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a b s t r a c t

Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion
cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of
chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during
drinking water production at four large drinking water treatment plants in Sweden. When dissolved
organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could
not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance e

SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In
addition, we took a novel approach by identifying how optical parameters were correlated to the
elemental composition of DOM by using rank correlation to connect optical properties to chemical
formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed
FDOM at longer emission wavelengths (450e600 nm), which significantly correlated with chemical
formulas containing oxidized carbon (average carbon oxidation state �0), low hydrogen to carbon ratios
(H/C: average ± SD ¼ 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/
C ¼ 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM
at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather
than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing
reduced carbon (average carbon oxidation state �0), with relatively few carbon-carbon double bonds (H/
C ¼ 1.32 ± 0.16) and less oxygen per carbon (O/C ¼ 0.43 ± 0.10) than those removed during coagulation.
By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to
confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during
drinking water treatment.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dissolved organic matter (DOM) in inland waters is a complex,
heterogeneous mixture of natural organic compounds of both
terrigenous and aquatic origin. These compounds vary in size, hy-
drophobicity, age, bioavailability and reactivity (Steinberg et al.,
.
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2008; Thurman, 1985). In Sweden, as in several other countries in
Northern Europe and North America, dissolved organic carbon
(DOC) concentrations, commonly used as a proxy for DOM abun-
dance, are currently increasing in surface waters (Evans et al., 2005;
Freeman et al., 2001; Ledesma et al., 2012; Roulet and Moore,
2006). Because colored DOM in particular has been found to in-
crease (Hongve et al., 2004), this is often referred to as browning of
inland waters (Roulet and Moore, 2006). It is presently unclear
whether DOC concentrations will stabilize or continue to increase
in the future, and which changes in its composition may occur.
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Surface water is a major source of drinking water. Because the
increasing DOM levels were not considered when many water
treatment plants (WTPs) were constructed, the industry is
currently struggling to manage sufficient DOM removal in order to
maintain a high drinking water quality. Rising DOC concentrations
in raw waters increase the demand on treatment and becomes
costly due to the need for higher doses of chemical coagulants
(Eikebrokk et al., 2004), and more frequent regeneration of active
carbon filters and cleaning of membrane surfaces. Residual DOM
results in the consumption of disinfectants (such as chlorine
chemicals and UV) and leads to production of disinfection by-
products (Richardson, 2011; Richardson et al., 2007) as well as
fouling of costly membranes and active carbon filters (Kaiya et al.,
1996; Summers et al., 1989). Besides the obvious economic im-
plications, disinfection by-products may pose health risks
(Richardson, 2011; Richardson et al., 2007). Recently, many (so far
structurally unknown) disinfection by-product components have
been identified (Gonsior et al., 2014; Lavonen et al., 2013; Zhang
et al., 2012a, 2012b), which may also contribute to negative
health effects. Low DOC concentration in drinking water is further
desirable to avoid potential regrowth of microorganisms in the
distribution system (Camper, 2004; Huck, 1990), as well as for
esthetic reasons (color, odor and taste).

WTPs use a range of treatment techniques to remove DOM,
including chemical coagulation and slow sand filtration. Coagulant
dosing is optimized with respect to a number of parameters such as
turbidity, color or DOC removal and residual iron or aluminum. The
DOC removal efficiencymay vary greatly betweenWTPs evenwhen
their treatment processes are similar. The range of removal effi-
ciencies has been reported to occur due to differences in DOM
quality (e.g. (Matilainen et al., 2010; Ødegaard et al., 2010). Yet,
detailed information regarding selective DOM removal is sparse,
and highly needed to improve our ability to predict treatability of
different raw waters and to develop more efficient treatment
strategies. Only a few studies have addressed the selective removal
of DOM caused by coagulation at the molecular level (Gonsior et al.,
2014; Zhang et al., 2012a).

Because DOM removal is costly, there is an increasing demand
for online monitoring techniques to track temporal changes in
DOM quality of relevance to the operation of WTPs. Many WTPs
depend solely on the DOC-normalized value of absorbance at
254 nm (specific UV absorbance e SUVA) to assess DOM quality.
SUVA is an indicator of carbon aromaticity (Weishaar et al., 2003)
and has been shown to be useful to assess the removal efficiency
of DOM with coagulation (Matilainen et al., 2011). SUVA provides
an estimate of the average aromatic content for all DOM com-
pounds present in solution (Traina et al., 1990; Weishaar et al.,
2003). However, samples with the same SUVA may differ in
their distribution around this average value (Shutova et al., 2014),
and consequently in their reactivity. Due to the complexity of
DOM, more detailed and sensitive analytical approaches are likely
to provide more insight regarding DOM reactivity. Fluorescence
spectroscopy is a promising alternative because it is a rapid and
straightforward analytical technique, and still provides detailed
information. When applied in 3D mode, it generates an emission-
excitation matrix (EEM), providing a fingerprint of the fluorescent
DOM (FDOM) in a sample, which can supply substantial infor-
mation about DOM quality. The method therefore holds strong
advantages for more detailed offline or online monitoring. A key
limitation of fluorescence is the lack of molecular level informa-
tion. Hence, combining fluorescence spectroscopy with a method
that provides detailed molecular level information is needed to
identify how optical properties are related to the molecular
characteristics. Changes in measured fluorescence EEMs and
calculated indices during treatment processes used in drinking
water production are commonly small. Differential fluorescence
may however capture these small changes and has previously
been applied to investigate e.g. the formation of several DBPs (at a
single excitation wavelength) (Roccaro et al., 2009), removal of
PARAFAC components during coagulation (Sanchez et al., 2013), as
well as removal of different fluorophores during ozonation of a
wastewater effluent (Liu et al., 2015). In this study, we used dif-
ferential fluorescence of full EEMs in order to identify potential
patterns in the removal of FDOM during conventional drinking
water treatment and develop a novel index related to FDOM
reactivity.

