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Summary

Age is the strongest risk factor for many diseases including

neurodegenerative disorders, coronary heart disease, type 2 dia-

betes and cancer. Due to increasing life expectancy and low birth

rates, the incidence of age-related diseases is increasing in indus-

trialized countries. Therefore, understanding the relationship

between diseases and aging and facilitating healthy aging are

major goals in medical research. In the last decades, the dimension

of biological data has drastically increased with high-throughput

technologies nowmeasuring thousands of (epi) genetic, expression

and metabolic variables. The most common and so far successful

approach to the analysis of these data is the so-called reductionist

approach. It consists of separately testing each variable for associ-

ation with the phenotype of interest such as age or age-related

disease. However, a large portion of the observed phenotypic

variance remains unexplained and a comprehensive understanding

of most complex phenotypes is lacking. Systems biology aims to

integratedata fromdifferent experiments togainanunderstanding

of the system as awhole rather than focusing on individual factors.

It thusallowsdeeper insights into themechanismsof complex traits,

which are caused by the joint influence of several, interacting

changes in the biological system. In this review, we look at the

current progress of applying omics technologies to identify

biomarkers of aging. We then survey existing systems biology

approaches that allow for an integration of different types of data

and highlight the need for further developments in this area to

improve epidemiologic investigations.
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Introduction

Aging is often described as the progressive accumulation of changes

with time leading to a loss of physiological aptitude and fertility, an

increased susceptibility to disease and ultimately to death (Harman,

1988, 2001; Kirkwood & Austad, 2000; Vijg & Suh, 2005; L�opez-Ot�ın

et al., 2013). Despite considerable effort and the development of many

theories, the underlying process is still largely unknown (Kirkwood &

Austad, 2000; Weinert & Timiras, 2003; Rattan, 2006).

Researchers distinguish between chronological and biological age.

Chronological age is defined as the absolute time that an individual lives.

In contrast, biological age is a broader concept that takes the individual

physical and mental health into account, thus capturing individual

differences of the aging process. Most aging studies search for

associations of chronological age with clinical and molecular phenotypes

(Warming et al., 2002). However, several studies used phenotypes, such

as lung function, grip strength or bone mineral density, as proxies to

investigate molecular changes in biological aging (Jackson et al., 2003;

Bell et al., 2012; Levine, 2013). Researchers also investigated reasons of

retarded biological aging and longevity by comparing centenarians with

younger controls (Biagi et al., 2012; Sebastiani et al., 2012).

The life expectancy in the UK increased by 5.3 years for men and 4.7

for women over the last two decades and is predicted to further increase

in the next twenty years (Oeppen & Vaupel, 2002; Office for National

Statistics 2014). With increasing life expectancy, age-related diseases are

expected to rise dramatically (700 000 people suffered from dementia in

2000, 800 000 in 2012 and approximately 1 million people will be

affected by dementia in 2021 (Alzheimer’s Society 2014)) with major

impacts on healthcare costs. Thus, a better understanding of aging and

its influence on disease is a long term public health goal and a hot topic

of current medical research.

Omics technologies provide valuable tools to study aging on the

molecular level. Reductionist data analyses, testing the measured

variables separately for association with age, have been extensively

applied. Such studies successfully identified hundreds of epigenetic

mutations, gene expression levels, metabolite concentrations to be

linked with chronological and/or biological age (see below for details).

Even though these results improved our understanding of aging as a

complex phenotype, the mechanisms underlying these associations and

the impact of interactions between different biological entities remain

elusive in most cases. In contrast to reductionist approaches, systems

biology aims to analyse all components of a biological process

simultaneously taking into account their interactions and their intrinsic

hierarchical structure (Ideker et al., 2001; Barabási & Oltvai, 2004). With

more and more high-throughput data becoming available, systems

biology has led to many new methods and their successful application on

age and age-related phenotypes (as outlined below).

In this review, we will briefly summarize the current progress in

‘omics’ technologies and their application in aging research. We will

then highlight some problems of the reductionist approach and discuss

how these may be overcome using systems biology. We present a

selection of statistical methods used in systems biology along with their

current and possible future applications in the field of aging research to

move from biomarkers of aging to a more holistic understanding of the

aging process.
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Omics and aging

New technologies allow the measurement of ‘omics’ data and numerous

association studies have been conducted. Valdes et al. (2013) thor-

oughly reviewed the application of these technologies to identify

molecular markers of aging from each omics level. Therefore, the

following section will only briefly highlight some key results and

concentrate on recent findings.

Genomics

Genomics was the first omics field for which high-throughput measure-

ments became available. Current chips are able to measure up to 5

million single nucleotide polymorphisms (SNPs) (Ha et al., 2014). Today,

next-generation sequencing technology is slowly replacing the chip

technology as the cost of sequencing has dropped below $0.10 per

million bp (Liu et al., 2012). Thus, gene variation is nowadays often

available at single nucleotide resolution.

While aging (or rather longevity) itself was found to be only about

20% heritable (Murabito et al., 2012), many age-related diseases are

highly heritable. For instance, Alzheimer’s disease (AD) shows a

heritability above 70% (Gatz et al., 2006) and osteoarthritis (Ishimori

et al., 2010) or cataract show 50% heritability (Hammond et al., 2001).

The GenAge database contains about 300 human candidate genes

for aging based on homology with model organisms (Tacutu et al.,

2013). Sebastiani et al. (2012) recently published a refined model

consisting of 281 SNPs to distinguish between centenarians and younger

controls in a cohort of 1715 people. One of these SNPs is located in

ApoE, which is so far the only gene that has been reliably associated with

longevity at genomewide significance level (Deelen et al., 2011; Nebel

et al., 2011). Common genetic variants at this locus have been

associated with accelerated aging and cognitive decline (Johnson,

2006; Davies et al., 2014), possibly by increasing the risk for coronary

artery disease, stroke and AD (Smith, 2002). Even though some studies

provided evidence that mutations of FOXO transcription factors are

related to longevity (Willcox et al., 2008; Flachsbart et al., 2009), as

well, GWASs failed to replicate this at the level of genomewide

significance.

