International Journal of Systematic and Evolutionary Microbiology Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata --Manuscript Draft--

Manuscript Number:	IJSEM-D-14-00062R2					
Full Title:	Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata					
Short Title:	Zhihengliuella somnathii sp. nov., halotolerant					
Article Type:	Note					
Section/Category:	New taxa - Actinobacteria					
Corresponding Author:	Bhavanath Jha CSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar, Gujarat INDIA					
First Author:	Bhavanath Jha					
Order of Authors:	Bhavanath Jha					
	Vijay Kumar Singh					
	Angelo Weiss					
	Anton Hartmann					
	Michael Schmid					
Manuscript Region of Origin:	INDIA					
Abstract:	Two novel Gram- positive, rod shaped, halotolerent bacteria, strains JG 03T and JG 05 were isolated from the rhizosphere of Salicornia brachiata, an extreme halophyte. Comparative analyses of 16S rRNA gene sequence showed that they were closely related to members of the genus Zhihengliuella with sequence similarity of 96.9-99.1 %. Sequence similarity of strains JG 03T and JG 05 was 99.4 % with each other. DNA-DNA hybridization of JG 03T and JG 05 with other known species of Zhihengliuella showed reassociation value of 19.8% -53.4% and 91.4% in between themselves. The peptidoglycan type of both strains was A4α and MK-9 and MK-10 were predominant menaquinones. The predominant fatty acid in JG 03T was anteiso-C15:0 and anteiso-C17:0. However, iso-C15:0, anteiso-C15:0 and anteiso-C17:0 were the major fatty acid in strain JG 05. The DNA G+C content of strains JG 03T and JG 05 was 70.0 and 70.1 mol%, respectively. In nutrient broth medium both strains grew at NaCl concentrations up to 15% (w/v). On the basis of chemotaxonomic characteristics and phylogenetic analyses, strains JG 03T and JG 05 should be affiliated to the genus Zhihengliuella. Strains JG 03T and JG 05 represent a novel species of the genus Zhihengliuella, for which the names Zhihengliuella somnathii sp. nov. is proposed. The type strain is JG 03T (=DSM 23187T =IMCC 253T).					

1 Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata 2 Bhavanath Jha^{1, 2*}, Vijay Kumar Singh¹, Angelo Weiss³, Anton Hartmann³ and Michael Schmid³ 3 4 ¹Marine Biotechnology and Ecology Division 5 CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar- 364002, Gujarat, India 6 7 ²Academy of Scientific and Innovative Research, CSIR, New Delhi, India 8 9 ³Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 10 Department for Environmental Sciences, Research Unit Microbe-Plant Interactions, Ingolstaedter 11 Landstrasse 1, D-85764 Neuherberg, Germany 12 13 14 *Author for correspondence: Email: bjha@csmcri.org 15 16 Tel: +91-278-2567352 Fax: +91-278-2570885 17 18 19 Running title: Zhihengliuella somnathii sp. nov., halotolerant 20 21 Contents Category: New Taxa- Actinobacteria. 22 The NCBI GenBank accession number for the 16S rRNA gene sequence of strain JG 03^T is 23 24 EU937748 and strain JG 05 is EU937749

Summary

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Two novel Gram- positive, rod shaped, halotolerent bacteria, strains JG 03^T and JG 05 were isolated from the rhizosphere of Salicornia brachiata, an extreme halophyte. Comparative analyses of 16S rRNA gene sequence showed that they were closely related to members of the genus Zhihengliuella with sequence similarity of 96.9-99.1 %. Sequence similarity of strains JG 03^T and JG 05 was 99.4 % with each other. DNA-DNA hybridization of JG 03^T and JG 05 with other known species of Zhihengliuella showed reassociation value of 19.8% -53.4% and 91.4% in between themselves. The peptidoglycan type of both strains was A4α and MK-9 and MK-10 were predominant menaguinones. The predominant fatty acid in JG 03^T was anteiso-C_{15:0} and anteiso-C_{17:0}. However, iso-C_{15:0}, anteiso-C_{15:0} and anteiso-C_{17:0} were the major fatty acid in strain JG 05. The DNA G+C content of strains JG 03^T and JG 05 was 70.0 and 70.1 mol%, respectively. In nutrient broth medium both strains grew at NaCl concentrations up to 15% (w/v). On the basis of chemotaxonomic characteristics and phylogenetic analyses, strains JG 03^T and JG 05 should be affiliated to the genus Zhihengliuella. Strains JG 03^T and JG 05 represent a novel species of the genus Zhihengliuella, for which the names Zhihengliuella somnathii sp. nov. is proposed. The type strain is JG 03^{T} (=DSM 23187^{T} =IMCC 253^{T}).

