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Abstract

Motivation: Experimentally determined gene regulatory networks can be enriched by computa-

tional inference from high-throughput expression profiles. However, the prediction of regulatory

interactions is severely impaired by indirect and spurious effects, particularly for eukaryotes.

Recently, published methods report improved predictions by exploiting the a priori known targets

of a regulator (its local topology) in addition to expression profiles.

Results: We find that methods exploiting known targets show an unexpectedly high rate of false

discoveries. This leads to inflated performance estimates and the prediction of an excessive num-

ber of new interactions for regulators with many known targets. These issues are hidden from com-

mon evaluation and cross-validation setups, which is due to Simpson’s paradox. We suggest a

confidence score recalibration method (CoRe) that reduces the false discovery rate and enables a

reliable performance estimation.

Conclusions: CoRe considerably improves the results of network inference methods that exploit

known targets. Predictions then display the biological process specificity of regulators more cor-

rectly and enable the inference of accurate genome-wide regulatory networks in eukaryotes. For

yeast, we propose a network with more than 22 000 confident interactions. We point out that ma-

chine learning approaches outside of the area of network inference may be affected as well.

Availability and implementation: Results, executable code and networks are available via our

website http://www.bio.ifi.lmu.de/forschung/CoRe.

Contact: robert.kueffner@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulatory networks (GRNs) consist of interactions of regula-

tors such as transcription factors (TFs) that physically bind to spe-

cific nucleotide sequences to regulate the expression of target genes.

GRNs can be experimentally derived from TF-binding studies

(Gerstein et al., 2012) such as Chromatin Immuno-Precipitation

[ChIP, Zheng et al. (2010)] or DNase footprinting (Neph et al.,

2012). A large fraction of the interactions reported by these

approaches are not associated with changes in target expression

(Wu et al., 2007). On the other hand, expression changes in poten-

tial TF targets can be detected from TF-knockout profiles (Chua

et al., 2006). This approach, however, is prone to indirect or spuri-

ous effects (Hu et al., 2007).

Although the number of conducted TF-binding and TF-knockout

studies is growing (Petricka and Benfey, 2011) the discovery of

novel regulations detected with each additional study decreases.
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Thus, a combination of experimental results and computational in-

ference approaches is likely to provide more comprehensive

networks.

Many inference methods use expression data exclusively. An

interaction is predicted if a TF and its putative target are co-

expressed. Such expression-based approaches infer prokaryotic net-

works successfully (Faith et al., 2007; Greenfield et al., 2013;

Margolin et al., 2006; Michoel et al., 2009). However, they perform

hardly better than random for inference of eukaryotic networks

(Hu et al., 2007; Küffner et al., 2012; Marbach et al., 2012;

Michoel et al., 2009; Narendra et al., 2011; Soranzo et al., 2007;

Wu and Chan, 2012), although they can achieve useful results in

special cases [e.g. for respiratory genes, Michoel et al. (2009)].

Interactions in eukaryotes are difficult to infer as observable depend-

encies between the expression of regulator and target are weaker

and context-dependent. One reason is the increased level of com-

plexity and the combinatorial nature of the eukaryotic regulation of

transcription (Neph et al., 2012).

The prediction of novel interactions can be improved for pro-

karyotic and in silico data by exploiting a priori known interactions

[local topology priors, Greenfield et al. (2013)]. This allows to de-

termine whether a given TF is active based on the expression of its

known targets (Ciofani et al., 2012; Naeem et al., 2012) enabling a

more reliable prediction of novel targets (De Smet and Marchal,

2010; Mordelet and Vert, 2008; Qian et al., 2003). See

Supplementary, Section S5 for an overview on related methods.

Here, we investigate whether eukaryotic networks are accurately

inferred by methods exploiting topology priors. First, we demon-

strate that many existing performance evaluations are misleading.

They are not adequate for local topology methods and overestimate

network quality substantially. This effect is due to Simpson’s

Paradox, well-known in causal theory (Pearl, 2009; Simpson, 1951).