Epigenomics

Epigenomics describes the study of heritable changes in the genome that

are not caused by DNA sequence mutations (Lodish, 2013). The most

common epigenetic mechanism is DNA methylation, which is known to

often silence gene expression. In contrast to the genome, which is the

same in all cells, the epigenome is an important factor of cell

differentiation leading to profound epigenetic differences across differ-

ent cell types (Meissner, 2010). The current methylation chip by Illumina

measures over 485 000 methylation sites and covers 99% of all RefSeq

genes (Illumnia 2011). However, it covers less than 10% of variable

regions (Ziller et al., 2013).

The epigenome is influenced by environmental and lifestyle factors

(Nakajima et al., 2010; Alegr�ıa-Torres et al., 2011; Breitling et al., 2011)

and is associated with many complex diseases such as neurodegener-

ative disorders (reviewed by Portela & Esteller, 2010) and cancer (Ehrlich,

2002; Horvath, 2013). Nearly 500 differentially methylated regions were

found to be associated with chronological age and age-related pheno-

types such as lung function, cholesterol levels and maternal longevity

(Bell et al., 2012). A recent study by Weidner et al. (2014) showed that

methylation patterns of just three sites are sufficient to predict

chronological age. Thus, many of the previously identified methylation

sites might not be independently associated with age. Interestingly,

variation in methylation with age is consistent across several tissues and

cell types (Horvath, 2013). Together, they form a global pattern of

hypomethylation in repetitive sequences, hypermethylation in promoter

regions and higher intercell variability (Cevenini et al., 2008; Bacalini

et al., 2014). Besides DNA methylation, other epigenetic changes, such

as histone methylation and acetylation, have been found to be

associated with longevity in model organisms (Dang et al., 2009; Greer

et al., 2010). Investigating these modifications in humans could shed

light on so far unknown mechanisms of aging.

Transcriptomics

Genes are transcribed into RNA molecules, which are further processed

in a tightly controlled process. The entirety of the RNA transcripts is

referred to as transcriptome. It can be divided in coding RNAs, which are

further translated in proteins, and noncoding RNAs, which perform

various functions, such as regulation of gene expression (Eddy, 2001).

Transcript abundances can be measured by either chips or sequencing

methods.

Similar to the epigenome, gene expression was shown to dramatically

change with age. A pioneer study comparing postmortem human frontal

cortex tissue samples between 30 individuals of different ages yielded

463 differentially expressed genes (Lu et al., 2004). Despite the small

sample size, results were replicated in subsequent experiments. Four

years later, Berchtold et al. (2008) identified several thousand age-

related changes in gene expression in four different brain tissues. Later

studies by different groups identified profound changes in the tran-

scriptome with age in further tissues, such as skin, adipose tissue

(N = 865) (Glass et al., 2013) and kidney (N = 134) (Rodwell et al.,

2004). Most of these changes did not overlap in different tissues. A

meta-analysis across different species and tissues revealed only 73 genes

consistently associated with age (de Magalh~aes et al., 2009). This

suggests that most observed age-related changes in the transcriptome

are either species and tissue specific or false-positive discoveries

(reviewed by Valdes et al., 2013). In their meta-analysis, genes related

to immune response and lysosome tended to be overexpressed, while

genes related to mitochondria and oxidative phosphorylation were

underexpressed in elderly (de Magalh~aes et al., 2009).

Proteomics

Proteins are translated from coding transcripts. Due to alternative

splicing and post-translational protein modifications, the number of

proteins is estimated to be two orders of magnitudes higher than the

number of genes (Ginsburg & Haga, 2006). However, current proteomic

techniques based on immunoassays, protein arrays or mass spectrometry

can measure only a small fraction of the proteome (up to 1000 proteins

in a sample). The most comprehensive description of the human

proteome across various tissues to date consists of 18 097 proteins

(19 376 isoforms) collected from ten thousand mass spectrometry

experiments (Wilhelm et al., 2014).

Due to these technicalities, ‘proteomics’ studies in aging research so

far focused on smaller sets of proteins and small sample sizes. In an early

study of protein abundance in the vastus lateralis muscle, Gelfi et al.

(2006) observed higher abundance of several proteins involved in

aerobic metabolism and a lower abundance of proteins involved in

anaerobic metabolism in the elderly. Besides this, six transport proteins

were consistently underexpressed in older individuals. However, only 12

Integration of omics data in aging research, J. Zierer et al.2

ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



samples were analysed in this study without replication. A recent study

by our group analysed over 1000 proteins in 200 plasma samples using

the SOMAscan assay (Menni et al., 2015). Eleven proteins were found to

strongly associate with chronological age as well as age-related

phenotypes such as lung function and blood pressure. The results were

replicated in an independent cohort.

Even though comprehensive proteomics studies are still missing,

proteins are likely to be associated with several age-related diseases. For

instance, cardiovascular disease (Mehra et al., 2005) and AD (Swardfa-

ger et al., 2010) are consistently associated with elevated levels of pro-

inflammatory cytokines.

Post-translational modifications – glycomics

Post-translational modifications are important elements of proteins,

which can alter their biochemical properties such as protein structure,

binding preferences and enzyme activity. There are many different

modifications ranging from addition of small molecules (e.g. acetylation

or phosphorylation), over addition of larger molecules such as lipids or

sugar chains (e.g. palmitoylation, glycosylation), to the addition of whole

proteins (e.g. ubiquitination).

