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1 A quick overview of the information in this SI

This Supplementary Information (SI) will possibly provide more information than you might need to grasp
the key aspects of our work. Therefore, this section will point out the most important sections to support
our key messages.

Additional methods

• Section 2.1 describes the compendia used throughout this work.

• For our prediction we loosely rely on a size estimate of a hypothetical complete yeast regulatory
network. Section 2.2 and 3.2 discuss both methodology and outcomes of this procedure.

• Section 2.4 discusses the applied validation setup, in particular our notion of true positives and
canonical quality measures like ROC and Precision50 (P50).

• In the main paper, we show the results of a network motif analysis. The associated method is
described in Section 2.7.

• We provide amodularized network representation in the main paper, see Section 2.9 for a description
of the module derivation, and Figure 9 for the complete network.

• As a baseline reference of unsupervised prediction we use a correlation approach, see Section 2.6.1.

• We extended and combined existing approaches to obtain a sensible overall network. This network is
referred to as ’consensus’ in the main paper. For detailed information see Section 3.9.

Additional results

• We concluded that the tendency to preferentially attach novel predictions to regulators with many
known targets resembles Simpson’s Paradox. In Section 3.1, we provide a more in-depth discussion
on the origin and implications of the seemingly paradox situation.

• In Tables 5 the performances of all applied methods are shown in a standard setup, while 6
provides the same values for randomized networks (maintaining degree information). Notably, micro
and macro evaluation reflect a regulator-wise and network-wide viewpoint and thus reflect the origin
of Simpson’s Paradox. A graphical version is shown in the main paper (see Figure 3).

• Apart from our recalibration procedure, we suggest to explicitly integrate each targets topology
information as additional features and provide the respective results in Table 7. The associated
setup with randomized networks is shown in Table 8.

• We provide an overview of related approaches that could likely profit from score recalibration to
recover local model properties that are currently covered by global topology effects in Section 5. We
conclude the section by listing important review papers on inference.

• Supplementary File, http://www.bio.ifi.lmu.de/en/networks/LTBC.
The supplementary archive (83MB, 188MB unpacked) contains a clickable map that represents the
network of the main paper (see Figure 4). All contained genes can be retrieved together with additional
information. Furthermore, the archive contains the expression data and gold standard used in this paper
as well as the obtained interaction predictions. A README.txt describes the contained material.

• Following our modular network representation (Figure 9), we discuss each module individually
and discuss displayed relationships among interactions, processes and experimental conditions as well
as expression patterns in Section 6.
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2 Additional material and methods

2.1 Description of expression compendia

The following section describes briefly the details on the five selected yeast expression compendia used in this
work. Preprocessing and the computation of log2 fold-changes is described in the main paper, Section 2.1.

DREAM5 Network 4. The DREAM5 Network 4 (DN4) expression data set (Marbach et al., 2012)
comprises 536 expression measurements of 5950 yeast genes compiled from 59 publications. We computed
369 log2 fold change vectors from this expression compendium. A wide range of experimental conditions,
including gene, drug and environmental perturbations, partially conducted in time courses is covered.

Many Microbe Microarrays Database. The compendium containing 904 chips of 6777 yeast genes
was obtained from the Many Microbe Microarray Database (M3D, Faith et al. (2008)). The data set was
built from 62 experiments. After conversion to fold change values the data set contained 727 vectors of
length 6777.

Hu et al. (2007). This and the following two compendia focus on steady-state TF deletion and over-
expression measurements that we obtained as log2 fold change values from the GEO database. Hu et al.
(2007) performed a comprehensive study of TF knockout experiments. The GEO accession is number is
gse4654. It contains expression measurements of 263 transcription factors knockout strains under different
experimental conditions. The data set was transformed into 269 log2 fold change values each measuring 6429
genes.

Chua et al. (2006). In contrast to the previous compendium, the data set published by Chua et al.
(2006) (GEO accession number gse5499 ) consists of knockout but also over-expression experiments for 55
TFs. The data set contains 270 log2 fold change values for 6307 yeast genes.

Additional GEO datasets. From various GEO data sets (a complete list of all accession numbers is
available as supplemental information), we obtained additional 194 independent gene knockout measurements
for 6307 genes.

2.2 Estimating the size of the yeast regulatory network

We aim to estimate what fraction of regulatory interaction are currently known in yeast. In summary, we
compiled 29,398 interactions from 356 TF-to-promoter binding studies as well as 21,847 interactions from
536 gene expression studies. In the latter case, interactions are assumed between a regulator and a target
if the target expression changes in regulator deletion or overexpression mutants. Since expression studies
would introduce potentially indirect interactions we restrict the gold standard to interactions determined
by binding studies. However, these expression studies play an important role in the estimation of the yeast
network as described in the following.

Each published study would contribute a small fraction of regulations to the complete network. Mea-
surement bias and study overlap likely introduce saturation effects in the discovery of novel interactions.
Thus, we like to estimate the completeness of the yeast regulatory network by empirical limit analysis. An
important assumption here is that increasing the number of studies would converge towards a hypothetically
completed gold standard (CGS).

We repeatedly sample (10000 times) a fraction of x from the set of all studies that make up the gold
standard. This subset induces a partial regulatory interaction network. The (average) fraction of regulatory
interactions detected for x parts of all studies is denoted by Θ(x). Θ(x) is not expected to depend linearly
on x, but should follow a saturation curve and be convergent towards the CGS. We thus decided to model
the expected dependency in terms of a Hill coefficient Hill (1910):

Θ(x) =
m ∗ x

k + x
(1)

The two parameters of this equation have a direct interpretation in terms of the network completeness.
First, the parameterm is the fraction of interactions in the CGS in relative to all currently known regulations,
i.e. m = 1.0 would imply the currently known gold standard is complete.

Secondly, k is the fraction of available studies when half of all completed gold standard interactions are
detected. The coefficients have been estimated using the sample mean of the interaction count for a given x
such that the root mean squared deviation was minimized.
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Assuming that not all possible interactions are yet known, m will be greater than 1. Thus, multiplying
scaling the number of currently known interactions by m would approximate the total number of interactions
in the CGS.

We use the approach to contrast the convergence of regulations derived from (i) binding studies (ii) the
intersection of binding studies and regulator perturbation-based expression profiling. We sampled from all
binding studies in both cases, but in (ii) the population of sampled interactions was limited to the intersected
set. As a consequence, m = 1 corresponds to the number of interactions supported by both promoter binding
as well as TF perturbation studies. The tuple (k,m) was estimated separately for both scenarios.

2.3 Overview of regulatory network inference

2.3.1 Prediction schemes

Several approaches exist to derive a confidence value for predicted regulatory interactions. The following
section provides an overview of general input and prediction schemes.

It has been suggested to use mutual information and correlation based association scores to estimate the
confidence mapping s. A matrix Ĉ ∈ R|R|×|T |, ĉrt = s(r, t) of confidences is calculated among the columns of
M (Margolin et al., 2006; Faith et al., 2007). Rather than parameterizing a mapping function s the discrete
matrix Ĉ is estimated directly.

A well-known problem affecting these approaches is that the observed confidences cannot be credited to
direct and indirect regulatory influences. Several extensions have been introduced to estimate the network
of direct effects (de la Fuente et al., 2004; Feizi et al., 2013; Barzel et al., 2013).

Approaches that exploit experiment annotations (annotation-aware) for gene knockout or over-expression
have shown promising results (Küffner et al., 2012; Greenfield et al., 2013; Haynes et al., 2013). These models
assume that experiment perturbations influence the observed data directly. Yet, it is often not known in
practice. Furthermore, the annotation of perturbations and conditions must be present for all experiments
and uniformly structured. Only few existing resources provide this level of detail.

Target-centric approaches (Shimamura et al., 2009; Gustafsson and Hörnquist, 2010; Greenfield et al.,
2013; Haynes et al., 2013) model the observed value or change meg of a target gene t. The idea is to explain
the observed behavior by that of all other genes in an experiment e. The dependency is reflected by a single
function d that is parameterized across all experiments and targets:

d(Me.) = met, e ∈ E, t ∈ T (2)

It is non-trivial to extract (r, t) confidence values from d. Usually, d is therefore modeled such that its
parameters are interpretable. The most common choice are (penalized) linear regression models that allow
model coefficients to be transformed into confidences (see Sections 2.6.6 and 2.6.7).

Similarly, pattern-centric methods (Brown et al., 2000; Qian et al., 2003; Mordelet and Vert, 2008; Huynh-
Thu et al., 2010; Ambroise et al., 2012) (see Section 2.6.1) estimate the regulator-target confidence ĉrt as a
function of both regulator and target expression:

crt = s(M.r,M.t) (3)

This resembles the detection of covariance patterns within and across experiments. Equation 3 thus
captures the outcome of global approaches that build a single model for all regulators.

By contrast, local or regulator-centric train a single model sr for each regulator (Figure 1):

crt = sr(M.t) (4)

2.3.2 Structural priors

A natural extension to target-centric methods is the use of structure priors where the value of the target is
dependent on previously known regulators rather than all observed genes (Greenfield et al., 2013; Haynes
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Figure 1: Supervised regulator specifc inference Supervised inference methods can utilize (a) known
interactions as well as (b) an expression data matrix. (c) Known interactions are transformed into regulator-
specific label vectors of length 5042: each gene is labeled 1 if it is targeted by the regulator and 0 otherwise.
(d) A model Mi is trained for regulator i. Each model consists of n sub-models, where n cross-validation
splits are used to avoid overfitting (not shown). The model incorporates the structure prior (a+c) and target
expression (b) to distinguish known from non-target genes. (e) All potential regulations are predicted by
each model and the respective targets are ranked by the predicted confidence scores. A simplified example
is shown whereas known targets (saturated) are indistinguishable from non-targets (pastel). Yet, even if
all models produce random confidences common evaluation routines would assess the union of all models’
predictions as accurate. This effect can be attributed to the fact that large regulators (red, high out-degree)
systematically achieve higher confidences than smaller ones (green/blue, low out-degree).

et al., 2013). It has been shown that the combination of annotation-aware models and target-centric methods
could considerably improve predictive performance (Haynes et al., 2013).

Let the subset of interactions x ∈ G that regulates a target t be Ix→t, then the regulator-centric and global
methods can be formulated to integrate structure priors by explicitly encoding the topology information I
of N as

crt = sI(M.r,M.t, Ix→t, x 6=r) (5)

and its regulator-centric equivalent

crt = sIr(M.t, Ix→t, x 6=r), (6)

respectively. Here, Ix→t, x 6=t is the set of other known regulators for the target t.
A wide range of methods applied to network inference stems from machine learning (ML). Therefore,

some terminology is equivalent. In general, methods that do not train a parameterized models s are referred
to as lazy. Methods that do not rely on a previously known network structure I are termed unsupervised.
By contrast, methods using subsets of I as structure priors are usually supervised in a ML sense.

It has been argued that the parameterization of models by false negative interactions may mislead super-
vised methods. Consequently, approaches using only confirmed interactions have been developed to separate
real regulations from false positive ones (Geurts, 2011; Cerulo et al., 2010). We refer to this class of ap-
proaches as one-class, resembling the idea of wrong regulations being outliers to the single true class of
regulations (see Section 2.6.5).

Integrative methods use additional data sources explicitly ranging from sequence binding motifs (Ernst
et al., 2008) to the derivation of highly specific networks by combination of experimental verification and
automated prediction in an iterative manner (Ciofani et al. (2012), see Section 5.2).
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2.3.3 A network-only model

It has been shown previously that the node degree can have a seriously impact predictive performance
estimates (Gillis and Pavlidis, 2011). To estimate the predictive power of a network N ’s topology alone we
define a näıve regulator-specific confidence mapping

sr(t) = ĉrt = |r|outN (7)

This is merely the assignment of a regulator’s out-degree to all its targets. Consequently, all targets t of r
receive the same score, namely the out-degree of r. Obviously, this confidence function cannot distinguish
real from random targets: larger regulators affect more targets and trivially obtain higher scores. Calculation
of predictive quality then reflects the baseline expected by random guessing.

