWAS because of small effect size or lower allele frequency
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Nonstandard Abreviation and Acronyms

CAD coronary artery disease

ECM extracellular matrix

FDR false discovery rate

CARDIoGRAM Coronary ARtery Disease Genome wide Replication and
Meta-analysis

SNP single-nucleotide polymorphism

GSEA gene-set enrichment analysis

GWAS genome-wide association study

and insufficient sample size. However, based on the premise
that clinically informative polymorphisms related to complex
disease occur in systems of closely interacting genes,® even
weakly associated variants may provide important informa-
tion about the biological basis of disease when such variants
cluster within a common functional module or pathway. One
common approach for pathway-based analysis of genomic
data is gene set enrichment analysis (GSEA), originally devel-
oped and extensively used for the analysis of gene expression
data.’ In 2007, Wang et al'® described a modified version of the
GSEA, designed to analyze genome-wide single-nucleotide
polymorphism (SNP) associations rather than gene expres-
sion data. Since then, several other GSEA methods have been
developed for this purpose.'™™ The common goal of these
analytic algorithms is to identify a subset of genes whose vari-
ants collectively demonstrate strong association with a trait
of interest even if the component SNPs individually exhibit
relatively modest or nonsignificant association. Importantly,
pathway analysis can also place the set of validated SNPs for
a trait of interest into a broader and clearer biological context.
A natural extension of this list-based pathway approach is the
interrogation of molecular networks to unravel the architecture
underlying complex diseases. A molecular network is based
on interactions among biomolecules (genes, protein, metab-
olites, etc), where such interactions can take various forms
(protein—protein interactions, coexpression, gene regulation,
functional interactions, etc). Efforts at the characterization
of disease-associated genes reveal that genes associated with
the same or similar disorders tend to occupy similar neighbor-
hoods in molecular networks through physical or functional
modules.!*!” Furthermore, the study of network topology sug-
gests that key disease-related genes differ from other genes
in terms of their network connectivity and network centrality
properties."” Finally, molecular networks provide 2 distinct
enhancements over traditional pathway-based approach—(1)
they provide additional information on interactions among
gene subsets within a given pathway, and (2) they allow for
the identification of interactions between components of dif-
ferent biological pathways. Through these analyses, 1 is able
to draw a clearer picture of the functional connectivities that
influence pathway functions, and how multiple pathways may
interact with 1 another to influence a phenotype.

Several studies have applied molecular networks for
generating insights from GWAS data®'®° in disorders, such
as schizophrenia, multiple sclerosis, and prostate cancer.
However, most of these approaches have relied mainly on
protein—protein interaction networks, thereby missing the rich
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mechanistic information available from traditional biological
pathway repositories and networks based on functional inter-
actions. In this study, we have coupled the advantages of a
well-curated biological pathway repository with a similarly
curated functional interaction network to identify mechanism-
based processes that may underlie the genetic architecture
of CAD. First, to identify novel associations between estab-
lished biological mechanisms and CAD, we have carried out
a 2-stage pathway-based GSEA analysis of 16 GWAS data
sets for CAD using the i-GSEA4GWAS (http://gseadgwas.
psych.ac.cn/inputPage.jsp) tool' and the Reactome pathway
database.”! Collectively, these GWAS include >25000 sub-
jects with CAD and >66 000 controls. We have then taken the
replicated pathways as a starting point to explore functional
interactions within and between pathways via interrogation
of molecular interacting networks. Finally, we have charac-
terized the CAD-associated genes based on their topological
properties within these networks as a way of prioritizing gene
candidates for functional follow-up studies.

Materials and Methods

Materials and Methods are available in the online-only Data
Supplement. Briefly, using pathways (gene sets) from Reactome,
we first carried out a 2-stage gene set enrichment analysis strategy.
From a meta-analyzed discovery cohort of 7 CAD GWAS data sets
(9889 cases/11089 controls), nominally significant gene sets were
tested for replication in a meta-analysis of 9 additional studies
(15502 cases/55 730 controls) from the CARDIoGRAM Consortium
(Table 1). Genes from the replicated pathways were then mapped
onto well-curated interaction networks (Figure 1).

Results

Significant Pathways

A total of 85 of the 639 Reactome pathways tested in stage
1 achieved a gene set enrichment P<0.05 at a false discovery
rate (FDR) <0.25. Thirty-two of these 85 pathways were fur-
ther replicated in stage 2 at a nominal P<0.05 (Table 2). When
the replicated pathways were compared with the full pathway
content of Reactome, at least 1 replicated from 9 of the 21 core
Reactome-defined biological processes. These included the
core processes of metabolism, signal transduction, develop-
mental biology, ECM organization, immune system, metabo-
lism of proteins, cell-cell communication, transmembrane
transport of small molecules, and gene expression (Figure 2).
Because of the hierarchical organization of Reactome path-
ways, several replicated pathways were nested within larger
gene sets, either completely or partially (Figure II in the
online-only Data Supplement). This hierarchical structure
enabled us to identify instances of pathway selectivity—for
example, although the CRMPS (collapsin response mediator
proteins) in SEMA3A (semaphorin) signaling, Sema4D in
semaphorin signaling, and Sema3A PAK (p21 protein acti-
vated kinase)-dependent axon repulsion pathways all nested
completely within the Semaphorin Interactions pathway, only
the former was significantly replicated (P<0.001), whereas
the latter 2 pathways were not. To put the identified pathways
in a broader context, we have also listed the nonreplicated
pathways that share similar levels of hierarchy as the repli-
cated pathways in Table I (online-only Data Supplement).
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About a third of the 32 replicated pathways were also sig-
nificant in stage 2 (P<0.05) after correcting for linkage dis-
equilibrium between the SNPs, by analyzing SNPs pruned
genome-wide at either r2>0.5 or r*>0.2 (Table II in the online-
only Data Supplement). The pathways that were in common
to all 3 pruned and unpruned SNP analyses were Toll receptor
cascades, degradation of the ECM, lipid digestion, mobiliza-
tion, and transport, and lipoprotein metabolism. Although the
association of these pathways may be of higher confidence,
pruning of SNPs may also lead to loss of power because of
significant reduction in SNP number (5% to 15% of unpruned
SNPs) and to the fact that the pruning was agnostic to the
actual CAD SNP association P values. Hence, for downstream
gene and network analyses we chose to use the full set of 19
pathways that replicated with the unpruned list of SNPs.