The most common modification is glycosylation, which attaches sugar

chains to proteins. The attached oligosaccharides – glycans – are

supposed to mainly serve as structural elements of proteins or specific

binding sites for other glycans or proteins (Varki et al., 2009). However,

glycans are highly diverse and many of them are not yet characterized or

annotated. Thus, glycans might have many additional functions. For

example, glycans in the gut act as food for microbes (Koropatkin et al.,

2012), which could be implicated in immune functions that are

important in aging. Recent development allows the high-throughput

measurement of glycans of either a single protein or all proteins

simultaneously (Royle et al., 2008; Pucić et al., 2011).

The application of this technology on epidemiological cohorts

revealed that glycan structures are stable for one individual over time

(Gornik et al., 2009) but very diverse within a population (Knezević

et al., 2009; Pucić et al., 2011). Differences in glycomes were found to

be related with various cancers (Fuster & Esko, 2005; Adamczyk et al.,

2012). Recently, Kristic et al. (2013) showed that IgG glycans are

strongly associated with age: a linear combination of three glycans

explained 58% of the observed variance of chronological age (Kristic

et al., 2013) in a study of four independent populations with 5117

participants in total.

Metabolomics

Metabolomics investigates the low-molecular-weight molecules in a

biological system. The measured molecules are often referred to as

metabolites as many of them act as educts, products and intermediates

of the cellular metabolism. Currently, the Human Metabolome

Database (Wishart et al., 2013) contains more than 40 000 distinct

metabolites from different tissues. Similar to proteomics, to date, there

is no analytical method available to determine and quantify all

metabolites in a single experiment. Current platforms, using either

chromatography coupled with mass spectrometry or nuclear magnetic

resonance, can measure roughly a thousand metabolites in untargeted

settings and a smaller number using predefined targeted approaches.

The restriction of the targeted approach comes with the advantages of

higher sensitivity, absolute instead of relative quantification and

straight-forward compound identification (Patti et al., 2012; Tzoulaki

et al., 2014).

In 2008, the first metabolome-wide association study on age analysed

the plasma metabolome of 269 individuals using an untargeted

approach. The authors found 100 of 300 compounds to correlate with

chronological age (Lawton et al., 2008). More recently, larger cohorts

were employed to study the association of metabolites and age using

both targeted and untargeted metabolomics platforms. Yu et al. (2012)

analysed 131 targeted metabolites in 2162 individuals from the KORA

study, while we analysed 280 untargeted metabolites in 6055 twins

from the TwinsUK cohort (Menni et al., 2013b). Both studies identified

half of the analysed metabolites to be associated with chronological age.

Many of the those metabolites were also found to significantly correlate

with age-related phenotypes such as lung function, bone mineral density

and cholesterol levels (Menni et al., 2013b), AD (N = 93) (Ore�si�c et al.,

2011), cancer (reviewed by Teicher et al., 2012) and type 2 diabetes

(N = 100) (Suhre et al., 2010; Menni et al., 2013a). One of those

metabolites is C-glycosyltryptophan, a potential degradation product of

glycosylated proteins.

Microbiomics

The human microbiome describes the complete set of microbial species

(and their genomes) hosted by the human body. The largest microbial

community resides in the gut, where microbial cells and their genes

outnumber human cells (10:1) and genes (100:1) (Peterson et al., 2009;

Zhu et al., 2010; The Human Microbiome Project 2014a). More than 10

000 different species with millions of protein-coding genes were

identified by the Human Microbiome Project (Turnbaugh et al., 2007;

Peterson et al., 2009; Biagi et al., 2012) and >1000 of these microbes

have so far been fully sequenced (The Human Microbiome Project

2014b). Although twin studies have found a modest genetic influence

on some phyla, most of the variation is environmental (Goodrich et al.,

2014).

The composition of the microbe flora varies a lot across individuals

(Turnbaugh et al., 2007; Zhu et al., 2010) and even between different

parts of the body (Kong, 2011). It has a huge influence on many

biological processes such as immune response, metabolism and disease

(Zhu et al., 2010; Grice & Segre, 2012). While the microbiome seems to

be relatively stable during adulthood, it changes significantly in later life

(Guigoz et al., 2008; Biagi et al., 2010; Claesson et al., 2011). Biagi

et al. (2010) observed drastic changes in the gut microbiome of

centenarians compared with young adults as well as elderly, namely a

general loss of diversity and increased abundance of bacilli and

proteobacteria. The latter were reported to promote inflammation

under certain conditions (Round & Mazmanian, 2009). Similar findings

were revealed in other elderly populations, which also considered the

dietary and residential situation of elderly patients (Claesson et al.,

2012).

Phenomics

Simultaneously with omics data, the dimension of clinical and lifestyle

traits, particularly clinically used intermediate traits, keeps increasing.

Epidemiological studies collected thousands of clinically relevant pheno-

types beyond omics data types. These range from anthropometric

measures to health and lifestyle questionnaires (Moayyeri et al., 2013).

Collecting high-dimensional clinical data is important to unveil pleiotropy

of genes and interactions amongst clinical phenotypes such as comor-

bidities (Houle et al., 2010). Driven by omics technologies, statistical and

bioinformatic methods to analyse high-dimensional data are becoming

available. These facilitate the investigation of numerous clinical

Integration of omics data in aging research, J. Zierer et al. 3

ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



phenotypes in parallel, thus defining the new field of phenomics (Houle

et al., 2010).

