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Abstract

Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS 
significance level. Additional variants within the suggestive range (0.0001> P > 5 × 10−8) are, however, still of interest 
for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify 
additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a 
total of 33 456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) 
and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties 
and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false 
discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods 
by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. 
Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 
4p15.2 (rs6448050, P = 4.6 × 10−7) and MTMR2 at 11q21 (rs10501831, P = 3.1 × 10−6) with SCC, as well as GAREM at 18q12.1 
(rs11662168, P = 3.4 × 10−7) with AC. Use of our prioritization methods validated two of the top three loci associated 
with SCC (P = 1.05 × 10−4 for KCNIP4, represented by rs9799795) and AC (P = 2.16 × 10−4 for GAREM, represented by 
rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional 
data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.

Introduction
Lung cancer is the leading cause of cancer-related mortality 
worldwide accounting for over 1 million deaths annually (1). 
While tobacco consumption remains unequivocally the main 

determinant of lung cancer incidence, evidence suggests a 
role of genetic variation in disease etiology (2). The main his-
tological subtypes of lung cancer are adenocarcinoma (AC), 
squamous cell carcinoma (SCC) and small cell lung cancer 
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(SCLC). These different histological subtypes of lung cancer 
have differing etiologies with different somatic mutations (3) 
and different risk factor profiles (4) observed across major his-
tology groups.

Genome-wide association studies (GWAS) of lung cancer 
have demonstrated in large-scale replicated analyses that ger-
mline genetic variation influences lung cancer risk in European 
populations 15q25.1 (CHRNA5–CHRNA3–CHRNA4) (5–7), with 
varying effects by tumor histology. Consistent associations have 
been observed for AC at 5p15.33 (TERT-CLPTM1L) (8,9) and 3q28 
(10), and for SCC at 6p21.33 (BAT3-MSH5) (11), 9p21 (CDKN2A/p1
6INK4A/p14ARF/CDKN2B/p15INK4B), 12p13 (RAD52) (12), 13q13 (BRCA2) 
and 22q12 (CHEK2) (10,13). Single-nucleotide polymorphisms 
(SNPs) at 15q15.2 (TP53bp1) have also been consistently asso-
ciated with lung cancer risk in candidate gene analyses (14). 
Additional susceptibility regions at 13q12.12 and 22q12.2 (15) 
have been identified in Asian populations.  These regions have 
not be associated with lung cancer risk in Europeans.

The Transdisciplinary Research In Cancer of the Lung (TRICL) 
research team and the International Lung Cancer Consortium 
(ILCCO) recently completed two comprehensive GWAS meta-
analysis of lung cancer across multiple subgroups, including 
smoking, gender/sex, stage of disease, age at onset and his-
tology (10,13,16). Both investigations employed a standard 
GWAS analytical approach, which relies on P-values from sin-
gle marker analysis and stringent significance levels to adjust 
for multiple comparisons. This standard analytical approach is, 
however, limited in that (i) it does not take study power into 
account when comparing test statistics; (ii) it ignores biological 
function of the genes and variants and (iii) the GWAS-level sig-
nificance is based on a global null hypothesis and true suscep-
tibility loci may be left unidentified. Given the importance of 
differential response to therapy and subsequent outcomes by 
lung cancer histological subtypes, we aimed to conduct an in-
depth GWAS investigation of lung cancer histological subtypes. 
The main innovative aspects of this study include Bayesian 
framework prioritizations to incorporate prior biological infor-
mation, five additional lung cancer studies genotyped based on 
Axiom array and two non-European populations (a Japanese 
and a Han Chinese population) for across ethnic generalizabil-
ity. We conducted three Bayesian framework analyses includ-
ing the stratified false discovery rate (SFDR) (17), the Bayesian 
false discovery probability (BFDP) (18) and hierarchical mod-
eling (HM) methods (19). We used these methods to incorpo-
rate available functional and regulatory data for the genes and 

variants located on the 550K genotyping platform in order to 
identify additional genetic regions of interest.