ESI-FT-ICR-MS provides ultrahigh mass resolution and has a
mass accuracy below 1 ppm and is therefore able to differentiate
between DOM components having small differences in molecular
mass. To date, only a few studies have coupled results from FT-ICR-
MS analysis with fluorescence spectra (Gonsior et al., 2013;
Herzsprung et al., 2012; Kellerman et al., 2014; Stubbins et al.,
2014) and none during drinking water production. We aimed to
investigate the molecular composition of FDOM and CDOM that is
targeted during conventional drinking water treatment processes
by correlating conventional and novel optical indices with indi-
vidual DOM components from FT-ICR-MS analyses. Through this
approach, we evaluate the usefulness of commonly used optical
indices to describe selective DOM removal and couple DOM reac-
tivity to specific chemical properties.

2. Methods

2.1. Sampling

Water samples were collected from four Swedish WTPs; Lov€o,
Lackareb€ack, Ringsj€o, and Kvarnagården (Fig. A1) on a monthly to
bi-monthly basis between May and December 2011. Lov€o WTP
was sampled between all the main treatment process steps,
namely alum (Al2(SO4)3) coagulation, slow sand filtration, and
disinfection with UV and monochloramine (NH2Cl). The three
additional WTPs were sampled at the raw water intake and the
outgoing treated drinking water. Ringsj€o WTP applies FeCl3
coagulation, slow sand filtration and sodium hypochlorite (NaOCl)
disinfection. Lackareb€ack WTP uses pre-chlorination (Cl2),
Al2(SO4)3 coagulation, active carbon filtration, and disinfection
with Cl2 and ClO2. At Kvarnagården WTP only rapid sand filtration
is applied to reduce the water turbidity before disinfection using
NH2Cl and UV (Fig. A2).

All samples were analyzed for DOC, UV-Vis absorbance, and 3D
fluorescence. Prior to these analyses, samples were filtered (within
24 hrs after sampling) using pre-rinsed (Milli-Q, 18.2 U cm�1)
0.45 mm cellulose acetate filters (Minisart, Sartorius). During one
sampling event (October 17e18, 2011) samples were also collected
for FT-ICR-MS analyses.

2.2. Analyses and data processing

2.2.1. DOC and UV-Vis absorbance
Filtered samples were acidified to pH 2 with 2 M HCl and

analyzed for DOC, after purging of inorganic carbon with CO2-free
air, using a Shimadzu TOC-VCPH carbon analyzer. Absorbance
spectra were recorded between 240 and 600 nm in a spectro-
photometer (Perkin-Lambda 40) in a 1 cm quartz cuvette for
samples at ambient pH. For further details see Lavonen et al., 2013.
Specific absorbance (SUVA) was calculated using the absorbance
at 254 nm normalized to the DOC concentration and is reported in
the unit liter per milligram carbon and meter (L mg�1 m�1)
(Weishaar et al., 2003). Differential absorbance spectra were
calculated by subtracting the measured absorbance after a
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treatment process from that before. For values below 0.02 cm�1,
which occurred at wavelengths >320 nm for the treated waters,
differential absorbance spectra could not be determined, because
the signal to noise ratio was too low (defined as fluctuations being
larger than the value of the calculated differential signal), and
therefore only wavelengths up to 320 nm were used.

2.2.2. 3D fluorescence
Fluorescence EEMs (excitation (ex) 250e445 nm, 5 nm in-

tervals, emission (em) 300e600 nm, 4 nm intervals) were
measured on filtered samples using a Fluoromax-2 spectrofluo-
rometer (Horiba Jobin Yvon). Additional details on the measure-
ment settings have been previously described (Kothawala et al.,
2014). All EEMs were corrected i) through blank subtraction
(MilliQ water, 18.2 U cm�1) to reduce scatter from the water
Raman peak, ii) for instrument/spectral biases according to the
emission and excitation correction factors provided by the
manufacturer, iii) for primary and secondary inner filter effects
using the absorbance spectra (Kothawala et al., 2013; Lakowicz,
2007; MacDonald et al., 1997), and iv) by nullifying signal in-
tensities in regions where first and second order Rayleigh scat-
tering appeared. The corrected EEMs were converted from counts
per second (cps) to water Raman units (R.U.) by dividing each data
point with the area under the water Raman peak (ex ¼ 350 nm,
em ¼ 380e420 nm) (Lawaetz and Stedmon, 2009).

