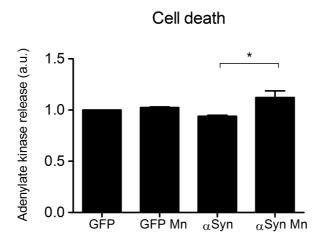
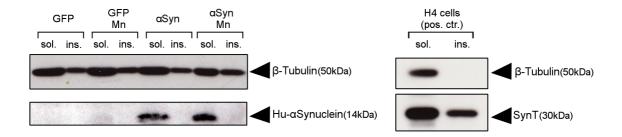

Alpha-synuclein regulates neuronal levels of manganese and calcium. Ducic T, Carboni E, Lai B, Chen S, Michalke B, Lázaro DF, Outeiro TF, Bähr M, Barski E, Lingor P.


ACS Chemical Neuroscience 2015

## **Supporting information**




## Supporting Fig. S1: Over-expression of $\alpha \text{Syn}$ in primary midbrain neuron cultures.

PMN cultures were transfected with p. $\alpha$ Syn-WT while control cultures were transfected with p.EGFP. The protein blot detection was made with a pan- $\alpha$ -synuclein antibody showing that transfected cells had a significantly higher  $\alpha$ -synuclein expression (**A**). Representative images of a PMN culture transfected with p. $\alpha$ Syn-WT immunostained with a pan- $\alpha$ -synuclein antibody. EGFP fluorescence (co-expressed by the p. $\alpha$ Syn-WT) confirms transfection. Scale bars: 20 µm (**B**).



## Supporting Fig. S2: Cytotoxicity of αSyn overexpression and Mn treatment.

Cytotoxicity was quantified by assessment of adenylate kinase release. Values are shown as arbitrary unites relative to GFP (+SEM). One way-ANOVA and Tukey post-hoc test reveal that the presence of Mn in cells overexpressing  $\alpha$ Syn lead to an increased adenylate kinase release compared to  $\alpha$ Syn-treatment alone (\* P=0.03).



## Supporting Fig. S3: Analysis of the solubility state of $\alpha$ Syn.

Left: Representative image of the Triton X-100 solubility assay in PMNs overexpressing  $\alpha$ Syn for 3 DIV. In PMNs overexpressing  $\alpha$ Syn 100% of the protein is in the soluble fraction, which does not depend on the presence of Mn. Right: The positive control (H4 cells transfected with SynT/Synph-1 plasmids) shows that ~32% of the total  $\alpha$ Syn is present in the insoluble fraction.