Materials and methods
Study descriptions

Discovery set
The meta-analysis was based on summary data from 13 previously 
reported lung cancer GWAS conducted in European-descent populations 
providing genotype data on a total of 14 049 lung cancer cases, includ-
ing 5061 SCC, 6756 AC and 2216 SCLC with 33 456 controls of European 
descent: the M.D. Anderson Cancer Center (MDACC) lung cancer study 
(6); the Liverpool Lung Project (LLP) (20); the UK lung cancer GWAS from 
the Institute for Cancer Research (ICR) (11); deCODE Genetics lung cancer 
study (21); the Helmholtz-Gemeinschaft Deutscher Forschungszentren 
lung cancer GWAS (22); the lung cancer study from Canada (Lunenfeld-
Tanenbaum Research Institute (LTRI) and University of Toronto) (23); the 
Harvard lung cancer study (24); NCI lung cancer GWAS including the 
Environment and Genetics in Lung Cancer Etiology (EAGLE) GWAS (25), 
the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC) 
GWAS (26), the Prostate, Lung, Colon, Ovary Screening Trial (PLCO) (27), 
lung cancer GWAS and the Cancer Prevention Study II Nutrition Cohort 
(CPS-II) GWAS (28); the IARC lung cancer GWAS (29); the Memorial Sloan 
Kettering Lung Cancer GWAS (30) and the Mayo lung cancer GWAS 
(31). In each of these studies, SNP genotyping had been performed 
using Illumina HumanHap 300 BeadChips, HumanHap 550 or 610 Quad 
arrays. Further details about genotyping in each study are provided 
in Supplementary Table  2, available at Carcinogenesis Online. For those 
larger studies with 300K data (MDACC, IARC, LTRI, deCODE and LLP), we 
included imputed variants to match the genotyped variants on 550K. 
IMPUTE 2, Mach or minimac using 1000 genome or HapMap2 were used 
to complete the imputation at the study level (Supplementary Table 2, 
available at Carcinogenesis Online). Conducting a meta-analysis based on 
imputed dosage from all studies without any genotyped data on those 
specific variants would create substantial uncertainty in the combined 
results. Therefore, for the discovery analysis, we restricted the baseline 
meta-analysis to those included on 550K array, instead of the maximum 
number of imputed variants possible. For those regions identified to be 
associated with lung cancer risk, we conducted further investigation 
based on regional imputation. To evaluate the association with lung can-
cer risk in the Japanese and Chinese populations, we analyzed the top 
regions in 594 lung cancer cases and 942 controls from the Aichi Lung 
Cancer Studies in Japanese (32) together with 2338 cases and 3077 con-
trols of Han Chinese descent from the Nanjing and Beijing studies (15).

Fine mapping set as a validation approach of signals
For the susceptibility regions identified in the discovery set, we conducted 
dense genotyping for the purpose of replication and fine mapping based 
on 3128 cases and 2966 controls of European ancestry from 6 additional 
independent studies including Mount-Sinai Hospital-Princess Margaret 
(MSH-PMH) study (10), Multiethnic Cohort (MEC) study, Liverpool lung can-
cer study (LLP), Nurses’ Health Study (NHS), National Physicians Health 
Study (NPHS) and the European Prospective Investigation into Cancer and 
Nutrition (EPIC)-Lung cancer. Details for each of the replication studies 
are shown at the bottom of Table 1. Genotyping for the replication set was 
done using the Axiom custom genotyping array from Affymetrix, Inc., 
Santa Clara, CA, USA.

Statistical methods

Study-specific analysis of GWAS data
For all studies, we used unconditional logistic regression models adjusted for 
sex, age (years or 5-year age intervals where available), country/study center 
where appropriate, smoking status (never/current/former or pack-years 
where available) and the top principal components of population structure 
(where available). Effects were estimated separately for SCC, AC and SCLC. 
Analyses among large cell lung cancers and other less frequent histology 
groups were not pursued, as the within-study numbers of cases were small. 
We therefore confined our analyses to the three main histology groups.

Abbreviations	

ABF	 approximate Bayes factors
AC	 adenocarcinoma 
BFDP	 Bayesian false discovery probability 
CI	 confidence interval 
DNase	 deoxyribonuclease
eQTL	 expression quantitative trait loci 
GWAS	 genome-wide association studies
HM	 hierarchical modeling 
LD	 linkage disequilibrium
MAF	 minor allele frequency
OR	 odds ratio 
P-het	 P-heterogeneity 
SCC	 squamous cell carcinoma 
SCLC	 small cell lung cancer 
SFDR	 stratified false discovery rate 
SNPs	 single-nucleotide polymorphisms
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Prior to undertaking the meta-analysis of all GWAS data sets, we 
searched for potential errors and biases in data from each case–control 
series. Lambda inflation factors (λ) were calculated for each study. With 
the exception of Memorial Sloan Kettering Cancer Center (MSKCC) study 
that has a smaller sample size (λ = 1.11), quantile–quantile (Q–Q) plots 
showed no evidence of inflation of the test statistics indicating that sub-
stantial cryptic population substructure or differential genotype calling 
between cases and controls was unlikely in each of the individual GWAS 
(Supplementary Table 3, available at Carcinogenesis Online) (33).

Combined analysis
The combined analyses were conducted based on fixed-effects models for 
each of the three main histology groups. As for the individual studies, we 
examined for overdispersion of P-values in the meta-analysis by generat-
ing Q–Q plots and deriving an inflation factor. Cochran’s Q statistic to test 
for heterogeneity and the I2 statistic to quantify the proportion of the total 
variation due to heterogeneity were calculated. I2 values ≥75% are consid-
ered characteristic of large heterogeneity (34).

All calculations for the pooling of the effect estimates were performed 
using PLINK (35) and SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). 
Q–Q and Manhattan plots were created using an R program. We used 
LocusZoom for regional visualization of results (36).

Prioritization approaches
We utilized three Bayesian framework analytical approaches, including 
the SFDR described in Sun et al. (17), the BFDP described in Wakefield (37) 
and HM described in Chen and Witte (19), in order to identify additional 
novel variants by incorporating prior knowledge. The three methods, 
although differing greatly in approach, are all based on the premise of 
using additional information to improve the identification of variants for 
prioritization. All methods used estimates from the fixed-effects meta-
analyses as input data for prioritization.