Phenomics is especially important for aging research. Dozens of

clinical phenotypes, such as Parkinson’s (Reeve et al., 2014), AD

(McAuley et al., 2009), body mass index, blood pressure (Mungreiphy

et al., 2011) and bone mineral density (Warming et al., 2002), as well as

lifestyle parameters, such as nutrition (Wieser et al., 2011), smoking and

physical activity, are strongly related to age (Harman, 1988; Wang et al.,

2009). Composite measures such as the Rockwood frailty index

(Rockwood & Mitnitski, 2007) combine several of those clinical traits

to form a more homogenous phenotype – frailty – from its diverse

appearance. Such frailty measures can be considered as measures for

biological age (Mitnitski et al., 2013). Many of these (and other) clinical

phenotypes correlate or even depend on each other (McAuley et al.,

2009; Baylis et al., 2014). Only extensive collection of data and their

joint analysis will help to unveil these dependencies and find causal

relationships.

From omics to systems biology

Most of the studies summarized above concentrated on the bivariate

associations of age (or age-related diseases) with one type of omics data.

However, there are strong interdependencies within and between the

different omics data (see Fig. 1).

Correlations can be observed practically between all levels of biological

organization. Following the central dogma of molecular biology,

genomics, transcriptomics and proteomics are correlated ‘by definition’.

Furthermore, metabolite concentrations are influenced by genetic

variants (Shin et al., 2014) and epigenetic factors (Petersen et al., 2014)

mediated through changes in gene expression or enzyme activity.

Methylation levels do not only influence the gene expression (Jaenisch &

Bird, 2003), but are also correlated with gene variants (Bell et al., 2012)

and environmental factors (Breitling et al., 2011). Our group has recently

demonstrated that even the microbe composition is partly under host

genetic influence (Goodrich et al., 2014). Similarly, all levels of omics data

are influenced by genetics as well as by environment and aging.

Correlations, however, do not only occur between but also within each

type of data. For instance, in genomics linkage disequilibrium, the

correlated occurrence of SNPs is a ubiquitous phenomenon. Transcription

factors often coregulate the expression of multiple genes (Allocco et al.,

2004), andmethylation patterns of neighbouring CpG siteswere reported

to be correlated (Bell et al., 2012). Metabolites are linked by a network of

biochemical reactions, causing strong correlations between them (Krum-

siek et al., 2011). Even phenotypes often cluster. Comorbidities, the over

proportional co-occurrence of diseases, were shown to affect many

diseases possibly through shared underlying mechanisms (Goh et al.,

2007).

These biological correlations can confound the associations and this is

a major issue of current research. For instance, 153 metabolites were

found by our group to be associated with age, but subsequent analyses

showed that only 22 of them are associated with age independently

(Menni et al., 2013b). Similarly, 21 of 24 measured IgG glycans were

correlated with age, but only 3 of them explain 58% of the variance

(Kristic et al., 2013). The same was found for epigenetic data (Weidner

et al., 2014). Huge lists of associations with aging are being unveiled

using all kinds of data, but the biologically interesting, causal associa-

tions are often obscured by this wealth of results. Approaches taking

simultaneously information from all omics levels into account are needed

to reconstruct the processes involved in aging on a systems level (Valdes

et al., 2013).

Even though high-throughput technologies are advancing and more

and more data are becoming available, integration of omics remains a

challenging problem. Besides the restricted availability of multi-omics

data sets for the same samples, technical limitations hamper the

integration process. While genomics and transcriptomics are able to

measure the entire set of variants, other omics (e.g. proteomics and

metabolomics) measure only a small fraction of all entities. Many high-

throughput technologies suffer from considerable technical variation

and strong batch effects. Stringent quality control and thorough data

normalization are crucial when analysing this type of data. Furthermore,

the complexity of the organism has to be taken into account. While the

genome is more or less stable, all other levels of omics change between

cell types and over time. Many samples, such as whole blood, contain a

mixture of different cell types with potentially different epigenomes,

transcriptomes (Houseman et al., 2012; Jaffe & Irizarry, 2014). Finally,

different organs and cells influence each other. The blood metabolome,

for instance, is heavily influenced by processes occurring in the liver or in

other organs, and multitissue samples are needed to fully understand

these. This in turn is not always feasible in an epidemiological setting as

collection of tissues often involves invasive procedures. Nevertheless,

data integration is an important and active field of research. A first step

of data integration is the integration and joint interpretation of separate

results. The Digital Ageing Atlas (Craig et al., 2014) summarizes more

than 4000 age-related changes across different technologies to facilitate

systems-level analyses of aging.

Introduction to systems biology

The aim of systems biology is to understand the system and its functions

as a whole rather than as separate components (Cassman, 2005), with

the final objective to mathematically model biological systems and

simulate their outcomes. As a first step, the complex interactions and

dependencies between these components must be formally described to

enable systematic analysis and simulation of the biological system of

interest. A technique widely used in systems biology is to translate

biological interactions into mathematically well-defined networks

(graphs). For instance, metabolites interact in chemical reactions, thus

forming a network in which nodes describe the metabolic compounds
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Fig. 1 Interdependencies of omics data: The figure illustrates dependencies which

can be observed within almost any omics data set. Solid lines indicate biological

processes which cause dependencies, while dashed lines represent observed

associations.
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and edges indicate chemical reactions. Similarly, transcription factors

bind DNA to control gene expression, forming the gene regulatory

network (GRN) and interacting proteins build a protein–protein interac-

tion network (PPI) (cf. Fig. 2B). These networks interact, making data

integration an important aspect of systems biology. One example for a

phenotypic network was created by Goh et al. (2007) using diseases as

nodes and connecting diseases with shared genetic risk factor by edges

(cf. Fig. 2A). By doing so, they showed that many disorders share a set of

underlying genetic risk variants and that similar diseases are caused by

similar genes.

