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Meta-analysis of genome-wide association studies 
(GWAS) involving tens of thousands of subjects have 

provided a wealth of new information on the genetic basis 
of coronary artery disease (CAD), yet common susceptibil-
ity variants with achieved genome-wide significance explain 
only a small fraction of the heritability of CAD (≈10.6%).1,2 It 
has been proposed that much of the residual genetic risk may 
be attributable to rare variants with large effect.3,4 However, 

recent simulation, exome sequencing, and fine mapping stud-
ies of established GWAS loci support the hypothesis that joint 
contributions from common variants with modest effects are 
likely to account for a sizeable fraction of the missing herita-
bility of complex diseases.5–7

It is likely that many more common variants are linked 
to CAD but have not achieved genome-wide significance in 
GWAS because of small effect size or lower allele frequency 
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Objective—Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery 
disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the 
causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD 
by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks.

Approaches and Results—Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis 
strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11 089 
controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15 502 
cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) 
Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05). 
These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to 
extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth 
factor), NOTCH, and the transforming growth factor-β/SMAD receptor complex. Many of these pathways had strengths 
of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the 
replicated pathways further revealed several interconnected functional and topologically interacting modules representing 
novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid 
metabolism). The connectivity in the observed networks was statistically significant compared with random networks 
(P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc) 
likely to play critical roles in the maintenance and functioning of several of the replicated pathways.

Conclusions—These findings provide novel insights into how genetic variation, interpreted in the context of 
biological processes and functional interactions among genes, may help define the genetic architecture of CAD.  
  (Arterioscler Thromb Vasc Biol. 2015;35:1712-1722. DOI: 10.1161/ATVBAHA.115.305513.)
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Nonstandard Abreviation and Acronyms

CAD	 coronary artery disease

ECM	 extracellular matrix

FDR	 false discovery rate

CARDIoGRAM	 Coronary ARtery DIsease Genome wide Replication and 
Meta-analysis

SNP	 single-nucleotide polymorphism

GSEA	 gene-set enrichment analysis

GWAS	 genome-wide association study

and insufficient sample size. However, based on the premise 
that clinically informative polymorphisms related to complex 
disease occur in systems of closely interacting genes,8 even 
weakly associated variants may provide important informa-
tion about the biological basis of disease when such variants 
cluster within a common functional module or pathway. One 
common approach for pathway-based analysis of genomic 
data is gene set enrichment analysis (GSEA), originally devel-
oped and extensively used for the analysis of gene expression 
data.9 In 2007, Wang et al10 described a modified version of the 
GSEA, designed to analyze genome-wide single-nucleotide 
polymorphism (SNP) associations rather than gene expres-
sion data. Since then, several other GSEA methods have been 
developed for this purpose.11–15 The common goal of these 
analytic algorithms is to identify a subset of genes whose vari-
ants collectively demonstrate strong association with a trait 
of interest even if the component SNPs individually exhibit 
relatively modest or nonsignificant association. Importantly, 
pathway analysis can also place the set of validated SNPs for 
a trait of interest into a broader and clearer biological context. 
A natural extension of this list-based pathway approach is the 
interrogation of molecular networks to unravel the architecture 
underlying complex diseases. A molecular network is based 
on interactions among biomolecules (genes, protein, metab-
olites, etc), where such interactions can take various forms 
(protein–protein interactions, coexpression, gene regulation, 
functional interactions, etc). Efforts at the characterization 
of disease-associated genes reveal that genes associated with 
the same or similar disorders tend to occupy similar neighbor-
hoods in molecular networks through physical or functional 
modules.16,17 Furthermore, the study of network topology sug-
gests that key disease-related genes differ from other genes 
in terms of their network connectivity and network centrality 
properties.17 Finally, molecular networks provide 2 distinct 
enhancements over traditional pathway-based approach—(1) 
they provide additional information on interactions among 
gene subsets within a given pathway, and (2) they allow for 
the identification of interactions between components of dif-
ferent biological pathways. Through these analyses, 1 is able 
to draw a clearer picture of the functional connectivities that 
influence pathway functions, and how multiple pathways may 
interact with 1 another to influence a phenotype.