It seems valid to assume that the likelihood for any novel target to be regulated by a larger factor is
higher as well. Any evaluation that computes a factor-wise performance measure would observe that the
predictions are indeed random and no real target can be distinguished from random targets.

Unfortunately, the compilation of all individual predictions into a single list will hide this effect. In
fact, ranking regulations among large regulators and their possible targets higher than smaller regulator’s
interactions is likely superior to any random prediction. Arguably, the result network predicting all possible
interactions for say, the 5% largest regulators and nothing else is superior to a complete random solution.

It is important to observe that common measures like ROC and PR curves share the global viewpoint
and would score degree-sorting better than random predictions.

2.3.4 Consensus predictions across methods

To compute a consensus across multiple methods we apply a rank merging procedure (Marbach et al., 2012).
For regulators r ∈ R and targets t ∈ T each methodm provides a confidence ĉmrt (see main paper, Section 2.2).
A consensus score for the regulation (r, t) is given by its average rank across all m.

2.4 Summary of Prediction Setup and Validation

The trained models (Figure 1 (d) and main paper, Figure 1 (d), main paper) assign a confidence score to each
possible regulation (r, t). Ranking all putative interactions results in a list of |G| ∗ |T | confidence scores c(rt)
for each regulator. This list is compared to a gold standard Ngold that contains known or experimentally
confirmed interactions (see main paper, Section 2.1). For each r ∈ R we set up a 3-fold cross-validation
(3-CV). The set of all network nodes G of Ngold is split into n stratified sets. For local models, a scoring
model sr is built on n − 1 splits and the n-th set is predicted. For global models we split the set of nodes
G into k stratified folds (w.r.t. the number of regulations). The process is repeated n times for each split
and repeated k times. A corresponding stratified n-fold split is set up across all regulators to train global
models.

To estimate the quality of local or global methods we combine all predictions across all regulators (which
is not necessary for global methods) and sort them by their confidences. As previously suggested (Mordelet
and Vert, 2008), we apply so-called micro-averaging, i.e. the complete list of interactions ranked by their
confidences is compared to the corresponding gold-standard annotation. By contrast, macro-averaging would
combine regulator-wise performance metrics instead. Macro-averaging is relatively complex to interpret and
far less frequently applied. We calculate several quality estimates for each method. For a detailed definition
of all applied evaluation metrics see Section 2.5.

To estimate the functional consistency of a prediction we compute compare the expected biological
function overlap of novel predicted targets to known targets. A detailed description of this approach is given
in the Section 2.8.

2.5 Evaluation metrics for network prediction

In general, we compared predicted interactions to experimentally confirmed interactions, i.e. the gold-
standard. True positives (TP) are predicted interactions that can be confirmed by the gold standard.
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True negatives (TN) are neither predicted nor in the gold standard. False negatives (FN) are not pre-
dicted but present in the gold-standard while false positives (FP) are regulatory interactions that are pre-
dicted but are not confirmed. Canonical measures are the precision pr = TP/(TP + FP ), the sensitivity
sn = TP/(TP + FN) as well as specificity sp = TN/(TN + FP ).

Each predictive method results in a list of confidence values ĉrt covering all potential regulatory interac-
tions (r, t) among regulator r ∈ R and target t ∈ T . A ranked list of regulations is obtained by sorting by
confidence. All methods below inherently deal with ties present in these lists by averaging results in intervals
of equal confidence.

We computed three performance metrics commonly used to estimate the quality of predictive methods:

1. The Precision-50 (P50) is the maximal number of predictions that exceed or equal a precision of
50% when lowering a confidence threshold on the predicted scores. The higher the number, the more
interactions may be actually predicted with sufficient reliability in practice.

2. The precision recall curve (PR) is the precision pr as a function of sensitivity sn. To vary sensitivity
all possible thresholds for interaction predictions within the ranked list are screened. The AUPR is
the area under the PR.

3. By contrast, the AUC is the area under the receiver operator characteristics curve (ROC). The ROC is
the sensitivity sn as a function of (inverse) specificity 1− sp. Similar to the PR all possible confidence
thresholds are screened and plotted accordingly.

Random predictions are expected to receive an AUC of 0.5. Vice versa, an AUC of above 0.5 would imply
a non-random covariance of the prediction scores and the gold-standard. The best possible AUC value is 1.0
if predictions and gold-standard perfectly agree.

2.6 Summary of applied inference approaches

2.6.1 Predictive Correlation

A simple way to get a predictive supervised local scoring function sr for an unknown target x is to compare
the correlation of M.x (i.e. the experiment fold-change values for gene x) to that of known targets of r. We
compute an average correlation from individual correlations of known target fold-changes M.t, t ∈ TN (r)
and M.x using Pearson’s correlation ρ:

sr(x) :=

∑
t∈TN (r) ρ(M.x,M.t)

|TN (r)|
(8)

This takes into account only existing edges and can be regarded as a prototype of an one-class lazy
learning scheme. It served as a baseline comparative approach in Geurts (2011) and led to the results shown
in main paper, Figure 3 (main paper) denoted by method number 3.

2.6.2 Decision Trees

Decision trees are decision structures which classify genes with regard to the values of M.x. We applied
decision trees to train local models. In particular, a TF-specific decision tree imposes an order for experiment
examination. Nodes in a tree represent the expression measurements (columns of M) and the corresponding
threshold to optimally distinguish between targets and non-targets of the given TF. For each putative target,
the prediction procedure starts at the root node and decides for each level which of the possible decision
branches is chosen. The choice is based on the node-specific threshold and expression level of the examined
target. Leaves assign predictions on whether or not the tested target is regulated by the given TF. Training
and prediction using decision trees is performed using C4.5 (Winston, 1992) via probabilistic thresholds. A
single decision tree is error-prone thus usually many trees on subsets of data are build and integrated via
meta-learning techniques like boosting or bagging. Here, we employ bagging (Quinlan, 1996) to arrive at
a numerical scoring function sr by computing the empirical confidence values for each prediction. In each
cross-validation fold (see Section 2.4), we trained 20 trees each using 80% of the positive and 20% of the
negative examples in the training fold. Each possible interaction thus received a confidence score averaged
from 20 trees.
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2.6.3 Random Forests

An extension to decision trees are random forests, which sacrifice the ability of model interpretation in favor
of predictive power. This tree learner builds a set of predictive decision trees on experimental subsets and
uses a majority voting procedure across all trees to arrive at a decision. Decision values returned are a matrix
of class probabilities (one column for each class and one row for each input). Probabilities are calculated from
the votes of each generated tree. For random forests (R-package randomForest, Liaw and Wiener (2002))
and all approaches described in the following sub-sections, we used default parameters as selected by the
corresponding cited software packages.

2.6.4 Two-class SVM classification

Support vector classification (SVC) as originally proposed (Cortes and Vapnik, 1995) provides a robust
learning technique based on optimal separation of two-class high-dimensional input vectors.

The use of SVMmodels for regulator-centric pattern detection has been suggested following global (Brown
et al., 2000; Qian et al., 2003) and local (Mordelet and Vert, 2008) prediction schemes, whereas the latter
have shown superior performance. In all cases the separation of regulatory from non-regulatory interactions
is enforced.

All pairwise similarities of gene measurements M.i and M.j for i, j ∈ T (the set of targets) are used
to derive a hyper-plane intersecting certain training set members, so-called support vectors. The similarity
measure is usually a positive semi-definite kernel function k : Rp × Rp → R like a scalar product (linear
kernel) or a radial basis function (RBF). The parameter C controls the amount of misclassification allowed
during model building. In case of the RBF kernel the bandwidth γ controls how far two instances may be
apart to be considered similar. The all-against-all pairwise kernel evaluations is then transformed into a
convex optimization problem. The distance of a potential target to the optimized hyperplane is then applied
as the local supervised scoring function sr. Throughout this work, we applied the implementation of libSVM
(Chang and Lin, 2011) either directly or via the corresponding R-wrappers (Dimitriadou et al., 2011).

As SVMs solve two- or multi-label classification problems with high accuracy and enforce a regularized
solution (Schölkopf and Smola, 2001). In practice, we therefore expect SVMs to generalize well to previously
unseen regulation predictions.

2.6.5 Supervised one-class SVM

It has been argued that information on non-targets may be unreliable and thus merely known positive targets
should be used to derive regulatory interactions. One-class SVMs build predictive local models based on
only positive examples and provide a statistical outlier-detection for targets to be predicted (Chang and Lin,
2011).

2.6.6 Graphical Lasso and Penalized Regression

The graphical LASSO (Least Absolute Shrinkage and Selection Operator) method has been proposed by
Tibshirani for the estimation of linear models (Tibshirani, 1994). Lasso fits a generalized linear model
via penalized maximum likelihood. This method uses L1 penalties and hence provides automatic feature
selection. The L1 penalty causes a subset of the solution coefficients to become zero (Hastie et al., 2001).
This corresponds to a feature selection and results in a sparse model with regard to gene coefficients. The
approach has been adapted using the R package glmnet (Friedman et al., 2010; Simon et al., 2011).

2.6.7 Elastic Nets

The Elastic Net combines Lasso and ridge regression by a simultaneous optimization of both L1 and L2

penalties. The ridge penalty (L2) shrinks the coefficients of correlated variables towards each other. The
elastic net penalty can be used for regression or classification (Hastie et al., 2001). The elastic net algorithm
has first been proposed by Zou and Hastie (2005) for the analysis of microarray data and construction of
classification rules. It has been used for various studies with different extensions and settings: the inference
of expression values of yeast genes during the DREAM3 challenges where it performed best (Gustafsson and
Hörnquist, 2010). Elastic net is used for gene selection in the gene expression analysis framework (Barla
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et al., 2008). Shimamura et al. (2009) used the elastic net with an extension of a vector autoregressive (VAR)
model to infer gene networks from microarray experiments. As in the case of Lasso, the R package glmnet
is used.

2.6.8 Direct Integration of Network Topology

Methods that integrate prior knowledge of topology usually rely on the data induced by known regulator-
target interactions. They do not explicitly integrate the adjacency matrix of the underlying graph.

Say we derive a model for r ∈ R. Then, in order to integrate the knowledge of known targets in a
training set, we extend the vector of expression data of each potential target t ∈ T by information on
other known regulators. In particular, the (fold-change) column vector M.t is concatenated to the vector
Wt. = (wtj), j ∈ {R \ {r}}. (see main paper, Section 2.2). For the predictive model sr, the regulator
information for r is excluded to avoid over-fitting. In a cross-validation setting all interactions in the current
test set T ⊂ I are treated as non-existing, i.e. (r, t) ∈ T ⇒ wtj = 0.

2.7 Analysis of interactions in network motifs

class 1 class 0 Methods -speci�c preference for network motifs

All interactions (i.e. no restriction), restriction with 

respect to TF out-degree, or TG in-degree (5 motifs, 

see text).

Auto-regulatory loops.

Direction of interactions.

Feed-forward loops, i.e. prediction of interactions in the 

presence of additional indirect paths.

Cascade motifs, i.e. prediction of interactions in the 

absence of additional indirect paths vs. the incorrect 

prediction in the presence of indirection.

Figure 2: Motif prediction preferences. We analyzed method-specific preferences that depend on whether
predicted interactions (orange=transcription factor or TF, grey=target gene or TG) take part in 9 different
network motifs. Our analysis evaluated, in terms of AUC, how well correct and incorrect predictions (black
interaction = class 1 and black crossed-out interaction = class 0, respectively) can be distinguished. The
motif context was defined by the presence or absence of further edges in the gold standard (gray interactions).
The first row yielded 5 motifs based on additional restrictions on the black interactions: (i) no restriction,
(ii) low target in-degree (≤ 2 TFs), (iii) high target in-degree (> 2 TFs), (iv) low TF out-degree (≤ 25
targets) and (v) high TF out-degree (> 25 targets).