3D fluorescence data was used to calculate three previously
established indices; humification index (HIX ¼ ratio of areas under
the emission curve at 435e480 nm and 300e345 nm plus
435e480 nm at an excitation wavelength 254 nm) (Ohno, 2002),
fluorescence index (FI ¼ emission intensity at 470 nm divided with
that of 520 nm at 370 nm excitation) (Cory and McKnight, 2005)
and freshness index (b:a ¼ ratio of emission intensity at 380 nm
and maximum intensity between 420 and 435 nm at an excitation
wavelength of 310 nm) (Parlanti et al., 2000). The indices have been
coupled to degree of humification (higher HIX ¼ more humified
material), source (a gradient from microbial (FI z 1.8) to terrestrial
(FI z 1.3)) and age (high freshness index ¼ larger contribution of
more freshly produced DOM) respectively.

Differential EEMs (DEEMs) were calculated as follows (provided
conceptually in Fig. 1):
Fig. 1. Calculation scheme for differential EEMs during Al2(SO4)3 coagulation (DCoag, top
differential EEMs, %removed demonstrate the removed fraction and DEEMnormalized are the
fluorescence intensity.
DEEM¼ EEMof removed FDOM : DEEM ¼ EEMbefore � EEMafter

Removed fractionð%Þ : EEM%removed ¼ DEEM
EEMbefore

Normalized DEEM (DEEMnormalized):

1) EEMnormalized ¼ EmIExl; Eml

EmImax
ðfor all excitation emission pairsÞ

2) DEEMnormalized ¼ EEMnormalized 1 � EEMnormalized 2

where EmIExl,Eml is the emission intensity at any given excitation
emission wavelength pair and EmImax is the maximum emission
intensity for the measured EEM. The difference in pH for samples
used for calculations of DEEMs were within 0.8 pH units and the
majority within 0.5 pH units which should minimize the possibility
of patterns occurring due to pH effects. Indices were calculated for
the DEEMs in the same manner as for the measured samples. DOM
removal during slow sand filtration was limited and the calculated
signal intensities for the DEEMs were affected by noise. Therefore,
the excitation spectra at 254 (HIX), 310 (b:a) and 370 nm (FI) were
smoothed using a Savitzky-Golay filter (Savitzky and Golay, 1964)
before index calculation (Fig. A3).

In a novel approach, we calculated the relative intensity of total
fluorescence (%FDOM) across three regions of the EEM based on
emission wavelength, at long (%FDOM450-600: 450e600 nm), me-
dium (%FDOM350-450: 350e450 nm) and short (%FDOM300-350:
300e350 nm) emission wavelengths. The regions were selected to
capture the most distinct removal occurring during treatment with
coagulation (Em > 450 nm) and slow sand filtration (Em < 450 nm)
(Fig. 1). The shorter emission wavelength region was further
divided in order to see if changes in the region where protein-like
fluorescence occurs (Em < 350 nm (Coble et al., 1998, 1990))
could be detected.

2.2.3. FT-ICR-MS
Samples for FT-ICR-MS analysis were filtered using Whatman

GF/F glass fiber filters, acidified to pH 2, and the DOMwas extracted
using Agilent Bond Elut PPL solid-phase extraction cartridges (1 g of
polar functionalized polystyrene divinylbenzene (PPL)) according
row) and slow sand filtration (DSSF, bottom row) at Lov€o WTP where DEEMs are the
differential EEMs calculated from EEMs that has been normalized using the maximum



E.E. Lavonen et al. / Water Research 85 (2015) 286e294 289
to (Dittmar et al., 2008). The adsorption efficiency (defined as the
difference in DOC concentration before and after extraction) was
74 ± 7% (Lavonen et al., 2013).

The extracted samples were analyzed at the Helmholtz Center
for Environmental Health in Munich, Germany using a Bruker
Solarix 12 T FT-ICR mass spectrometer with electrospray ionization
(Apollo II). Mass resolution was 1,000,000 for m/z ¼ 200, 500,000
for m/z ¼ 400 and, 350,000 for m/z ¼ 600. Arginine and its specific
mass peaks (m/z¼ 173.10440, 347.21607, 521.32775 and 695.43943
for singly negatively charged ions) were used for external calibra-
tion. To further improve the precision, internal calibration was also
performed using known exact mass peaks that are always present
in DOM samples (Table A1) (Gonsior et al., 2011). Chemical for-
mulas were assigned to the mass peaks according to 12C0-100, 16O0-

80, 1H0-∞, 32S0-32, 14N0-2, 35Cl0-3 and 13C0-1 and the following criteria
were applied: i) mass accuracy <0.7 ppm, and ii) peak intensity
>5,000,000. On average, approximately 15,000 peaks were identi-
fied in each sample, of which roughly 20% met the above stated
criteria and could be assigned unequivocal chemical formulas. In
this study, we focused on formulas containing only C, H and O,
because nitrogen- and sulfur-containing compounds showed only
lowabundances, in agreement with a previous study (Gonsior et al.,
2013). Detailed information regarding extraction, data processing,
limitations, and calculations can be found in a previous study,
analyzing chlorine-containing organic components in the same
samples (Lavonen et al., 2013).

Samples from Lov€o WTP were taken in duplicate to assure high
data quality. One of the duplicate samples from the rapid sand
filtrate deviated systematically in signal intensities and was
therefore not included. For the remaining samples we performed a
hierarchical cluster analysis (HCA) using Ward's method (Fig. A4).
Because the results from the HCA showed that no difference could
be quantified between the rapid sand filtrate and the slow sand
filtrate, no results are presented from the slow sand filtration
process.