41

42

- The genus Zhihengliuella was proposed by Zhang et al (2007). At the time of writing, the genus
- 23 Zhihengliuella contains five recognized species namely Zhihengliuella halotolerans (Zhang et
- 44 al., 2007), Zhihengliuella alba (Tang et al., 2009), Zhihengliuella salsuginis (Chen et al., 2010),
- 45 Zhihengliuella aestuarii (Baik et al., 2011) and Zhihengliuella flava (Hamada et al., 2013).
- 46 The roots of Salicornia brachiata, an extreme halophytic plant is a potential source of novel
- bacteria (Schmid et al., 2009; Jha et al., 2012). Strains JG 03^T and JG 05 were isolated from
- roots of *S. brachiata*, collected from coastal marshy swamps, Bhavnagar, Gujarat (21° 45' N 72°

14' E), India. The bacteria were isolated using nitrogen-free semisolid NFb and DYGS medium following the method described earlier (Gontia et al., 2011). Strains JG 03^T and JG 05 grew up to 4 % (w/v) NaCl concentration on semisolid nitrogen free NFb medium. Tolerance to NaCl was tested using nutrient broth supplemented with NaCl (ranging from 1-15%, w/v) with increment of 1% (w/v). Growth of both strains (JG 03^T and JG 05) was observed up to 15 % (w/v), whereas the optimum concentration of NaCl for growth was 4 % (w/v). The temperature range for growth was determined by keeping the bacterial culture (in nutrient broth) at different temperature in incubator shaker. The optimum growth temperature of the novel strains was 30°C. However, these strains grew at temperature range of 10-37°C. The pH range and optimum pH for growth were tested using nutrient broth with pH adjusted from 4-12 (one pH unit interval) using the following buffer systems, pH 4.0-5.0: 0.1 M citric acid/0.1 M sodium citrate; pH 6.0-8.0: 0.1 M KH₂PO₄/0.1 M NaOH; pH 9.0-12.0: 0.1 M NaHCO₃/0.1 M Na₂CO₃. The bacteria grew at pH ranges from 6-10 with optimum growth at pH 8. Cell morphology was observed using scanning electron microscopy according to Yumoto et al. (2001). The presence or absence of flagella was visualised using transmission electron microscopy according to Näther et al. (2006). The genomic DNA of strains was isolated by following the method of Sambrook & Russell (2001). The 16S rRNA genes of each strain were amplified according to method described by Weisburg et al. (1991). The purified PCR products were sequenced by Macrogen Inc (Seoul, South Korea). Phylogenetic analysis was performed using MEGA version 6 (Tamura et al., 2013) and neighbour-joining and maximum-likelihood methods were applied to infer the phylogenetic tree (Saitou & Nei, 1987). Bootstrap analysis was done (Felsenstein, 1985) and maximum composite likelihood algorithms were used for the determination of the evolutionary distances (Tamura et al., 2004). The highest sequence