Variant information
In order to inform the prioritization analyses, we utilized biological 
data on the genes and the variants including (i) functional annotations: 

whether a variant was in a coding region, non-synonymous or intergenic 
based on Illumina annotation files (38); (ii) conservation scores across 
mammals [PhastCons (39)]; (iii) prediction of deleterious nature of a vari-
ant [SIFT Scores (40)] and (iv) regulatory elements [whether a variant was 
in an area of a transcription factor (TF) binding or DNase hypersensitiv-
ity sites (www.genome.ucsc.edu) for several cell lines including normal 
human lung fibroblasts] and (v) linkage disequilibrium (LD) tagging: as 
the variants on the platforms used are chosen as ‘tagSNPs’ for their tag-
ging ability, we included information for those variants in LD (defined as 
r2 > 0.8 within a 500 kb window) with the directly measured variants. In 
order to determine variants in LD with tagSNPs, we used the SNAP tool 
from the broad institute (41). This process included functional variants 
(whether a variant was in LD with a variant at a splice site, a variant in a 
coding region, a non-synonymous variant, non-sense or missense variant, 
whether a variant was in a 3′ untranslated region or a frameshift variant). 
To account for the aspects of pooled analysis and heterogeneity across 
the study-specific results, we also included the P-values for heterogene-
ity in the prior data for each variant for each histology analyses. This is 
motivated by the notion that ‘true’ effects will be consistent across studies 
of similar genetic ancestry and should be given additional weight in pri-
oritization analyses. Each of the measures/categories of information was 
parameterized to have non-negative values in a similar range across the 
information columns. Examples and further detail of the variant infor-
mation are provided in Supplementary Table 4, available at Carcinogenesis 
Online. We employed the functional information differently in each of the 
methods as described below. Specific details for each of the approaches 
have been published (17−19) previously; hence, only a brief description of 
the specific parameters in each application is described below.

Stratified false discovery rate
The SFDR is based on the premise of using stratification in the number 
of hypotheses tested based on prior knowledge as a stratum indicator for 
the calculation of false discovery rates (17). After stratification, provided 
that the stratum indicator is informative of association with the pheno-
type of interest, the false discovery rate for a given threshold should be 
lower in the strata with higher prior evidence. Within the strata, Q-values 

Table 1.  Study populations included in the pooled analysis

Study Study design Platform Control (n) SCC (n) AC (n) SCLC (n)

Discovery set
  NCI/EAGLE Population based HumanHap 550K 5735 1447 1844 706
  Han Chinese Hospital based 3077 825 1307 179
  IARCa Hospital/population based HumanHap 317Kb 3791 1031 595 451
  ICR Hospital-based cases, 1958 birth controls HumanHap 550K 2699 611 465 530
  MD Anderson Hospital based HumanHap 317Kb 1137 302 558 —
  Harvard Hospital based HumanHap 610K 970 215 486 —
  deCODE Nested case–control HumanHap 317Kb 11 227 179 346 98
  Japan Aichi Population based HumanHap 550K 942 118 412 64
  Germany Population based HumanHap 550K 484 100 198 109
  Liverpool Population-based cases, WTCCII controls HumanHap 317K 2501 167 169 57
  Mayo Hospital based HumanHap 370K/610K 377 16 221 10c

  Toronto Hospital and population based HumanHap 317Kd 464 50 90 22
  MSKCC Hospital based HumanHap 317K 52 5c 63 1c

Total 33 456 5061 6756 2216
Validation set
  EPIC Lung Nested case–control Axiom custom array 1003 218 297 148
  LLP Hospital based Axiom custom array 336 148 137 49
  NHS Nested case–control Axiom custom array 324 0 195 43
  PHS Nested case–control Axiom custom array 169 23 67 21
  MEC Nested case–control Axiom custom array 213 26 79 25
  MSH-PMH Clinic based Axiom custom array 921 210 641 83
Total 2966 625 1417 369

aIARC study consists of cases and controls from CARET, Central Europe, HUNT\Tromso, Estonia and France studies.
bUsed imputed data to get a set of SNPs closer to the 550K chip where measure of imputation quality was above 0.3 from MACH.
cNot included in the combined estimates.
dUsed imputed data to get a set of SNPs closer to the 550K chip where measure of imputation quality was above 0.3 from Impute.
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(42) are then calculated for each variant and used as a means of prior-
itization ranking. Thus, with the use of an informative stratum indica-
tor the ratio of true positive associations should be greater within the 
higher strata. In this application we used the sum of all the information 
categories (Supplementary Table 4, available at Carcinogenesis Online) as a 
stratum indicator and used a 3-strata approach. The functional categories 
for exonic variants and regulatory regions [deoxyribonuclease (DNase) 
hypersensitive sites and TF-binding sites] are given higher weighting in 
our prior distribution/stratum indicator. This is reflective of the findings 
of Hindorff et al. (43) that showed these types of variants to be augmented 
in the replicated GWAS findings observed to date in the NHGRI catalogue. 
For each histology group, we determined 3-strata based on two sets of 
the prior probability distribution: at the 50% and 90% percentile cutoffs 
and the 75% and 95% percentile. P-values from fixed-effects pooling were 
used as input data for each SNP across histology groups into the software 
provided by Sun et al. (http://www.utstat.toronto.edu/sun/Software/SFDR/
index.html).