Signal intensities of all individual m/z peaks were normalized
using themost abundant m/z peak in eachmass spectrum to obtain
relative abundances. Changes in relative abundance are described
in percentage points (relative abundance in one sample minus the
relative abundance in the other sample). Differences in relative
abundance between duplicate samples were, on average, 0.9 ± 1.5
percentage points. Therefore, when comparing two samples, only
differences in relative abundance that exceeded 2.5 percentage
points were considered significant. Ratios of O/C and H/C as well as
double bond equivalency per carbon (DBE/C) and the average car-
bon oxidation state (COS) (Kroll et al., 2011; Lavonen et al., 2013)
were calculated.

2.2.4. Statistics
We examined positive correlations between SUVA, HIX, FI, b:a, %

FDOM450-600, %FDOM350-450, %FDOM300-350 and the relative abun-
dance of CHO formulas assigned to FT-ICR-MS data using rank
correlation according to (Herzsprung et al., 2012). All CHO formulas
present in at least 10 out of the 11 samples were included, resulting
in 857 components in total.

The significance of changes in DOC concentration and compo-
sition during treatment was obtained using two-tailed Student's
paired t-tests.

3. Results & discussion

Wewill first present results from the rank correlation in order to
identify patterns in correlated chemical formulas between different
commonly used (SUVA, HIX, FI and b:a) and novel (%FDOM300-350, %
FDOM350-450, %FDOM450-600) optical spectroscopic indices. This
information will then be used in a novel approach to understand
how representative changes in spectroscopic indices are for the
shift in molecular level composition during different conventional
drinking water processes, namely coagulation with Al2(SO4)3, slow
sand filtration, and disinfectionwith UV and NH2Cl. Wewill, for the
first time, identify chemical features for SUVA and FDOM that can
be related to DOM oxidative reactivity. Lastly, we will use
normalized differential EEMs to explain differences in the coagu-
lation treatability of different raw waters.

3.1. Correlations between optical spectroscopic parameters and
chemical formulas

Several of the spectroscopic indices correlated similarly to in-
dividual CHO components (Table A3), clearly separating them into
two groups (AeD and EeG in Fig. 2). One group included SUVA, HIX,
and %FDOM450-600 and the other FI, b:a, %FDOM300-350 and %
FDOM350-400. The two groups will hereafter be referred to as
terrestrial and in-lake produced DOM indicators in accordancewith
previously established relationships between the indices, fluores-
cence regions and DOM source (Kothawala et al., 2014; McKnight
et al., 2001; Parlanti et al., 2000; Zsolnay et al., 1999). Out of the
857 CHO-formulas that were included in the rank correlation, 632
were significantly positively correlated (p < 0.05) to one or more
optical spectroscopic parameters.

Within the group of terrestrial DOM indicators, 208 CHO for-
mulas correlated with both SUVA and %FDOM450-600, which
equaled 90% and 98% of the total amount of positively correlated
formulas respectively (Fig. 2F&G, Fig. A5, Table A2). These formulas
had, on average, high O/C (0.63 ± 0.09) and DBE/C (0.64 ± 0.07)
(Table A3). 79 of these CHO formulas also correlated with HIX
(Fig. 2E, Fig. A5). HIX was furthermore uniquely correlated to 36
formulas with even higher average O/C (0.72 ± 0.09) and lower
DBE/C (0.50 ± 0.05) (Table A3). Out of all the CHO components that
were coupled to these three measures, all but 1 had an average
carbon oxidation state �0 (Fig. 3, Table A4). SUVA has earlier been
shown to be positively correlated with aromaticity measured with
13C-NMR (Weishaar et al., 2003), indicating that a significant
amount of the CHO components correlating with the terrestrial
indicators correspond to aromatic compounds, as would be ex-
pected because they originate from structural plant and animal
residues, e.g. lignin. The relatively high oxygen content of the
components indicates a prevalence of oxygen-containing func-
tional groups, a feature that is connected to the humification pro-
cess where hydrophobic soil organic matter is solubilized through
the addition of e.g. hydroxyl and carboxyl groups (Kleber and
Johnson, 2010).

For the in-lake produced DOM indicators, 277 chemical formulas
correlated with all four parameters, i.e., FI, b:a, %FDOM350-450 and %
FDOM300-350, representing 81e95% of the total amount of formulas
that were positively correlated to the four individual spectroscopic
measures (Fig. A5, Table A2). All in-lake produced DOM indicators
are based on a shift in fluorescence emission maximum towards
shorter wavelengths, which could be attributed to i) reduction in
the length of the p-electron system caused by e.g. a decrease in the
number of aromatic rings or, ii) removal of e.g. carbonyl and hy-
droxyl functional groups (Coble, 1996; Senesi, 1990). Consequently,
the 277molecular formulas had relatively low O/C (0.43 ± 0.10) and
DBE/C (0.39 ± 0.08) (Table A3) compared to the terrestrial com-
ponents. Out of all 359 formulas coupled to any of these four
measures (FI, b:a, %FDOM350-450 and %FDOM300-350), all but one had
an average carbon oxidation state�0 (Fig. 3, Table A4). These results
indicate that carbon oxidation is an important chemical feature
related to DOM source, separating terrestrial and in-lake produced
DOM into oxidized and reduced components respectively.