It is desirable to estimate the predictive power of an approach in the context of known motif contexts.
In the following we describe how we measure motif dependency in the context of these motifs as present in a
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Table 1: Assignment of True Positives (TP), False Positives (FP), False Negatives (FN) and True Nega-
tives (TN) in a gold standard motif context. The regulatory interaction (r, t) between a regulator r ∈ R and
its target t ∈ T is predicted if the regulatory interaction confidence ĉrt exceeds a given cutoff h. The in- and
out-degree of gene g ∈ G in the network N is |g|inN and |g|outN , respectively. Screening the cutoff allows the
computation of ROC and PR curves. Each motif-contrast (i.e. the comparison of two distinct motif classes)
is separated by a horizontal line and evaluated individually. All interactions that match neither class are
discarded for this contrast. Some motifs require the presence or absence of an additional regulator r′ ∈ R.
This table resembles the classes in Figure 2.

Motif Class Gold-Standard Context ĉrt ≤ h ĉrt > h
regulation (r, t) ∈ Ngold FN TP
no regulation (r, t) /∈ Ngold TN FP
regulation, low t in-degree (r, t) ∈ Ngold, |t|

in
gold < dt FN TP

no regulation, low t in-degree (r, t) /∈ Ngold, |t|
in
gold < dt TN FP

regulation, high t in-degree (r, t) ∈ Ngold, |t|
in
gold ≥ dt FN TP

no regulation, high t in-degree (r, t) /∈ Ngold, |t|
in
gold ≥ dt TN FP

regulation, low r out-degree (r, t) ∈ Ngold, |r|
out
gold < dr FN TP

no regulation, low r out-degree (r, t) /∈ Ngold, |r|
out
gold < dr TN FP

regulation, high r out-degree (r, t) ∈ Ngold, |r|
out
gold ≥ dr FN TP

no regulation, high r out-degree (r, t) /∈ Ngold, |r|
out
gold ≥ dr TN FP

auto-regulation (r, t) ∈ Ngold, (r = t) FN TP
no auto-regulation (r, t) /∈ Ngold, (r = t) TN FP
directed regulation (r, t) ∈ Ngold, (t, r) /∈ Ngold FN TP
reverse regulation (r, t) /∈ Ngold, (t, r) ∈ Ngold TN FP
feed-forward (r, t) ∈ Ngold, ∃r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold FN TP
cascade (r, t) /∈ Ngold, ∃r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold TN FP
direct regulation (r, t) ∈ Ngold, ∄r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold FN TP
cascade (r, t) /∈ Ngold, ∃r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold TN FP

gold-standard. In particular, we contrast two motif types at a time to obtain sensible positive and negative
classes to classify each prediction (a regulation exists or not) as true positive (TP), false positive (FP), true
negative (TN) or false negative (FN). Given this definition common performance values like AUROC can be
computed.

2.7.1 Simple regulations

In principle, simple regulations are no motifs. Thus, it is straightforward to decide whether a predicted
regulation is present in the gold-standard (TP) or not (FP). Similarly, a gold-standard regulation that is
missed by the prediction is FN while a TN is reported by neither prediction nor gold-standard. To get a
more specific idea of the influence of node degree we restrict the set of regulations that are considered for
AUROC analysis (see Figure 2).

2.7.2 Auto-regulation

It is useful to decide how well predictions can resolve auto-regulatory loops. Then two classes do exist in
the gold standard: (1) auto-regulation and (2) non-autoregulation. For each regulator-target pair we check
whether a predicted regulation exists in the gold-standard (TP) or not (FP). It is also correct to predict no
regulation if no regulation is present in the gold-standard (TN), yet would imply a FN otherwise.

2.7.3 Directed interactions

The simplest motif involving two distinct entities of the network is a directed interaction. If no reverse
regulation is present in the gold-standard, then a predicted regulation is considered TP and FP if the gold-
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standard features a reverse regulation. By contrast, it is considered FN not to predict a regulation if the
reverse regulation is present in the gold-standard and TN if is not.

2.7.4 Feed-forward loops and cascades

In case of regulations embedded within feed-forward loops the definition of classes is slightly more complicated
for the set of non-feed-forward loops is too general. Instead, we restrict the analysis to feed-forward-loops and
cascades in this case. All other motifs are neglected. For each regulator-target pair we thus check whether
a regulation is predicted and if that is the case if the gold-standard context of the regulation is a feed-
forward loop (TP) or a cascade (FP). The prediction of no regulation is considered a FN if a gold-standard
feed-forward context is present. In case of a cascade motif it is correct not to predict any regulation (TN).

2.7.5 Direct regulation and cascades

Similarly, for cascade motifs, the contrasting classes are regulations without existing bypass on the one hand
and on the other hand cascades. Thus, the prediction of a direct regulation while only a bypass is actually
present in the gold standard is considered FN. Consequently, it is correct not to predict an interaction (TN).
For the positive class, the prediction of a direct regulation is correct (TP) since no cascade is present. If we
miss the direct regulation despite there is no existing bypass in the data we consider the missing regulation
a FP.

In general different types of regulatory interactions according to network patterns surrounding them. For
each type two classes Each interaction defined in the gold-standard Ngold is assigned to one or more types
(see Figure 2) and predicted confidences are evaluated in this context (see Table 1). Given a prediction
method we evaluate the specific advantages or disadvantages for each interaction type.

For a given method we analyze the list of confidences for all possible |R|∗ |T | regulatory interactions. The
types are defined by the gold-standard network. The list of confidence values is restricted to include only one
type of interaction at a time (see Figure 2). Then, for the remaining interactions, AUC values are computed
as guided following the assignments defined in Table 1. The resulting AUC values are motif-specific and may
be compared across several methods.

For a given threshold h an interaction (r, t) is predicted if ĉrt > h. The interaction is considered correct in
the motif context if it is supported by the gold standard. Each type induces a subset of both gold-standard
regulations and non-regulations. This is necessary to arrive at sensible contexts e.g., the restriction to high
out-degree regulators.

The filtered set of interactions is then relevant for the motif of interest. Regulations that do not match
any class are discarded for this type. Motifs of up to three nodes (r, r′, t) ∈ (R × R × T ) are analyzed. We
define degree cutoffs dr and dt to distinguish low from high node degrees.

2.8 Functional overlap between known targets and novel predictions

Network inference methods suggest additional interactions that are not yet contained in the gold standard
of experimentally supported interactions. We defined a functional coherence score to determine whether
biological functions (The Gene Ontology Consortium, 2010) – annotated by GO processes to the known,
experimentally supported targets of a given TF r – match the functions of newly predicted target genes (see
Figure 3).

A functional profile for r was defined based on the known targets t in the gold standard network. The
profile is represented by a vector ontR(r) ∈ RK , where K is the number of functional categories, such that
functions associated to many targets of the given TF receive a higher weights. The functional coherence of
newly predicted targets was then evaluated by comparing the profile vector to according profiles ontG(t) of
each predicted target. The d-th component of ontG(t) is 1 if t is associated to the d-th functional category,
and 0 otherwise. It reflects how well novel target predictions correspond to the functional annotations of
targets in the gold standard.

The functional coherence measure depends on the functional representation of r as a vector of K GO
biological processes ontR(r) ∈ RK . Each dimension d = 1 . . . K is the statistical significance of an intersection
set, i.e. of genes that are both known targets of a given regulator r as well as associated with the d-
th biological process. The significance of the overlap was calculated as functional enrichment score of the
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Figure 3: Functional Coherence Measure. For each TF (top), a measure of functional coherence is
derived by assessing the overlap of functional annotations of (1) its experimentally supported targets and
(2) newly predicted putative targets among G. In a first step (left side), we apply the hypergeometric
test to analyze the enrichment of functional annotations among the experimentally supported targets. The
enrichment score is computed with respect to observing an overlap of x or more genes among targets of TF1

and those genes annotated with the hypothetical GO category GO4. The table ‘enrichment among targets’
denotes this enrichment as z-scores for all 1..K GO processes in the second row. Positive or negative z-scores
denote process annotations that are enriched or depleted, respectively, among the targets of TF1. Each table
of newly predicted targets of TF1 (right side) refers to a single gene, which might either be part of GO4

or not, hence assigning 0 or 1, respectively (column 4 of the second row). Finally, functional coherence is
computed as a scalar product between an enrichment vector (left table) and a gene-specific vector (right
table). Note that if the coherence for an known TF1-target such as GN is calculated, it is removed from the
calculation of the enrichment vector in a leave-one-out setup.

13



targets TNgold
(r). For a given functional category, it was computed as a hypergeometric z-score hz(x,N, n, k)

given the number of genes k in the category, the number of genes n known to be regulated by r, the number
N of all possible targets in the gold standard and the number of genes x in the intersection (see Figure 3).
Similarly, each t ∈ TNpred

(r) was then assigned to a vector ontG(t) ∈ {0, 1}K encoding the membership of t
in each process. For a regulatory interaction e = (r, t), we then computed the functional coherence as the
normalized scalar product consrt := 〈ontR(r), ontG(t)〉.

We then selected a set of regulatory interactions {(r, t) | clow ≤ sr(r, t) < chigh} for each interval of
prediction scores c = 〈clow, chigh〉. Each interval is associated with a row in a two-dimensional density map
that displays a histogram across equally sized bins of coherence scores.

2.9 Derivation of modules from the predicted network

We applied a k-means clustering approach using an euclidean distance metric on the predicted network
Npred. We represent each TF as a binary vector of all targets t ∈ G (the set of all genes, see above). An
interaction was encoded as 1, non-interactions as 0. The representation resulted in a matrix MN with 153
rows (TFs) and 3747 columns (targets). Clustering was performed in two dimensions: (1) clustering of TFs
and (2) clustering of targets. For both clusterings, k is screened randomly 100 times in the range of 8 to
15. Overall, 10000 biclusterings were thus prepared. We filtered the result to retain only biclusters with
a minimum density of 40% predicted interactions. Subsequently, biclusterings were ranked based on the
retained biclusters using

• the number of biclusters in the biclustering nb

• the number of interactions ni covered by the biclustering

• the number of TF clusters nt and

• the number of target clusters ng

by the empirical ranking criterion

ni − (nb ∗ nt ∗ ng). (9)

The criterion is designed to cover as many interactions as possible within a minimal number of clusters. The
key result of this procedure, the set of highest scoring biclustering, is represented in main paper, Figure 4.
Here, TF clusters are connected to target clusters they regulate. Interaction clusters then represent the
biclusters derived by this procedure. A detailed discussion of each TF and target cluster is given in Section 6.
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3 Additional results

3.1 Simpson’s paradox in network inference

We discussed that the regulator-wise and network-wide viewpoints for the evaluation of inference approaches
resemble Simpson’s Paradox. In this section we will discuss this in more detail.

3.1.1 A working example

Let’s start with an example of Simpson’s Paradox to clarify the conditions that lead to the (seemingly)
paradox situation. For the evaluation of network inference we aim to compare two methods A and B. Each
methods provides us with a confidence for each potential regulatory interaction. There are two common
approaches to evaluate the result network. (1) We sort all predicted regulations based on their assigned
confidence values and compute some canonical network-wide quality measure (like an AUC). This is known
as micro-evaluation. (2) We sort the predicted regulations per regulator and compute local quality measures.
This is often referred to as macro-evaluation. In practice, a situation may occur where micro-evaluation
suggests that B is superior to or on par with A and, simultaneously, most or all macro-evaluations would
prefer A. This seems to be paradox, because we intuitively think that a method that is better for all sub-
problems (or subsets) should perform better for the complete set as well. This reversal given two points of
view (complete and subsets) is often referred to as Simpson’s Paradox (Simpson (1951); Pearl (2009)).

3.1.2 Observations on real-world inference

Mapped to our setting, method A is a regulator-specific machine learning model that can be used to predict
novel targets from known regulator target patterns, e.g., a random forest approach. Method B randomly
re-assigns the known regulations to random targets and then uses method A on the shuffled network and
data. Method C is a baseline method that works free of data would predict the number of known targets for
each regulator as a confidence value for all its targets (see Section 2.3.3).

For a network-wide estimate of quality (like an AUROC) both A and B seem to be on par. For example a
random forest model achieves a micro-evaluation AUC of 79.6 (see Table 6). The same model being trained
on a shuffled topology achieves 72.9 (see Table 6).