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

similarity for both strains JG 03^T and JG 05 were observed 99.1 % with Z. flava DSM 26152^T. 72 The strains JG 03^T and JG 05 had 98.4 % and 98.3 % 16S rRNA gene sequence similarity with 73 Z. salsuginis DSM 21149^T and 98.2 % and 98.1 % sequence similarity with Z. alba DSM 74 21143^T, respectively. Both strains showed 98.0 % and 96.9 % sequence similarity to Z. 75 halotolerans DSM 17364^T and to Z. aestuarii KCTC 19557^T, respectively. Strains JG 03^T and 76 JG 05 had high 16S rRNA gene similarity of 99.4 % with each other. The 16S rRNA gene 77 sequence-based tree showing the position of strains JG 03^T and JG 05 within the genus 78 Zhihengliuella is presented in Fig. 1 (constructed by neighbour-joining method) and 79 80 Supplementary Fig. S3 (constructed by maximum-likelihood method). Chemotaxonomic analyses such as respiratory quinones (menaquinones), the peptidoglycan 81 types, cell-wall sugars and polar lipids of strains JG 03^T and JG 05 were performed by DSMZ 82 (Deutsche Sammlung für Mikroorganismen und Zellkulturen, Braunschweig, Germany). 83 Analyses of respiratory quinones and polar lipids were carried out by previously described 84 procedures (Tindall, 1990a, 1990b, Tindall et al., 2007). Determination of the peptidoglycan 85 structure was carried out as described by Schumann (2011). Cell-wall sugar was determined 86 according to Staneck & Roberts (1974). The menaguinone types for JG 03^T were MK-10 (50 %). 87 MK-9 (43 %) and MK-8 (6 %), whereas for JG 05, MK-9 (48 %), MK-10 (46 %) and MK-8 (6 88 Menaquinones MK-10 and MK-9 are predominant in all other species of the genus 89 Zhihengliuella. The peptidoglycan type of both strains was A4α (Molar ratio of amino acids are 90 strain JG 03^T: 1.9 Ala: 1.9 Glu: 1.0 Lys: 1.0 Mur: 0.1 Asp and strain JG 05: 1.6 Ala: 1.9 Glu: 91 1.0 Lys: 1.0 Mur: 0.1 Asp with an interpeptide bridge of L-Lys-L-Ala-L-Glu) that is consistent 92 with those determined for the other members of the genus Zhihengliuella (Hamada et al., 2013). 93 94 The major component of cell wall sugar was galactose and minor amounts of glucose, mannose

95	and rhamnose were also detected in both strains (JG 03 ^T and JG 05). Glucose and tyvelose are
96	major cell wall sugars in Z. halotolerans and Z. aestuarii (Zhang et al., 200; Baik et al., 2011)
97	whereas mannose and tyvelose were the major cell wall sugars in Z. alba and Z. salsuginis (Tang
98	et al., 2009; Chen et al., 2010). In case of Z. flava, however, galactose was also present as major
99	constituent (Hamada et al., 2013). The polar lipids diphosphatidylglycerol (DPG),
100	phosphatidylglycerol (PG) and phosphatidylinositol (PI) were present in both strains. In addition
101	one unidentified polar lipids two unidentified phospholipid and one unidentified glycolipid were
102	also present (Supplementary Fig. S1). The presence of polar lipids DPG and PG is consistent
103	with other species of the genus Zhihengliuella.
104	For cellular fatty acid analysis strains JG 03 ^T , JG 05, and reference strains (Z. salsuginis DSM
105	21149 ^T , Z. halotolerans DSM 17364 ^T , Z. alba DSM 21143 ^T , Z. aestuarii KCTC 19557 ^T and Z.
106	flava DSM 26152 ^T) were grown in tryptic soy yeast agar for 24 h at 30 °C. Fatty acid methyl
107	esters (FAME) were prepared, separated and identified according to the instructions of the
108	Microbial Identification System (MIDI; Microbial ID) (Sasser, 1990; Whittaker et al., 2005).
109	Peaks were identified using the RTSBA6 6.10 database. The major fatty acids anteiso- $C_{15:0}$ (55.1
110	%) and anteiso- $C_{17:0}$ (14.3 %) were present in JG 03^T and iso- $C_{15:0}$ (35.4 %), anteiso- $C_{15:0}$ (34.8
111	%), and anteiso-C _{17:0} (10.3 %) in strain JG 05 (Table 1). Strain JG 05 has highest iso-C _{15:0} instead
112	of anteiso-C _{15:0} , which is commonly high in all other known species of Zhihengliuella as well as
113	strain JG 03 ^T .
114	Utilization of different substrates by strain JG 03 ^T and JG 05 and reference strains of
115	Zhihengliuella was tested using Biolog GEN III microplates of the Microlog system (Biolog).
116	The results were summarised in supplementary Table S1. Additionally, activity of some
117	important enzymes, such as amylase, catalase, oxidase, pectinase, gelatinase, protease, lipase