Fig. 2. van Krevelen diagrams demonstrating relationships between optical spectroscopic parameters and individual chemical formulas for components containing C, H and O. Red
points show the position of positively correlated formulas (p < 0.05) in the van Krevelen space (x-axis showing the oxygen to carbon ratio and the y-axis the hydrogen to carbon
ratio). Gray points represent formulas without significant correlation. (A) fluorescence index, (B) freshness index, (C) %FDOM with emission between 300 and 350 nm, (D) %FDOM
with emission between 350 and 450 nm, (E) humification index, (F) specific UV absorbance (254 nm), and (G) %FDOM with emission between 450 and 600 nm. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Selective DOM removal

3.2.1. Coagulation
The largest reduction in DOC concentration at Lov€o WTP of

approximately 40% occurred during the coagulation process
(Table 1). This was expected because the removal efficiency with
Al2(SO4)3 coagulation for waters in the SUVA range 2e4 have been
reported to be 25e50% (Edzwald, 1993; Matilainen et al., 2010).
Coagulation selectively removed chromophoric DOM (CDOM), as
demonstrated by a decrease in the sum of absorbance per DOC
(TotAbs/DOC) and SUVA (Table 1). Fluorescent DOM (FDOM) was
also targeted during coagulation, as shown by a decrease in the
total fluorescence per DOC (TotFDOM/DOC) (Table 1). The removal
of FDOM increased with emission wavelength (Fig. 1). Accordingly,
%FDOM450-600 and HIX decreased while FI and b:a increased
(Table 1). The change in FDOM character during coagulation was
accentuated for the indices obtained from DEEMs (Fig. 4), with
relatively high HIX (0.94 ± 0.01) and low b:a (0.47 ± 0.02) and FI
(1.27 ± 0.03) close to the reported terrestrially derived endmember
Fig. 3. Double bond equivalency per carbon (DBE/C) and the average carbon oxidation
state (COS) of chemical formulas containing C, H and O that correlated with terrestrial
indicators (humification index, specific UV absorbance (254 nm) and % FDOM with
emission between 450 and 600 nm) (blue points) and those correlated to in-lake
produced DOM indicators (fluorescence index, freshness index, %FDOM with emis-
sion between 300 and 350 nm, and %FDOM with emission between 350 and 450 nm)
(orange points). The two groups are clearly separated by an average carbon oxidation
state equal to zero. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
(approximately 1.3) (Cory and McKnight, 2005; Cory et al., 2007;
McKnight et al., 2001). Chemical formulas of DOM that decreased
in abundance upon coagulation had relatively high O/C and lowH/C
and the majority of assigned formulas had a positive average car-
bon oxidation state (Fig. 5A). All our independent spectroscopic
measures demonstrated that coagulation is a highly selective pro-
cess in the drinking water treatment and removes DOM with
characteristics typically associated with terrestrial organic matter.
Targeted removal of terrestrial DOM with high O/C ratios during
coagulation is well known and has been demonstrated in a number
of previous studies utilizing various analytical techniques (e.g.
(Baghoth et al., 2011; Bieroza et al., 2009a, b; 2010, Edzwald, 1993;
Gonsior et al., 2014; Sanchez et al., 2013; Shutova et al., 2014; Volk
et al., 2000; Zhang et al., 2012a). Almost all (99%) of the CHO
components that correlated with SUVA and %FDOM450-600 were
found to decrease during coagulation, which demonstrate the
usefulness of the two spectroscopic measures for describing coag-
ulation treatability. %FDOM450-600 was, however, a more sensitive
measure than SUVA, allowing the detection of changes in DOM
character even when DOC removal was small, i.e. during slow sand
filtration (Table 1) (see section 3.2.2). We suggest %FDOM450-600 to
be a useful single parameter to use at WTPs to capture changes in
the DOM composition, and assess the treatability during coagula-
tion. Nevertheless, SUVA and %FDOM450-600 may not fully capture
the chemical components targeted by coagulation as formulas
coupled to the in-lake produced DOM indicators also decreased
during the treatment (Table A5). Looking at the most pronounced
shifts in composition, 176 components decreased in relative
abundance by more than 5 percentage points during coagulation
and out of those 80% correlated with the terrestrial indicators and
only 5% with the in-lake produced DOM indicators. This pattern is
in agreement with the observed gradient in FDOM removal from
approximately 30% for shorter-emissionwavelengths (<350 nm) up
to 55e60% for longer emission wavelengths (500e600 nm) (Fig. 1).
The removal of FDOM is in coherence with a previous study
(Sanchez et al., 2013) and show that similar results can be obtained
by calculating the removed fraction of FDOM from measured EEMs
compared to from PARAFAC components modeled from DEEMs as
applied by Sanchez et al. (2013). In general, we found that all
spectroscopic parameters connected to terrestrial DOM provided a
good estimation of the DOM treatability during coagulation, in line
with the high selectivity of the treatment towards oxidized com-
ponents (Fig. 5A). Nonetheless, changes in the indices only provide