Finally, we examined the possible effect of LD among
genes leading to inflated significance scores for the replicated
pathways by considering the extent of LD among the gene-
tagging (best scoring) SNPs for all genes in a pathway. The
extent of LD among the most significant SNPs was found to
be minimal. Specifically, of all the SNPs tested, we found only
2 SNP pairs with an r>0.8, observed across 3 pathways. Even
at the more permissive 7* threshold of 0.2, only 4 SNP pairs
were observed across 5 pathways (Table III in the online-only
Data Supplement).

Gene and Pathway Prioritization
The 32 replicated pathways contained a total of 770 unique
genes that were taggable by at least 1 SNP (no SNP tags

were available for 83 genes). Figure SIII (online-only Data
Supplement) summarizes the proportion of genes within the
replicated pathways that were associated with CAD. All repli-
cated pathways contained >50% genes above the significance
threshold (range, 50.0%-92.3%), confirming that the pathway
findings were driven by the combined contributions of mul-
tiple genes in each pathway and not because of large effects
from a small minority of genes. For comparison purposes, we
also analyzed a synthetic pathway derived from genes within
the CARDIoGRAM loci reaching genome-wide significance.
This synthetic pathway contained the second highest propor-
tion of genes reaching the significance threshold.

Network Analysis

Statistical Evaluation of Network

A total of 770 genes from the replicated pathways were
mapped to the InWeb PPI network and the observed network
connectivity parameters (degree, and number of edges) com-
pared with random networks of similar size and degree distri-
bution. A network of direct interactions could be created with
620 genes (assuming a minimum interaction size of 2 genes).
The resulting network (Figure SIV) was significantly differ-
ent with respect to random networks; thus there were 3726
direct edges in the network compared with only 1548 edges
expected by chance (P<0.001), and the observed average con-
nectivity per gene (degree of gene) was 12, compared with an
expected 5.8 from random networks (P<0.001). These results
indicate that the networks constructed from the replicated
pathway genes are probably not because of chance.

Table 1. Demographics of Discovery and Replication Cohorts
No. of Cases/ Age (mean+SD) % Men % M
GWAS Data Set Controls Cases/Controls Cases/Controls ~ Cases
Stage 1 studies
OHGS_A 921/994 48.2+7.0/74.9+4.9 78.1/54.6 54.6
OHGS_CCGB-B 2688/1819 49.8+7.7/74.8+5.4 75.1/49.0 59.8
DUKE_2 1200/648 56.7+9.7/63.3+8.7 69.4/42.0 48.0
GerMIFs | 875/1644 50.2+7.8/62.6+10.0 50.6/49.2 100
GerMIFs I 1222/1298 51.4+7.5/51.2+11.9 66.9/51.7 100
GerMIFs Ill (KORA) 1157/1748 58.6+8.7/55.9+10.7 79.9/51.1 100
WTCCC 1926/2938 49.8+7.7/N/A 79.3/50.0 715
Total stage 1 9889/11089
Stage 2 studies
ADVANCE 278/312 45.8+6.2/45.3+5.7 42.1/41.0 50.4
CADomics 2078/2952 60.8+10.1/55.3+10.8 78.1/49.5 58.3
CHARGE 2287/22024  60.0+7.9/63.1+8.0 66.6/40.4 48.0
deCODE CAD 6640/27611  74.8+11.8/53.7+21.5 63.7/38.1 54.7
LURIC/AtheroRemo 1 652/213 61.0+11.8/58.3+12.1 79.7/54.0 719
LURIC/AtheroRemo 2 486/296 63.7+9.4/56.4+12.7 76.6/51.4 79.0
MedStar 874/447 48.9+6.4/59.7+8.9 67.0/45.4 48.1
MiGen 1274/1407 42.4+6.6/43.0+7.8 62.8/60.1 100
PennCATH 933/468 52.7+7.6/61.7+9.6 76.3/48.1 50.3
Total stage 2 12501/55730
Total stages 1 and 2 25491/66819

CAD indicates coronary artery disease; GWAS, genome-wide association study; and WTCCC,

Welcome Trust Case Control Consortium.
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Figure 1. Analytic approach. Schematic of analytic approach as
described in detail in the Materials and Methods section of this
article. FDR indicates false discovery rate; PID, pathway interac-
tion database; and SNP, single-nucleotide polymorphism.

Mapping of Replicated Pathway Genes
to an Interaction Network

Although this PPI-based analysis provided confidence that
the networks derived from the replicated pathway genes are
unlikely to arise from chance, it allows only limited insights
into the various biological mechanisms impacted by these
pathways. Thus, to identify networks that contain more rel-
evant information on biological processes (including PPI),
the genes from the replicated pathways were mapped to a
functionally interacting network curated and maintained at
Reactome. A total of 733 genes could be mapped to the larger
network. This subnetwork was further clustered to reveal
within-network modules. Clustering resulted in the identifica-
tion of 17 clusters with 10 clusters containing >10 gene mem-
bers (Figure 3; Table SIV). Within each cluster, a diverse array
of interactions (reactions, complex formation, activation, etc)
was represented by the edges connecting the genes (nodes),
as exemplified in Figure V (online-only Data Supplement)
for the genes in clusters 8 and 9. We also observed consider-
able interconnectivity between the clusters; for example, the
links between cluster 4 and other clusters are highlighted in
Figure 3 (additional intercluster connectivities for each of the
remaining clusters are shown in Figure VI in the online-only
Data Supplement). Enrichment analysis within each cluster
using Gene Ontology (http://www.geneontology.org/) identi-
fied several cluster-specific overrepresentations of biological
processes, as further highlighted in Figure 3. The following
are some notable examples of functional enrichment within
the clusters (FDR<0.001): innate immunity (clusters 1 and
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Table 2. List of Replicated Reactome Pathways Enriched for
Genetic Association to Coronary Artery Disease