Bayesian false discovery probability
The BFDP utilizes Bayes factors, the ratio of the probability of the data 
under the null and alternative hypotheses, as an alternative to the P-value 
for assessing the consistency of a set of data with a null hypothesis (18). 
We applied an asymptotic closed-form approximation of the Bayes fac-
tor that is based on results of the logistic regression. The sum of all the 
information categories was used as the prior odds of association in the 
calculation of the approximate Bayes factors (ABF). This is based on the 
assumption that the functional categories for exonic variants and regula-
tory regions (DNase hypersensitive sites and TF-binding sites) are given 
higher weighting in our prior distribution/stratum indicator as described 
above. The minor allele frequency (MAF)-independent derivation of the 
BFDP was used with an upper relative risk parameter of two (44). This 
approach assumes that relative risk will occur with low probability above 
two. The critical difference between Wald-based P-values and ABF is that 
ABF depends not only on the test statistic but also on the power through 
the asymptotic variance (45).

Hierarchical modeling
We applied a HM method developed by Chen and Witte (19) for GWAS data 
to optimize variant prioritization based on prior biological information. 
This method takes prior information into account in a weighted two-stage 
regression model with the aim of improving effect and variance estima-
tion. Their method was shown to be informative to deviations in the prior 
information used, provided that the altered prior distributions remain 
informative. The measures of function described in the variant informa-
tion section were used for the Z-matrix for this analysis, a key component 
of this particular HM approach. The input data for this model were the 
variant-specific regression coefficients and standard error estimates for 
each variant across histology groups. Based on our previous investigations 
(46), we used the P-value for heterogeneity across studies as a weight-
ing column for the second-stage analyses. We used τ of 0.05 and ρ of 0.01 
as variance parameters required for model estimation based on previous 
investigations (13) where τ represents the range of residual effects after 
adjustment for all first- and second-stage covariates and ρ constrains the 
minimum standard deviation across all variants. The model provides a 
HM estimate (B^) which can be considered a posterior estimate of the 
association after consideration of the prior (Z) matrix and weighting 
between first- and second-stage estimates based on the model param-
eters. Although B^ are not asymptotically unbiased estimators, previous 
theoretical and simulation work shows that they are consistent estima-
tors and that Wald procedures perform work well in typical finite samples 
(47). We therefore present P-values from HM based on this approach.

Comparison of results and methods
We applied a straightforward ranking procedure for each of the additional 
prioritization techniques whereby those with low BFDP values, small 
P-values from HM or small Q-values from SFDR were given top rankings. 
These were compared with the results of the P-values and their respective 
rankings from fixed-effects pooled maximum likelihood estimates. The 
number of variants ranked in the top 100 that was not included in the 
P-value cutoffs of interest was investigated further since those were the 

variants that would have been missed if one only considered P-values as 
the selection criteria.

Regional imputation based on HapMap2 and 1000 genomes
Where available, data from 1000 genomes or HapMap2 was used for the 
top regions of interest from the discovery set results. A protocol was cir-
culated with the flanking positions for the four regions based on human 
genome build 18 and/or 19 depending on the imputation that was done 
in each of the centers. Centers used the software of preference for impu-
tation including Minimac, MACH, IMPUTE or BEAGLE (Supplementary 
Table 2, available at Carcinogenesis Online). The analytical model was the 
same as in the initial first-stage analyses. Study-level results were then 
pooled for each of the regions to examine for additional variants of inter-
est within the regions using GWAMA (48).

Fine mapping set analyses
In order to validate the regions identified through the prioritization tech-
niques, a conventional analysis of regions of interests were conducted. 
We employed unconditional logistic regression models adjusted for sex, 
age (years or 5-year age intervals where available), country/study center 
where appropriate, smoking status (never/current/former or pack-years 
where available) and the top principal components of population struc-
ture (where available).

Results
In general, the Bayesian framework analysis in each histological 
subtype with a denser baseline of meta-analysis after imputa-
tion led to identification of additional susceptibility regions of 
lung cancer histology groups. Table  2 displays the number of 
novel variants that reached a level of significance at 10−6 to 10−3 
as well as the number of variants ranked in the top 100 from 
the prioritization techniques for each histology group that had 
P-values > 0.001 in the pooled analysis. From the additional 
pooled fixed-effects, we identified regions of interest in the 
P-value range of P < 10−5 where relative ranking persisted after 
incorporation of prior functional knowledge with a Q-value from 
SFDR < 0.05, ABF < 0.05 and P-value from HM < 0.001 (Figure 1). 
Our results included the previously observed variants from 
GWAS of lung cancer examining histology-specific effects (16). 
Following the application of prioritization methods, these vari-
ants remained top ranked, suggesting that true effects will not 
be altered or missed when using these alternative approaches 
(Supplementary Table 1, available at Carcinogenesis Online).