Several studies have applied molecular networks for 
generating insights from GWAS data8,18–20 in disorders, such 
as schizophrenia, multiple sclerosis, and prostate cancer. 
However, most of these approaches have relied mainly on 
protein–protein interaction networks, thereby missing the rich 

mechanistic information available from traditional biological 
pathway repositories and networks based on functional inter-
actions. In this study, we have coupled the advantages of a 
well-curated biological pathway repository with a similarly 
curated functional interaction network to identify mechanism-
based processes that may underlie the genetic architecture 
of CAD. First, to identify novel associations between estab-
lished biological mechanisms and CAD, we have carried out 
a 2-stage pathway-based GSEA analysis of 16 GWAS data 
sets for CAD using the i-GSEA4GWAS (http://gsea4gwas.
psych.ac.cn/inputPage.jsp) tool15 and the Reactome pathway 
database.21 Collectively, these GWAS include >25 000 sub-
jects with CAD and >66 000 controls. We have then taken the 
replicated pathways as a starting point to explore functional 
interactions within and between pathways via interrogation 
of molecular interacting networks. Finally, we have charac-
terized the CAD-associated genes based on their topological 
properties within these networks as a way of prioritizing gene 
candidates for functional follow-up studies.

Materials and Methods
Materials and Methods are available in the online-only Data 
Supplement. Briefly, using pathways (gene sets) from Reactome, 
we first carried out a 2-stage gene set enrichment analysis strategy. 
From a meta-analyzed discovery cohort of 7 CAD GWAS data sets 
(9889 cases/11 089 controls), nominally significant gene sets were 
tested for replication in a meta-analysis of 9 additional studies 
(15 502 cases/55 730 controls) from the CARDIoGRAM Consortium 
(Table  1). Genes from the replicated pathways were then mapped 
onto well-curated interaction networks (Figure 1). 

Results
Significant Pathways
A total of 85 of the 639 Reactome pathways tested in stage 
1 achieved a gene set enrichment P<0.05 at a false discovery 
rate (FDR) <0.25. Thirty-two of these 85 pathways were fur-
ther replicated in stage 2 at a nominal P<0.05 (Table 2). When 
the replicated pathways were compared with the full pathway 
content of Reactome, at least 1 replicated from 9 of the 21 core 
Reactome-defined biological processes. These included the 
core processes of metabolism, signal transduction, develop-
mental biology, ECM organization, immune system, metabo-
lism of proteins, cell–cell communication, transmembrane 
transport of small molecules, and gene expression (Figure 2). 
Because of the hierarchical organization of Reactome path-
ways, several replicated pathways were nested within larger 
gene sets, either completely or partially (Figure II in the 
online-only Data Supplement). This hierarchical structure 
enabled us to identify instances of pathway selectivity—for 
example, although the CRMPS (collapsin response mediator 
proteins) in SEMA3A (semaphorin) signaling, Sema4D in 
semaphorin signaling, and Sema3A PAK (p21 protein acti-
vated kinase)-dependent axon repulsion pathways all nested 
completely within the Semaphorin Interactions pathway, only 
the former was significantly replicated (P<0.001), whereas 
the latter 2 pathways were not. To put the identified pathways 
in a broader context, we have also listed the nonreplicated 
pathways that share similar levels of hierarchy as the repli-
cated pathways in Table I (online-only Data Supplement).

http://gsea4gwas.psych.ac.cn/inputPage.jsp
http://gsea4gwas.psych.ac.cn/inputPage.jsp
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About a third of the 32 replicated pathways were also sig-
nificant in stage 2 (P<0.05) after correcting for linkage dis-
equilibrium between the SNPs, by analyzing SNPs pruned 
genome-wide at either r2>0.5 or r2>0.2 (Table II in the online-
only Data Supplement). The pathways that were in common 
to all 3 pruned and unpruned SNP analyses were Toll receptor 
cascades, degradation of the ECM, lipid digestion, mobiliza-
tion, and transport, and lipoprotein metabolism. Although the 
association of these pathways may be of higher confidence, 
pruning of SNPs may also lead to loss of power because of 
significant reduction in SNP number (5% to 15% of unpruned 
SNPs) and to the fact that the pruning was agnostic to the 
actual CAD SNP association P values. Hence, for downstream 
gene and network analyses we chose to use the full set of 19 
pathways that replicated with the unpruned list of SNPs.

Finally, we examined the possible effect of LD among 
genes leading to inflated significance scores for the replicated 
pathways by considering the extent of LD among the gene-
tagging (best scoring) SNPs for all genes in a pathway. The 
extent of LD among the most significant SNPs was found to 
be minimal. Specifically, of all the SNPs tested, we found only 
2 SNP pairs with an r2>0.8, observed across 3 pathways. Even 
at the more permissive r2 threshold of 0.2, only 4 SNP pairs 
were observed across 5 pathways (Table III in the online-only 
Data Supplement).