and cellulase were tested for strains JG 03^T and JG 05 (Gontia et al., 2011). Both strains were tested positive for the production of amylase, catalase, pectinase, gelatinase, protease and lipase enzyme, but negative for oxidase and cellulase. All species of the genus Zhihengliuella reported so far are catalase positive and oxidase negative. Antibiotic resistance was determined with the disc diffusion method using commercial antibiotic-impregnated discs. The strains were tested for antibiotic sensitivity to ampicillin (10 µg), azireonam (10 µg), bactracin (10 U), chloramphenicol (30 μg), ciprofloxacin (5 μg), clindamycin (2 μg), co-trimoxazole (25 μg), erythromycin (10 μg), gatifloxacin (10 µg), gentamicin (10 µg), levofloxacin (5 µg), neomycin (30 µg), nitrofurantoin (300 μg), norfloxacin (10 μg), oflaxacin (5 μg), penicillin G (1 U), polymyxin (300 U), sulphamethoxazole (23.75 µg) and tetracycline (25 µg) using standard disc diffusion protocols, whereas aztreonam, fusidic acid, guanidine HCl, lincomycin, lithium chloride, minocycline, nalidixic acid, niaproof 4, potassium tellurite, rifamycin SV, 1% sodium lactate, sodium butyrate, sodium bromated, tetrazolium violet, tetrazolium blue, troleandomycin and vancomycinare were tested using chemical sensitivity assay using Biolog GEN III MicroPlate. Strain JG 03^T was sensitive to erythromycin, fusidic acid, troleandomycin, rifamycine SV, minocycline, lincomycine, niaproof 4 and vancomycin whereas JG 05 was sensitive to fusidic acid, troleandomycin, minocycline, lincomycine, niaproof 4 and vancomycin. Scanning electron micrograph showed that strains JG 03^T and JG 05 were rod shaped (Supplementary Fig. S2 (a), (c)), which is similar to those observed for Z. halotolerans, Z. alba, Z. aestuarii and Z. flava. However Z. salsuginis has coccoid morphology. Transmission electron microscopy of strains JG 03^T and JG 05 revealed absence of any flagella (Supplementary fig. S2 (b), (d)), which is in consistent with all other members of the genus Zhihengliuella. Strains JG 03^T and JG 05 differed from the other related species of the genus Zhihengliuella with respect to the

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

141	following major biochemical and physiological characteristics. The results are summarised in
142	Table 2.
143	The determination of the G+C content of the DNA and DNA-DNA hybridization experiments
144	were performed by the DSMZ, Braunschweig, Germany. The G+C content was determined by
145	DNA isolation (Cashion et al., 1977), followed by DNA degradation (Mesbah et al., 1989),
146	HPLC (Tamaoka & Komagata, 1984) and finally calculation of GC content (Mesbah et al.,
147	1989). For DNA-DNA hybridization, cells were disrupted by using a Constant Systems TS 0.75
148	KW (IUL Instruments, Germany). DNA in the crude lysate was purified by chromatography on
149	hydroxyapatite as described by Cashion et al., (1977). DNA-DNA hybridization was carried out
150	as described by Ley et al. (1970) under consideration of the modifications described by Huss et
151	al. (1983). The G+C content of strains JG $03^{\rm T}$ and JG 05 was 70.0 mol % and 70.1 mol % ,
152	respectively, which are similar to the values (59.1-70.3 %) reported for other species of the
153	genus Zhihengliuella (Zhang et al., 2007; Tang et al., 2009; Chen et al., 2010; Baik et al., 2011;
154	Hamada et al., 2013). DNA-DNA hybridization of JG 03 ^T with Zhihengliuella alba DSM
155	21143 ^T , Zhihengliuella halotolerans DSM 17364 ^T , Zhihengliuella salsuginis DSM 21149 ^T ,
156	Zhihengliuella flava DSM 26152 ^T and Zhihengliuella aestuarii KCTC 19557 ^T showed
157	reassociation values of 53.4 % , 49.6 %, 37.2 %, 25.9 % and 19.8 %, respectively. In case of
158	strain JG 05 the reassociation values with Z. salsuginis DSM 21149 ^T , Z. halotolerans DSM
159	17364 ^T , Zhihengliuella flava DSM 26152 ^T , Z. alba DSM 21143 ^T and Z. aestuarii KCTC 19557 ^T
160	were 35.6 %, 35 %, 26.4 %, 25 % and 24.6 %, respectively. DNA-DNA hybridization between
161	JG 03 ^T and JG 05 resulted in reassociation value of 91.4 %. DNA-DNA relatedness value has
162	been used as a genotypic parameter to delineate species (Wayne et al., 1987). DNA-DNA
163	hybridization percentage values <70% are considered to show that organisms belong to different