In practice, both models would be considered to yield useful results given their overall performance. Yet,
for an averaged macro-evaluation we observe 63.1 for standard random forests and 49.4 using randomized
topologies. Notably, a model that provides random predictions for almost all regulators obtains a global
quality of more than 70 percent. The model quality is also evident in the Precision50 (P50): for shuffled
random forest predictions the P50 is plain 0, whereas 6996 regulation can be predicted at 50% precision
otherwise.

While both networks are of similar overall quality with respect to the micro-evaluation AUC, the regulator
performance is crucial. It seems inconsistent that the AUC fails to recognize this shortcoming as it provides
a network-wide point-of-view.

3.1.3 Simpson’s Paradox motivates confidence recalibration

The Simpson’s Paradox refers to the counter-intuitive interpretation of observed results. In fact, both the
micro-evaluation AUC and the average macro-evaluation are correct. The common perception is that a
network cannot be correct globally, but random for each regulator. This view neglects an important aspect:
both methods A and B have access to the degree of a regulator. This prior information seems to somehow
override the predictions that individual, regulator-specific models provide. In fact, we observed a strong
degree-dependency for predicted confidences in all models, and the micro-evaluation AUC would benefit
from ranking larger regulators first, while macro-evaluations do not rely on this ranking. We refer to the
preference to predict targets for larger regulators as High Degree Preference (HDP).

We can by now tell that the Simpson’s Paradox is induced by the integration of topology information.
Strikingly, method C yields an AUC of 79.8, a score that is superior to methods that integrate data. Since
the AUC itself is a reasonable quality measure one may argue to choose this globally best model. This
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argument is easily disproved: The regulator-wise quality is essential for almost any kind of application, and
method C cannot rank the predictions for individual regulators – neither can method B.

To resolve the Simpson’s Paradox would then mean to select a network-wide set of regulations with
reasonable performance whereas individual regulators should maintain the quality that state-of-the-art pre-
dictive methods can provide. To tackle this problem, and thus bridge the gap that leads to Simpson’s
Paradox, we suggest to capture the regulator-specific nature of B as a random background and use it to
contrast the results of the corresponding method A. We refer to this as confidence calibration (CoRe). This
is the motivation behind the κ-transformation procedure (see main paper, Section 2.3) as key element of
CoRe.

Obviously, while we aim to uncover regulator-wise information, the topology information should not be
cancelled out completely: it is implicitly reflected by an increased κ-value, i.e. the degree-specific contrast
among random and non-random confidence values.

As expected the Simpson’s Paradox and thus the HDP disappears upon recalibration. While the maro-
evaluation AUC stays the same, the semi-global P50 estimate for these networks slightly drops. Yet, by
design, the estimated network-wide false discovery rate is drastically reduced.

3.2 An estimate for complete size of the yeast regulatory network

The Yeastract database (Abdulrehman et al., 2011) compiles yeast interactions from two types of experi-
ments. The first type detects physical binding of transcription factors (TFs) to promoter regions of target
genes. The second one tests whether a perturbation (e.g., knockout) of a TF leads to changes in the ex-
pression of putative targets. We speak of active interactions if they are observed in both types of studies,
i.e. if the TF both binds to and effects transcriptional changes in a corresponding target gene. Just 9%
of all interactions detected by binding studies are thus confirmed (Figure 4a). It is important to note that
interactions are unevenly distributed among the TFs (TF out-degrees = number of known targets per TF,
Figure 4b).

To demonstrate that network inference is necessary, we estimated the size of the complete yeast regulatory
network (see Section 2.2). We treated the number of interactions as a function of the available binding studies.
We found that a hypothetically complete network would contain 3.5 time the number of interactions in
Yeastract (3.5 ∗ 29, 398 ≈ 105, 000 interactions) given an infinite number of binding studies (Figure 4c).

Based on this estimation, we further reason that 2.5 times the number of currently available binding
studies would be required to obtain half of the completed network (2.5∗356 ≈ 900 studies). Furthermore, our
results suggest that 50% of all “active” interactions are currently known. However, the low confirmation rate
of 9% impedes their identification and separation from the inactive ones. Inference methods are potentially
able to close that gap.

3.3 Performance of network predictions without expression data

Expression data is the principal source of information exploited to infer interactions. However, by disregard-
ing expression data in a network-only approach, basic issues of regulator-specific methods can be illustrated
(see Section 2). An analogous approach was suggested previously for function prediction (Gillis and Pavlidis,
2011). For the network-only approach, we assigned confidence scores based on the out-degree of regulators
such that scores for targets of a regulator A are always higher than scores for targets of a regulator B if
A has the higher out-degree. In contrast, scores among the candidate targets of a single regulator are dis-
tributed uniformly so that true and false targets of a given regulator are indistinguishable (Figure 1e and
Section 2.3.3).

Accordingly, we calculated a cross-validated AUC for a single network combining all regulator-specific
confidences as suggested (Mordelet and Vert, 2008). In addition, we determined the AUC for all regulators
separately. The latter indeed resulted for each regulator in an AUC of 0.5 expected for random predictions.
However, the integration of the same predictions across regulators into a joint confidence score distribution
resulted in an AUC of 0.798, seemingly indicating a substantial performance. Thus, despite the fact that
individual predictions were random, an integrated network can exhibit a substantial enrichment of true TF
targets at higher scores (Figure 1e).
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Figure 4: Properties of yeast interactions. (a) The Venn diagram depicts the number of interactions
(italics) in Yeastract obtained from 536 mRNA expression studies (yellow), 356 promoter binding studies
(blue), or both (green). (b) shows the distribution of TF out-degrees in Yeastract binding studies. (c)
plots the fraction of interactions contained in random subsets of binding studies as a function of subset size
(x = 1.0 =̂ 356 studies). Fractions are plotted for interactions from binding studies (blue circles, ordinate:
1.0 =̂ 29, 398 interactions) and for interactions detected in both study types (green squares, 1.0 =̂ 2, 636
interactions). We fit first order Hill functions θ(x), shown as lines, to estimate the ratio of expected to known
interactions m. Thus, an infinite number of promoter binding studies (blue line) would detect m = 3.5 times
the currently known 29,398 interactions. The second parameter k indicates that k = 2.5 times the currently
available 356 studies are required for detecting half the expected interactions.

3.4 Performance of network prediction based on TF binding sites

Table 2: Performance (AUC) of SEREND across TFs
Data Micro Macro Corrected
Motif 79.6 56.9 59.7

Expression 79.3 66.2 61.1
Combined 80.4 61.2 65.5

SEREND trains classifiers for each TF individually and is thus based on local models for prediction. For
the application to yeast, we used positional weight matrices (PWMs) obtained from the JASPAR database
(Bryne et al., 2008) and derived PWM promoter matching scores via CUREOS (Rahmann et al., 2003). As
detailed in Section 5.2, SEREND separately trains two logistic regression classifiers to predict GRIs from
expression data and TF promoter binding sites, respectively. A third classifier is employed to combine the
predictions from the other two classifiers.

SEREND’s confidence scores for putative GRIs are reported for each of the three classifiers, which
enabled us to separately evaluate the performance. Large difference in performance between regulator-
wise and network-wide quality measures (Table 5) suggest that SEREND would preferentially attach novel
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regulations to larger regulators. Table 2 indicates that each of the individual scores is susceptible, as shown
by inflated micro-averaged AUC values.

We next analyzed the TF-specific performance achieved using only the information on binding sites. Table
3 demonstrates the strong shift towards new targets for high-degree TFs. The two TFs (ste12, rap1) with
the highest out-degrees exhibit the lowest AUC performance but account for 80% of the predictions. This
shows that the networks estimated by SEREND may profit from a reduction in False Discoveries by score
recalibration. Table 4 depicts the results after recalibrating SEREND’s sequence binding scores using CoRe.
After the recalibration, the predictions are balanced with respect to TF out-degree (compare Figure 7). No
significant predictions were obtained for ste12, indicating that predictions achieved before were independent
of the regulator-specific model and entirely due to HDP. However, even after recalibration, suitable numbers
of targets were predicted (empirically, we required that the number of targets predicted for a given TF should
be > 10% of its out-degree ) for only 10 out of 153 (6.5%) TFs while no or very few (as in case of fkh1)
targets were predicted for the majority of TFs.

Table 3: Examles for some regulator-specific performance using only promoter binding information
TF orf Gene Outdegree Predicted AUC

YHR084w ste12 1770 1609 53.4
YNL216w rap1 1159 736 67.7
YJR060w cbf1 313 157 86.7
YBR049c reb1 502 151 87.7
YKL112w abf1 459 94 86.0
YDR207c ume6 166 70 83.3
YEL009c gcn4 284 46 79.9
YOL028c yap7 174 18 84.8

Table 4: TF-specific performance of promoter binding after recalibration
TF orf Gene Outdegree Predicted AUC

YKL112w abf1 459 532 86.0
YJR060w cbf1 313 361 86.7
YEL009c gcn4 284 237 79.9
YBR049c reb1 502 198 87.7
YOL028c yap7 174 129 84.8
YGL131c snt2 23 79 93.2
YDR207c ume6 166 75 88.3
YMR043w mcm1 238 60 69.8
YBL005w pdr3 107 24 75.5
YKL109w hap4 159 15 65.8
YIL131c fkh1 207 13 71.8

3.5 Robustness of Confidence Recalibration (CoRe)

As described in the main paper, Section 2.3, the proposed recalibration, CoRe, is based on random transcrip-
tional networks. Figure 5 shows how the number of used random networks influences the resulting evaluation
metrics. Shown are the results obtained from all possible subsets of 1..10 random networks based on the
10 random networks used in this study. Using a larger number of random networks boosts the scores and
decreases their variance. The differences in averaged performance estimates decrease as more random net-
works are used, indicating ten networks enable a sufficiently accurate recalibration. In addition, the results
from evaluation metrics without recalibration are shown, demonstrating the substantial over-estimation of
performance.
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Figure 5: Robustness of score recalibration The boxplots depict how the number of random transcrip-
tional networks (abscissa) used for the recalibration influences the results from various evaluation metrics
(ordinate) including the AUC, the AUPR and the P50 measures. For comparison, we also show the results
obtained without score recalibration (red bar, based on no, i.e. 0, random networks).

3.6 Dependency of distribution parameters on TF out-degree

In this section we further examine the properties of score distributions and their dependence on the TF out-
degree. Figure 6 depicts the dependency of distribution parameters on the TF out-degree. Both median and
maximum of the score distributions exhibit a strong positive correlation with respect to the TF out-degree.
Across the range of TF out-degrees, the maximum shows a higher slope than the median. This indicates
that the score distribution is not only shifted but also scaled in dependence on the out-degree. As shown
in the next section, a threshold on the non-recalibrated scores will therefore select more targets for TFs for
which many targets are assigned by the gold standard.

3.7 Relationship between TF out-degree and number of predicted targets

GRIs are typically selected by applying a precision-based threshold (e.g., P50 for a precision of 50%) on a
global list of predictions ranked by confidence score (Mordelet and Vert, 2008). In case of non-recalibrated
scores, Figure 7 shows that thereby, an excessive number of predictions are selected for high-degree TFs
while all predictions may be rejected in case of low-degree TFs. The P50 threshold can also be applied to
each TF individually (corresponding to a macro-evaluation), but this leads to similar results. In contrast, a
global P50 criterion applied to calibrated confidence scores results in a balanced ratio of predicted to known
TF targets, i.e. data points in Figure 7 are parallel to the abscissa.

3.8 Score distributions based on probability estimates

As an alternative to the raw confidence scores employed by methods such as Sirene (Mordelet and Vert, 2008),
Platt scores have been proposed by Holloway et al. (2008). Platt scores transform the raw confidence scores
into probability estimates that scale between 0 and 1 (compare Section 5.4). As shown in Figure 8, Platt
scores derived from randomized gold standards exhibit similar degree dependencies as the raw confidence
scores depicted in Figure 2a. Thus, the transformation into Platt scores alone is not sufficient to correct for
the HDP effect.