Gene and Pathway Prioritization
The 32 replicated pathways contained a total of 770 unique 
genes that were taggable by at least 1 SNP (no SNP tags 

were available for 83 genes). Figure SIII (online-only Data 
Supplement) summarizes the proportion of genes within the 
replicated pathways that were associated with CAD. All repli-
cated pathways contained ≥50% genes above the significance 
threshold (range, 50.0%–92.3%), confirming that the pathway 
findings were driven by the combined contributions of mul-
tiple genes in each pathway and not because of large effects 
from a small minority of genes. For comparison purposes, we 
also analyzed a synthetic pathway derived from genes within 
the CARDIoGRAM loci reaching genome-wide significance. 
This synthetic pathway contained the second highest propor-
tion of genes reaching the significance threshold.

Network Analysis
Statistical Evaluation of Network
A total of 770 genes from the replicated pathways were 
mapped to the InWeb PPI network and the observed network 
connectivity parameters (degree, and number of edges) com-
pared with random networks of similar size and degree distri-
bution. A network of direct interactions could be created with 
620 genes (assuming a minimum interaction size of 2 genes). 
The resulting network (Figure SIV) was significantly differ-
ent with respect to random networks; thus there were 3726 
direct edges in the network compared with only 1548 edges 
expected by chance (P<0.001), and the observed average con-
nectivity per gene (degree of gene) was 12, compared with an 
expected 5.8 from random networks (P<0.001). These results 
indicate that the networks constructed from the replicated 
pathway genes are probably not because of chance.