Graphs can be explored using a variety of established algorithms. One

common task is the identification of modules, that is subgraphs in which

nodes share certain properties. In biological networks, modules corre-

spond to functional units, such as the glycolysis pathway in the

metabolic network. The modules are usually interconnected and

together form a hierarchical structure in which the distribution of node

degrees – the number of edges per node – follows the power law

(Barabási & Oltvai, 2004). Hence, most nodes have only few connections

and few nodes have many connections. These highly connected nodes

are called hubs (Albert et al., 2000; Jeong et al., 2001). Several other

measures exist to describe the topology of networks and topological

features of nodes. For example, the clustering coefficient measures how

densely the neighbourhood of a node is connected and thus highlights

nodes which are central within a cluster (e.g. LEPR in Fig. 2A). Another

measure is the betweenness centrality, which measures the proportion

of pairwise shortest paths containing a node. It thus quantifies the

importance of a node for connecting other nodes from different

modules (e.g. Parkinson’s disease in Fig. 2A and APOD in Fig. 2B). The

highly connected, central nodes are thought to be key players in the

system, connecting several modules and controlling network fluxes. They

were shown to be of particular importance for many diseases and

survival of the organism (Barabási & Oltvai, 2004; Joy et al., 2005; Yu

et al., 2007).

Many software packages for graph analysis and visualization are

publicly available. For instance, the R package igraph (Csardi & Nepusz,

2006) or the standalone program Cytoscape (Shannon et al., 2003) can

be used to analyse and visualize graphs. Cytoscape also provides easy

integration of biological databases such as Gene Ontology (Ashburner

et al., 2000), Reactome (Croft et al., 2014), the Kyoto Encyclopaedia of

Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) or BioGRID

(Chatr-Aryamontri et al., 2013) by third-party apps. Several methods

were developed to identify modules of nodes which are jointly affected

by the condition of interest. Two publicly available examples are the

Cytoscape plugin jActiveModules (Ideker et al., 2002) and the R package

BioNet (Beisser et al., 2010).

Here, we present a selection of current methods to construct and

analyse biological networks as an approach to systems biology and their

impact on aging research.

Enrichment and network topology analysis in predefined

networks

A popular approach to put the results of an association study in a

systems biology context is projecting the variables of interest – such as

age-related genes, proteins or metabolites – onto known biological

(reference) networks. The neighbourhood of these target variables and

their topological properties can then be assessed using the experimen-

tally predefined PPI, GRN or metabolic networks. Instead of interpreting

individual entities separately, a priori knowledge about their interactions

and common functions can be used to identify modules that are jointly

affected by the condition of interest.

Several databases offer a collection of experimentally identified

interactions that can be used as predefined reference networks for

enrichment and topology. In case of PPI, the Human Protein Reference

Database provides more than 40 000 PPIs (Keshava Prasad et al., 2009),

the Database of Interacting Proteins more than 7000 interactions

(Xenarios et al., 2002) and the MIPS mammalian protein–protein

database roughly 1000 hand-curated interactions of human proteins

(Pagel et al., 2005). GRN are provided by the ChIPBase (Yang et al.,

2013), which contains six million transcription factor binding sites from

>300 experiments. Metabolic reactions are amongst others provided by

KEGG.

Enrichment analysis is a convenient way to incorporate existing

knowledge from biological reference networks without analysing graph

topology directly. Therefore, predefined (functional) modules within the

reference networks are used to test overrepresentation of associated

genes, proteins or metabolites in these groups. When investigating

genes, researchers usually use Gene Ontology to group genes based on

biological processes, molecular functions or subcellular localization. For

metabolites, the KEGG and Reactome databases provide curated

information about biochemical pathways. The R packages GSEABase,

GAGE (Luo et al., 2009) and the webservice MSEA (Xia & Wishart, 2010)
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Fig. 2 Topological Properties of Biological Networks (A) is an excerpt from the

human disease network (Goh et al., 2007). Nodes represent diseases; these are

connected if they are associated with the same gene. Parkinson’s disease connects

three isolated disease clusters (colours), thus having a low clustering coefficient

(0%) and high betweenness (72%). (B) is the close neighbourhood of the ApoD

protein in a PPI network from STRING DB (Franceschini et al., 2013) using only

experimentally confirmed interactions. ApoD connects two clusters and is, despite

the low degree (2) and clustering coefficient (0%), a central node (betweenness

centrality: 53%). In contrast, LEPR is central within the blue cluster (degree: 7,

clustering: 14%).
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are just some of many available implementations and variations in the

original gene set enrichment analysis (Subramanian et al., 2005)

algorithm.

In aging research, enrichment analysis unveiled an overexpression of

genes involved in immune response, lysosome and glycoproteins and an

underexpression of mitochondrial- and oxidative phosphorylation-related

genes in old people compared with young (de Magalh~aes et al., 2009).

In human brain tissue, oxidative stress/DNA repair and inflammation-

related genes were shown to be enriched in the set of differentially

expressed genes between young and old individuals (Lu et al., 2004).

Enrichment analysis facilitates the identification of pathways that are

important for the aging process. It thus helps to make sense out of the

individual associations and find biological interpretations for the

observed molecular changes.

To become independent of predefined module annotation and to

enable more detailed network analysis, the variables of interest can also

be mapped directly on the known PPI, GRN or metabolism networks.

Modules can then be identified dynamically based on the measured

data. Moreover, additional topological properties of the variables of

interest can be assessed.

Studying human PPI networks revealed that genes that are associated

with aging by homology have higher node degrees and higher

betweenness centrality compared with other genes (Bell et al., 2009).