No. of

Enrichment Genes/
Reactome Pathway PValue FDR Pathway
CHYLOMICRON_MEDIATED_LIPID_TRANSPORT  <0.001 0.000 16
CRMPS_IN_SEMAS3A_SIGNALING <0.001 0.000 14
DEGRADATION_OF_THE_EXTRACELLULAR_ <0.001 0.000 29
MATRIX
LIPID_DIGESTION_MOBILIZATION_AND_ <0.001 0.000 46
TRANSPORT
LIPOPROTEIN_METABOLISM <0.001 0.000 28
METABOLISM_OF_POLYAMINES <0.001 0.000 15
NOTCH1_INTRACELLULAR_DOMAIN_ <0.001 0.000 46
REGULATES_TRANSCRIPTION
SULFUR_AMINO_ACID_METABOLISM <0.001 0.000 24
TOLL_RECEPTOR_CASCADES <0.001 0.000 118
ORGANIC_CATION_ANION_ZWITTERION_ <0.001 0.001 13
TRANSPORT
SMAD2_SMAD3_SMAD4_HETEROTRIMER _ <0.001 0.001 27
REGULATES_TRANSCRIPTION
NOTCH_HLH_TRANSCRIPTION_PATHWAY <0.001 0.002 13
EXTRACELLULAR_MATRIX_ORGANIZATION <0.001 0.003 87
HS_GAG_BIOSYNTHESIS <0.001 0.003 31

PTM_GAMMA_CARBOXYLATION_HYPUSINE_ <0.001 0.004 27
FORMATION_AND_
ARYLSULFASE_ACTIVATION

_ACTIVATION

SIGNALING_BY_NOTCH 0.003 0.005 70

TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_ 0.001 0.005 38

SMAD3_SMAD4_HETEROTRIMER

SIGNALING_BY_PDGF 0.003 0.017 122
SIGNALING_BY_NOTCH 0.007 0.019 103
G_BETA_GAMMA_SIGNALING_THROUGH_ 0.002 0.020 25

PI3BKGAMMA

HEPARAN_SULFATE_HEPARIN_HS_GAG_ 0.004 0.020 52

METABOLISM

NCAM_SIGNALING_FOR_NEURITE_OUT_ 0.003 0.022 64

GROWTH

SIGNALING_BY_TGF_{3_RECEPTOR_COMPLEX  0.007 0.033 63

PI3K_AKT_ACTIVATION 0.014 0.048 38

PPARA_ACTIVATES_GENE_EXPRESSION 0.014 0.048 104
HDL_MEDIATED_LIPID_TRANSPORT 0.016 0.052 15

NUCLEAR_RECEPTOR_TRANSCRIPTION_ 0.022 0.061 49

PATHWAY

TRANSCRIPTIONAL_ACTIVATION_OF_WHITE_ 0.019 0.063 72
ADIPOCYTE_DIFFERENTIATION

INITIAL_TRIGGERING_OF_COMPLEMENT 0.032 0.082 16
NCAM1_INTERACTIONS 0.023 0.092 39
CELL_EXTRACELLULAR-MATRIX_ 0.032 0.102 14
INTERACTIONS

COLLAGEN_FORMATION 0.041 0.124 58

Pathway names are listed in column 1; column 2 lists the nominal P value
for pathway enrichment; column 3 lists the corresponding FDR; and column 4
records the number of genes in each pathway. FDR indicates false discovery
rate; NCAM, neural cell adhesion molecule; and TGF, transforming growth factor.
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Figure 2. Replicated reactome pathways for coronary artery disease using i-GSEA4GWAS with a 100 kb mapping interval. Replicated
pathways are represented in a hierarchical Reactome pathway diagram. Top-level pathways, representing core biological processes, are
listed to the left, and sublevels corresponding to each top level are illustrated progressively to the right. The 9 top-level pathways that
contain at least 1 replicated pathway (top-level or sublevels) are shown. No sublevel pathways are shown to the right of the last replicated
pathway. Pathways are color coded according to their gene-set enrichment P value from the replication stage as indicated in the legend.
A P<0.05 corresponds to an false discovery rates <12.5%. Pathways containing <10 or greater than 200 genes were not tested. Repli-
cated pathways with >50% overlap of genes with other replicated pathways are also identified as indicated in the legend. HDL indicates
high-density lipoprotein; NCAM, neural cell adhesion molecule; and TGF, transforming growth factor.

4), Notch signaling (cluster 6), ECM organization (cluster
7), lipid metabolism (cluster 8), and axon guidance (cluster
9). The full list of all significantly overrepresented GO-BP
terms (FDR<0.001) is provided in Table V (online-only Data
Supplement).

Gene and Pathway Prioritization

Based on Network Topology

Network topology provides vital information toward the
understanding of network architecture and performance and
allows for the prioritization of genes based on their topo-
logical characteristics within the network. Thus, we inter-
rogated the topological properties of the networks derived
from the replicated pathways. Specifically, we investi-
gated 2 key node centrality measures, namely degree and
betweenness because of their reported significance in bio-
logical networks as drivers for gene/protein essentiality
(see online-only Data Supplement for additional informa-
tion on degree and betweenness).”> For this purpose, the