Table 1.  Demographics of Discovery and Replication Cohorts

GWAS Data Set
No. of Cases/ 

Controls
Age (mean±SD)
Cases/Controls

% Men
Cases/Controls

% MI
Cases

Stage 1 studies

 � OHGS_A 921/994 48.2±7.0/74.9±4.9 78.1/54.6 54.6

 � OHGS_CCGB-B 2688/1819 49.8±7.7/74.8±5.4 75.1/49.0 59.8

 � DUKE_2 1200/648 56.7±9.7/63.3±8.7 69.4/42.0 48.0

 � GerMIFs I 875/1644 50.2±7.8/62.6±10.0 50.6/49.2 100

 � GerMIFs II 1222/1298 51.4±7.5/51.2±11.9 66.9/51.7 100

 � GerMIFs III (KORA) 1157/1748 58.6±8.7/55.9±10.7 79.9/51.1 100

 � WTCCC 1926/2938 49.8±7.7/N/A 79.3/50.0 71.5

 � Total stage 1 9889/11 089

Stage 2 studies

 � ADVANCE 278/312 45.8±6.2/45.3±5.7 42.1/41.0 50.4

 � CADomics 2078/2952 60.8±10.1/55.3±10.8 78.1/49.5 58.3

 � CHARGE 2287/22 024 60.0±7.9/63.1±8.0 66.6/40.4 48.0

 � deCODE CAD 6640/27 611 74.8±11.8/53.7±21.5 63.7/38.1 54.7

 � LURIC/AtheroRemo 1 652/213 61.0±11.8/58.3±12.1 79.7/54.0 71.9

 � LURIC/AtheroRemo 2 486/296 63.7±9.4/56.4±12.7 76.6/51.4 79.0

 � MedStar 874/447 48.9±6.4/59.7±8.9 67.0/45.4 48.1

 � MIGen 1274/1407 42.4±6.6/43.0±7.8 62.8/60.1 100

 � PennCATH 933/468 52.7±7.6/61.7±9.6 76.3/48.1 50.3

 � Total stage 2 12 501/55 730

 � Total stages 1 and 2 25 491/66 819

CAD indicates coronary artery disease; GWAS, genome-wide association study; and WTCCC, 
Welcome Trust Case Control Consortium.
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Mapping of Replicated Pathway Genes 
to an Interaction Network
Although this PPI-based analysis provided confidence that 
the networks derived from the replicated pathway genes are 
unlikely to arise from chance, it allows only limited insights 
into the various biological mechanisms impacted by these 
pathways. Thus, to identify networks that contain more rel-
evant information on biological processes (including PPI), 
the genes from the replicated pathways were mapped to a 
functionally interacting network curated and maintained at 
Reactome. A total of 733 genes could be mapped to the larger 
network. This subnetwork was further clustered to reveal 
within-network modules. Clustering resulted in the identifica-
tion of 17 clusters with 10 clusters containing >10 gene mem-
bers (Figure 3; Table SIV). Within each cluster, a diverse array 
of interactions (reactions, complex formation, activation, etc) 
was represented by the edges connecting the genes (nodes), 
as exemplified in Figure V (online-only Data Supplement) 
for the genes in clusters 8 and 9. We also observed consider-
able interconnectivity between the clusters; for example, the 
links between cluster 4 and other clusters are highlighted in 
Figure 3 (additional intercluster connectivities for each of the 
remaining clusters are shown in Figure VI in the online-only 
Data Supplement). Enrichment analysis within each cluster 
using Gene Ontology (http://www.geneontology.org/) identi-
fied several cluster-specific overrepresentations of biological 
processes, as further highlighted in Figure 3. The following 
are some notable examples of functional enrichment within 
the clusters (FDR<0.001): innate immunity (clusters 1 and 

Figure 1. Analytic approach. Schematic of analytic approach as 
described in detail in the Materials and Methods section of this 
article. FDR indicates false discovery rate; PID, pathway interac-
tion database; and SNP, single-nucleotide polymorphism.

Table 2.  List of Replicated Reactome Pathways Enriched for 
Genetic Association to Coronary Artery Disease

Reactome Pathway
Enrichment

P Value FDR

No. of 
Genes/

Pathway

CHYLOMICRON_MEDIATED_LIPID_TRANSPORT <0.001 0.000 16

CRMPS_IN_SEMA3A_SIGNALING <0.001 0.000 14

DEGRADATION_OF_THE_EXTRACELLULAR_
MATRIX

<0.001 0.000 29

LIPID_DIGESTION_MOBILIZATION_AND_
TRANSPORT

<0.001 0.000 46

LIPOPROTEIN_METABOLISM <0.001 0.000 28

METABOLISM_OF_POLYAMINES <0.001 0.000 15

NOTCH1_INTRACELLULAR_DOMAIN_
REGULATES_TRANSCRIPTION

<0.001 0.000 46

SULFUR_AMINO_ACID_METABOLISM <0.001 0.000 24

TOLL_RECEPTOR_CASCADES <0.001 0.000 118

ORGANIC_CATION_ANION_ZWITTERION_
TRANSPORT

<0.001 0.001 13

SMAD2_SMAD3_SMAD4_HETEROTRIMER_
REGULATES_TRANSCRIPTION

<0.001 0.001 27

NOTCH_HLH_TRANSCRIPTION_PATHWAY <0.001 0.002 13

EXTRACELLULAR_MATRIX_ORGANIZATION <0.001 0.003 87

HS_GAG_BIOSYNTHESIS <0.001 0.003 31

PTM_GAMMA_CARBOXYLATION_HYPUSINE_
FORMATION_AND_
ARYLSULFASE_ACTIVATION
_ACTIVATION

<0.001 0.004 27

SIGNALING_BY_NOTCH 0.003 0.005 70

TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_
SMAD3_SMAD4_HETEROTRIMER

0.001 0.005 38

SIGNALING_BY_PDGF 0.003 0.017 122

SIGNALING_BY_NOTCH 0.007 0.019 103

G_BETA_GAMMA_SIGNALING_THROUGH_
PI3KGAMMA

0.002 0.020 25

HEPARAN_SULFATE_HEPARIN_HS_GAG_
METABOLISM

0.004 0.020 52

NCAM_SIGNALING_FOR_NEURITE_OUT_
GROWTH

0.003 0.022 64

SIGNALING_BY_TGF_β_RECEPTOR_COMPLEX 0.007 0.033 63

PI3K_AKT_ACTIVATION 0.014 0.048 38

PPARA_ACTIVATES_GENE_EXPRESSION 0.014 0.048 104

HDL_MEDIATED_LIPID_TRANSPORT 0.016 0.052 15

NUCLEAR_RECEPTOR_TRANSCRIPTION_
PATHWAY

0.022 0.061 49

TRANSCRIPTIONAL_ACTIVATION_OF_WHITE_
ADIPOCYTE_DIFFERENTIATION

0.019 0.063 72

INITIAL_TRIGGERING_OF_COMPLEMENT 0.032 0.082 16

NCAM1_INTERACTIONS 0.023 0.092 39

CELL_EXTRACELLULAR-MATRIX_
INTERACTIONS

0.032 0.102 14

COLLAGEN_FORMATION 0.041 0.124 58

Pathway names are listed in column 1; column 2 lists the nominal P value 
for pathway enrichment; column 3 lists the corresponding FDR; and column 4 
records the number of genes in each pathway. FDR indicates false discovery 
rate; NCAM, neural cell adhesion molecule; and TGF, transforming growth factor.

http://www.geneontology.org/
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4), Notch signaling (cluster 6), ECM organization (cluster 
7), lipid metabolism (cluster 8), and axon guidance (cluster 
9). The full list of all significantly overrepresented GO-BP 
terms (FDR<0.001) is provided in Table V (online-only Data 
Supplement).