3.9 Improving regulator-specific predictions

In order to increase the number of correctly predicted interactions, we implemented three improvements.
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Figure 6: Degree dependency of location parameters. For each TF, simple location parameters are
estimated such as the median (left panel) and maximum (right panel) from score distributions derived from
random gold standards. The plot depicts the dependencies of these parameters (ordinate) on the TF out-
degree (abscissa). Shown as red crosses are the parameters as estimated from individual TFs and their
approximation via Bezier curves (green line). Score distributions were derived from local SVM models
obtained from the Sirene approach.

First, we integrated the five methods selected in the previous section into a consensus to obtain a single
network (see Section 2.3.4). This integration is potentially beneficial to exploit complementary advantages
of different methods (Marbach et al., 2012). We re-ranked interactions according to the average calibrated
score across all methods and selected the top-ranking interactions with a precision of 50% or better. This
consensus spanned a network of 8,726 predicted interactions (see main paper, Figure 3c). To examine
compendia-specific effects, we built consensus networks from predictions derived from subsets of expression
compendia and subsets of methods (see main paper, Figure 3d). The integration of further methods or
further compendia generally led to an increased performance.

The second improvement is motivated by the fact that genes are frequently regulated by more than one
TF and that several (often functionally related) TFs regulate overlapping sets of targets (Reményi et al.,
2004). Local methods predict targets for a single TF at a time and cannot take such combinatorial regulation
into account. We therefore encoded the set of known regulators of a gene as additional training data (see
Section 2.6.8). The true targets of each modeled regulator are excluded from the training to avoid over-
fitting. We observed that the explicit encoding of known regulations roughly doubled the number of P50
interactions, yielding 18,724 interactions (see main paper, Figure 3c). This corresponded to a threshold on
the κ confidences of 0.92.

Finally, we aimed to include gold-standard interactions predicted with moderate confidence. We therefore
extended the predicted network by gold-standard regulations that met a relaxed confidence threshold of
0.46 (compare P50=0.92, see main paper, Figure 2c). The fact that gold standard interactions have been
determined experimentally provides an increased confidence, justifying the relaxation of the threshold. This
further increased the size of our final yeast network to 22,231 interactions containing 153 TFs and 3,747
target genes. Of all predicted regulations, 12,869 are contained in the gold standard while 9,362 are novel
predictions. Among the 29,398 gold standard interactions (Figure 4a), even by the already relaxed threshold,
more than half (56.2%) were not confirmed by our approach. These ‘quiet’ interactions apparently have no
regulatory effect visible in our data.
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obtained. As an alternative that corresponds to macro-evaluation, the P50 criterion is applied to each TF
individually (local P50, blue).
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3.10 Numerical values of performance estimates

As a reference, the Tables 5 (gold standard, recalibrated) and 6 (randomized networks, recalibrated) provide
exact values of the recalibrated network performance measures as depicted by the green bars in Figure 3c of
the main paper. When topology features are included explicitly we obtain the values shown in Tables 7 and
8, respectively. The associated values shown are:

• auc := ’area under the receiver operator characteristics curve’

• aupr := ’area under the precision recall curve’

• fmb := ’optimal f-measure for variable threshold’

• p50 := ’number of predictions for a precision of 50%’

In addition, these tables summarize various evaluation approaches and contain further performance esti-
mates such as the F-measure. We compare several evaluation setups, including micro- vs. macro-averaging,
the influence of additional training features encoding known regulators, raw vs. recalibrated confidence scores
as well as experimentally derived gold standard vs. random networks. See Section 2.5 for details on the scores
and their computation.

Due to the long run-time, the random networks were not processed via CLR and, thus, calibrated scores
were not computed. Note that the consensus is constructed from the five approaches employing local models,
namely Random forest, Decision tree, Lasso, Elastic net and local SVM, which corresponds to the SIRENE
approach.

Even without recalibration, macro-evaluation takes a regulator-wise viewpoint and thus enables sensible
local performance estimation that may complement the network-wide point of view. Detailed results are
shown in Tables 5 and 7. However, macro-evaluation does not provide a mechanism to select a interactions
from a wide range of degrees. Due to the degree dependency of confidence scores the resulting networks will
preferentially consist of larger regulators (compare Section 3.7).
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Table 5: Evaluation for fold-change expression features (measure definition, see 3.10).
Micro Macro Micro, calibrated Macro, calibrated

Method auc aupr fmb p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

CLR 47.9 2.8 5.7 14 52.0 3.7 7.8 - - - - - - -

One-class SVM 50.3 6.5 12.5 0 50.9 4.0 8.3 51.4 3.6 6.4 0 50.9 4.0 8.3

Correlation 54.5 5.1 7.0 514 54.9 5.6 10.4 54.5 5.1 7.1 456 54.9 5.6 10.4

SEREND 81.5 22.4 28.6 3684 60.8 12.5 18.6 70.4 21.1 28.5 3332 61.2 12.9 19.2

Global SVM 81.8 21.2 29.1 2692 67.6 11.4 17.3 71.6 15.8 21.3 3054 67.6 11.4 17.3

Random forest 79.6 24.0 28.2 6996 63.1 11.4 17.8 62.9 17.9 23.1 5554 63.1 11.4 17.8

Decision tree 79.3 19.5 23.8 4110 66.1 13.3 20.1 65.3 17.0 23.1 4426 66.1 13.3 20.1

Lasso 81.4 25.7 29.9 8000 67.5 13.5 20.0 65.0 19.7 26.5 6490 67.4 13.5 20.1

Elastic net 81.6 25.9 29.9 8090 67.8 13.7 20.3 65.5 20.1 26.7 6576 67.8 13.7 20.3

Local SVM 78.4 28.2 33.5 10466 68.3 16.2 23.2 70.9 23.6 29.8 9130 68.3 16.2 23.2

Consensus 82.2 28.7 32.3 9918 68.5 15.2 21.8 69.3 23.5 29.3 8726 68.5 15.8 22.8

Table 6: Evaluation for random networks on fold-change features.
Micro Macro Micro, calibrated Macro, calibrated

Method auc aupr fmb p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

Random forest 72.9 9.9 16.1 0 49.4 3.1 6.4 47.8 3.5 7.5 0 49.4 3.1 6.4

Decision tree 69.9 5.2 10.1 0 49.6 3.1 6.3 48.4 3.2 6.4 0 49.6 3.1 6.3

Lasso 71.4 7.8 14.2 0 49.1 3.1 6.4 47.7 3.9 8.9 0 49.1 3.1 6.4

Elastic net 71.6 7.9 14.5 0 49.0 3.0 6.2 48.0 4.1 9.4 0 49.0 3.0 6.2

Local SVM 67.2 9.4 16.0 20 49.8 3.1 6.4 50.2 3.1 5.8 0 49.8 3.1 6.4

Table 7: Evaluation results for features extended by topology information.
Micro Macro Micro, calibrated Macro, calibrated

Method auc aupr fmb p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

CLR 46.9 2.8 5.7 6 38.0 3.2 6.7 - - - - - - -

One-class SVM 51.0 6.8 12.9 14 52.2 4.4 9.0 52.5 3.8 6.8 8 52.2 4.4 9.0

Correlation 56.7 5.5 7.7 504 59.4 9.3 14.6 56.7 5.5 7.7 480 59.4 9.3 10.4

SEREND 81.5 22.4 28.6 3684 60.8 12.5 18.6 78.5 24.3 31.6 5364 67.3 18.5 25.6

Global SVM 87.7 27.4 36.3 2630 79.1 17.8 23.3 82.7 20.5 26.2 2692 79.1 17.8 23.3

Random forest 85.4 34.3 37.8 13374 74.2 20.3 27.4 74.2 30.5 36.2 12990 74.2 20.3 27.4

Decision tree 86.1 36.4 39.3 15188 76.2 26.4 33.0 75.7 34.3 39.3 15586 76.2 26.4 33.0

Lasso 86.8 37.1 39.5 15030 77.6 23.2 30.5 73.7 30.6 37.1 13382 77.6 23.2 30.5

Elastic net 86.8 37.0 39.4 15046 77.8 23.5 30.9 73.8 30.6 37.1 13160 77.8 23.5 30.9

Local SVM 85.0 38.8 42.4 17520 77.9 28.3 35.5 80.3 36.8 41.6 17194 77.9 28.3 35.5

Consensus 88.1 42.0 43.3 18472 79.5 27.6 34.1 79.3 39.9 43.5 18724 79.5 29.8 36.5

Table 8: Evaluation results for features on random networks extended by topology information.
Micro Macro Micro, calibrated Macro, calibrated

Method auc aupr fmf p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

Random forest 73.0 9.9 16.1 0 49.6 3.1 6.4 48.2 3.6 7.7 0 49.6 3.1 6.4

Decision tree 70.4 5.3 10.3 0 49.9 3.1 6.3 48.7 3.3 6.6 0 49.9 3.1 6.3

Lasso 71.6 8.0 14.5 2 49.1 3.0 6.2 47.9 4.0 9.0 0 49.1 3.0 6.2

Elastic net 71.8 8.1 14.8 0 49.1 3.1 6.2 48.1 4.1 9.3 0 49.1 3.1 6.2

Local SVM 67.8 9.5 16.2 26 50.0 3.1 6.4 49.8 3.1 5.8 0 50.0 3.1 6.4
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4 Inference approaches, tasks, and issues

The present study is focused on gene regulatory network (GRN) inference methods that integrate prior
knowledge of previously known regulations. Similar approaches have been developed for many fields of
application. We have discussed critical issues in terms of prediction and evaluation at the example of GRN
inference. Yet, the prediction of protein-protein interactions, drug-target interactions as well as gene function
often resemble the core functionality. We thoroughly review a wide spectrum of methods in Section 5. In
particular, we discuss common properties that could eventually explain the prevalence of certain observations
in these fields as well.

4.1 Shared features among inference approaches

Certainly, categories for existing inference methods cannot be assigned in general. Still, focusing on shared
features provides the means for a more detailed discussion. Below, we describe some key features to distin-
guish existing approaches. Selected methods and methodological details are given in Section 5.

1. Mode of network utilization

• Unsupervised. Only expression data is used for training (Section 5.4), i.e. an interaction is usually
predicted if the TF and a putative target gene exhibit mutual dependency in their expression
profiles. In general, no prior knowledge is integrated.

• Supervised. Structural priors or experimentally supported interactions are used (i.e. gold standard
interactions, see Section 5).

2. Prior Integration

• One-class. Interactions not contained in the gold standard are treated as unknown rather than
non-existent (Section 5.1)

• Two-class. Interactions not contained in the gold standard are treated a non-existent (Section 5.1).

3. Modeling Strategy

• Lazy. Putative targets of a regulator are scored by comparing their gene expression profiles to
the expression profiles of known positive or negative targets. No model is built. (Section 2.3).

• Eager. A parameterized model is derived using expression profiles of known targets (Section 5).
The model is then used to predict novel interactions.

4. Data handling and integration

• Integrative. Other data besides gene expression or the known interactions is incorporated, e.g., TF
binding site sequences (Section 5.2).

• Non-integrative. Only expression data and part of the known interactions are used for training
(remaining methods in Section 5).

5. Model training strategy

• Global. A single model is trained (Section 5.3) integrating expression profiles as well as the known
interactions across all TFs and all putative target genes.

• Local. TF-wise models are trained (Section 5.1) each using expression data to predict putative
targets of a single TF at a time. Each of these models is then called a local model.
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4.2 Types of inference tasks

Typically, most inference methods (see main paper, Section 2.2) take prior knowledge into account. A
powerful way to represent such knowledge is by networks. In case of gene regulatory inference they would
summarize knowledge on known targets of regulators or transcription factors (TFs). kinds of relationships
including gene regulatory interactions are subsumed under the generic term functional associations. Different
kinds of functional associations between proteins or other biological entities further encompass protein-
protein interactions, drug-target interactions as well as protein annotations. The latter are associations that
link proteins to biological processes or protein functions. A related important concept is that of a gene set.
In case of interactions, a TF is associated with all genes contained in a corresponding gene set that comprises
all target genes of this TF. A biological process is assumed to be described by a gene set containing all genes
known to be relevant for that process. Essentially, a gene set is specific to a given entity such as a TF or a
biological process and covers a given type of functional association. Supervised inference can thus be applied
as shown in Figure 2 of the main paper to infer functional associations of interest if (i) suitable datasets are
available and can be structured as a data matrix and (ii) prior knowledge can be provided as a (partial) set
of genes in the form of a label vector. Again, in case of interaction inference, (i) could be large scale gene
expression data and (ii) would be (part of) the genes regulated by a given TF.