Squamous cell carcinoma

When estimates from the 12 studies including SCC cases were 
combined (n  =  5061 cases, without MSKCC that has too few 
SCC), P-values were not overly inflated (λ = 1.01). We observed 
significant associations with the previously reported regions 
at 15q25, 5p15, 6p21 and 12p13 (Figure  2). In addition, a locus 
(rs6448050) in KCNIP4 gene at 4p15.2 (Supplementary Figure 1A, 
available at Carcinogenesis Online) was found across the studies 
to be associated with the risk of lung SCC with odds ratio (OR) of 
1.18 [95% confidence interval (CI) = 1.10–1.26, P-heterogeneity (P-
het) = 0.99] and P-value of 4.6 × 10−7 (ABF = 1.01 × 10−4, SFDR = 0.017, 
HM P-value = 3.0 × 10−6) (Figures 1 and 2 A–D). When examining 
the ABF and P-value from HM, the relative significance of the 
variant persisted. The combined prior weight across all the col-
umns of the prior matrix for this variant was in the 75th percen-
tile, which placed it in an elevated stratum of prior probability 
of association for the SFDR analysis. This variant was not pre-
sent on the 317K array therefore was not identified in Timofeeva 
et al. (16). By imputation, we were able to combine the genotyped 
data in Germany, NCI, Harvard, ICR and Mayo, with imputed 
data from the MDACC, Toronto, deCODE and Central Europe 
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data sets. In the Japanese GWAS, we observed the association in 
the same direction which when combined provided a P-value of 
7.07 × 10−7. The results did not appear to be generalizable in the 
Han Chinese population in the Nanjing study.

In our fine mapping set, we increased the density of this 
region and genotyped 1304 markers (positions 20 391 615–
23 274 625bps625bpsin Build 37 coordinates) with an Axiom array 
in 3128 cases and 2966 controls. The overall signal in KCNIP4 
was validated with P-value of 1.4 × 10−6 for lung SCC, but inter-
estingly the dense genotyping refined the location of the signal 
within KCNIP4. The lead variant in the fine mapping and valida-
tion sets was rs9799795 with an OR of 0.74 (95% CI = 0.64–0.86, 
P = 1.05 × 10−4, P-het = 0.23) (Supplementary Figure 1B, available 
at Carcinogenesis Online).

Another locus (represented by rs10501831) in the MTMR2 
gene located on chromosome 11q21.1 at position 95230961 was 

associated with SCC risk in the discovery set (Supplementary 
Figure 2A, available at Carcinogenesis Online) with an OR of 1.41 
(95% CI  =  1.22–1.63, P  =  3.1 × 10−6, P-het  =  0.95, SFDR  =  0.0248, 
ABF = 1.44 × 10−4). When examined among the Japanese popula-
tion, consistent effects were observed with a combined P-value 
of 9.99 × 10−7. SNP rs10501831 had a high prior weight (>90th per-
centile), which contributed to the higher-ranking HM and ABF 
and placed it in the third strata for SFDR (Figure 2A–D). From the 
regional imputation examination, the region of interest on chro-
mosome 11 showed a large region of LD across the MTMR2 and 
CEP57 genes including two additional SNPs of interest, rs2155436 
and rs10501832. A  dense panel of 711 markers was genotyped 
with Axiom array for this region (between position 95 472 391 and 
96 1254 36 based on Build 37) in our validation and fine mapping 
set, but variant (rs10501831) was not significant (Supplementary 
Figure 2B, available at Carcinogenesis Online) for lung SCC. Although 

Table 2.  Number of variants and regions included through each prioritization method

SCC AC SCLC

Variants Regions Variants Regions Variants Regions

Novel variants P = 10−6 to 10−3 15 11 8 7 3 3
P < 0.0001 first stage 123 75 93 62 92 68
P > 0.0001 but SFDR rank in top 100 26 20 21 19 17 14
P > 0.0001 but ABF rank in top 100 20 19 35 29 36 32
P > 0.0001 but HM rank in top 100 12 12 24 24 47 39

Region corresponds to an area of LD R2 > 0.8 or with 500 kbp.

Figure 1.  Study-specific results for top variants of interest in the discovery set.
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the adjacent variants (represented by rs74663383) in the same 
region showed a suggestive association with P-value of 0.004, the 
overall evidence of an association based on the regional plot was 
not strong.

Adenocarcinoma

When estimates from the 13 studies examining AC were 
combined (n  =  6756 cases including studies from Japan and 

China), significant values were not overly inflated (λ = 1.01). We 
observed significant associations with the previously reported 
regions of 15q25 and 5p15 (Figure  3A–D). In addition, we 
observed a novel locus (represented by rs11662168) at 18q12.1 
in the GAREM (also known as FAM59A) gene with an OR of 
1.34 and P-value of 3.44 × 10−7 (95% CI = 1.19–1.49, P-het = 0.28, 
Q-SFDR = 0.0108, ABF = 2.0 × 10−5, P-value from HM = 5.30 × 10−5) 
(Supplementary Figure 3A, available at Carcinogenesis Online). 