Table 1
Mean values (±SD) of dissolved organic carbon (DOC) concentration and spectrophotometric parameters. Lo ¼ Lov€o, Kv ¼ Kvarnagården, La ¼ Lackareb€ack and Ri ¼ Ringsj€o water treatment plants (WTPs). Surf ¼ surface water,
Raw ¼ raw water at the WTPs intake, Raw/mix ¼ raw water mixed with groundwater (1/4 groundwater for Kv and 1/8 for Ri), RSF ¼ rapid sand filtrate, sample taken after coagulation and rapid sand filtration, SSF ¼ slow sand
filtrate, Drink ¼ outgoing drinking water, sampled after disinfection. DOC ¼ dissolved organic carbon concentration, SUVA ¼ specific UV absorbance at 254 nm, TotFDOM/DOC ¼ sum of fluorescence intensities divided by DOC
concentration, TotAbs/DOC¼ sum of absorbance intensities divided by DOC concentration, %FDOM450-600 ¼ sum of fluorescence intensities with emission between 450 and 600 nm divided by the full emissionwavelength range
(300e600 nm), HIX ¼ humification index, FI ¼ fluorescence index, and b:a ¼ freshness index.

WTP Sample n DOC (mg L�1) SUVA (L mg�1 m�1) TotFDOM/DOC (R.U. L mg�1) TotAbs/DOC (L mg�1 cm�1) %FDOM450-600 %FDOM350-450 %FDOM300-350 HIX FI b:a

Lo Raw 10 8.9 ± 0.4 2.7 ± 0.11 113.8 ± 13.4 2.0 ± 0.12 53.3 ± 0.5 44.0 ± 0.4 2.6 ± 0.2 0.90 ± 0.01 1.41 ± 0.02 0.61 ± 0.01
RSF 8 5.1 ± 0.3*** 1.9 ± 0.15*** 95.2 ± 9.7** 1.4 ± 0.14*** 48.7 ± 0.6*** 47.6 ± 0.4*** 3.7 ± 0.2*** 0.87 ± 0.02*** 1.58 ± 0.03*** 0.74 ± 0.01***
SSF 8 4.7 ± 0.3** 1.9 ± 0.12 100.2 ± 16.1 1.4 ± 0.14 50.0 ± 0.5*** 46.5 ± 0.4*** 3.6 ± 0.4 0.87 ± 0.02 1.57 ± 0.01 0.72 ± 0.01**
Drink 10 4.4 ± 0.3 1.9 ± 0.15 107.8 ± 20.7 1.4 ± 0.12 50.3 ± 0.5 46.2 ± 0.2 3.4 ± 0.5* 0.88 ± 0.02 1.56 ± 0.01 0.72 ± 0.01

Kv Surf 8 3.3 ± 0.2 2.9 ± 0.36 103.7 ± 18.8 2.5 ± 0.52 56.9 ± 0.7 40.3 ± 0.2 2.8 ± 0.6 0.87 ± 0.03 1.38 ± 0.02 0.54 ± 0.01
Raw/mix 8 3.0 ± 0.2** 2.8 ± 0.41* 101.5 ± 16.6 2.4 ± 0.48 56.5 ± 0.5 40.7 ± 0.2** 2.8 ± 0.5 0.87 ± 0.02 1.39 ± 0.02 0.54 ± 0.01
Drink 8 3.0 ± 0.3 2.5 ± 0.42** 110.6 ± 22.7 2.2 ± 0.45 56.9 ± 0.5 40.5 ± 0.2 2.7 ± 0.5 0.88 ± 0.02 1.41 ± 0.02 0.54 ± 0.01

La Raw 6 5.2 ± 0.2 3.0 ± 0.13 96.9 ± 8.9 2.4 ± 0.14 55.6 ± 0.5 41.5 ± 0.3 2.9 ± 0.3 0.88 ± 0.01 1.36 ± 0.02 0.55 ± 0.01
Drink 6 2.4 ± 0.2*** 1.5 ± 0.04*** 64.5 ± 20.5** 1.3 ± 0.35** 46.4 ± 1.0*** 47.6 ± 0.7*** 6.0 ± 1.7** 0.77 ± 0.05*** 1.63 ± 0.04*** 0.79 ± 0.01***

Ri Raw/mix 7 10.1 ± 0.3 4.0 ± 0.17 133.8 ± 19.9 3.5 ± 0.17 59.1 ± 0.4 39.2 ± 0.3 1.6 ± 0.1 0.93 ± 0.00 1.34 ± 0.01 0.48 ± 0.01
Drink 7 2.7 ± 0.3*** 1.5 ± 0.24*** 98.9 ± 23.6* 1.1 ± 0.19*** 50.5 ± 0.3*** 46.0 ± 0.3*** 3.5 ± 0.5*** 0.85 ± 0.01*** 1.63 ± 0.02*** 0.68 ± 0.01***