replicated pathways were first converted into Reactome
functional interaction networks (conversion was success-
ful for 29 pathways, with the exclusion of collagen forma-
tion, metabolism of polyamines, and organic cation—anion
zwitterion transport pathways) and subsequently analyzed
for the above 2 node centrality measures. Figure 4 depicts
the betweenness centrality measures for a merged network
derived from 2 pathways related to cell-cell interactions
(neural cell adhesion molecule [NCAM] signaling for
neurite outgrowth and CRMPs in Sema3a signaling). In
this network, the NCAM1 and Fyn proteins display large
betweenness centrality and act as bridges connecting mul-
tiple other proteins in the network. Some additional genes
with GWAS association P<0.001 that occupy potentially
critical positions (betweenness >100) in a subset of the
replicated pathways include FURIN (component of degra-
dation of ECM, ECM organization, signaling by NOTCH1
pathways), MMP1 (degradation of ECM and ECM organi-
zation pathways), and RPS6KAS5 (Toll receptor cascades and
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Figure 3. Functionally interacting network modules constructed from genes belonging to the replicated, CAD-associated pathways.
Functional interactions among the genes from all replicated pathways were analyzed and clustered by the ReactomeFI (http://chianti.
ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=Reactome %20FIs) tool and visualized in Cytoscape. Genes are represented as
nodes and interactions among genes are represented as edges. The parent network was further analyzed to yield subnetwork clusters;
each cluster is shown separately and color coded for clarity. Intercluster connectivity is exemplified in red for cluster 4. The top GO-BP
terms that are enriched in each cluster are listed in the blue boxes. For each cluster, all terms are at false discovery rates <0.0001 and
contain a minimum of 10 genes (unless otherwise indicated in parentheses). A maximum of 10 GO-BP terms are shown for each cluster.
Genes that were not linked to at least one other gene were excluded from the network diagram. TNF indicates tumor necrosis factor.

NCAM signaling for neurite outgrowth pathways). Results
for the remaining pathways are shown in Figure VII and
Table VI (online-only Data Supplement).

Discussion

Despite the recent successes of large GWAS meta-anal-
yses,'? the genetic architecture of CAD remains poorly
understood and the identified loci explain a small pro-
portion of genetic risk. By integrating GWAS data with
expertly curated databases of core human pathways as well
as gene and reaction-based functional networks, we sought
to obtain novel insights into the potential causal processes
of coronary atherosclerosis. In addition, the large size of
the discovery population and replication sample (25000
CAD cases and 66000 controls) and the 2-step discovery-
replication strategy increases confidence in the results. This
analysis implicates 32 core human pathways representing
9 distinct biological processes as being most etiologically
relevant to CAD.

Notably, many replicated pathways from the 2-stage
GWAS analysis strategy converged on processes regulating

cellular growth, migration, and proliferation, such as the
signaling by transforming growth factor-f3 receptor and sig-
naling by PDGF, pathways previously intensively investi-
gated for their functional role in coronary atherosclerosis.
By combining GWAS-based findings with such a priori
information, we obtained evidence that genetic variation
in a critical number of genes representing these pathways
contribute to the heritability of CAD. Moreover, these data
support hypotheses that alterations in these pathways are
potentially causally related to CAD. Specifically, trans-
forming growth factor-f3 is known to control cell prolifera-
tion, cell migration, matrix synthesis, wound contraction,
calcification and the immune response, all of which are
major components of the atherosclerotic process.”* PDGF
is expressed in every cell type of the atherosclerotic arte-
rial wall, as well as in infiltrating inflammatory cells** and
plays a key role in the migration of vascular smooth muscle
cells from the media into the intima and their subsequent
proliferation. Although both pathways have been stud-
ied in animal models, animal data are often conflicting or
inadequate and there are no data related to modulation of
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Figure 4. Topology-based network analysis in replicated pathways. Topological relationships among genes are shown for a merged Reac-
tome functional interaction network created in Cytoscape from 2 replicated pathways associated with cell-cell interactions (neural adhe-
sion molecule [NCAM] signaling for neurite outgrowth and CRMPs in Sema3a signaling). Genes (nodes) in the network are color coded

by their replication P values (deep red, P<0.001; lighter red, 0.001<P<0.01; lightest red, 0.01<P<0.05; white, P>0.05) and sized by their
betweenness network centrality score (calculated via Centiscape 2.0). The individual gene names and their betweenness scores are listed
beside the network diagram. Betweenness scores are not calculated for genes that do not connect to at least 1 other gene in the network

(these genes are indicated with #N/A for betweenness).

these pathways in humans. Several pathways related to the
integrity of the ECM were also highly significant, includ-
ing ECM organization, degradation of the ECM, and cell
ECM interactions. The ECM is responsible for maintaining
not only the structural integrity of vessel wall plaques but
also participates in several key events, such as cell migra-
tion, lipoprotein retention, and thrombosis that are critically
linked to plaque stability.?

Two of the axon guidance pathway subclasses, such as
CRMPs in Sema3 signaling, and NCAM signaling for neu-
rite out-growth also replicated. The axon guidance pathways
modulate diverse biological phenomena, including cellular
adhesion, migration, proliferation, differentiation, survival,
and synaptic plasticity through the participation of highly
conserved families of guidance molecules, including netrins,
slits, semaphorins, and ephrins, and their cognate recep-
tors.?® Neural guidance cues such as netrin-1 and semaphorins
have important roles outside the nervous system. Oksala et
al”” provide compelling evidence that netrin-1 is secreted by
macrophage foam cells in atherosclerotic plaques and acts to

inhibit emigration of these cells out of lesions by causing dys-
regulation of the actin cytoskeleton. Wanschel et al*® reported
that NTN1 is downregulated in atherosclerotic plaques and its
expression correlates negatively with inflammatory markers
and M2 signals. Like netrin-1, semaphorin 3A, encoded by
SEMAS3A, one of the top-ranked genes in this analysis, is also
expressed in coronary artery endothelial cells and potently
inhibits chemokine-directed migration of human mono-
cytes.* This study also provides further supportive evi-
dence for a causal role of innate immunity in atherosclerosis
or plaque rupture with significant pathways, including both
toll receptor cascades and initial triggering of complement.
Innate immune responses mounted by macrophages and other
immune cells recruited to the arterial wall in response to an
inflammatory challenge have a major role in the initiation of
atherosclerosis.?!