Second, this also strongly influences the quality and composition of

inferred networks. We develop a simple recalibration strategy and

demonstrate how it can be applied for the inference of a confident

genome-scale regulatory network in yeast.

2 Materials and methods

Network inference methods score all pairs of regulators and putative

target genes to quantify the confidence that a given pair represents a

true interaction. For both types of inference methods discussed here,

namely expression-based methods and local topology methods, con-

fident predictions are selected by applying a unified cutoff.

Expression-based methods are based exclusively on expression data

and ignore known interactions. Local topology methods use expres-

sion data and known interactions (topology priors) to train a

so-called local model per regulator (Fig. 1).

2.1 Data
We obtained five yeast expression compendia (for details see

Supplementary, Section S2.1) from (i) the 5th DREAM Challenge

[challenge 4, Marbach et al. (2012)], (ii) the Many Microbe

Microarray Database [M3D, Faith et al. (2008)], (iii) the study of

Hu et al. (2007), (iv) the study of Chua et al. (2006) and (v) the

Gene Expression Omnibus [GEO, Barrett et al. (2011)]. Case-

control pairs were selected from 2442 yeast microarrays as

described by Küffner et al. (2012) to compute log2 fold-changes.

Thereby, we obtained a matrix M 2 R
p�n with p¼1829 microarray

pairs and n¼5402 genes. We normalize M by two successive z-score

transformations of rows and columns, respectively.

We then collected experimentally supported interactions from

the Yeastract database (Abdulrehman et al., 2011), augmented by a

study of MacIsaac et al. (2006). We filtered genes that were not con-

tained in the expression data. We excluded TFs regulating less than

six known targets to enable training and cross-validation (see later).

The resulting reference standard contains 153 TFs, 4870 target

genes and 24 462 interactions derived from 356 TF-target binding

assays.

2.2 Training and assessment of local topologies
A regulatory interaction network of n genes G is a directed graph

N ¼ ðG; IÞ; G ¼ R [ T, where R is the set of regulators, T is the set

of targets and I � R� T are regulatory interactions. Each instance

of I is a regulator-target pair ðr; tÞ 2 R� T that is labeled with a

weight wrt denoting the number of TF-binding studies that support

interaction (r, t).

Machine learning models are trained to predict novel regulations

ðr; tÞ 2 R� T. Based on the known interactions (Supplementary,

Section S2.3.2), each putative regulation is labeled by lrt, where lrt
is 1 if wrt �1 and 0 otherwise. The matrix of fold-changes

M ¼ ðmijÞ 2 R
p�n represents the feature vectors. The value mij is the

fold-change for gene j 2 G in array pair i, and we denote row i by

Mi� and column j by M�j. Then, the feature vector for (r, t) is given

by M:t (Supplementary, Fig. S1).

We train jRj local models, each predicting confidence estimates

ĉrt specific for a single regulator r of putative regulations (r, t):

sr : R
p ! R; srðM:tÞ ¼ ĉrt: (1)

Alternatively, a single global model is trained for all regulators

using combined feature vectors, i.e. feature vectors of regulator and

target are concatenated to represent an interaction (Supplementary,

Section S2.3)

s : R
pþp ! R; sðM:r �M:tÞ ¼ ĉrt: (2)

From all regulations, we build k splits for each model stratified

with respect to their label distribution. Cross-validation (here:

3-CV, Supplementary, Section S2.4) is performed by retaining one

split at a time and training a model on the remaining k�1 splits, so

that interactions are either used in evaluation or training, but not

both. Every split results in jRj � jTj confidence values ĉrt that score

all regulations ðr; tÞ 2 R� T. For regulator r, we denote the distribu-

tion of these confidence values as Dr (Fig. 1b and c).

The quality of inferred networks is assessed after integrating the

predictions across all regulators. Assessment compares predictions

to a reference standard of a priori known interactions, for instance

by the area under the receiver operator characteristics curve (AUC).

An AUC of 1.0 indicates that the confidence scores for the true inter-

actions are higher than those for false positives, while an AUC of

0.5 would indicate random predictions. Such a cross-validated AUC

analysis is a standard approach for the assessment of inference meth-

ods (Mordelet and Vert, 2008).