species (Stackebrandt & Goebel, 1994). Thus, according to accepted criteria for novel species, these two strains belong to same species, which represent a new species of the genus Zhihengliuella. From the results of phylogenetic analysis based on 16S rRNA gene sequences, differences in biochemical characteristics, the polar lipid profile, the fatty acid composition and the low reassociation values of DNA-DNA hybridization with its closest relatives, it is evident that strains JG 03^T and JG 05 represent a novel species of the genus Zhihengliuella. The name Zhihengliuella somnathii sp. nov. is proposed for this novel species.

Description of Zhihengliuella somnathii sp. nov.

Zhihengliuella somnathii (som.nath'i.i. N.L. gen. n somnathii of somnath, the presiding deity, dating back to prehistoric era of the area Saurashtra, Gujarat, India, from where the type strain was isolated).

Cells are Gram-positive-staining, rod shaped and have a diameter 1.1-1.9 × 0.3-0.5 μm. Aerobic and non-motile. Colonies are pale yellow and white, circular, have an entire margin and are opaque within 24 h with diameter of approximately 2 mm on nutrient agar. Mesophilic, with an optimum temperature of 30 °C, but able to grow between 10 and 37 °C and at pH 6 -10 (optimum at pH 8.0). Able to tolerate concentration of NaCl up to 15 % (w/v) with optimal growth at 4 %. Positive results in tests for amylase, catalase, pectinase, gelatinase, protease, and lipase but negative for oxidase and cellulase. Carbon source utilization are indicated in supplementary Table S1. The peptidoglycan type is A4α and major menaquinones are MK-10 and MK-9. The predominant cell-wall sugar is galactose and minor amount of glucose, mannose and rhamnose are also present. Polar lipids profile consist of DPG, PG, PI, one unidentified polar

187	lipid, two unidentified phospholipid and one unidentified glycolipid. The predominent fatty
188	acids are anteiso- $C_{15:0}$ and anteiso- $C_{17:0}$ or iso- $C_{15:0}$, anteiso- $C_{15:0}$.and anteiso- $C_{17:0}$.
189	The type strain, JG 03^T (=DSM 23187^T =IMCC 253^T) and the strain JG 05 (=DSM 23191 =IMCC
190	254), were isolated from roots of an extreme halophyte Salicornia brachiata from coastal region
191	of Bhavnagar district, Gujarat, India. The DNA G+C content of the type strain JG 03^T and strain
192	JG 05 is 70.0 mol % and 70.1 mol %, respectively.
193	
194	Acknowledgments
195	CSIR-CSMCRI Communication No. PRIS- 163/2014. Financial support received from CSIR
196	(BSC0117-PMSI), New Delhi, Govt of India is thankfully acknowledged. Dr. I. Gontia is
197	thankfully acknowledged for her assistant in isolating the strains and microscopic analyses.
198	

- 199 References
- 200 Baik, K. S., Lim, C. H., Park, S. C., Choe, H. N., Kim, H. J., Kim, D., Lee, K. H. & Seong,
- 201 C. N. (2011). Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol
- 202 *Microbiol* **61**, 1671–1676.
- 203 Cashion, P., Holder-Franklin, M. A., McCully, J., & Franklin, M. (1977). A rapid method
- for the base ratio determination of bacterial DNA. *Anal Biochem* **81**, 461-466.
- 205 Chen, Y. G., Tang, S. K., Zhang, Y. Q., Liu, Z. X., Chen, Q. H., He, J. W., Cui, X. L. & Li,
- W. J. (2010). Zhihengliuella salsuginis sp. nov., a moderately halophilic actinobacterium from a
- subterranean brine. *Extremophiles* **14**, 397–402.
- 208 Christie, W. W. (2003). Isolation, separation, identification and structural analysis of lipids. In
- 209 Lipid analysis, pp 105-180. Oily Press, Bridgwater, England.
- Felsenstein, J. (1985). Confidence limits on phylogenesis: An approach using the bootstrap.
- 211 Evolution **39**, 783-791.
- 212 Gontia, I., Kavita, K., Schmid, M., Hartmann, A., & Jha, B. (2011). Brachybacterium
- 213 saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting
- 214 potential. *Int J Syst Evol Microbiol* **61**, 2799-2804.
- Hamada, M., Shibata, C., Tamura, T., & Suzuki, K. I. (2013). Zhihengliuella flava sp. nov.,
- an actinobacterium isolated from sea sediment, and emended description of the genus
- 217 Zhihengliuella. Int J Syst Evol Microbiol **63**,4760-4764.
- 218 Huss, V. A., Festl, H., & Schleifer, K. H. (1983). Studies on the spectrophotometric
- determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184-192.