An important advance encompassed in the current work
is our further examination of the topological characteristics
of genes comprising the replicated gene sets and the potential
implication of topology on biological function. Specifically,
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we applied the Reactome FI tool to identify gene sets related
to biological processes, such as innate immunity, cell adhe-
sion, and lipid metabolism that were further reorganized into
functionally interacting networks and subnetwork clusters
demonstrating a high degree of interconnectedness. Network
clustering, followed by pathway enrichment analysis on the
identified clusters via Gene Ontology, generated new insights
on interrelationships among the enriched pathways, not avail-
able through our initial traditional gene set analysis. For
example, whereas the lipid-metabolizing genes were largely
concentrated in a single cluster (cluster 8), genes related to
innate immunity were, by contrast, distributed within 3 sepa-
rate clusters (clusters O, 1, and 4), along with other biological
processes, highlighting the possibility of extensive interac-
tions among these processes. Finally, through analysis of such
networks, we were further able to evaluate the possible criti-
cality of genes in network function, based on the degree and
betweenness centrality properties of the network genes.
Collectively, these additional analytic approaches provide
important insights into the interrelationships among genes that
are not usually available through conventional gene set enrich-
ment analysis, and could assist in the formation of testable
hypotheses on areas of robustness and vulnerability in func-
tional networks otherwise not intuitively evident. For example,
topological analysis implicated a potential role for the axonal
growth related pathways in CAD with NCAMI1 being a major
hub in a network, including plexins (PLXNA1 and PLXNA?2),
neuropilin-1, as well as adhesion molecules (CNTN2) and sev-
eral members of the collagen family relevant to the ECM of the
vessel wall (Figure 4). These data support the concept that neu-
ronal guidance cues have important roles in both arteriogen-
esis®** and atherosclerosis by regulating macrophage retention
in plaques.?*-° Other studies demonstrate that semaphorin 3A
and its receptors, neuropilin-1 and -2, plexins A1/A2/A3 are
highly expressed in human monocyte-derived macrophages
and play a role in induction of macrophage apoptosis.**
Despite these plausible observations, we are cognizant
that betweenness is but only one of several network central-
ity measures that could play critical roles in network func-
tion. Because both fields of network biology and network
pharmacology are currently evolving, our findings should be
considered more as hypotheses-generating rather than con-
clusive evidence of the importance of 1 gene or 1 pathway
over another. Functional testing is necessary as the next step,
and can take several forms, including (1) overexpression or
knockdown of medium to high betweenness genes in target
pathways (eg, NCAMI, FYN, for the network in Figure 4)
in CAD-relevant cell models (eg, human coronary artery
endothelial or smooth muscle cells, macrophages, etc) and
to interrogate their effects on cell function (cell migration,
lipid accumulation, etc); (2) testing the effects of candidate
genes (eg, NCAM1 and FURIN) in knockout or overexpres-
sion mouse models (generated by somatic manipulation or
transgene creation) on lesion formation (similar to studies on
candidate GWAS genes for lipoprotein metabolism*-); (3)
statistical epistasis analysis, limited to genes within a repli-
cated pathway, to uncover functionally important interactions
underlying the genetic basis of atherosclerosis, and (4) pri-
oritizing gene products from replicated pathways based on
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the availability of pharmacological agents against them, and
testing these for potential benefits in animal models of ath-
erosclerosis (successfully demonstrated in identification of
memory-modulating drugs*). We hope our approach stimu-
lates extensive further discussion on how to experimentally
interrogate CAD related networks and pathways.

We acknowledge potential caveats pertaining to this study.
First, the number of pathways identified and replicated was
modest but the pathways are biologically plausible. In the dis-
covery analysis, 85 of the 639 (13%) pathways tested were
significant at P<0.05 (and FDR <25%) with at least 50% of
the genes in any given pathway being individually signifi-
cant at a P<0.05. A total of 32 of these 85 (37%) pathways,
achieved replication, a number somewhat lower than expected
(75%) given the FDR threshold used in the discovery phase
to select pathways for testing in the replication sample. This
may reflect the less stringent criteria for age of onset of CAD
cases applied in some of the replication studies as well as
study-specific differences in inclusion/exclusion criteria and
adjudication of outcomes, leading to increased sample hetero-
geneity.! Our study also highlights several generic issues that
currently impose limitations on the conduct and interpretation
of pathway analyses.** Some of these issues pertain to (1) the
mapping of SNPs to genes, (2) choosing the optimum path-
way analysis tool for GWAS, (3) consequences of the permu-
tation scheme used in i-GSEA4GWAS, and (4) the effects of
inter-SNP linkage disequilibrium on pathway analysis results.
An additional caveat is the potential for bias in the network
and topological analyses because of limitations in the extent
and type of experimental data available in the source data-
bases. We have provided a further detailed discussion of issues
related to pathway and network analysis in the Results section
of the online-only Data Supplement.

This is an area of emerging methodology and different
approaches can yield complementary findings. Our findings
extend gene-centric verification of CAD GWAS loci*! and
those recently reported by CARDIoGRAM+C4D, apply-
ing Ingenuity network analysis only on the top 239 candi-
date genes.”> In another recently published study, based on
this large-scale meta-analysis of GWAS studies for CAD,
we used a different approach.* Rather than a location-based
approach to map SNPs to genes, we used expression quanti-
tative trait locus (eQTL) data from CAD-related tissues and
primary cells to link CAD SNPs to their empirically defined
target genes. We then created data-driven, tissue-specific gene
expression networks from a multitude of human and mouse
experiments.” These networks relied heavily on available
gene expression data and did not involve other types of inter-
actions, such as protein—protein interactions or biochemical
reactions. In contrast, this analysis is based on gene-to-SNP
mapping methods for gene set enrichment rather than eQTL
data and our analysis of the topological relationships among
genes in the filtered, replicated pathways using Reactome FI
and pathway interaction database cover a more extensive array
of molecular interactions, thus revealing important aspects
that we failed to capture from the gene expression-based net-
works. It is encouraging that these 2 approaches have yielded
consistent results in terms of core processes related to lipid
metabolism, immune system, Notch-HLH transcription and
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PPAR signaling. However, here we have identified additional
biologically relevant pathways, including ECM integrity,
transforming growth factor-f signaling and axon guidance,
the latter being of particular interest given recent laboratory
findings.?%%%3% Many of these pathways had strengths of
association comparable to those observed in known pathways
related to lipoprotein metabolism.