Gene and Pathway Prioritization 
Based on Network Topology
Network topology provides vital information toward the 
understanding of network architecture and performance and 
allows for the prioritization of genes based on their topo-
logical characteristics within the network. Thus, we inter-
rogated the topological properties of the networks derived 
from the replicated pathways. Specifically, we investi-
gated 2 key node centrality measures, namely degree and 
betweenness because of their reported significance in bio-
logical networks as drivers for gene/protein essentiality 
(see online-only Data Supplement for additional informa-
tion on degree and betweenness).22 For this purpose, the 

replicated pathways were first converted into Reactome 
functional interaction networks (conversion was success-
ful for 29 pathways, with the exclusion of collagen forma-
tion, metabolism of polyamines, and organic cation–anion 
zwitterion transport pathways) and subsequently analyzed 
for the above 2 node centrality measures. Figure 4 depicts 
the betweenness centrality measures for a merged network 
derived from 2 pathways related to cell–cell interactions 
(neural cell adhesion molecule [NCAM] signaling for 
neurite outgrowth and CRMPs in Sema3a signaling). In 
this network, the NCAM1 and Fyn proteins display large 
betweenness centrality and act as bridges connecting mul-
tiple other proteins in the network. Some additional genes 
with GWAS association P<0.001 that occupy potentially 
critical positions (betweenness >100) in a subset of the 
replicated pathways include FURIN (component of degra-
dation of ECM, ECM organization, signaling by NOTCH1 
pathways), MMP1 (degradation of ECM and ECM organi-
zation pathways), and RPS6KA5 (Toll receptor cascades and 

Figure 2. Replicated reactome pathways for coronary artery disease using i-GSEA4GWAS with a 100 kb mapping interval. Replicated 
pathways are represented in a hierarchical Reactome pathway diagram. Top-level pathways, representing core biological processes, are 
listed to the left, and sublevels corresponding to each top level are illustrated progressively to the right. The 9 top-level pathways that 
contain at least 1 replicated pathway (top-level or sublevels) are shown. No sublevel pathways are shown to the right of the last replicated 
pathway. Pathways are color coded according to their gene-set enrichment P value from the replication stage as indicated in the legend. 
A P<0.05 corresponds to an false discovery rates <12.5%. Pathways containing <10 or greater than 200 genes were not tested. Repli-
cated pathways with >50% overlap of genes with other replicated pathways are also identified as indicated in the legend. HDL indicates 
high-density lipoprotein; NCAM, neural cell adhesion molecule; and TGF, transforming growth factor.
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NCAM signaling for neurite outgrowth pathways). Results 
for the remaining pathways are shown in Figure VII and 
Table VI (online-only Data Supplement).

Discussion
Despite the recent successes of large GWAS meta-anal-
yses,1,2 the genetic architecture of CAD remains poorly 
understood and the identified loci explain a small pro-
portion of genetic risk. By integrating GWAS data with 
expertly curated databases of core human pathways as well 
as gene and reaction-based functional networks, we sought 
to obtain novel insights into the potential causal processes 
of coronary atherosclerosis. In addition, the large size of 
the discovery population and replication sample (25 000 
CAD cases and 66 000 controls) and the 2-step discovery-
replication strategy increases confidence in the results. This 
analysis implicates 32 core human pathways representing 
9 distinct biological processes as being most etiologically 
relevant to CAD.

Notably, many replicated pathways from the 2-stage 
GWAS analysis strategy converged on processes regulating 

cellular growth, migration, and proliferation, such as the 
signaling by transforming growth factor-β receptor and sig-
naling by PDGF, pathways previously intensively investi-
gated for their functional role in coronary atherosclerosis. 
By combining GWAS-based findings with such a priori 
information, we obtained evidence that genetic variation 
in a critical number of genes representing these pathways 
contribute to the heritability of CAD. Moreover, these data 
support hypotheses that alterations in these pathways are 
potentially causally related to CAD. Specifically, trans-
forming growth factor-β is known to control cell prolifera-
tion, cell migration, matrix synthesis, wound contraction, 
calcification and the immune response, all of which are 
major components of the atherosclerotic process.23 PDGF 
is expressed in every cell type of the atherosclerotic arte-
rial wall, as well as in infiltrating inflammatory cells24 and 
plays a key role in the migration of vascular smooth muscle 
cells from the media into the intima and their subsequent 
proliferation. Although both pathways have been stud-
ied in animal models, animal data are often conflicting or 
inadequate and there are no data related to modulation of 