- Jha, B., Gontia, I. & Hartmann, A. (2012). The roots of the halophyte Salicornia brachiata are
- a source of new halotolerant diazotrophic bacteria with plant-growth promoting potential. *Plant*
- 222 *Soil* **356**, 265-277.
- Ley, J. D., Cattoir, H., & Reynaerts, A. (1970). The quantitative measurement of DNA
- hybridization from renaturation rates. Eur J Biochem 12, 133-142.
- Mesbah, M., Premachandran, U. & Whitman, W. B. (1989). Precise measurement of the G+C
- 226 content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst
- 227 Bacteriol 39, 159–167.
- Näther, D.J., Rachel, R., Wanner, G. & Wirth, R. (2006). Flagella of *Pyrococcus furiosus*:
- 229 multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell
- 230 contacts. *J Bacteriol* **188**, 6915-6923.
- Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing
- phylogenetic trees. *Mol Biol Evol* **4**, 406-425.
- 233 Sambrook J, Russell DW. (2001). Molecular cloning, 3rd edn. Cold Spring Harbor, USA: Cold
- 234 Spring Harbor Laboratory Press.
- Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI
- Technical Note 101. Newark, DE: MIDI Inc.
- Schmid, M., Iversen, C., Gontia, I., Stephan, R., Hofmann, A., Hartmann, A., Jha, B.,
- Eberl, L., Riedel, K. & Lehner, A. (2009). Evidence for a plant-associated natural habitat of
- 239 *Cronobacter* spp. *Res microbiol* **160**, 608-614.
- 240 Schumann, P. (2011). Peptidoglycan structure. *Methods Microbiol* 38, 101-129.

- 241 Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA
- reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.
- 243 *Int J Syst Bacteriol* **44**, 846-849.
- Staneck, J. L. & Roberts, G. D. (1974). Simplified approach to identification of aerobic
- actinomycetes by thin-layer chromatography. *Appl Microbiol* **28**, 226-231.
- Tamaoka, J. & Komagata, K. (1984). Determination of DNA base composition by reversed-
- phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.
- Tamura, K., Nei, M. & Kumar, S. (2004). Prospects for inferring very large phylogenies by
- using the neighbor-joining method. *PNAS* **101**,11030-11035.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6:
- Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol* **30**: 2725-2729.
- 252 Tang, S. K., Wang, Y., Chen, Y., Lou, K., Cao, L.-L., Xu, L.-H. & Li, W.-J. (2009).
- 253 Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst
- 254 Evol Microbiol **59**, 2025–2031.
- 255 **Tindall, B.J.** (1990a). A comparative study of the lipid composition of *Halobacterium*
- *saccharovorum* from various sources. *Syst Appl Microbiol* **13**, 128-130.
- Tindall, B.J. (1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol
- 258 Letts 66, 199-202.
- Tindall, B.J., Sikorski, J., Smibert, R.M., & Kreig, N.R. (2007). Phenotypic characterization
- and the principles of comparative systematics. In Methods for General and Molecular
- 261 Microbiology, 3rd edn. pp. 330-393. Editors: C. A. Reddy, T. J. Beveridge, J. A. Breznak, G.
- Marzluf, T. M. Schmidt, L. R. Snyder Washington DC, USA: ASM Press.