The findings of this extensive but preliminary analy-
sis do not imply causality. However, the use of the integra-
tive approach in elucidating the genetic bases of disease has
been demonstrated by studies in several complex phenotypes.
For example, in an investigation of the WTCCC (Welcome
Trust Case Control Consortium) Crohn disease GWAS data
set, only 3 genes at 2 loci showed GWAS significant signals
but pathway analysis carried out by Wang et al'! identified the
20 gene IL-12/IL-23 pathway to be associated with Crohn
disease that remained significant even when the 2 original
loci were removed.® In a similar vein, Holmans et al* pro-
vided supporting evidence for the immunogenetic origins
of Parkinson disease by identifying the regulation of leuko-
cyte/lymphocyte activation and cytokine-mediated signaling
as conferring increased susceptibility to Parkinson disease,
although none of the SNPs linked to genes within these path-
ways had achieved GWAS significance. On the contrary, path-
way analysis studies have had little success in generating new
biological insights for other disorders, including type 2 diabe-
tes mellitus. Because of this variability, extensive mechanistic
and functional validation of pathway and interactome-derived
networks at multiple levels will be essential. An example of
systematic experimental perturbation of interactome networks
to understand cancer predisposition has been presented in the
study by Rozenblatt-Rozen et al® and a framework for net-
work inference and validation based on gene knock-down has
been proposed in Olsen et al.*®

In summary, the present analysis has provided potential
new insights into mechanisms underlying atherosclerosis
and its clinical sequelae. The results of this investigation
suggest a possible link between several core human biologi-
cal processes and CAD, including several with and several
without a substantial body of previous experimental evi-
dence. Further study of the genes within the highlighted
pathways may facilitate the development of novel testable
hypotheses that could ultimately improve our understanding
of atherosclerosis.

Appendix
From the Program in Cardiovascular and Metabolic
Disorders (S.G.) and Centre for Computational Biology
(S.G.), Duke-NUS Graduate Medical School, Singapore,
Singapore; Department of Cardiovascular and Metabolic
Research, Biomedical Biotechnology Research Institute,
North Carolina Central University, Durham (S.G., J.V.);
Department of Cardiovascular Sciences, University of
Leicester, Glenfield Hospital, Leicester, UK (C.P.N., N.J.S.);
Institut fiir Integrative und Experimentelle Genomik (IIEG),
Universitit zu Liibeck, Liibeck, Germany (C.W., J.E.); DZHK
(German Research Centre for Cardiovascular Research),
Partner Site Hamburg, Kiel, Liibeck, Germany (C.W., J.E.);

Broad Institute of Harvard and MIT, Cambridge, MA (A.V.S.,
S.K.); Department of Integrative Biology and Physiology,
University of California, Los Angeles (V.-PM., X.Y.);
Atherogenomics Laboratory (M.N., R.M.P.), John and Jennifer
Ruddy Canadian Cardiovascular Research Centre (A.F.R.S.,
R.M.P), and Division of Cardiology (R.M.P.), University of
Ottawa Heart Institute, Ottawa, Canada; Clinic for General and
Interventional Cardiology, University Heart Center Hamburg,
Germany (S.B.); National Heart, Lung, and Blood Institute’s
Framingham Heart Study, MA (C.0.D.); Mannheim Institute
of Public Health, Social and Preventive Medicine, University
of Heidelberg, Germany (W.M.); Synlab Academy, Mannheim,
Germany (W.M.); Science Center, Tampere University
Hospital, Tampere, Finland (R.L.); Cardiovascular Research
Institute, Washington Hospital Center (S.E.E.); Department
of Medicine, Duke University Medical Center, Durham, NC
(S.H.S., C.B.G.); Cleveland Clinic, OH (S.L.H.); Cardiology
Division, Center for Human Genetic Research (S.K.) and
Cardiovascular Research Center (S.K.), Massachusetts General
Hospital, Harvard Medical School, Boston; Cardiovascular
Institute, Perelman School of Medicine, University of
Pennsylvania, Philadelphia (M.P.R.); Department of Medicine,
Stanford University School of Medicine, CA (T.Q., T.L.A.);
National Institute for Health Research (NIHR) Leicester
Cardiovascular Biomedical Research Unit, Glenfield Hospital,
Leicester, United Kingdom (N.J.S.); Deutsches Herzzentrum
Miinchen, Technische Universitdit Miinchen, Munich,
Germany (H.S.); and DZHK (German Research Centre for
Cardiovascular Research), Partner Site Munich Heart Alliance,
Munchen, Germany (C.P.N., H.S.).

Acknowledgments
We thank all the individuals who contributed to these multi-
centered studies. The full list of the investigators who are part of the
CARDIoGRAM Consortium is listed in the S1 Material online-only
Data Supplement. A full list of the investigators who contributed to
the generation of the Wellcome Trust data is available from http://
www.wtccc.org.uk.

Sources of Funding
This work was supported by grants from the American Heart
Association (AHA10SDG4230068 to S. Ghosh; 13POST17240095
to V.-P. Mikinen; 13SDG17290032 to X. Yang); National Institutes
of Health (1R21DK088319, 2P20MDO000175-11 to S. Ghosh);
(POTHL098055, POIHLO76491, P20HL113452 to S.L. Hazen);
(RO1-HL095987 to S.H. Shah); (K23DK088942 to T.L. Assimes);
Wellcome Trust (No. 076113 and No. 085475) British Heart
Foundation (to N.J. Samani); European Union (No. 201668 to
R. Laaksonen). Deutsche Forschungsgemeinschaft and the German
Federal Ministry of Education and Research (BMBF) in the con-
text of the German National Genome Research Network (NGFN-2
and NGFN-plus), the FP6 and FP7 EU funded integrated projects
Cardiogenics (No. LSHM-CT-2006-037593) and ENGAGE (No.
201413), and the binational BMBF/ANR funded project CARDomics
(No. 01KUO0908A); Canadian Institutes of Health Research (No.
MOP-2380941 to R. McPherson), (No. MOP82810, MOP77682 to
A FR. Stewart and R. McPherson); Canada Foundation for Innovation
(No. 11966 to A.FR. Stewart and R. McPherson; Heart and Stroke
Foundation of Canada (No. NA6001, No. NA6650 to R. McPherson).

Disclosures
None.


http://www.wtccc.org.uk
http://www.wtccc.org.uk

20.