Furthermore, aging-related genes are not spread throughout the

interactome, but cluster in few tightly connected modules. These

modules were enriched in DNA damage repair and stress response genes

(Kriete et al., 2011). The high connectivity of aging genes was used by

Tacutu et al. (2012) to select neighbours of longevity-related genes in a

PPI network as longevity-gene candidates. Subsequent experiments in

C. elegans revealed 30 new longevity-associated genes, proving the

potential of network biology for candidate gene selection. Using a

modified PPI network, Wang et al. (2009) showed a tight connection of

the genetic causes of aging and disease. These results indicate that aging

does not occur due to random errors but is an organized process.

Another PPI-based approach to data integration was developed by West

et al. (2013). They incorporated epigenomic data by assigning DNA

methylation sites to each protein in the graph and then identifying

modules of differentially methylated genes/proteins in the resulting

network. By doing so, they avoided predefined gene sets as used by

enrichment analysis. The analysis revealed three differentially methylated

modules, which were replicated across several tissues. Two of them

contained mainly transcription regulating genes, while the third one

contained genes related to stem cell differentiation.

A drawback of experimentally derived PPI or GRN is that such

methods detect up to 50% false positives while many true interactions

are missed (Huang & Bader, 2009; Marbach et al., 2012). Even more

importantly, those reference networks completely ignore the tempo-

spatial properties of the interactions. This restricts results to already

observed, possibly inactive interactions. One method to overcome the

static nature of PPI networks are Negative–Positive (NP) networks (Xia

et al., 2006). These integrate the PPI network with transcriptomics data

by restricting it to edges between (anti-)correlated proteins/genes.

Therefore, only those interactions (=edges) that are active under the

observed condition are further analysed. Xue et al. (2007) applied this

method to the previously mentioned data set of brain gene expression

and unveiled two anticorrelated modules containing cell proliferation-

and cell differentiation-related proteins. Two other modules consisting of

protein processing and immunity-related genes, respectively, were found

to be slightly correlated with the cell proliferation module. A recent study

went one step further and restricted a PPI network to highly expressed

genes in different stages of aging for each sample separately, thus

generating a set of dynamic binding networks instead of a single

network. Even though the global properties of all those graphs were very

similar, the centrality of several genes correlated with age (Faisal &

Milenkovi�c, 2014).

Incorporating biological networks to analyse aging-related changes

showed the tight connection of aging and disease on a molecular level.

Furthermore, it has been shown that aging affects central genes, which

are important for the network integrity (Bell et al., 2009). While

network-based enrichment and analysis using PPI networks is common

for genetic and transcriptomics data, it has not been applied to aging

studies using metabolomics data. This could be a promising approach to

systematically identify metabolic pathways jointly affected by the aging

process.

Analysis of data-derived networks

Despite their successful applications, all approaches presented so far

rely on predefined, static networks. To overcome the limitations of

such networks, inferring networks directly from the measured data is

the next step.

Weighted gene co-expression network analysis

The weighted gene co-expression network analysis (WGCNA) (Zhang &

Horvath, 2005) infers gene–gene interaction networks directly from

transcriptomics data. Miller et al. (2008) applied this method to the

previously mentioned gene expression data set of 30 human frontal

cortex samples at different ages and then compared the results with a

network derived from an AD transcriptomics study. It revealed significant

overlap between healthy aging and AD, suggesting that there might be a

shared molecular basis for both processes. Three AD network modules

overlapped with aging network modules, containing mostly synapses-,

transport- and transcriptional regulation-related genes.

Gaussian graphical models

Despite the successful application of WGCNA on transcriptomics data,

Krumsiek et al. (2011) showed that ordinary correlations are not suitable

to analyse metabolomics data from large cohort studies. They analysed

metabolite concentrations of >1000 samples and found that more than

half of all pairs of 151 metabolites correlated significantly, even when

using a restrictive Bonferroni correction at an alpha level of 0.01. This is

largely due to indirect associations, which cannot be distinguished from

direct associations by the Pearson correlation coefficient. Graphical

models (GMs), also known as conditional independence graphs, were

proposed to overcome this problem and infer biological meaningful

networks from metabolomics (Steuer, 2006; Krumsiek et al., 2011) as

well as other omics data (de la Fuente et al., 2004; Yuan et al., 2011;

Mangin et al., 2012). GMs are probabilistic models where an edge

between two variables illustrates their conditional dependence given all

other variables in the model. Implicitly, the absence of an edge

represents the conditional independence of the according variables.

Several algorithms to infer GMs from purely binary data are publicly

available as R packages (Wainwright et al., 2006; Höfling & Tibshirani,

2009; Guo et al., 2010; Ravikumar et al., 2010). Their counterparts for

purely continuous data are Gaussian graphical models (GGMs), which

use partial correlations to infer graphs. A partial correlation of two

variables X and Y conditioned on a set of variables Z quantifies the

portion of the correlation between X and Y which cannot be attributed

to Z. Several algorithms exist to infer GGMs (d’Aspremont et al., 2006;

Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007; Friedman et al.,
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2008; Mazumder & Hastie, 2012). Several of them, such as the well-

established graphical lasso (Friedman et al., 2008; Mazumder & Hastie,

2012), use regularization to further reduce the number of edges in the

graph. This allows researchers to concentrate on fewer high-confidence

interactions.

Gaussian graphical models can reconstruct biological pathways from

metabolomics and transcriptomics data, but have not yet been applied in

aging research. However, their application could help reduce the

‘overabundance’ of results to fewer, meaningful associations. The major

drawback of GMs is that they can only be used for pure Gaussian or pure

binary data. Shin et al. (2014) overcame this problem by first construct-

ing a GGM from metabolite concentrations and then adding gene

variants as nodes and connecting them with associated metabolites. The

resulting network illustrates the genetic control of the metabolism in an

intuitive way. However, it is no longer a GM, and edges do not indicate

conditional independence any more.