***p < 0.0001, **p < 0.01, *p < 0.05, significance of change (paired two-tailed Student's t-test) compared to the sample taken closest before in the treatment train.
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TotAbs/DOC, TotFDOM/DOC, and SUVA (Table 1). However, when
plotting the differential absorbance, the shoulder commonly pre-
sent for DOM around 260e270 nm (Korshin et al., 1997) appeared
to have been particularly susceptible to the treatment over the
entire sampling period (Fig. A6). The effect of slow sand filtration on
FDOM was opposite to coagulation with the largest removal of
components emitting at relatively short wavelengths (Fig. 1). The
same pattern was seen for all sampling occasions where removal of
FDOM was quantifiable. Accordingly, this treatment resulted in an
increase in %FDOM450-600, and a decrease in b:a (Table 1). Opposite
to coagulation, FI obtained from DEEMs (1.70 ± 0.10) was close to a
microbially derived end member (approximately 1.8) (Cory and
McKnight, 2005; Cory et al., 2007; McKnight et al., 2001), while
HIX was low (0.82 ± 0.02) and b:a high (0.98 ± 0.10) compared to
FDOM removed during coagulation (Fig. 4). The largest removal of
FDOM and CDOM (Fig. 1 & A6) overlapped with the emission of
tryptophan, tyrosine and phenylalanine (Coble, 1996; Coble et al.,
1990; Lakowicz, 2007). This FDOM is generally referred to as
protein-like and is thought to represent free or bound amino acids
(Coble,1996; Coble et al., 1998,1990; Parlanti et al., 2000), mainly of
autochthonous origin. With rank correlation we showed that in-
lake produced FDOM correlated with CHO components having
negative average carbon oxidation state (COS � 0, Fig. 3), which
should, consequently, have been particularly susceptible to removal
due to the preferential removal of FDOM with emission between
300 and 450 nm (Fig. 1). Differential EEMs showed that, in addition
to protein-like FDOM, of which 15 ± 4% (average ± standard devi-
ation over time, p < 0.001) was removed at an excitation/emission
wavelength pair of 275/320 nm during the sampled period,
approximately 5% of FDOM with longer emission wavelengths
(Em > 450 nm) (6 ± 2% (average ± standard deviation over time) at
excitation ¼ 350 nm and emission ¼ 548 nm, p < 0.001) could be
removed during slow sand filtration (Fig. 1). The net DOM removal
during slow sand filtration is the sum of uptake and production of
DOM by microbial biofilms, as well as physical retention, and may
vary amongWTPs in response to the composition of DOM aswell as
of microbial communities. Also, within the protein-like FDOM,
different components may be removed by biofilms to a varying
extent (Cory and Kaplan, 2012).

3.2.3. Disinfection
DOC concentration and spectroscopic parameters did not

change significantly during disinfection at neither Lov€o nor Kvar-
nagården WTPs (Table 1). Still, differential absorbance curves
revealed that CDOM absorbing at 260e270 nm was most reactive
during disinfection (Fig. A6), which is consistent with earlier
studies (Korshin et al., 2002; Roccaro and Vagliasindi, 2009). The
removal of CDOM was very similar for disinfection and slow sand
filtration (Fig. A6). Due to this similarity and because protein-like
FDOM was particularly reactive during slow sand filtration, this
material is likely to have caused consumption of the disinfectant,
even if no significant changes in fluorescence properties could be
quantified during disinfection. Removal of in-lake produced FDOM
prior to disinfection (as occurs both during slow sand filtration and
coagulation) should therefore be beneficial in order to lower the
unwanted consumption of disinfectants by DOM. As previously
reported, we observed a general shift from reduced to oxidized
components during disinfection, demonstrated with increasing
weighted mean values of the average carbon oxidation state
(Lavonen et al., 2013). In this study, we have investigated this on a
single component basis and observed that, at both WTPs, practi-
cally all components that decreased in relative abundance with
more than 2.5 percentage points during disinfection were reduced
(COS � 0) (Fig. 3, Tables A6 and A7). Similarly, Zhang et al. (2012a)
found that components with low O/C were especially reactive
towards chlorine, as expected due to the larger energy gained for
oxidation of the most reduced molecule. Out of the CHO compo-
nents that decreased significantly the larger majority were corre-
lated to in-lake produced DOM at both WTPs (58 and 67% at Lov€o
and Kvarnagården WTPs respectively), while none correlated with
terrestrial DOM (Tables A6 & A7). Beggs and Summers (2011) also
found that protein-like FDOM components were especially reactive
during chlorination and caused the majority of chlorine con-
sumption, however using pine needle leachates. They further
concluded that humic-like FDOMwasmore prone to form chlorine-
containing disinfection by-products measured as trihalomethanes
and haloacetic acids. Similarly, others have found that hydrophobic,
aromatic compounds with oxygen functional groups are the most
potent precursors for chlorine-containing disinfection by-products
(Crou�e et al., 2000; Lavonen et al., 2013; Rook, 1977). At Kvarna-
gården WTP, the shift in DOM composition during disinfection was
more pronounced than at Lov€o (Fig. 5B&C), which may be con-
nected to a larger NH2Cl consumption (Lavonen et al., 2013).
Nevertheless, this difference could not be related to a larger fraction
of in-lake produced DOM present before disinfection, as could be
expected. Instead, at Kvarnagården b:a and FI were significantly
lower and %FDOM450-600 and SUVA markedly higher before disin-
fection than at Lov€o. Factors other than the DOM composition that
might have affected the NH2Cl consumption were the approxi-
mately 70% higher dose per DOC at Kvarnagården (Lavonen et al.,
2013) and that UV treatment was applied before NH2Cl at Lov€o
while the processes were in reversed order at Kvarnagården WTP.
Applying UV disinfection could have oxidized the CHO components
to an extent lowering NH2Cl consumption at Lov€o WTP while still
not oxidizing the components as extensively as during the NH2Cl/
UV treatment at Kvarnagården WTP, but that cannot be assessed
from our data. Clearly, further studies under more controlled con-
ditions are needed to identify parameters that can be used to
explain disinfectant consumption and the extent of CHO compo-
nent oxidation during disinfection. The shift from reduced to
oxidized CHO formulas during disinfection indicates that in-lake
produced DOM was especially reactive during disinfection and
responsible for the largest consumption of disinfectant, but likely to
mainly have resulted in the formation of oxidized, non-chlorinated
by-products.