Figure 3. Functionally interacting network modules constructed from genes belonging to the replicated, CAD-associated pathways. 
Functional interactions among the genes from all replicated pathways were analyzed and clustered by the ReactomeFI (http://chianti.
ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=Reactome%20FIs) tool and visualized in Cytoscape. Genes are represented as 
nodes and interactions among genes are represented as edges. The parent network was further analyzed to yield subnetwork clusters; 
each cluster is shown separately and color coded for clarity. Intercluster connectivity is exemplified in red for cluster 4. The top GO-BP 
terms that are enriched in each cluster are listed in the blue boxes. For each cluster, all terms are at false discovery rates <0.0001 and 
contain a minimum of 10 genes (unless otherwise indicated in parentheses). A maximum of 10 GO-BP terms are shown for each cluster. 
Genes that were not linked to at least one other gene were excluded from the network diagram. TNF indicates tumor necrosis factor.

http://chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=Reactome%20FIs
http://chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=Reactome%20FIs
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these pathways in humans. Several pathways related to the 
integrity of the ECM were also highly significant, includ-
ing ECM organization, degradation of the ECM, and cell 
ECM interactions. The ECM is responsible for maintaining 
not only the structural integrity of vessel wall plaques but 
also participates in several key events, such as cell migra-
tion, lipoprotein retention, and thrombosis that are critically 
linked to plaque stability.25

Two of the axon guidance pathway subclasses, such as 
CRMPs in Sema3 signaling, and NCAM signaling for neu-
rite out-growth also replicated. The axon guidance pathways 
modulate diverse biological phenomena, including cellular 
adhesion, migration, proliferation, differentiation, survival, 
and synaptic plasticity through the participation of highly 
conserved families of guidance molecules, including netrins, 
slits, semaphorins, and ephrins, and their cognate recep-
tors.26 Neural guidance cues such as netrin-1 and semaphorins 
have important roles outside the nervous system. Oksala et 
al27 provide compelling evidence that netrin-1 is secreted by 
macrophage foam cells in atherosclerotic plaques and acts to 

inhibit emigration of these cells out of lesions by causing dys-
regulation of the actin cytoskeleton. Wanschel et al28 reported 
that NTN1 is downregulated in atherosclerotic plaques and its 
expression correlates negatively with inflammatory markers 
and M2 signals. Like netrin-1, semaphorin 3A, encoded by 
SEMA3A, one of the top-ranked genes in this analysis, is also 
expressed in coronary artery endothelial cells and potently 
inhibits chemokine-directed migration of human mono-
cytes.29,30 This study also provides further supportive evi-
dence for a causal role of innate immunity in atherosclerosis 
or plaque rupture with significant pathways, including both 
toll receptor cascades and initial triggering of complement. 
Innate immune responses mounted by macrophages and other 
immune cells recruited to the arterial wall in response to an 
inflammatory challenge have a major role in the initiation of 
atherosclerosis.31

An important advance encompassed in the current work 
is our further examination of the topological characteristics 
of genes comprising the replicated gene sets and the potential 
implication of topology on biological function. Specifically, 

Figure 4. Topology-based network analysis in replicated pathways. Topological relationships among genes are shown for a merged Reac-
tome functional interaction network created in Cytoscape from 2 replicated pathways associated with cell-cell interactions (neural adhe-
sion molecule [NCAM] signaling for neurite outgrowth and CRMPs in Sema3a signaling). Genes (nodes) in the network are color coded 
by their replication P values (deep red, P<0.001; lighter red, 0.001<P<0.01; lightest red, 0.01<P<0.05; white, P>0.05) and sized by their 
betweenness network centrality score (calculated via Centiscape 2.0). The individual gene names and their betweenness scores are listed 
beside the network diagram. Betweenness scores are not calculated for genes that do not connect to at least 1 other gene in the network 
(these genes are indicated with #N/A for betweenness).
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we applied the Reactome FI tool to identify gene sets related 
to biological processes, such as innate immunity, cell adhe-
sion, and lipid metabolism that were further reorganized into 
functionally interacting networks and subnetwork clusters 
demonstrating a high degree of interconnectedness. Network 
clustering, followed by pathway enrichment analysis on the 
identified clusters via Gene Ontology, generated new insights 
on interrelationships among the enriched pathways, not avail-
able through our initial traditional gene set analysis. For 
example, whereas the lipid-metabolizing genes were largely 
concentrated in a single cluster (cluster 8), genes related to 
innate immunity were, by contrast, distributed within 3 sepa-
rate clusters (clusters 0, 1, and 4), along with other biological 
processes, highlighting the possibility of extensive interac-
tions among these processes. Finally, through analysis of such 
networks, we were further able to evaluate the possible criti-
cality of genes in network function, based on the degree and 
betweenness centrality properties of the network genes.