Figure 2.  Results of fixed-effects analysis and prioritization techniques for SCC. Panel A. P-values from random effects models across studies. P-value: red line = 10−7, 

black line = 10−5 and green line = 10−4. Panel B. P-values from hierarchical modeling.  HM P-value: red line = 10−7, black line = 10−5 and green line = 10−4. Panel C. Approxi-

mate Bayes Factor Values from BFDP modeling. ABF: red line = 10−4, black line = 10−2 and green line = 10−1. Panel D. Q-values from stratified false discovery rate modeling. 

SFDR: black line = 10−2 and green line = 10−1.

 at H
elm

holtz Z
entrum

 M
uenchen on Septem

ber 15, 2015
http://carcin.oxfordjournals.org/

D
ow

nloaded from
 

http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgv128/-/DC1
http://carcin.oxfordjournals.org/


8  |  Carcinogenesis, 2015, Vol. 00, No. 00

The effect was observed in the same direction among the 
Japanese population, which provided a combined P-value of 
2.95 × 10−7 (Figure  1). The results did not appear to be gener-
alizable in the Han Chinese population based on the Nanjing 
study. When examining the Q-values from the SFDR and ABF 
the ranking of the variant was suggested to be higher than 
using fixed-effect P-values. Examining the regional imputa-
tion results using HapMap2, the results on chromosome 18 

show an area of elevated significance around the lead SNP 
rs11662168 with rs11662168 remaining the most significant 
variant (Supplementary Figure  3A, available at Carcinogenesis 
Online). These variants map directly to the GAREM gene. The 
region also showed a significant association in the validation 
and fine mapping population. A dense panel of 1786 markers 
was genotyped with Axiom array (between positions 28 571 083 
and 30 434 298 based on Build 37)  in our replication and fine 

Figure 3.  Results of fixed-effects analysis and prioritization techniques for AC. Panel A. P-values from random effects models across studies. P-value: red line = 10−7, 

black line = 10−5 and green line = 10−4.  Panel B. P-values from hierarchical modeling.  HM P-value: red line = 10−7, black line = 10−5 and green line = 10−4.  Panel C. Approxi-

mate Bayes Factor Values from BFDP modeling. ABF: red line = 10−4, black line = 10−2 and green line = 10−1.  Panel D. Q-values from stratified false discovery rate modeling. 

SFDR: black line = 10−2 and green line = 10−1. 
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mapping set. The lead variant in the replication set was 
rs3786309 (OR = 1.22, 95% CI = 1.10–1.35, P-value = 0.000192, P-
het = 0.07) (Supplementary Figure 3B, available at Carcinogenesis 
Online) for lung AC. The original hit rs11662168 also remained 
significant in the replication set with P-value of 0.04.

Small cell lung cancer

When estimates from the nine studies with genotyped cases of 
SCLC were combined (n = 2216, without the Mayo and MSKCC 
studies as the sample sizes were too small to obtain reliable 
estimates), significant values were not overly inflated (λ = 1.00). 
We observed significant associations with the previously 
reported region of 15q25 (Supplementary Figure  4A–D, avail-
able at Carcinogenesis Online). When applying additional prior-
itization techniques, we did not identify additional regions of 
interest for SCLC. Two loci (DAOA and LTB1) warranted additional 
investigation; however, results did not appear to be consistent 
across studies and were being driven by single-study estimates. 
A  lack of LD with other associated SNPs in regional plots was 
also suggestive of a chance finding at a single SNP. A  full list 
of top results is included in Supplementary Table 1, available at 
Carcinogenesis Online.

Discussion
We uncovered novel associations in the genome-wide sugges-
tive range for both AC and SCC of the lung using additional 
prioritization approaches. We used fine mapping as validation 
for our methods that confirmed significant effects in two of the 
three susceptibility regions in independent data sets of five addi-
tional lung cancer studies using a different genotyping platform. 
We consider this result as an evidence to support the biological 
importance of this gene for lung cancer etiology in general. Our 
findings, in conjunction with previous lung cancer GWAS (16) 
and recent histology-specific whole-genome sequencing initia-
tives (49–51), provided additional evidence of histology-specific 
genetic etiology of lung cancer. The previous combined analy-
ses conducted within TRICL/ILCCO were well powered to detect 
common risk loci (MAF > 5%) of a moderate effect size (Relative 
Risk (RR) = 1.20) at power of over 90%. Therefore, this analysis 
demonstrated the potential for the application of additional 
statistical techniques under the Bayesian framework to identify 
associations in the suggestive regions that appeared to be robust 
to adjustment for additional measures of prior information.