2.3 Confidence recalibration
Randomized topologies are generated to share key statistics with the

reference standard of known interactions (Fig. 1a and d). We re-

move all regulations from the network and randomly introduce new

regulations until each node k has regained its original in- and out-de-

gree [compare Dorogovtsev and Mendes (2003), p.12]. Further, the

association of expression data and genes is shuffled by gene label

permutation. For each of the q randomized networks Nð1Þ; . . . ;NðqÞ

we perform a CV prediction to obtain confidence values ĉ
ðiÞ
rt as
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described earlier (Fig. 1). Let D
ðiÞ
r the distribution of confidence val-

ues specific to a regulator r computed using the random prior NðiÞ.

We then compute a joint distribution D0r that encompasses all confi-

dence values derived from random networks that are associated to

regulators of the same out-degree (Fig. 1f).

D0r denotes the randomized complement of Dr. By comparing

these two distributions we select interactions with scores higher

than those observed in the randomized case. Each regulation’s confi-

dence ĉrt is replaced by its complement jrt (Fig. 1c and g):

jrt ¼
ĉrt �medðD0rÞ

maxðD0rÞ �medðD0rÞ
: (3)

Scores are thus recalibrated based on the median confidence med

ðD0rÞ and the distribution scale (maxðD0rÞ �medðD0rÞ). A j value

above 1.0 corresponds to a false discovery rate (FDR) of 0, i.e. to

confidence estimates not achieved in random topologies.

3 Results

3.1 Simpson’s paradox
We followed the SIRENE approach [Mordelet and Vert (2008);

Section 2] and trained local models based on support vector ma-

chines (SVMs) to predict confidence values for potential regulations.

On a large expression dataset of 2442 yeast microarrays and a

regulatory network of 24 462 interactions (Section 2.1) the cross-

validated predictions achieved a network-wide AUC of 0.784.

However, we found this standard, cross-validated AUC analysis

misleading in case of methods integrating topology priors. We dem-

onstrated this by training the methods on randomized networks

(random re-assignment of targets to regulators). The confidence

scores for individual regulators are random, resulting in regulator-

specific AUC values of 0.5 (Supplementary, Section S2.3.3).

Strikingly, an evaluation across all regulators yielded an AUC of

0.798, a score above the AUC achieved by SIRENE.

These two results seem to be in conflict: a method that performs

randomly for each regulator induced subnetwork should yield ran-

dom overall performance as well. This effect resembles the

Simpson’s or ‘amalgamation’ paradox (Pearl, 2009; Simpson,

1951): each of the regulator-specific distributions achieves an AUC

of 0.5, while the AUC of the joint distribution suggests non-random

performance (compare Supplementary, Section S3.1).

Here, the paradox results from the fact that predicted confidence

score distributions are heterogeneous across regulators and are char-

acterized by different scale and location parameters (Fig. 2a, light

gray boxes). In particular, score distributions for regulators with

many known targets (high out-degree) such as ste12 are wider and

systematically above average. We refer to this effect as High Degree

Preference (HDP). These regulators contribute many true positives,

i.e. after the integration higher scores become enriched for true posi-

tives. This in turn leads to non-random AUC values. Selected high-

scoring predictions thus remain unspecific while biologically more

specific signals are likely being missed (Pavlidis and Gillis, 2013).

Following this line of argument, the regulator out-degree confounds

the integration of confidence values. This is consistent with results

demonstrated for the prediction of genes involved in biological proc-

esses (Gillis and Pavlidis, 2011).

To examine whether the paradox is an artifact of SVMs we

trained further model classes (e.g. decision trees and logistic regres-

sion; Supplementary, Sections S2.6 and S3). We observed similar ef-

fects across all examined techniques, suggesting that regulator-specific

methods using topology priors are generally affected by an HDP.

Besides the confounding of network quality measures, the com-

position of predicted networks is also affected. We predicted net-

works by selecting high-scoring interactions using a threshold

determined from the estimated size of the complete yeast network

(Supplementary, Sections S2.2 and S3.2), which should be twice as

large as the known network. A score threshold was chosen so that

selected regulations contain 50% previously confirmed ones (the

Precision-50, or P50 network).