Ghosh et al

References

. Schunkert H, Konig IR, Kathiresan S, et al; Cardiogenics; CARDIoGRAM

Consortium. Large-scale association analysis identifies 13 new suscepti-
bility loci for coronary artery disease. Nat Genet. 2011;43:333-338. doi:
10.1038/ng.784.

. Deloukas P, Kanoni S, Willenborg C et al. Large-scale association

analysis identifies new risk loci for coronary artery disease. Nat Genet
2012:45:25-33.

. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants

create synthetic genome-wide associations. PLoS Biol. 2010;8:¢1000294.
doi: 10.1371/journal.pbio.1000294.

. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common

disease through whole-genome sequencing. Nat Rev Genet. 2010;11:415—
425. doi: 10.1038/nrg2779.

. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of

GWAS discovery. Am J Hum Genet. 2012:90:7-24. doi: 10.1016/j.
ajhg.2011.11.029.

. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR,

Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME,
Visscher PM. Common SNPs explain a large proportion of the heritability
for human height. Nat Genet. 2010;42:565-569. doi: 10.1038/ng.608.

. Stahl EA, Wegmann D, Trynka G, et al; Diabetes Genetics Replication and

Meta-analysis Consortium; Myocardial Infarction Genetics Consortium.
Bayesian inference analyses of the polygenic architecture of rheumatoid
arthritis. Nat Genet. 2012;44:483-489. doi: 10.1038/ng.2232.

. Jia P, Wang L, Fanous AH, Pato CN, Edwards TL, Zhao Z; International

Schizophrenia Consortium. Network-assisted investigation of combined
causal signals from genome-wide association studies in schizophrenia.
PLoS Comput Biol. 2012;8:¢1002587. doi: 10.1371/journal.pcbi.1002587.

. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette

MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP.
Gene set enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc Natl Acad Sci U S A.
2005;102:15545-15550. doi: 10.1073/pnas.0506580102.

. Wang K, Li M, Bucan M. Pathway-based approaches for analysis of

genomewide association studies. Am J Hum Genet. 2007;81:1278-1283.
doi: 10.1086/522374.

. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-

wide association studies. Nat Rev Genet. 2010;11:843-854. doi: 10.1038/
nrg2884.

. Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z. Gene set analysis of

genome-wide association studies: methodological issues and perspectives.
Genomics. 2011;98:1-8. doi: 10.1016/j.ygeno.2011.04.006.

. Segre AV; DIAGRAM Consortium; MAGIC investigators, Groop L,

Mootha VK, Daly MJ, Altshuler D. Common inherited variation in mito-
chondrial genes is not enriched for associations with type 2 diabetes or
related glycemic traits. PLoS Genet. 2010;6:¢1001058. doi: 10.1371/jour-
nal.pgen.1001058.

. Nam D, Kim J, Kim SY, Kim S. GSA-SNP: a general approach for gene

set analysis of polymorphisms. Nucleic Acids Res. 2010;38(web server
issue):W749-W754. doi: 10.1093/nar/gkq428.

. Zhang K, Cui S, Chang S, Zhang L, Wang J. i-GSEA4GWAS: a web

server for identification of pathways/gene sets associated with traits by
applying an improved gene set enrichment analysis to genome-wide asso-
ciation study. Nucleic Acids Res. 2010;38(web server issue):W90-W95.
doi: 10.1093/nar/gkq324.

. Oti M, Brunner HG. The modular nature of genetic diseases. Clin Genet.

2007;71:1-11. doi: 10.1111/j.1399-0004.2006.00708.x.

. Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring

inherited disease mutations. Proc Natl Acad Sci U S A. 2008;105:4323—
4328. doi: 10.1073/pnas.0701722105.

. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier

D, Wu W, Uitdehaag BM, Kappos L, Polman CH, Matthews PM, Hauser
SL, Gibson RA, Oksenberg JR, Barnes MR; GeneMSA Consortium.
Pathway and network-based analysis of genome-wide association studies
in multiple sclerosis. Hum Mol Genet. 2009;18:2078-2090. doi: 10.1093/
hmg/ddp120.

. Lu C, Latourelle J, O’Connor GT, Dupuis J, Kolaczyk ED. Network-

guided sparse regression modeling for detection of gene-by-gene interac-
tions. Bioinformatics. 2013;29:1241-1249. doi: 10.1093/bioinformatics/
btt139.

Wang L, Matsushita T, Madireddy L, Mousavi P, Baranzini SE. PINBPA:
cytoscape app for network analysis of GWAS data. Bioinformatics.
2015;31:262-264. doi: 10.1093/bioinformatics/btu644.

Pathway and Network Analyses of GWAS for CAD

21.

22.

23.

24.
25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

39.

40.

1721

Matthews L, Gopinath G, Gillespie M, et al. Reactome knowledge-
base of human biological pathways and processes. Nucleic Acids Res.
2009;37(database issue):D619-D622. doi: 10.1093/nar/gkn863.

Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of
bottlenecks in protein networks: correlation with gene essentiality and
expression dynamics. PLoS Comput Biol. 2007;3:e59. doi: 10.1371/jour-
nal.pcbi.0030059.

Toma I, McCaffrey TA. Transforming growth factor-f3 and atherosclero-
sis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res.
2012;347:155-175. doi: 10.1007/s00441-011-1189-3.

Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor
Rev. 2004;15:237-254. doi: 10.1016/j.cytogfr.2004.03.004.

Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler
Thromb. 2003;10:267-274.

Schmidt EF, Strittmatter SM. The CRMP family of proteins and their
role in Sema3A signaling. Adv Exp Med Biol. 2007;600:1-11. doi:
10.1007/978-0-387-70956-7_1.

van Gils JM, Derby MC, Fernandes LR, et al. The neuroimmune guidance
cue netrin-1 promotes atherosclerosis by inhibiting the emigration of mac-
rophages from plaques. Nat Immunol. 2012;13:136-143. doi: 10.1038/
ni.2205.