Novel lung cancer susceptibility regions

For SCC and AC, we identified novel variants using a Bayesian 
framework analysis approach. We identified an association with 
variations in KCNIP4 gene in the suggestive range specifically in 
squamous cell lung cancer as indicated based on this analysis, 
and this was robust to several prioritization techniques. To our 
knowledge, this gene has not been implicated in lung cancer 
risk to date. This gene is believed to play a role in the regula-
tion of Wnt-mediated beta catenin signaling and target gene 
transcription pathways (52). It is also implicated in the carcino-
genic mechanism of kidney cancer (53) and pancreatic cancer 
(54) through candidate pathways analysis. KCNIP4 has also been 
implicated in the development of asthma (55). Asthma has been 
implicated in lung cancer risk (56) and may present a shared 
causal genetic contribution between the two diseases.

For the loci in GAREM (Grb2 associated and regulator of 
Erk/MAPK) (rs11662168/rs3786309), the effect was observed in 
the consistent direction in one of the study populations con-
sisting entirely of never smokers (MSKCC and Mayo). This at 

least partially alleviates the possibility of the variant acting as a 
marker of tobacco exposure. GAREM, also referred to as FAM59A, 
has been identified as a protein that contributes to cellular 
transformation through the activation of extracellular signal-
ing-regulated kinase signaling (57).

The possibility of the variants representing chance findings 
cannot be excluded despite the large amount of data included 
in these analyses. The validation of our prioritization results in 
an independent data set, the reliability of the relative rankings 
of the variants after adjustment for prioritization techniques 
and the homogeneity of results across all participating stud-
ies would, however, collectively argue against chance findings. 
Winner’s curse (58) cannot be precluded particularly for those 
variants with low MAFs. The lead variants of the two validated 
regions highlighted in this work all have MAF above 5% in 
the study populations (4p15 rs6448050 T allele 28%, rs9799795 
A  allele 45%, 18q12: rs11662168 C allele 8% and rs3786309 T 
allele 47%). Despite a standard protocol of covariate adjust-
ment and quality control threshold, variations may be present 
in the results of imputed variants as they were conducted at 
each study level. However, the minimal heterogeneity across the 
study results for these two regions is most reassuring. Our anal-
ysis has included all lung cancer GWAS data that are available 
for European descendants to date, and it represents maximum 
statistical power for the analysis for each histological subtype.

Functional variation

As the validated variants in 4p15.2 and 18q12.1 representing 
the two novel loci are located in intronic regions (non-coding 
variants), we undertook additional investigation into prob-
able function of the variants or those with which they are in 
LD. Non-coding variants in these regions were investigated 
in the RegulomeDB database (59) and using HaploReg (60). 
RegulomeDB and Haploreg synthesize data from multiple 
sources including protein-binding data (ChIP-Seq), expression 
quantitative trait loci (eQTL), location of TF binding sites, TF 
motif data (position weight matrices, PWM), DNase sensitivity 
(DNase-Seq), histone modification (Chip-Seq) data, manually 
curated regions and validated functional SNPs and provide a 
score for all non-protein coding variants in dbSNP132 (regu-
lome.standford.edu) as obtained from the ENCODE database. 
Application of this approach has shown that in 80% of validated 
GWAS findings taken from the NHGRI database the associated 
‘lead SNP’ is in LD with a variant in the RegulomeDB with a 
substantially higher functional score than the lead SNP itself 
(61). Regions of LD where r2 > 0.8 and within the 500-kb dis-
tance from the lead SNP were investigated. The top-ranked SNP 
for each variant using RegulomeDB and HaploReg is shown in 
Table 3. RegulomeDB provides a score from 1 to 7 with subcat-
egories for 1–3 (1a being the highest level of evidence, e.g. vari-
ant is an eQTL + TF-binding site + matched TF motif + matched 
DNase Footprint + DNase peak). For example, the variant 
rs923673 that is in linkage with our lead SNP (rs9799795) and 
located in the KCINP4 gene was scored as 1f in RegulomeDB as 
it was located in an eQTL, in a TF-binding site (from ChIP-Seq 
data) and the variant is likely to affect protein binding through 
histone modifications. HaploReg provides similar information 
about functionality of variants, including those in LD with the 
primary variant of interest. This tool suggests that variants in 
LD with our novel loci may alter regulatory motifs for genes 
with known relationships with lung cancer. Table 3 highlights 
the variants that may impact the function of genes known to 
be relevant in lung cancer development and/or progression. For 
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example, the variant rs11727733 that is in linkage with our lead 
SNP (rs9799795) and located in the KCINP4 gene alters a Foxp3 
regulatory motif. Furthermore, the variant rs10468834 that is 
in linkage with our lead SNP (rs11662168) and located in the 
GAREM gene alters a p53 regulatory motif.

Using novel prioritization approaches to replicate 
known variants

Our results included the previously observed variants from 
GWAS of lung cancer examining histology-specific effects (16). 
After calibration with the techniques employed in this investi-
gation, these known loci remained top ranked, suggesting that 
true effects will not be altered or missed when using these alter-
native prioritization approaches (Supplementary Table 1, avail-
able at Carcinogenesis Online).

The observed association in 5p15 region appears to be dif-
ferent across SCC and AC cases as previously observed with the 
association localized to CLPTM1L (rs401681) for SCC and local-
ized to TERT for (rs2736100) AC. The previously observed asso-
ciations in RAD52 (12) and BAT3-MSH5 (11) specific to SCC are 
consistent with the premise that altered DNA-repair capacity is 
essential to lung cancer (62) development and for this subtype 
where tobacco smoking is an extremely strong risk factor.