For a regulator with out-degree d we obtained two types of score

distributions: (i) from the model trained on its known targets and (ii)

from models trained on the targets of randomized regulators with

out-degree d (Fig. 2a). A unified cutoff selects an excessive number of

predictions for high-degree TFs that overlap with random scores. To

quantify this, we computed the FDR based on the number of inter-

actions scored above the P50 threshold in distribution (ii) divided by

the total number of interactions above that threshold in (i) and (ii).

Fig.1. Outline of the recalibration approach. Based on the known network (a), a regulator-specific model (b) is trained to predict potential targets for this

regulator. This results in a confidence score distribution for each regulator (c). Additionally, we generate random networks (d) maintaining in- and out-degrees

from the original network and train models (e) for each random topology in the same way as for the original network. For each TF out-degree, we combine result-

ing random confidence scores into a joint distribution (f). Finally, we compare the two distributions c and f based on their respective medians (med) and maxima

(max). We minimize false discoveries by selecting regulations [shaded area in (g)] that exceed values observed for random networks

2838 T.Petri et al.
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For example, the FDR is 44.4% for high-degree ste12 and 22% across

all TFs (Fig. 2f), which is unacceptably high. In contrast to ste12, all

predictions are rejected in case of low-degree TFs such as cat8, even if

they substantially exceed random scores (Fig. 2a). Only 81 of 153 TFs

(53%) receive predictions. We concluded that neither cross-validation

nor AUC analysis are sufficient to ensure the overall quality of net-

works inferred using structural priors.

We also assessed whether TFs frequently regulate the expression

of targets that share similar biological functions (Segal et al., 2003).

We therefore tested whether known and predicted targets of the same

TF exhibit substantial functional overlaps (Supplementary, Section

S2.8). We observed that the high proportion of random scores (e.g.

for ste12) concealed most of the signal as interactions with higher

scores hardly showed an increased functional coherence (Fig. 2b).

3.2 Correction through score recalibration
We introduce a confidence recalibration (CoRe) as a wrapper for

existing methods (Section 2.3). Based on the random networks, we

derived expected location (median score) and scale (maximum

score) properties for each out-degree d and used them to transform

the predicted confidences into topology-corrected scores. Scores for

each regulator are recalibrated by scaling the median and maximum

scores to 0 and 1, respectively (Fig. 2c). This renders score distribu-

tions comparable so that they can be integrated across TFs.

The FDR is then 0 for predictions with scores above 1 as they ap-

pear only for the true but not for the randomized networks.

Thus, interactions for each regulator selected after CoRe are scored

above the random level.

To obtain a P50 network, we select interactions that achieve a

corrected score of > 0:92. The FDR for this network was reduced

to 1.4% (as compared with 22.0% without recalibration).

We observed that predictions are now balanced across TF degrees

(Fig. 2g), predicting interactions for 138 TFs versus 81 without

recalibration.

To gain further insight in the nature of the corrected network, we

estimated the functional relationship between known and novel predicted

targets (Supplementary, Section S2.8). Regulatory patterns were more co-

herent for the corrected network (compare Figs 2b and e).

3.3 Application of CoRe to network inference
For all subsequent methods and analyses we report corrected results.

To evaluate the yeast regulatory network obtained, we conducted a

comparative assessment of frequently used inference approaches and

a consensus approach (Supplementary, Sections S2.3.4 and S2.6).

The approaches are roughly classified by five attributes (Fig. 3a and

Supplementary, Section S5):

1. method: unsupervised expression-based (Faith et al., 2007) ver-

sus supervised using a structure prior;

2. formulation: one-class (Mordelet and Vert, 2010) versus two-

class that treat unknown interactions as informative;

3. strategy: lazy (Supplementary, Section S5) versus parameterized

models;

4. data handling: non-integrative versus integrative e.g. using

TF-binding site preferences (Ernst et al., 2008);

5. models: global (Yip et al., 2009) versus local (regulator-specific).