Oksala N, Pirssinen J, Seppild I, Raitoharju E, Kholova I, Ivana K,
Hernesniemi J, Lyytikdinen LP, Levula M, Mikeld KM, Sioris T, Kdhonen
M, Laaksonen R, Hytonen V, Lehtimiki T. Association of neuroimmune
guidance cue netrin-1 and its chemorepulsive receptor UNC5B with
atherosclerotic plaque expression signatures and stability in human(s):
Tampere Vascular Study (TVS). Circ Cardiovasc Genet. 2013;6:579-587.
doi: 10.1161/CIRCGENETICS.113.000141.

Wanschel A, Seibert T, Hewing B, Ramkhelawon B, Ray TD, van Gils JM,
Rayner KIJ, Feig JE, O’Brien ER, Fisher EA, Moore KJ. Neuroimmune
guidance cue Semaphorin 3E is expressed in atherosclerotic plaques
and regulates macrophage retention. Arterioscler Thromb Vasc Biol.
2013;33:886-893. doi: 10.1161/ATVBAHA.112.300941.

van Gils JM, Ramkhelawon B, Fernandes L, Stewart MC, Guo L, Seibert
T, Menezes GB, Cara DC, Chow C, Kinane TB, Fisher EA, Balcells M,
Alvarez-Leite J, Lacy-Hulbert A, Moore KJ. Endothelial expression of
guidance cues in vessel wall homeostasis dysregulation under proathero-
sclerotic conditions. Arterioscler Thromb Vasc Biol. 2013;33:911-919.
doi: 10.1161/ATVBAHA.112.301155.

Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat
Immunol. 2011;12:204-212. doi: 10.1038/ni.2001.

Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari
F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne
M, Taniguchi M, Piischel AW, Bussolino F. Class 3 semaphorins con-
trol vascular morphogenesis by inhibiting integrin function. Nature.
2003;424:391-397. doi: 10.1038/nature01784.

Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger
K, Prahst C, Zhang J, Wang Y, Davis G, Toomre D, Ruhrberg C, Simons
M. The neuropilin 1 cytoplasmic domain is required for VEGF-A-
dependent arteriogenesis. Dev Cell. 2013;25:156-168. doi: 10.1016/j.
devcel.2013.03.019.

Ji JD, Park-Min KH, Ivashkiv LB. Expression and function of semapho-
rin 3A and its receptors in human monocyte-derived macrophages. Hum
Immunol. 2009;70:211-217. doi: 10.1016/j.humimm.2009.01.026.

Bauer RC, Stylianou IM, Rader DJ. Functional validation of new path-
ways in lipoprotein metabolism identified by human genetics. Curr Opin
Lipidol. 2011;22:123-128. doi: 10.1097/MOL.0b013e32834469b3.
Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding
variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature.
2010;466:714-719. doi: 10.1038/nature09266.

Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM,
Madsen P, Jansen P, Heeren J, Willnow TE, Nykjaer A. Sortl, encoded by
the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein
export. Cell Metab. 2010;12:213-223. doi: 10.1016/j.cmet.2010.08.006.

. Burkhardt R, Toh SA, Lagor WR, Birkeland A, Levin M, Li X, Robblee

M, Fedorov VD, Yamamoto M, Satoh T, Akira S, Kathiresan S, Breslow
JL, Rader DJ. Tribl is a lipid- and myocardial infarction-associated gene
that regulates hepatic lipogenesis and VLDL production in mice. J Clin
Invest. 2010;120:4410-4414. doi: 10.1172/JC144213.

Papassotiropoulos A, Gerhards C, Heck A, et al. Human genome-guided
identification of memory-modulating drugs. Proc Natl Acad Sci U S A.
2013;110:E4369-E4374. doi: 10.1073/pnas.1314478110.

Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: cur-
rent approaches and outstanding challenges. PLoS Comput Biol.
2012;8:¢1002375. doi: 10.1371/journal.pcbi.1002375.



1722

Arterioscler Thromb Vasc Biol July 2015

41. Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner
JA, Lusis AJ. Identification of CAD candidate genes in GWAS loci and
their expression in vascular cells. J Lipid Res. 2013;54:1894-1905. doi:
10.1194/j1r.M037085.

42. Mikinen VP, Civelek M, Meng Q, et al; Coronary ARtery DIsease Genome-
'Wide Replication And Meta-Analysis (CARDIoOGRAM) Consortium. Integrative
genomics reveals novel molecular pathways and gene networks for coronary artery
disease. PLoS Genet. 2014;10:¢1004502. doi: 10.1371/journal.pgen.1004502.
43. Wang K, Zhang H, Kugathasan S, et al. Diverse genome-wide association
studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum
Genet. 2009;84:399-405. doi: 10.1016/j.ajhg.2009.01.026.

44.

45.

46.

Holmans P, Moskvina V, Jones L, et al; International Parkinson’s Disease
Genomics Consortium. A pathway-based analysis provides additional sup-
port for an immune-related genetic susceptibility to Parkinson’s disease.
Hum Mol Genet. 2013;22:1039-1049. doi: 10.1093/hmg/dds492.
Rozenblatt-Rosen O, Deo RC, Padi M, et al. Interpreting cancer genomes
using systematic host network perturbations by tumour virus proteins.
Nature. 2012;487:491-495. doi: 10.1038/nature11288.

Olsen C, Fleming K, Prendergast N, Rubio R, Emmert-Streib F, Bontempi
G, Haibe-Kains B, Quackenbush J. Inference and validation of predic-
tive gene networks from biomedical literature and gene expression data.
Genomics. 2014;103:329-336. doi: 10.1016/j.ygeno.2014.03.004.

Significance

Genome-wide association studies have identified >45 loci associated with coronary artery disease (CAD) risk but provide limited insight into
causal mechanisms. Furthermore, the identified signals explain little >10% of the predicted heritability of CAD. Part of this missing heritabil-
ity. It is likely because many more common variants are linked to CAD but have not achieved genome-wide significance in genome-wide
association studies because of small effect size or lower allele frequency and insufficient sample size. However, even weakly associated vari-
ants may provide important information about the biological basis of disease when such variants cluster within a common functional module
or pathway. By integrating genome-wide association study data with extensive databases on core biological processes, we have identified
novel biological pathways relevant to the pathogenesis of CAD. These findings provide new insight into how genetic variation, interpreted in
the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD.