Collectively, these additional analytic approaches provide 
important insights into the interrelationships among genes that 
are not usually available through conventional gene set enrich-
ment analysis, and could assist in the formation of testable 
hypotheses on areas of robustness and vulnerability in func-
tional networks otherwise not intuitively evident. For example, 
topological analysis implicated a potential role for the axonal 
growth related pathways in CAD with NCAM1 being a major 
hub in a network, including plexins (PLXNA1 and PLXNA2), 
neuropilin-1, as well as adhesion molecules (CNTN2) and sev-
eral members of the collagen family relevant to the ECM of the 
vessel wall (Figure 4). These data support the concept that neu-
ronal guidance cues have important roles in both arteriogen-
esis32,33 and atherosclerosis by regulating macrophage retention 
in plaques.27,29,30 Other studies demonstrate that semaphorin 3A 
and its receptors, neuropilin-1 and -2, plexins A1/A2/A3 are 
highly expressed in human monocyte-derived macrophages 
and play a role in induction of macrophage apoptosis.34

Despite these plausible observations, we are cognizant 
that betweenness is but only one of several network central-
ity measures that could play critical roles in network func-
tion. Because both fields of network biology and network 
pharmacology are currently evolving, our findings should be 
considered more as hypotheses-generating rather than con-
clusive evidence of the importance of 1 gene or 1 pathway 
over another. Functional testing is necessary as the next step, 
and can take several forms, including (1) overexpression or 
knockdown of medium to high betweenness genes in target 
pathways (eg, NCAM1, FYN, for the network in Figure  4) 
in CAD-relevant cell models (eg, human coronary artery 
endothelial or smooth muscle cells, macrophages, etc) and 
to interrogate their effects on cell function (cell migration, 
lipid accumulation, etc); (2) testing the effects of candidate 
genes (eg, NCAM1 and FURIN) in knockout or overexpres-
sion mouse models (generated by somatic manipulation or 
transgene creation) on lesion formation (similar to studies on 
candidate GWAS genes for lipoprotein metabolism35–38); (3) 
statistical epistasis analysis, limited to genes within a repli-
cated pathway, to uncover functionally important interactions 
underlying the genetic basis of atherosclerosis, and (4) pri-
oritizing gene products from replicated pathways based on 

the availability of pharmacological agents against them, and 
testing these for potential benefits in animal models of ath-
erosclerosis (successfully demonstrated in identification of 
memory-modulating drugs39). We hope our approach stimu-
lates extensive further discussion on how to experimentally 
interrogate CAD related networks and pathways.

We acknowledge potential caveats pertaining to this study. 
First, the number of pathways identified and replicated was 
modest but the pathways are biologically plausible. In the dis-
covery analysis, 85 of the 639 (13%) pathways tested were 
significant at P<0.05 (and FDR <25%) with at least 50% of 
the genes in any given pathway being individually signifi-
cant at a P<0.05. A total of 32 of these 85 (37%) pathways, 
achieved replication, a number somewhat lower than expected 
(75%) given the FDR threshold used in the discovery phase 
to select pathways for testing in the replication sample. This 
may reflect the less stringent criteria for age of onset of CAD 
cases applied in some of the replication studies as well as 
study-specific differences in inclusion/exclusion criteria and 
adjudication of outcomes, leading to increased sample hetero-
geneity.1 Our study also highlights several generic issues that 
currently impose limitations on the conduct and interpretation 
of pathway analyses.40 Some of these issues pertain to (1) the 
mapping of SNPs to genes, (2) choosing the optimum path-
way analysis tool for GWAS, (3) consequences of the permu-
tation scheme used in i-GSEA4GWAS, and (4) the effects of 
inter-SNP linkage disequilibrium on pathway analysis results. 
An additional caveat is the potential for bias in the network 
and topological analyses because of limitations in the extent 
and type of experimental data available in the source data-
bases. We have provided a further detailed discussion of issues 
related to pathway and network analysis in the Results section 
of the online-only Data Supplement.