(a)

(d) (e) (f) (g)

(b) (c)

Fig. 2. Score recalibration in network predictions. (a) We trained SVMs for each TF (compare Supplementary, Fig. S1). Putative target genes were selected by a

threshold (horizontal line) on the resulting TF-specific scores (boxplots marked by asterics). Additional SVMs were trained on random networks (light gray) and

FDRs were computed for all regulators but those such as xbp1 where no predictions were made. (b) The density map displays whether predicted and known tar-

gets of the same TF overlap in their biological function. Positive z-scores (abscissa) indicate significant function overlaps for corresponding scores (ordinate). (c)

Score distributions (marked by asterics) were recalibrated via randomized distributions (light gray): for each TF, the median med (dotted line) and maximum

max (dashed line) are mapped to 0.0 and 1.0, respectively. Panels (d) and (e) show boxplots, threshold, and a density map of function overlap after recalibration.

Panel (f) plots the FDR as a function of the number of predicted interactions. Arrows indicate the number of interactions achieving a precision of at least 50%

(P50). In (g), the ratio of predicted to gold standard targets (ordinate) is depicted across the range of TF out-degrees (¼number of gold standard targets, abscissa)

before and after recalibration
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SIRENE (Mordelet and Vert, 2008) is a supervised, two-class,

parameterized, non-integrative, local approach. For all methods, we

predicted confidence scores in a 3-CV scheme and recalibrated them

as described earlier.

Subsequently, we analyzed network motifs (Supplementary,

Section S2.7) to capture method- and topology-specific preferences

(Fig. 3b). Unsupervised, expression-based approaches do not use

topology priors but infer interactions if expression profiles of TFs

and putative targets are mutually dependent. An example is CLR

(context likelihood of relatedness, Faith et al., 2007). These methods

are unable to detect auto-regulation as in this case both expression

profiles would be identical. Confirming previous findings (Marbach

et al., 2012), expression-based approaches could hardly detect feed-

forward motifs or the correct direction of interactions. In contrast,

regulator-specific approaches were less affected by such difficult

cases and exhibited a consistently higher performance. For cascades

and low in-degree targets, a slight decrease in performance was

observed. Potentially, the latter indicated the prediction of novel

regulators for genes that were less well-studied previously.

Next, we evaluated the performance of approaches across all

interactions. Expression-based, one-class, and lazy learners per-

formed substantially worse than the remaining methods (Fig. 3c).

We observed that integrative methods like Serend (Ernst et al.,

2008) suffered from false positive predictions. This is likely due to

the low specificity of positional weight matrices [PWMs, Holloway

et al. (2008)] predicting targets only for 6.5% of all TFs

(Supplementary, Section S3). These methods were not further ana-

lyzed. Of the remaining five methods (methods 5–12 in Fig. 3), the

best results were obtained from regulator-specific SVMs and deci-

sion trees trained on bootstrap samples (bagging). See

Supplementary, Section S3.9 for methodological extensions such as

the integration of multiple predictors to perform a consensus

prediction.

3.4 A comprehensive yeast network
Our final yeast network includes 22 231 interactions with 153 TFs

and 3747 target genes. Of all predicted regulations, 12 869 are con-

tained in the reference standard, while 9362 are novel predictions.

The remaining 24; 462� 12; 869 ¼ 11; 593 reference standard inter-

actions (Supplementary, Fig. S4a) lacked an observable effect on ex-

pression and were thus not included.

The visualization and interpretation of organism-wide net-

works is challenging due to their size and complexity. Instead of

fully depicting each regulator, target and their interactions, we

employed a modular visualization. We derived regulatory modules

by grouping TFs with overlapping target sets and, vice versa,

target modules by grouping genes regulated by overlapping sets of

TFs. We connected regulator and target modules via meta-

interactions if >40% of all induced regulator-target pairs were

connected. This reduced representation featured 13 meta-

interactions among 9 target and 9 regulatory modules, capturing

half of the final interactions (11 232 interactions, 50.5% of all

predicted). See Figure 4 for an excerpt (full details are in

Supplementary, Sections S2.9 and S6, accessible through clickable

maps, see availability).