3.3. DOM treatability

In order to explain differences in treatability of raw waters in a
simple and straight-forward manner, we used the specific spectral
characteristics associated with DOC removal efficiency described
above in Section 3.2. The total DOC removal varied widely from
74 ± 3% at Ringsj€o, 53 ± 3% at Lackareb€ack and 49 ± 3% at Lov€o to no
quantifiable loss at Kvarnagården WTP. Differential EEMs were
especially useful to describe selective removal of FDOM during
coagulation and slow sand filtration, because the reactivity of both
terrestrial and in-lake produced DOM can be obtained simulta-
neously (see Section 3.2). We suggest that by comparing different
waters using normalized DEEMs their relative treatability can be
assessed. By normalizing the data before calculation of DEEMs we
obtain a direct comparison of the DOM quality in two samples
containing different amounts of fluorescent DOM. The difference in
total DOC removal, of which the majority occurred during coagu-
lation, was evident when comparing normalized DEEMs of raw
waters from Ringsj€o with Lov€o and Lackareb€ack WTPs over the
entire sampling period, as exemplified in Fig. 6. The FDOM in raw
waters of Lov€o and Lackareb€ack differed from that of Ringsj€o WTP,
with large differences in DOC reduction attributed to a larger
abundance of more easily coagulated FDOM in Ringsj€o WTP raw
water. The differences in FDOM composition between the raw



Fig. 6. Normalized differential EEMs for raw waters from (A) Ringsj€o water treatment
plant (WTP) compared with Lov€o WTP and (B) Ringsj€o WTP compared with Lack-
areb€ack WTP (2011-10-18). Values above zero demonstrate fluorescing dissolved
organic matter (FDOM) representing a larger fraction of the total FDOM at Ringsj€o and
values below zero FDOM that occurred more (to a relative extent) in Lov€o/Lackareb€ack
WTPs raw water.
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waters corresponded to the change occurring at Lov€o WTP during
coagulation (compare Figs. 1 and 6). We argue that normalized
DEEMs demonstrate a more complete picture of differences in the
DOM composition of two samples compared to SUVA and the
fluorescence indices by visualizing the relative contributions of
different fluorophores simultaneously.

Highly detailed information regarding treatability of DOM can
be obtained with advanced analytical techniques such as the FT-
ICR-MS employed in this study. However, using differential EEMs
we have demonstrated that the relative treatability of two different
waters can be assessed in a simple and straightforward way that
should be attractive to use at WTPs, where time and resources may
limit the feasibility of advanced methods (e.g. FT-ICR-MS) and data
treatment (e.g., parallel factor analysis (PARAFAC) which is
commonly applied to EEMs). We therefore recommend WTPs to
use differential EEMs to assess the process-specific selective
removal of FDOM. Differential EEMs could also be used to compare
the DOM quality in different water sources and could be used to
carefully monitor treatability over time, and be of great aid when
investigating alternative treatment processes, raw water sources or
intake depths.

4. Conclusions

Using a combination of bulk (DOC), optical (absorbance and
fluorescence) and molecular level (FT-ICR-MS) analytical tools to
assess the reactivity of DOM during conventional drinking water
treatment, the following conclusions could be drawn:

� All the investigated drinking water treatment processes tar-
geted specific fractions of DOC. When DOC removal was low (i.e.
during slow sand filtration and disinfection) this could not be
detected with the commonly used parameter SUVA, but was
clear from differential fluorescence and absorbance measure-
ments or FT-ICR-MS analyzes.
� Differential EEMs were especially useful to assess DOM reac-
tivity as a range of removal efficiencies for both terrestrial and
in-lake produced DOM can be obtained simultaneously,
compared to established indices where only information
regarding the most reactive end-member is given.

� We used rank correlation to couple spectroscopic parameters to
specific chemical components obtained with FT-ICR-MS ana-
lyzes. The rank correlation divided the spectroscopic indices
into two groups which corresponded to commonly known
DOM, namely terrestrial (represented by high HIX, SUVA and %
FDOM450-600), and in-lake produced DOM (represented by high
b:a, FI and %FDOM300-450). The most striking difference between
chemical formulas correlated to the optical parameters in the
two groups was the average carbon oxidation state that was
�0 for components correlated with terrestrial DOM and �0 for
those coupled to in-lake produced DOM.

� The average carbon oxidation state was an important factor
differentiating between components prone to removal by
coagulation (oxidized) and slow sand filtration (reduced) as well
as those consuming disinfectant (reduced) and acting as pre-
cursors for disinfection by-products (oxidized).
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