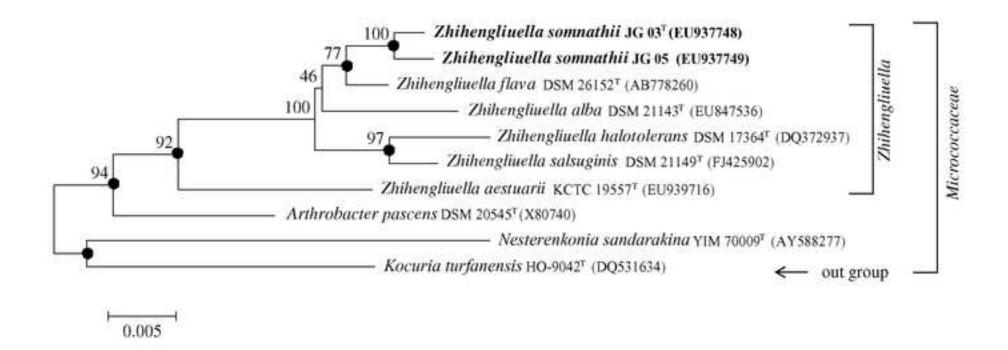
- Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky,
- M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors (1987). Report of
- 265 the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst
- 266 Bacteriol 37, 463–464.
- Weisburg, W.G., Barns, S.M., Pelletier, D.A. & Lane, D.J. (1991). 16S ribosomal DNA
- amplification for phylogenetic study. *J Bacteriol* **173**, 697-703.
- Whittaker, P., Fry, F.S., Curtis, S.K., Al-Khaldi, S.F., Mossoba, M.M., Yurawecz, M.P. &
- 270 **Dunkel, V.C.** (2005). Use of fatty acid profiles to identify food-borne bacterial pathogens
- andaerobic endospore- forming bacilli. *J Agric Food Chem* **53**, 3735-3742.
- Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y 1., Suemori, A., Nakajima, K.,
- 273 Inoue, N. & Kawasaki, K. (2001). Pseudomonas alcaliphila sp. nov., a novel facultatively
- psychrophilic alkaliphile isolated from seawater. *Int J Syst Evol Microbiol* **51**, 349-355.
- Zhang, Y. Q., Schumann, P., Yu, L. Y., Liu, H. Y., Zhang, Y. Q., Xu, L. H., Stackebrandt,
- E., Jiang, C. L. & Li, W. J. (2007). Zhihengliuella halotolerans gen. nov., sp. nov., a novel
- member of the family *Micrococcaceae*. *Int J Syst Evol Microbiol* **57**, 1018–1023.
- 278
- 279 Figure Legend
- Fig.1. The phylogenetic tree of stains JG 03^T and JG 05 with taxonomic neighbours. The
- 281 phylogenetic tree was reconstructed by neighbour-joining method. The percentage of replicate
- trees in which the associated taxa clustered together in the bootstrap test (1000 replicates).
- Numbers at nodes are percentage bootstrap values. Circles at the node indicate that the
- 284 corresponding nodes were also recovered in the trees generated by maximum-likelihood
- algorithms. The evolutionary distances were computed using the maximum composite likelihood

method and are in the units of the number of base substitutions per site. All positions containing
gaps and missing data were eliminated by complete deletion option. Phylogenetic analyses were
conducted in MEGA version 6.

Table 1. Whole cell fatty acid profiles of JG 03^T and JG 05 with type strains of *Zhihengliuella* species. Taxa: 1, strain JG 03^T; 2, strain JG 05; 3, *Z. aestuarii* KCTC 19557^T; 4, *Z. alba* DSM 21143^T; 5 *Z. salsuginis* DSM 21149^T; 6, *Z. halotolerans* DSM 17364^T; *Z. Flava* DSM 26152^T. Symbol "–" represents not detected.