Mixed graphical models

Recent developments allow the integration of different types of data

while maintaining the favourable properties of GGMs, namely mixed

graphical models (MGMs) (Tur & Castelo, 2012; Chen et al., 2013;

Fellinghauer et al., 2013; Lee & Hastie, 2015). Fellinghauer et al. (2013)

proposed a very flexible algorithm based on stability selection (Mein-

shausen & Bühlmann, 2010). It makes use of established methods such

as random forests or regression models to rank interactions between

variables of different types. Thus, it can handle many different data types

such as disease states, metabolite levels and gene variants. Due to the

usage of stability selection, it has an intrinsic error control. MGMs

provide a powerful tool for multivariate analyses of high-dimensional

data, but have not been applied in biological research, yet. Their

application could shed light on the complex relationship between aging

and disease.

Gaussian graphical models as well as MGMs are undirected models.

Therefore, neither of them can be used to infer causal direction. In

epidemiological research, Mendelian randomization is a common

approach to infer causality from observational data. It takes advantage

of the invariability of gene variants to separate the study population in

groups, thus mimicking a randomized controlled trial (for further details,

see Brion et al., 2014). Mendelian randomization can be used to further

investigate edges of interest that were previously identified by GMs.

However, it relies on stable associations with genetic variants and

assumes that this genetic variant is not related to any other potential

confounding factor. Due to these restrictions, it is not suitable to infer

large-scale networks.

Bayesian networks

Another approach that allows inferring causality from observational data

under certain assumptions is based on Bayesian networks (BNs). Similar to

GGMs, BNs are probabilistic models in which edges represent the

conditional independence between variables. However, BNs are DAGs,

thus distinguishing between an influence of X on Y and the influence of Y

on X. In return, the acyclicity of the causal graph is an assumption which

might not hold true for biological networks. The application of BNs on

high-throughput transcriptomics data by Friedman et al. (2000) demon-

strated the potential of this method to extract biological meaningful

associations without prior knowledge. Several different methods are

available to estimate the structure of BNs from binary, continuous and

even mixed data such as the R packages bnlearn (Scutari, 2010) (Table 1).

The methods presented here are just a selection of the available

methods for graph inference. Several other methods such as Boolean

networks (Shmulevich et al., 2002) or differential equation systems

(Chen et al., 1999; Lorenz et al., 2009) are commonly used for

modelling biological networks.

The development of new techniques facilitates graph inference from

high-dimensional data, and the presented studies illustrate their useful-

ness in biological research. However, most graph inference methods rely

on large sample sizes and usually more samples than variables are

needed. When analysing omics data, particularly genomics or transcrip-

tomics, this is often not feasible and it is referred to as the n�p problem.

Another common problem is overfitting of models due to the high

number of parameters. Some techniques such as regularization have

been proposed to relax these constraints and reduce overfitting.

Nevertheless, stringent cross-validation and replication in independent

cohorts should be employed to avoid spurious results. Finally, many high-

throughput methods suffer from considerable technical variation and

strong batch effects. Researchers should carefully normalize all mea-

Table 1 Overview over system biology methods and their application in aging

Method Prerequisites Applies to Availability Application

Enrichment Analysis Module definition (e.g. gene sets from Gene

Ontology)

Genomics

Transcriptomics

Proteomics

Metabolomics

Several R packages (e.g.

GSEABase, GAGE, MSEA),

online tools DAVID or Enrichr

Lu et al. (2004), de Magalh~aes

et al. (2009)

Network Mapping Predefined network, such as protein–protein

interaction (PPI) networks, gene regulatory

network (GRN) or metabolic network

Any omics data R package igraph, Cytoscape

with various plugins

Wang et al. (2009), Bell et al.

(2009), West et al. (2013), Faisal

& Milenkovi�c (2014)

NP Networks PPI Network Transcriptomics – Xue et al. (2007)

Weighted Gene Co-

Expression Network

Analysis (WGCNA)

– Transcriptomics (and

possibly other

continuous data)

R package WGCNA Miller et al. (2008)

Gaussian graphical

models (GGMs)

– Any multivariate

Gaussian

distributed data

Several R packages (e.g. ggm or

glasso)

Applied to metabolomics data by

Krumsiek et al. (2011)

Mixed graphical

models (MGMs)

– Binary, continuous

and mixed data

–

Bayesian Networks – Binary, continuous

and mixed data

Several R packages (e.g.

bnlearn, gRain, abn, deal)

Applied to transcriptomics data

by Friedman et al. (2000)
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surements according to current standards before integrating different

data sets.

Model biological systems

The ultimate goal of systems biology is not only the qualitative

exploration, but the quantitative modelling of the organism, facilitating

in silico experiments, hypotheses generation and predictions.

The first – and so far only - attempt to model a whole organism was

conducted by Karr et al. (2012). They created a model of a mycoplasma

genitalium cell simulating cell cycle and predicting metabolite concentra-

tions. However, the model is far from perfect (Freddolino & Tavazoie,

2012) and too primitive to be adapted to more complex organisms.

Currently, modelling eukaryotic cells or even whole organisms is not

feasible. Also, processes like aging are too complex to be entirely

modelled. However, some effort has been undertaken to create network

representations of smaller subsystems as well as certain aspects of the

aging process. For instance, Gillespie et al. (2004) simulated aging of yeast

based on the accumulation of extrachromosomal ribosomal DNA circles.

Also, Oda & Kitano (2006) summarized results from several hundred

studies to create amodel of the Toll-like receptor (TLR) signalling network.