In this context, the prediction of functional associations or simply function prediction (FP) and the
prediction of regulatory interactions may be regarded as special cases of the same concept where function
is a common property among a set of genes such as the targets of a single transcription factor. Function
prediction is of interest in many biological use cases as predictive models complement prior knowledge and
thereby enable a deeper understanding of both novel and existing associations. In the process of prediction,
associations across different TFs or biological processes are prioritized based on prediction confidence to
enable the selection, evaluation or experimental follow-up of promising candidates.

4.3 Shared issues

The prediction of different kinds of functional associations shares important properties and issues. For
instance, Myers et al. (2006) focus on predicting gene functions, i.e. pathway-gene associations that are
predicted separately for each pathway of interest and thus, on predictions derived via local models. They
argue that the evaluation of functional annotation may be influenced by the uneven size and different
properties of certain biological processes. Inclusion or exclusion of the ribosome pathway (among 98 other
KEGG pathways) makes the difference between co-expression data being the most or least, respectively,
informative dataset. Myers et al. thus conclude that each process should be evaluated in isolation to overcome
HDP. However, this might not be a practical solution if functional associations must be obtained across
biological processes or if transcriptional networks must be obtained across TFs.

It is further important to note that, vice versa, proteins spanning broad range of functions are much
more likely to be confirmed as correct members of an arbitrary functional class in comparison to specific
proteins with a narrow range of functions. For protein-protein interaction networks, Gillis and Pavlidis
(2011) discuss that the number of functions a protein exposes is coupled to its node degree, i.e. the number
of interaction partners, and show that for an arbitrary functional category being predicted a ranking based
on the network node degree will perform better than expected by chance and can thus unintentionally skew
quality estimates. This is referred to as multi-functionality bias. Gillis and Pavlidis conclude that there are
no suitable techniques available that substantially reduce it without undesired side-effects. In particular,
Pavlidis and Gillis (2013) argue that an entirely different problem structure may arise, such that it may
often be unclear whether a fix is preferred or not.

We argue that for network inference a recalibration like CoRe is preferred. The regulator-wise recalibra-
tion using an empirical FDR yields sensible overall networks that maintain the regulator-specific quality of
their underlying models.

In contrast to these effects, De Smet and Marchal (2010) and Ambroise et al. (2012) observed related
preferences in the selection of predicted interactions. They describe that TFs with many known targets
receive disproportionately many predictions while hardly any predictions are assigned to TFs with few known
targets. De Smet and Marchal (2010) conclude that this is due to the fact that less information is available
for the TFs with few known targets and that, based on this observation, supervised approaches should not
be applied to infer interactions for TFs with few known interactions. In our present paper, we provided
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evidence that independent confidence distribution lead to a skewed overall integration. We demonstrated
that HDPcan be tackled by an appropriate recalibration. While for larger regulators some sensitivity in
detecting true novel regulations may thereby be lost, the amount of false predictions is drastically reduced.
For most smaller regulators CoReboosts sensitivity and the true positive rate and enables the prediction of
novel targets, even in case of low-degree TFs.

Common protocols for supervised prediction using local models have been established by SIRENE
(Mordelet and Vert, 2008) and SEREND (Ernst et al., 2008). Approaches that are prone to HDPuse
similar or derived protocols unless denoted otherwise.
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5 Related work

This section reviews some twenty methods devised for functional association prediction, focusing on ap-
proaches that take prior knowledge into account (usually by training supervised machine learners) in con-
trast to expression-based (unsupervised) approaches that do not. Methods are categorized into different
types as described in the previous section, which is reflected by corresponding subsections in the following.
Finally, the last part of this section lists review articles or reports on comparative assessments of inference
approaches.

This multitude of inference methods, tasks and corresponding publications demonstrates their wide ap-
plication. We further highlight how the majority of current supervised inference methods traces back to the
approaches we examined in the main paper, indicating that many of their basic properties and issues will be
shared.

5.1 Local models

In their seminal paper, Bleakley et al. (2007) introduce local models for the reconstruction of biological
networks. The inference of two network types is addressed at the example of yeast, that of metabolic gene
networks and protein-protein interaction (PPI) networks. For the prediction of the metabolic gene network,
expression data from (Eisen et al., 1998) and (Spellman et al., 1998) with 157 experiments, a localization
vector containing information about appearance of an enzyme in 23 locations (Huh et al., 2003) and a
phylogenetic profile about presence or absence of an enzyme in 145 fully sequenced genomes (Kanehisa
et al., 2004) are used. Yeast two-hybrid data from (Ito et al., 2001) and (Uetz et al., 2000) are additionally
used for the prediction of the PPI network. The gold standard for the metabolic gene network proposed
by (Yamanishi et al., 2005) consists of 668 enzymes and 2782 functional relationships. The gold standard
for the PPI network of (von Mering et al., 2002) was reduced to 2438 so-called high confidence interactions
among 984 proteins.

For each of the involved proteins, an individual SVM is trained to predict its interaction partners, i.e. one
local model per enzyme or protein is built. The predicted decision values are combined to rank possible
interactions between enzymes and proteins and to evaluate the performance of the method via the AUC.

Mordelet and Vert (2008), adopt the local models of Bleakley et al. (2007), for the SIRENE approach
to infer gene regulatory interactions from E. coli expression data. The gold standard and the expression data
are the same as in Faith et al. (2007). The expression data contains 445 microarray measurements of 4345
genes under different experimental conditions. The gold standard contains 3293 regulatory interactions be-
tween 154 TFs and 1211 genes. For each TF, a local SVM model is trained. Separate predictions for the
individual TFs are combined to obtain a global ranking of previously known and possibly novel interac-
tions and to subsequently evaluate inference performance via the AUC and the AUPR. The highest scoring
interactions are selected as long as a defined precision level is reached.

Bleakley et al. (2009) extend the concept of local models used in (Mordelet and Vert, 2008; Bleakley
et al., 2007) to the bipartite network problem of drug-target interactions. In this setting, one drug can
interact with many proteins and one protein can interact with many drugs, but drugs and proteins are not
considered to interact among themselves. The interaction data are derived from several databases containing
between 45..445 known drugs as well as 26..664 target genes connected by 90..2926 interactions, respectively.
The drugs are represented by a similarity matrix calculated from their chemical structure. The proteins
are represented in a similarity matrix computed from their sequence similarity. Local models are used to
predict drug-target interactions. Therefore, with the use of SVMs, a local classifier is trained for each drug
to predict target proteins and for each protein to predict interacting drugs. For each possible drug-target
interaction both predictions are combined for a final prediction. All interactions are integrated and ranked
by their integrated SVM decision values.

In Mordelet and Vert (2010) the influence of bootstrap aggregation with SVM on learning local
models from positive and unlabeled data is examined. In this supervised classification approach, positive
and negative examples are required to learn a classifier, which can distinguish between the two classes. As
there is a lack of negative examples, unlabeled examples are often treated as negative. In particular, different
strategies of using unlabeled data as negative examples are determined. The performance is evaluated with
different bagging strategies on various data sets including E. coli data from (Mordelet and Vert, 2008). For
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this data set, the SIRENE approach (local models) is used with bagging and compared to an SVM without
recalibration, a 1-class SVM (outlier detection) and a baseline method. The bagging strategy showed an
improvement in the performance.

Yip et al. (2009) apply the local modeling approach for the prediction of protein, domain and residue
interactions, referred to as levels. To improve the prediction of interactions, Yip et al., 2009, use support
vector regression combined with a training set expansion approach to learn local models at each interaction
level. The models of the three levels are trained in turn and the best predictions of each model are added to
the gold standard of the next level (unidirectional flow) or all levels (bidirectional flow), which thereby get
additional training examples. This multi-learning approach is implemented by multiple kernels and tested by
predicting protein, domain and residue interactions in yeast. For each level appropriate data features were
collected: data of the protein level comprise phylogenetic profiles, sub-cellular localization, gene expression
and two networks from yeast two-hybrid and TAP-MS data. The final kernel is a sum of all of these kernels.
The protein interaction gold standard was constructed of known protein interaction data from MIPS, DIP
and iPfam containing 1681 proteins and 3201 interactions. The data features of the domain level contain
co-evolution and statistics related to parent proteins. The domain interaction gold standard was created
from iPfam data. The domains are defined as interacting, if they are close enough and predicted to form a
bond. The gold standard comprises 422 domain interactions of 317 domains. For the residue level data from
PSI-BLAST profiles, secondary structure and surface areas of the residues and its neighbors are used. The
gold standard taken from iPfam determined 3053 residues and 2000 interactions based on their proximity in
known crystal structures of interacting proteins. The results in bidirectional flow show an improvement in
the predictions.

Geurts (2011) examine the problem that only a small subset in a large set of objects is labeled as
positive with respect to the class of interest and it is unknown to which degree the unlabeled set contains
unknown positive examples. Geurts and colleagues formalize this as “the problem of learning a feature based
score function that minimizes the p-value of a non parametric statistical hypothesis test”. A solution for this
problem is shown for a linear scoring function using local one-class SVM models applied on sampled subsets
of the complete set of objects (called PU method). This approach is tested on yeast and E. coli expression
data (6178 genes, 157 features per gene and 4345 genes, 445 features per gene, respectively). The gold
standard of yeast contains 80 TFs, 606 targets and 1164 interactions. For each operon a representative gene
was selected and other genes from these operons were removed from the data set (reduced to 2925 genes) and
gold standard (63 TFs, 554 targets, 1446 interactions). The PU method was compared to two-class SVM,
one-class SVM, CML and CORR. CORR is a baseline method, which ranks genes according to their average
correlation with genes in the positive set. This method was also used in our approach as baseline method.
The AUC performance of the method shows that the PU method performs best on yeast and second on
E. coli using two-class SVM.

Function prediction is also usually performed via local models (Lanckriet et al., 2004; Mostafavi
et al., 2008). Here, gene sets represent biological processes or protein functions, e.g., derived from the
GeneOntology (The Gene Ontology Consortium, 2010). For each process, a dedicated binary classifier is
trained to predict putative members. The training is based on a data matrix of several heterogeneous fused
data sets representing information on protein domains, protein interactions, gene expression measurements
or pairwise protein sequence alignment scores. In particular, Lanckriet et al. (2004) used the combination
of five data sets to train SVM models and predict the functional categories of yeast proteins. This approach
was tested in two different settings. For the first setting, the following data was used: (1) the domain
structure of each protein (Pfam domains, 4950 bit vector for each protein), (2) protein-protein interactions
(from CYGD), (3) genetic interactions, (4) co-participation in a protein complex (determined by tandem
affinity purification) and (5) 77 cell cycle gene expression measurements per gene converted to a binary
square matrix. For the second setting the matrix of the domain structure contained 5724 domains (Pfam
9.0) and log E-values instead of binary values. The expression matrix is used without conversion to binary
values and additionally a matrix containing Smith-Waterman scores for each protein is calculated. The
prediction associates yeast proteins with 13 functional categories. For each functional category and data
set a SVM is trained and the kernels are linearly combined across data sets for category-specific prediction.
For each functional category a 5-fold CV is conducted 3 times. The results are compared against the MRF
method of Deng et al. (2004). The SVM approach reaches a mean AUC of 0.870 using the second setting.
Both settings outperform the MRF method. The size of the categories are imbalanced, ranging between 81
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and 1048 members, suggesting the susceptibility of these methods to Simpson’s paradox.
Mostafavi et al. (2008) have developed GeneMANIA (Multiple Association Network Integration Al-

gorithm), a fast heuristic algorithm derived from ridge regression for gene function prediction. The function
prediction is treated as a binary classification problem. In the first step functional association networks
from heterogeneous input data sources are created. Linear regression is used to integrate multiple functional
association networks into a single composite functional association network. The single composite associa-
tion network contains the weighted average of the individual functional association networks. For final gene
function prediction, an adopted Gaussian field label propagation algorithm for unbalanced classification prob-
lems is used. GeneMANIA is tested on several function prediction benchmarks. In the prediction of twelve
evaluation categories (GO categories from biological processes, cellular components and molecular function)
GeneMania reaches equal or improved performance over previous approaches considering this benchmark.
On the yeast benchmark, GeneMANIA is compared against two algorithms in the prediction of 400 GO
functional classes. GeneMANIA performs as well as or better than the compared methods. Furthermore, it
is much faster than other approaches and function predictions can be calculated on-the-fly.