This is an area of emerging methodology and different 
approaches can yield complementary findings. Our findings 
extend gene-centric verification of CAD GWAS loci41 and 
those recently reported by CARDIoGRAM+C4D, apply-
ing Ingenuity network analysis only on the top 239 candi-
date genes.2 In another recently published study, based on 
this large-scale meta-analysis of GWAS studies for CAD, 
we used a different approach.42 Rather than a location-based 
approach to map SNPs to genes, we used expression quanti-
tative trait locus (eQTL) data from CAD-related tissues and 
primary cells to link CAD SNPs to their empirically defined 
target genes. We then created data-driven, tissue-specific gene 
expression networks from a multitude of human and mouse 
experiments.42 These networks relied heavily on available 
gene expression data and did not involve other types of inter-
actions, such as protein–protein interactions or biochemical 
reactions. In contrast, this analysis is based on gene-to-SNP 
mapping methods for gene set enrichment rather than eQTL 
data and our analysis of the topological relationships among 
genes in the filtered, replicated pathways using Reactome FI 
and pathway interaction database cover a more extensive array 
of molecular interactions, thus revealing important aspects 
that we failed to capture from the gene expression-based net-
works. It is encouraging that these 2 approaches have yielded 
consistent results in terms of core processes related to lipid 
metabolism, immune system, Notch-HLH transcription and 
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PPAR signaling. However, here we have identified additional 
biologically relevant pathways, including ECM integrity, 
transforming growth factor-β signaling and axon guidance, 
the latter being of particular interest given recent laboratory 
findings.27–30,32–34 Many of these pathways had strengths of 
association comparable to those observed in known pathways 
related to lipoprotein metabolism.

The findings of this extensive but preliminary analy-
sis do not imply causality. However, the use of the integra-
tive approach in elucidating the genetic bases of disease has 
been demonstrated by studies in several complex phenotypes. 
For example, in an investigation of the WTCCC (Welcome 
Trust Case Control Consortium) Crohn disease GWAS data 
set, only 3 genes at 2 loci showed GWAS significant signals 
but pathway analysis carried out by Wang et al11 identified the 
20 gene IL-12/IL-23 pathway to be associated with Crohn 
disease that remained significant even when the 2 original 
loci were removed.43 In a similar vein, Holmans et al44 pro-
vided supporting evidence for the immunogenetic origins 
of Parkinson disease by identifying the regulation of leuko-
cyte/lymphocyte activation and cytokine-mediated signaling 
as conferring increased susceptibility to Parkinson disease, 
although none of the SNPs linked to genes within these path-
ways had achieved GWAS significance. On the contrary, path-
way analysis studies have had little success in generating new 
biological insights for other disorders, including type 2 diabe-
tes mellitus. Because of this variability, extensive mechanistic 
and functional validation of pathway and interactome-derived 
networks at multiple levels will be essential. An example of 
systematic experimental perturbation of interactome networks 
to understand cancer predisposition has been presented in the 
study by Rozenblatt-Rozen et al45 and a framework for net-
work inference and validation based on gene knock-down has 
been proposed in Olsen et al.46

In summary, the present analysis has provided potential 
new insights into mechanisms underlying atherosclerosis 
and its clinical sequelae. The results of this investigation 
suggest a possible link between several core human biologi-
cal processes and CAD, including several with and several 
without a substantial body of previous experimental evi-
dence. Further study of the genes within the highlighted 
pathways may facilitate the development of novel testable 
hypotheses that could ultimately improve our understanding 
of atherosclerosis.
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Genome-wide association studies have identified >45 loci associated with coronary artery disease (CAD) risk but provide limited insight into 
causal mechanisms. Furthermore, the identified signals explain little >10% of the predicted heritability of CAD. Part of this missing heritabil-
ity. It is likely because many more common variants are linked to CAD but have not achieved genome-wide significance in genome-wide 
association studies because of small effect size or lower allele frequency and insufficient sample size. However, even weakly associated vari-
ants may provide important information about the biological basis of disease when such variants cluster within a common functional module 
or pathway. By integrating genome-wide association study data with extensive databases on core biological processes, we have identified 
novel biological pathways relevant to the pathogenesis of CAD. These findings provide new insight into how genetic variation, interpreted in 
the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD.
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