Fatty acid	1	2	3	4	5	6	7
C _{10: 0}	_	_	-	_	-	0.2	-
C _{12:0}	0.1	0.2	0.2	0.4	0.1	0.2	0.2
C _{14:0}	1.6	0.5	1.6	2.5	1.0	1.0	1.2
C _{16:0}	6.0	2.4	4.3	6.5	4.9	4.0	3.8
C _{17:0}	0.2	_	_	0.5	0.2	0.5	0.2
$C_{18:0}$	0.4	_	_	0.5	0.4	5.7	0.3
C _{19:0}	_	_	_	_	_	0.3	_
$C_{20:0}$	_	_	_	_	_	2.7	_
iso-C _{13:0}	-	0.3	_	_	0.1	0.4	0.2
iso-C _{14:0}	2.0	1.4	1.2	2.6	0.5	2.8	1.4
iso-C _{15:0}	8.2	35.4	9.0	4.2	7.2	15.0	14.3
iso-C _{16:0}	9.8	6.9	7.7	8.0	3.0	2.1	6.0
iso-C _{17:0}	1.1	7.0	0.7	0.4	1.0	3.3	1.6
iso-C _{18:0}	0.1	_	_	_	_	0.5	_
iso-C _{19:0}	_	_	_	_	_	0.6	_
anteiso-C _{13:0}	0.2	0.2	_	0.4	_	0.2	0.2
anteiso-C _{15:0}	55.1	34.8	64.9	63.5	58.4	52.1	58.1
anteiso-C _{17:0}	14.3	10.3	9.3	9.2	16.6	7.6	12.3
anteiso-C _{19:0}	_	_	_	_	_	0.7	_
C _{18:1} ω9c	0.3	_	0.4	0.4	0.3	0.2	0.2
C _{15:0} 2-OH	_	_	0.2	0.3	_	_	_
C _{17:0} 2-OH	0.3	0.1	0.2	0.2	_	_	0.1

Table 2. Differential phenotypic characteristics of strains JG 03^T, JG 05 and type strains of


- 298 Zhihengliuella species. Taxa: 1, strain JG 03^T; 2, strain JG 05^T; 3, Z. aestuarii KCTC 19557^T; 4,
- 299 Z. alba DSM 21143^T; 5, Z. salsuginis DSM 21149^T; 6, Z. halotolerans DSM 17364^T; 7, Z. flava
- 300 DSM 26152^T

Characteristic	1	2	3	4	5	6	7
Colony color	Pale yellow	White	Yellow	White	Light yellow	Pale yellow	Pale yellow
Morphology	Short rod	Short rod	Ovoid to short rod ^a	Short rod ^b	Cocci ^c	Short rod d	Rod shapede
NaCl range (%, w/v)	0.5-15	0.5-15	0–7ª	0-15 ^b	0.5–20°	0-25 d	0-10 ^e
pH range	6-10	6-10	6-10 ^a	5-9 ^b	6.5-11.5°	6-10 ^d	6-11 ^e
Temperature range $({}^{\circ}\!$	10-37	10-37	4-37ª	4-45 ^b	10-40°	4-45 ^d	10-37 ^e
Carbon source utiliza	tion				1	l	
Acetic acid	+	±	+	+	<u>±</u>	+	+
D-Arabitol	+	-	+	+	-	+	±
Citric acid	+	+	±	<u>±</u>	-	-	±
Formic acid	±	-	+	+	±	±	±
Gentiobiose	±	+	<u>±</u>	±	<u>±</u>	+	±
L-Histidine	+	-	+	+	-	+	±
α-Hydroxy-butyric acid	+	±	+	±	-	+	±
D-Malic acid	±	-	-	±	-	+	±
D-Mannose	±	+	+	±	<u>±</u>	±	±
D-Mannitol	±	+	+	+	-	±	±
Mucic acid	±	-	-	±	-	+	±
Propionic acid	+	±	±	+	±	±	+
Quinic acid	±	+	±	+	-	+	±
Tween 40	±	±	+	<u>±</u>	±	-	±
Cell wall sugar	Gal	Gal	Tyv, Glc ^a	Tyv,Man ^b	Tyv,Man ^c	Tyv, Glc ^d	Gal ^e
DNA G+C content (mol%)	70.0	70.1	59.1ª	70.3 ^b	67.8°	66.5 ^d	70.3 ^e

^{+,} positive; -, negative; \pm , weakly positive.

Gal, Galactose; Glc, Glucose; Man, Mannose; Tyv, Tyvelose.

Data from ^aBaik et al. (2011). ^b Tang et al. (2009). ^c Chen et al. (2010). ^dZhang et al. (2007). ^e Hamada et al. 2013

Supplementary Material Files
Click here to download Supplementary Material Files: Supplementary material file.pdf