Brown et al. (2000) use SVMs to predict the functional class of yeast genes using gene expression
data. The performance of the SVMs in five functional classes is compared against four competing machine
learning methods: Fisher’s linear discriminant, Parzen windows, and two decision tree learners (C4.5 and
MOC1). Yeast expression data containing 79 features of 2467 genes is used for the prediction. For each
functional class, a local model is learned and the performance is evaluated per class using the cost savings
measure. The radial basis function SVM outperforms the other methods tested.

Text classification or text categorization is a frequent task in machine learning and information
retrieval. It addresses the automatic classification of documents into categories. It is applied for spam
filtering, identification of document genre or indexing of scientific articles. Given that manually classified
documents are available, they can be used for training machine learning methods like SVMs. Precision, recall
and F-measure are calculated for performance evaluation of these methods. For performance evaluation
precision and recall is calculated using micro- and macro-averaging, i.e. across single predictions across
categories or category-wise. Similar to interaction prediction, text mining features highly imbalanced classes
based on the underlying categories.

In particular, a defined class would cover only a fraction of all possible annotated entities Sebastiani
(2005). GRN inference and text classification thus share several problems. In particular, an evaluation setup
may suggest reasonable performance for some compendium spanning multiple categories. Yet, large and
well-defined categories with many training examples may govern the evaluation. A category-wise evaluation
would then uncover near-random performance for most categories except some of the largest ones. Following
Simpson’s Paradox it then unclear which of two methods sharing the same overall quality should be preferred.
Either, compendia-wise quality is considered, or a recalibration is done that allows for the selection of the
most confident predictions (or those at a specific FDR rate) in the complete compendium.

Özgür et al. (2005) propose an approach for text categorization using SVM and keyword selection for
all classes (corpus-based) or for each class separately (class-based). For this study, a standardized data set
consisting of 21578 documents from 135 categories was used. The maximum number of categories assigned to
a document is 14, the average number of categories is 1.24. Training and testing are based on 9603 and 3299
documents, respectively. After removing categories only present in test or training set, 90 categories remain
in the gold standard. For performance evaluation, the macro- and micro-averaged F-measure is calculated.
The micro-averaged F-measure shows that class-based keyword selection performs better than corpus-based
keyword selection with up to 1200 keywords. Keyword selection performs equally compared to the use of
all words for classification. The macro-averaged F-measure is lower than the micro-averaged F-measure and
increases with increasing number of keywords.

5.2 Integrative approaches

Integrative methods incorporate data from different sources for prediction. An integrative state-of-the-art
method for GRN prediction proposed by Ernst et al. (2008) is SEREND, that utilizes TF binding site
information and expression data. Three logistic regression classifiers are trained: (i) using expression data,
(ii) using binding sites and (iii) using the two initial predictions to via a meta classifier. Classifiers are
trained separately for each TF. Thus, SEREND is also based on local models. The three classifiers generate
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ranked predictions of targets for each TF. The authors used SEREND to predict GRIs of E. coli using a gold
standard of 123 TFs, 974 genes and 1760 interactions. See Section 3 for a discussion of HDP in the SEREND
approach.

Yip and Gerstein (2009) adopt local models and propose two approaches to improve the reconstruction
of biological networks: the training set expansion using prediction propagation and kernel initialization.
These two approaches are tested on eight different data sets (phylogenetic profiles, sub-cellular localization,
gene expression from environmental response, cell cycle gene expression, 2 different yeast two- hybrid data
sets and 2 different tandem affinity data sets) and on an integration of the eight data sets for the prediction
of protein-protein interactions. Known protein-protein interactions of yeast are derived from BioGRID, DIP,
MIPS and iPfam to create three differently-sized gold standards. Both approaches are compared against a
range of other methods (direct, kCCA, kML, em and Pkernel) and tested with two different cross-validation
strategies (10-fold cross-validation and random sampling of negative training set). Prediction propagation
and kernel initialization are combined with local models. The local model approach in conjunction with
the training set expansion approaches show a higher AUC for most data sets than other methods (on using
BioGRID-10 gold standard with 2880 interactions).

5.3 Global models

Qian et al. (2003) propose a supervised approach based on SVMs to predict TF:target interactions in
yeast from expression data. In contrast to local models, a single global SVM model is trained to predict
gene regulatory interactions across TFs (see main paper, Section 2.2). The expression data is obtained from
two yeast gene expression studies (Spellman et al., 1998; Gasch et al., 2000) and contains 79 measurements
from different time points during the diauxic shift, the mitotic cell cycle, sporulation and heat shock for
each gene. The expression vector of each target is concatenated to the expression vector of each TF, so that
each putative TF:target interaction is characterized by a 2 ∗ 79 = 158-element gene expression vector. The
gold standard contains 36 TFs with 175 interactions obtained from TRANSFAC (Wingender et al., 2001)
and SCPD (Zhu and Zhang, 1999). On this data, a global SVM model predicts 46059 putative TF:target
interactions. The performance evaluation shows that the inference of TF:target interactions using global
models is possible. It is important to note, however, that this work analyzes a very small gold standard and
a very small expression compendium. It has been reported in Yip et al. (2009) that methods based on global
models suffer from both time and space complexity and are thus difficult to apply to more comprehensive
data sets and gold standards.

In contrast to most of the previously described inference approaches, Cai et al. (2007) focus on exploit-
ing functional annotations rather than expression data. The approach is based on nearest neighbor selection
and is applied to the global prediction of TF:target interactions. For each gene the associated GO compress
(GOc) entries were extracted and a boolean vector of size 3860 (overall number of GOc entries) was cre-
ated. This vector contains true, if the gene belongs to the respective GOc entry and false otherwise. If no
GOc entries were available for a gene, a gene expression vector is used instead. 3543 genes were defined by
GOc entries and 88 genes by expression vectors. For similarity calculation the TF-vector and target-vector
was combined, as described in Qian et al. (2003). The gold standard was obtained from Qian et al. (2003)
(see above) and contained 175 interactions of 36 yeast TFs. For similarity calculation the GOc vectors were
used if available, otherwise the expression vectors. The procedure resembles that of Qian et al., 2003 (Qian
et al., 2003), and shows equal performance, suggesting that both methods may neglect regulator specific
quality.

Seok et al. (2010) propose a variant of the approach of Qian et al., 2003 (Qian et al., 2003) for GRN
inference in yeast. They use a data set consisting of 643 microarrays of 5940 genes and a gold standard
consisting of 3043 interactions, 523 TFs and 919 targets. The examination of the yeast expression data
by Seok et al. reveals that the correlation of the expression data of TFs and their targets is similar to the
correlation of randomly selected gene pairs. A so-called centroid representation of TFs is calculated and used
for prediction instead of real expression data (näıve representation). The global model SVM approach of Qian
et al. is tested using the näıve representation and the centroid representation. It is compared to a correlation
cutoff method, CLR and SEREND, which were also tested with both representations. The experiments show
that the SVM benefits from a centroid representation and that it can improve the prediction compared to
a näıve representation. Notably, the centroid approach of Seok et al.is based on Qian et al., 2003 and may
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thus inherits the problem of confidence integration in the presence of HDP.

5.4 Learning from derived features

TNIFSED by Ambroise et al. (2012) does not directly exploit expression data for inference but processes
the input data to derive new features. The authors state two limitations of SIRENE: (i) the performance of
SIRENE decreases proportionally to the number of known targets and (ii) it cannot be used for the prediction
of novel TFs or those without known targets. TNIFSED instead builds a global logistic regression model
to infer the probability of observing an interaction among TF and target. As input data, correlation scores
obtained from the expression data and functional similarity scores are used. The functional scores determine
the similarity between TFs and targets based on gene ontology categories. The TFs are not explicitly
represented in the TNIFSED approach. As it seems not possible for TNIFSED to capture information on
the number of TF targets (i.e. its out-degree) it does not seem to be susceptible to the effects of Simpson’s
paradox. Yet, it shows a substantially lower performance in case of E. coli and S. cerevisiae if compared
to SIRENE.

The approach of Holloway et al. (2007) builds on derived features from 26 different data sets (e.g., motif
hits, phylogenetic profiles, expression correlation, GO term profiles, K-mers) for yeast TF binding site
identification. The gold standard contains 104 TFs and 9104 interactions extracted from three different
sources: ChIP-chip experiments (Harbison et al., 2004; Lee et al., 2002), Transfac 6.0 Public (Matys et al.,
2006). For each TF and each data set, four different SVM classifiers are built (linear, RBF, Gaussian and
polynomial) and the function with the highest F1 score is selected as best for that particular TFdataset
combination. For each TF, a weighted composite classifier (i.e. a local model) is constructed, which is a
weighted combination of the 26 selected classifiers. For the selection of positive targets from the predictions,
a global threshold is determined. In contrast to the previous approach (Ambroise et al., 2012), Holloway
et al. (2008) essentially employ a local model approach inheriting its properties and issues.

Holloway et al. (2008) published a variant of their former approach (Holloway et al., 2007) adapting
method, gold standard and feature data-sets to revisit construction and analysis of the gene regulatory
network in yeast. Eight different types of features are used to describe genes: k-mers, k-mers with mismatch,
melting temperature profile, homologous conservation, k-mer median positions, expression data, k-mer over-
representation and conserved k-mers. The updated gold standard features 9983 interactions among 163 TFs
and 3482 targets. For the prediction of interactions, SVMs combined with feature reduction approaches
is used. 50 models are trained for each TF for the induced 1500 features using probability predicting
Platt’s SVM formulation. The procedure is repeated 100 times and the probabilities for each interaction
are averaged. Overall, interactions exceeding a threshold of 0.95 are considered to be true interactions. We
found that the use of Platt scores as opposed to raw SVM decision values are no sufficient way to tackle
confidence value integration for HDP. It could reduce the need for confidence recalibration, yet the implicit
correction is likely incomplete as an excessive number of targets is predicted for TFs with a high out-degree
in the gold standard (see Section 3).

Bauer et al. (2011) introduce a novel machine learning approach, RIP (Regulatory Interaction
Predictor) to infer interactions in human. Therefore, 4064 primary human tissue samples of 76 experimental
conditions are obtained containing expression levels of 13,069 genes. For these genes 81 mid-range GO terms
are determined for functional categorization. The gold standard and PWMs is derived from the TRANSFAC
database (v2009.2). The gold standard contains 303 TFs with 2896 interactions for 949 targets. The
remaining 248,641 interactions are considered to contain no interactions. The network topology, TF binding
sites and expression data are used to calculate 10 features describing each TF:target pair. Overall, 2000
SVM models are trained using these feature to create an ensemble classifier for performance evaluation and
prediction of new candidate regulatory interactions. From the description in Bauer et al. (2011), we could
neither confirm nor disprove a susceptibility to Simpson’s paradox. Furthermore, it is not clear whether TF
binding sites (used for training) and gold standard interactions (used for evaluation) are truly separated as
both were derived from TRANSFAC.
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5.5 Unsupervised approaches

We used the approach of Faith et al. (2007) as an example of an unsupervised inference approach for
performance comparison in the main paper. This approach introduces an extension of the class of relevance
network algorithms called Context Likelihood of Relatedness (CLR). The approach is unsupervised and
features an adaptive background correction step to eliminate false correlations and indirect influences inferred
from expression data. CLR is applied to E. coli microarray expression data of 4345 genes from 445 profiles
to identify the targets of 328 TFs. 3216 known interactions were derived from RegulonDB to assess the
performance of CLR and three competing approaches: relevance networks, ARACNE and Bayesian networks.
CLR performs best among unsupervised methods on prokaryote data, but is hardly better than guessing on
yeast data and is, thus, outperformed by supervised approaches like SIRENE (Mordelet and Vert, 2008).