This modular view enables an integrated display of the network

as well as module-associated expression profiles. Given current data

and knowledge, the respective TF-modules likely control the form-

ing of transcriptional response patterns in the regulated target mod-

ules. Some key aspects of module-associated expression profiles are

summarized below (for a comprehensive literature review on all net-

work modules see Supplementary, Section S6). A representative gene

was selected manually for each module.

The hxt2 module features the most versatile regulation in our

network, regulated by three different TF clusters comprising the

highest total number of TFs (Fig. 4). According to GO (The Gene

Ontology Consortium, 2010), most of the 190 genes of the hxt2
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Fig. 3. Assessment of predicted interactions. We analyzed the predictions of 11 different inference methods across five yeast gene expression compendia. (a)

The dendrogram groups methods according to the similarity of their predictions. Properties that discriminate between different classes of methods are indicated

by the check boxes. Panel (b) shows if interactions in particular network motifs are easier (dark) or harder (light) to detect in comparison to all interactions. In (c)

method performance (AUC) and the number of interactions predicted at a precision of 50% or better (P50) (bars with dotted borders) are assessed. Furthermore,

we encoded experimentally determined targets of TFs into additional features (bars with solid borders, Supplementary, Sections S2.6.8 and S3.9) and integrated

methods 6–10 into a consensus approach (method 11). Panel (d) illustrates mean results from integrating all subsets of c ¼ 1:::5 compendia and m ¼ 1:::5 meth-

ods. All results are based on recalibrated scores
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cluster belong either to sugar transport (hxt genes) or glycogen

metabolic process (e.g. gac1). Consequently, we observe differen-

tial expression of these genes under low- versus high-glucose

growth conditions. When glucose is available, the sugar trans-

porters are abundantly expressed (Ozcan and Johnston, 1995),

whereas under glucose starvation glycogen storage is catabolized

to produce glucose preferably for fermentation (François and

Parrou, 2001).

The pdr1 (pleiotropic drug response) cluster comprised the larg-

est number of hxt2 regulators. It consisted of 16 TFs, all tightly con-

nected to the cellular response to drug and nutrition stress such as

differing glucose concentrations. Despite this general response medi-

ated by the pdr TFs (stb5 and msn1), much of the regulation was

performed by pseudohyphal growth TFs (nrg1, mga1 and ash1) in

conditions of nitrogen limitation and abundant fermentable carbon

sources like glucose (Lorenz and Heitman, 1998).

Interestingly, a strong regulatory impact on the hxt2 module was

also observed for regulators of the oxidative stress response—on the

one hand from the cad1 cluster (5 TFs, also responding to resulting

DNA damage), and, on the other hand, from the tec1 cluster (11

TFs, also driving pseudohyphal growth). Oxidative stress results in

cellular protection mechanisms, e.g. DNA repair and targeted pro-

tein degradation, which is associated with increased energy con-

sumption (Morano et al., 2012), initiated by the hxt2 cluster via

increased glucose uptake.

4 Discussion

GRNs are crucial to understand how regulators like TFs affect their

target genes on the expression level. Experimentally derived

networks are typically incomplete as the number of available experi-

ments is limited. To complement them, computational inference of

networks has been introduced. We revealed critical aspects but also

demonstrated that inference is necessary and feasible in eukaryotes.

Even in well-studied eukaryotes such as yeast, where 	900 pub-

lications on experimental TF-binding studies are available, current

networks are far from complete and benefit from computational

predictions. We found that only about half of all regulations that in-

duce detectable expression changes (‘active’ interactions) are cur-

rently known. In addition, experimental techniques are prone to

discover regulations without effect on the expression level. We

applied computational inference both for the detection of novel ac-

tive and the pruning of inactive regulations.