The same group also created a similar model for epidermal growth factor

receptor signalling (Oda et al., 2005). Both studies revealed a bowtie-like

global structure with one important key regulator. However, both

networks are only qualitative descriptions without kinetic parameters.

Thus, they cannot be used for computer simulations.

Other groups concentrated on even smaller subsystems to facilitate

quantitative modelling. One study investigated the influence of increased

cortisol levels on hippocampus activity (McAuley et al., 2009). A

quantitative model was created to simulate the decline in hippocampal

output with age and the acceleration of this process due to acute and

chronic increases in cortisol levels. Simulations using ordinary differential

equations suggested that chronic increase in cortisol levels leads to faster

decline in hippocampal output than acute bursts, but could be treated

more efficiently. Sozou & Kirkwood (2001) modelled cell senescence

based on telomere shortening and oxidative stress. The same group also

described the influence of chaperones and accumulation of misfolded

proteins on aging (Proctor et al., 2005). Other groups investigated

various further aspects of the aging process, such as mitochondrial

fusion and fission events and accumulation of defective mitochondria

(Kowald et al., 2005; Figge et al., 2012), incomplete replication of

epigenetic information (Przybilla et al., 2014) and age-related alterations

in the lipid metabolism (McAuley & Mooney, 2015). Adjusting the

kinetics of such models to correspond to experimental observations

allows to come up with plausible hypotheses about the causes of aging.

In contrast to earlier presented networks, which inferred large-scale

networks from data (top-down approach), these approaches model

small subsystems in high details based on expert a priori knowledge

(bottom-up approach). Such bottom-up models allow mechanistic

insights into the processes of aging that cannot be generated by

individual association studies. Moreover, they facilitate the development

of new hypothesis and testing the plausibility of current hypothesis.

Conclusions and challenges

The major recent advances of omics technologies are now enabling the

simultaneous measurement of millions of biochemical entities. Associ-

ation studies have revealed many associations of omics data with aging

and age-related diseases. After decades of reductionist studies, network

analysis and integrated omics data analysis have begun to target the

aging process at a systems level. As a result, some studies take into

account also the interaction effects between variables. However, given

the complexity of aging, new methods are needed to further unveil the

multiple interactions.

Systems biology already provides such methods, but their application

on real biological problems lags behind. For example, GGMs have been

adapted to mixed data types and could readily be applied in aging

research. Also, several studies developed models of processes that

contribute to aging. These provide detailed knowledge about important

components of the aging process and their interactions. Building on

these results, future studies should aim to integrate these different parts

to gain a more systems-level understanding of aging.

However, in many cases, the available data limit the possibilities.

Problems such as incomplete data, asynchronous experiments, strong

batch effects and insufficient sample sizes have to be dealt with. Another

issue is the limited availability of multi-omics data sets, which compli-

cates replication of results in this field. A variety of different methods,

protocols and platforms further hampers reproducible results. As

replication of results is crucial to prevent spurious results and validation,

methods like splitting the available data into discovery and replication

sets should be considered more often.

Despite these obstacles, there are several large population studies in

existence with multi-omics data available which could be explored using

systems biology approaches. For instance, the GTEx project aims to

collect gene expression and methylation data from multitissue samples

(The Gtex Consortium 2013). Simultaneously, the development of new

methods should help to analyse real, partially incomplete data sets and

facilitate analysis of multitissue and multi-organ data, thus enabling the

investigation of real systems-level effects. Addressing these problems

and developing integrated models of aging should improve our

understanding of the aging process, thus allowing the development of

strategies to improve health in old age.
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Fellinghauer B, Bühlmann P, Ryffel M, von Rhein M, Reinhardt JD (2013) Stable

graphical model estimation with Random Forests for discrete, continuous, and

mixed variables. Comput. Stat. Data Anal. 64, 132–152.
Figge MT, Reichert AS, Meyer-Hermann M, Osiewacz HD (2012) Deceleration of

fusion-fission cycles improves mitochondrial quality control during aging. PLoS

Comput. Biol. 8, e1002576.
Flachsbart F, Caliebe A, Kleindorp R, Blanch�e H, von Eller-Eberstein H, Nikolaus S,

Schreiber S, Nebel A (2009) Association of FOXO3A variation with human

longevity confirmed in German centenarians. Proc. Natl Acad. Sci. U. S. A. 106,
2700–2705.

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J,

Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein

interaction networks, with increased coverage and integration. Nucleic Acids

Res. 41, D808–D815.
Freddolino PL, Tavazoie S (2012) The dawn of virtual cell biology. Cell 150, 248–
250.

Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to

analyze expression data. J. Comput. Biol. 7, 601–620.
Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with

the graphical lasso. Biostatistics 9, 432–441.
de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful

associations in genomic data using partial correlation coefficients. Bioinformatics

20, 3565–3574.
Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel

therapeutic targets. Nat. Rev. Cancer 5, 526–542.
Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A,

Pedersen NL (2006) Role of genes and environments for explaining Alzheimer

disease. Arch. Gen. Psychiatry 63, 168–174.
Gelfi C, Vigano A, Ripamonti M, Pontoglio A, Begum S, Pellegrino MA, Grassi B,

Bottinelli R, Wait R, Cerretelli P (2006) The human muscle proteome in aging. J.

Proteome Res. 5, 1344–1353.
Gillespie CS, Proctor CJ, Boys RJ, Shanley DP, Wilkinson DJ, Kirkwood TBL (2004) A

mathematical model of ageing in yeast. J. Theor. Biol. 229, 189–196.
Ginsburg GS, Haga SB (2006) Translating genomic biomarkers into clinically useful

diagnostics. Expert Rev. Mol. Diagn. 6, 179–191.
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