As expected, we also observed the associations within the 
15q25.1 region. We observed evidence consistent with two dis-
tinct signals in the region having independent effects on lung 
cancer (6,7). As identifying additional variants in novel regions 
using Bayesian prioritization approach was the main goal of this 
study, and conditional analyses (adjusting for the effects of the 
regions) were already conducted for a previous study based on 
similar data (16), we did not include conditional analyses for 
these known regions in this project.

Motivation for using prioritization approaches

The approaches employed in the prioritization analyses are 
based on the presumption that ‘functional’ SNPs or those in LD 
with such SNPs are more likely to be associated causally with 

risk of cancer development. A  summary of enrichment/deple-
tion of SNP types from published GWAS (43) suggested that 
non-synonymous sites were significantly enriched in addition 
to regulatory elements and intergenic with a depletion of effect 
among intergenic regions when compared with SNPs randomly 
selected from genotyping arrays. A  recent analysis suggested 
that in validated GWAS associations, among those SNPs that 
are not in coding regions, a higher proportion of DNase hyper-
sensitive sites are observed suggesting a great importance of 
variants in non-coding regulatory regions (63). Our prior data 
were constructed to reflect these observations with information 
capturing both coding, differential coding sequences and regu-
latory elements. The limitation in the use of this data as well as 
use of the RegulomeDB is that they are not tissue specific and 
therefore may affect applicability of the functional information. 
With additional tissue-specific database becoming available [e.g. 
GTEx and TCGA data portal (64,65)], it is possible that the prior 
data can be improved over time. The present study was also lim-
ited to the genetic variants tagged by the genotyping arrays used 
and the quality of the imputation data for those regions. Our 
approach did not consider a polygenic model to account for the 
joint effect of many variants with small effects. However, the 
novel variants identified in our study will contribute to future 
work on establishing polygenic model for lung cancer as the 
statistical methods continue to develop to adequately analyze 
polygenic effects in GWAS of complex diseases (66).

The results of these analyses and others (67–69) employing 
prioritization approaches to GWAS data utilizing the wealth 
of information available through online collaborative and data 
banking efforts suggest that these techniques are indeed useful 
as complimentary approaches to the traditional methods. Our 
results suggest that in this particular application and using this 
prior distribution for the variants, the Q-values from the SFDR 
stratified the ranking most clearly between those variants sug-
gested for additional prioritization compared with the other two 
methods. This is based on the relative difference between those 
top values for the top-ranked SNPs and the rest of variants as 
observed in the Manhattan plots.

Table 3.  Annotation of possible ‘functional’ SNPs using lead SNP approach in (A) RegulomeDB (61) and (B) HaploReg (60)

Lead SNP chr Position (hg19) Associated gene
Highest SNP 
in LD RegulomeDB score Position (hg19)

Distance to 
lead SNP (bp)

(A)
rs6448050 (discovery) 4 21 407 759 KCNIP4 rs59708864 3a 21 368 138 39 621
rs9799795 (fine mapping) 4 20 831 806 KCNIP4 rs923673 1f 20 791 197 40 609
rs11662168 (discovery) 18 30 026 392 GAREM rs7237059 2b 29 958 797 67 595
rs3786309 (fine mapping) 18 29 972 774 GAREM rs73956883 2b 29 913 973 58 801

Lead SNP chr Position (hg19) Associated gene
Highest SNP 
in LD HaploReg results Position (hg19)

Distance to 
lead SNP (bp)

(B)
rs6448050 (discovery) 4 21 407 759 KCNIP4 rs17462464 16 regulatory 

motifs altered
21 383 391 24 368

rs9799795 (fine mapping) 4 20 831 806 KCNIP4 rs11727733 Foxp3 regulatory 
motif altered

20 837 717 5911

rs11662168 (discovery) 18 30 026 392 GAREM rs10468834 p53 regulatory 
motif altered

30 029 959 3567

rs3786309 (fine mapping) 18 29 972 774 GAREM rs3786309 RXRA motif 
altered

— —

Regulome scores correspond to 1f, eQTL + TF binding/DNase peak; 2a, TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b, TF binding + any 

motif + DNase Footprint + DNase peak; 3a, TF binding + any motif + DNase peak. Table 3B highlights the variants that may impact the function of genes known to be 

relevant in lung cancer development and/or progression. For rs3786309, HaploReg did not yield any functional SNPs in their LD algorithm.
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In this study, we identified two novel lung cancer susceptibil-
ity loci using multiple variant prioritization techniques with a 
total of 16 460 cases and 36 422 controls in a two-stage design. 
Moving forward, these variants are included on the OncoArray, a 
cancer-specific chip, being developed in partnership across the 
major cancer consortia at which point associations for multiple 
cancer sites can be investigated. Our results can also contribute 
to future work on establishing polygenic model for lung cancer.

Supplementary material
Supplementary Tables 1–4 and Figures 1–4 can be found at 
http://carcin.oxfordjournals.org/
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