We reported three crucial findings based on the analysis of a

wide spectrum of data-driven inference methods (for reviews see De

Smet and Marchal 2010; Myers et al., 2006). First, we demonstrated

that methods incorporating experimentally derived interactions as

topology priors possess sufficient predictive power for the inference

of eukaryotic networks. Methods using expression data alone fail

here (Marbach et al., 2012; Narendra et al., 2011). We also showed

that topology priors lead to Simpson’s paradox (Pearl, 2009;

Simpson, 1951) distorting prediction and assessment of regulatory

interactions. Finally, we showed how to avoid the occurrence of the

paradox.

Generally, network inference methods that exploit the local top-

ology assign an excessive number of predictions to TFs with many

known targets (Ambroise et al., 2012; De Smet and Marchal, 2010),

and it has been doubted whether a correction is possible or sensible

(Gillis and Pavlidis, 2011; Myers et al., 2006). Our analysis revealed

that the number of known targets for a regulator is a confounder of

regulator-target predictions. This effect is not detected by common

(d) Annotation(c) Target gene clusters(b) Interactions(a) TF clusters

fold change:    x4      x2     x1    x0.5  x0.25

Fig. 4. Interactions and expression profiles. We partitioned our network of 22 231 gene regulatory interactions for visualization and identification of network mod-

ules. We derived (a) 9 clusters of 61 TFs that, via (b) 13 interactions between clusters (arrows), regulate (c) 9 clusters of 1758 target genes (excerpt of five TF and

five target clusters connected by nine interactions shown here, Supplementary, Section S6 for full figure). A representative gene is displayed for each TF and tar-

get cluster. Cluster interaction maps (black¼ interaction, white¼no interaction) comprise a total of 11 232 (50.5%) interactions. (d) Thus, depicted TF-modules are

likely to trigger expression responses in respective target modules and associated processes (top part of heatmap). The heatmaps display the differential expres-

sion of these target modules under the indicated knockout (KO) and other experimental conditions (bottom part) (Color version of this figure is available at

Bioinformatics online.)
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cross-validation routines: surprisingly, the same performance re-

ported for published network inference approaches can be achieved

by guessing random regulations. We developed a CoRe approach

wrapping existing methods and showed that it corrected for both

the over-estimation of performance and the distortion of the top-

ology toward TFs with many known targets (HDP).

We conducted a comprehensive assessment of methods integrat-

ing topology priors and identified methods suitable to derive a cor-

rected, accurate yeast regulatory network of active regulations. We

describe disadvantages of several methods, which we excluded due

to prediction performance, or the inadequate scale-up for large ex-

pression datasets. Our evaluation suggested that the selected meth-

ods detect several types of interactions successfully that are difficult

to predict. For instance, auto-regulatory interactions and the assign-

ment of directions are handled accurately, and immediate and indir-

ect interactions could be distinguished. We then integrated the

predictions from the selected methods to construct a network con-

sisting of half novel and half experimentally determined regulations.

This choice was based on our extrapolation of the size of the com-

plete yeast network. Our final yeast network (see availability) con-

tains 153 TFs that regulate 3747 target genes via 22 231

interactions. These include many novel and confident hypotheses of

regulatory relationships, while we expect less than 150 false posi-

tives in total. At the same time, we reject more than half of the ex-

perimentally determined interactions as they appear to be without

observable regulatory effect.

To gain an overview of the network, we derived modules of

target genes that were jointly regulated by sets of TFs. The resulting

modular structure was strikingly simple featuring 13 meta-

regulations that represent an index for inspecting the expression

effects of interactions. A thorough literature review confirmed that

the modules and their expression patterns correspond well to biolo-

gical processes such as respiration, sulfate/energy metabolism, trans-

port, stress response and cell division.

We conclude that methods integrating local topology can

extend known networks substantially and at a high reliability,

even in well-studied model organisms. These methods, in contrast to

those using expression data alone, are well-suited for the prediction

of interactions in yeast and presumably other eukaryotes. Due

to Simpson’s paradox, however, their application was more

difficult than previously acknowledged and required a correction

approach. We emphasize that topology, structural priors and para-

meterized models are widely applied beyond network inference

(Supplementary, Section S5 for an overview) and encourage a review

of fields that may benefit from confidence recalibration strategies

such as CoRe.
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