5.6 Review papers

The seminal review paper of De Smet and Marchal (2010) describes and compares network inference ap-
proaches across three categories depending on the input used: (i) supervised and semi-supervised vs. unsuper-
vised learning, (ii) integrative vs. non-integrative and (iii) direct network inference (NI) vs. module-based NI
vs. module inference methods. They compared 14 state-of-the-art module and network inference approaches.
The methods are tested on an expression data set of E. coli and known interactions from RegulonDB. The
authors show that predicted interactions differ to a great degree between the different approaches, which
might offer a way to complement predictions. The comparison of the methods shows that performance
differs for the various TFs depending on their properties, e.g., the number of targets. A comparison of the
predictions of CLR and SIRENE reveals that supervised methods preferentially predict targets for TFs with
a high number of known targets.

In their tutorial, Luts et al. (2010) embed local, SVM-based methods for classification in the context
of chemometrics. The SVM models are trained on yeast expression data using a gold standard containing
118 TFs and 4000 interactions. For the resulting regulatory network the interactions exceeding an induced
probability of more than 0.95 are considered true interactions. The varying TF out-degrees have not been
taken into account.

Vert (2010) reviews pattern recognition algorithms used to infer directed and undirected biological
networks from heterogeneous genomic data. The algorithms comprise local and global model approaches to
reconstruct metabolic, protein-protein interaction (PPI) and gene regulatory networks of model organisms.
Different approaches are analyzed and the performance as indicated by AUC and AUPR is compared across
different networks. For the reconstruction of a metabolic network in yeast a gold standard containing 2782
interactions among 668 enzymes from KEGG and three different data sets is used: 157 expression values per
enzyme, a 23 bit vector representing localization information of the enzyme and a 145 bit phylogenetic profile
defining the presence in fully sequenced organisms. Six methods are compared for the reconstruction of the
metabolic network: local models, TPPK and MLPK kernels, de novo approach (unsupervised), KCCA, and
an algorithm based on an EM procedure. The results show that local models outperform other supervised
methods and the unsupervised approach performs worse than supervised methods. For the reconstruction
of a PPI network in yeast, a gold standard of 2438 interactions between 984 proteins is used. In addition to
the data for metabolic network reconstruction a yeast two-hybrid data set is used. The approaches for the
metabolic network resemble that of the PPI reconstruction. The AUC and AUPR values show that the local
model approach is reconstructs the PPI network best and the unsupervised method performs worse than
supervised methods. The reconstruction of the E. coli GRN was tested using the gold standard (154 TFs,
1211 targets, 3293 interactions) and data set (445 microarray expression profiles for 4345 genes) of Mordelet
and Vert (2008). The reconstruction of the gene regulatory network is conducted with SIRENE, Bayesian
networks, ARACNE, CLR and an extended relevance network algorithm. SIRENE shows a higher recall at
a precision of 60% and 80% than the other methods. SIRENE outperforms the unsupervised approach CLR.

Cerulo et al. (2010) examined the influence of the selection strategy of negative examples on the
performance of supervised machine learning methods. Three different supervised approaches: PosOnly,
SVMOnly, and PSEUDO-RANDOM. Here, SVMOnly resembles a default SVM treating all unlabeled inter-
actions as negative. The PosOnly approach introduces an empirically estimated constant factor to correct
the prediction results whereas the PSEUDO-RANDOM method selects negative examples from the transi-
tive closure of known interactions. All approaches are examined using both simulated expression data (using
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GeneNetWeaver) with varying percentages of known positive examples and experimental E. coli expression
data. The performance of the supervised approaches is compared to the unsupervised approaches ARACNE
and CLR.

Testing is done using simulated E. coli and S. cerevisiae gene interaction networks. Four different networks
of 10, 50, 100, and 500 genes are simulated. The experimental data of E. coli contains 445 expression profiles
of 4345 genes. The gold standard consists of 3293 interactions, 154 TFs and 1211 genes from RegulonDB. The
supervised approaches perform better on simulated data with increasing known positive (10% to 100%) and
a perform worse on S. cerevisiae than E. coli simulated data. PosOnly and PSEUDO-RANDOM perform su-
perior to SVMOnly. PosOnly performs best on simulated data considering the F-Measure. On experimental
data the SIRENE protocol is adopted. Here, PosOnly outperforms both SVMOnly and PSEUDO-RANDOM.
The comparison to unsupervised approaches shows that PosOnly exhibits similar or better performance. Be-
low a certain fraction of known positives both PSEUDO-RANDOM and SVMOnly perform worse than
unsupervised methods, yet if enough interactions are known beforehand the supervised approaches out-
perform unsupervised methods. As the F-Measure is used for performance comparison the selection of a
threshold is required to separate positive from negative predictions resulting in differences among PosOnly
and SVMOnly due to the corrective procedure applied in PosOnly. By contrast, when using the AUC,
PosOnly and SVMOnly are identical, indicating that the mere ranking of possible targets is not affected.
We conclude therefore that this procedure does not rectify the HDPproblem.

Madhamshettiwar et al. (2012) evaluate the performance of unsupervised and supervised machine
learning methods on different data sets. The performance of 8 unsupervised methods is evaluated on three
types of networks: simulated knock-down and multi-factorial gene expression data sets from the DREAM3
and DREAM4 competitions (http://www.the-dream-project.org/ ), simulated data sets using SynTReN, sam-
pling from known yeast and E. coli networks to create sub-networks, and on an ovarian cancer microarray
data set. The supervised method SIRENE is applied on DREAM3, DREAM4, the ovarian cancer microarray
and on an adenocarcinoma data set. The gold standard of the ovarian cancer network contains 280 TFs, 2170
targets and 6330 interactions. The performance of SIRENE is compared to the best unsupervised method
for each data set. SIRENE is found to obtain an increased AUC for DREAM3 and the ovarian cancer data
set, but a lower AUC for the DREAM4 data set than the best unsupervised method GENIE. The predictions
preferentially belong to TFs with a high out-degree.

Marbach et al. (2012) recently conducted a comprehensive comparison of 35 individual unsupervised
network inference methods. Among these, 29 have been submitted by participants of the DREAM5 challenge
and 6 of them are commonly used methods. These approaches have been tested on four different data sets:
(i) an in silico network with a gold standard of 195 TF and 1643 genes, and a data set of 805 arrays and
487 conditions, (ii) an E. coli network with 296 TFs and 4297 genes, and a data set of the same size than
the in silico network, (iii) a yeast network with 183 TFs and 5567 genes, and a data set of 536 arrays and
321 conditions, and (iv) a network of the human pathogen S. aureus with 90 TFs and 2677 genes, and a
data set of 160 arrays and 53 conditions. The approaches are classified into 6 categories: regression, mutual
information, correlation, Bayesian networks, meta (combination of approaches) and other (not in previous
categories) approaches. The analysis of the methods for different network motifs shows that methods within
the same category have a similar performance on the same motifs. To improve the predictions, the results
of multiple inference approaches are combined by re-scoring interactions according to their rank. This
community network shows better performance than individual methods. The combination of methods from
different categories outperforms the consensus performance of similar methods. The combination of strong
and weak methods reveals that the weak predictor does not affect the performance. Results on yeast are
hardly better than guessing, thus supporting our claim that unsupervised approaches are not suitable to
infer interactions in eukaryotes.
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6 Discussion of the yeast network

This section provides a detailed literature review on yeast gene regulation focusing on the genes and regu-
latory interactions contained in the network of Figure 9. Briefly, this modular network representation was
derived by applying graph clustering to regulatory interactions (compare Section 2.9). Thereby, TFs regu-
lating overlapping sets of targets were combined into TF modules, targets regulated by overlapping sets of
TFs were combined into target modules, and individual interactions were combined into abstract interactions
that link the two types of modules. Via this grouping, 11232 individual interactions were represented by a
simplified network of 9 TF modules that, via 13 abstract interactions, regulate 9 target modules.

The following literature review consists of three parts. In the first part, we briefly describe examples for
the detection of novel active and the pruning of quiet regulations. In the second part, we focus on the target
clusters, their biological functions, their expression patterns, and their interactions with the specific TF
clusters. The corresponding 9 TF clusters are described in the third part showing that TFs in TF modules
jointly regulate specific biological processes. This third part describes the regulatory functions of the TF
clusters and thus contains most of the literature references. The order in which clusters are discussed as well
as the chosen cluster representative gene correspond to Figure 9.

This review demonstrates that genes in target gene modules constitute defined biological processes and
that their observed expression behaviour can be plausibly derived and interpreted from the corresponding
TF modules and their action under the measured experimental conditions.

6.1 Novel predictions

In the following, we briefly describe examples (i) for novel predictions missing in current gold standards (the
activation of cat2 and tes1 by pip2/oaf1 and adr1 ) as well as (ii) for an interaction contained in the gold
standard not supported by our predictions (the regulation of hap4 by cat8 ). This latter interaction may
thus be an example for a ‘quiet’ interaction not associated with expression changes of the target.

Genes involved in peroxisomal beta-oxidation in S. cerevisiae are repressed in the presence of glucose,
de-repressed on non-fermentable carbon sources such as ethanol, and further induced by more than ten-fold
in the presence of oleate (Gurvitz and Rottensteiner, 2006). Examples of gene products involved in the
breakdown of fatty acids include pot1, pox1, fox2, sps19, and cta1. The transcriptional up-regulation of
these genes is driven by the pip2/oaf1 transcription factor, binding to the oleate response element (ORE),
and by adr1, binding to another upstream activating site, UAS1 (Hiltunen et al., 2003). Cat2, a carnitine
O-acetyltransferase, and tes1, an acyl-CoA thioesterase are also enzymes involved in fatty acid breakdown,
currently postulated to be regulated by pip2/oaf1 (Hiltunen et al., 2003). We predicted that the transcription
of cat2 and tes1 is also activated by adr1, which has not been reported before (or only indirectly as for tes1
(Smith et al., 2007)) but seems plausible given the known regulation of beta-oxidation genes by pip2/oaf1
and adr1.

Cat8 and hap4 are major transcriptional regulators of the diauxic shift (Schüller, 2003). cat8 especially
activates the transcription of gluconeogenic genes via binding to a carbon source responsive element (CSRE)
in their promoter. Cat8 itself is transcriptionally regulated in dependence on the carbon source, where
positive regulation on non-fermentable carbon sources is carried out by the hap2/3/4/5 complex (Turcotte
et al., 2010). Hap4 is the activator subunit of the hap2/3/4/5 complex, especially driving the expression of
genes involved in respiration and the TCA-cycle. hap4 is also the regulatory subunit of the complex, as it
is the only one whose level is regulated by the carbon source itself. Interestingly, it seems that hap4 and
cat8 are mutually activating each other, as hap4 transcription has been shown to be cat8 -dependent (Brons
et al., 2002). In our network, the regulation of hap4 by cat8 was not predicted. This is in agreement with
current studies, which assign the carbon source dependent regulation of hap4 rather to rds2 (Turcotte et al.,
2010).

6.2 Target clusters

IMP biosynthesis & peptidase inhibition (ade1). The majority of genes in this cluster perform
functions in the ’de novo’ IMP biosynthetic process and peptidase inhibition. As judged from the expression
data, we observed genes with peptidase inhibitor activity to be strongly up- and down-regulated under
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Figure 9: Interactions and expression profiles. We partitioned our network of 22,231 gene regulatory
interactions for visualization and identification of network modules. We derived (a) 9 clusters of 61 TFs that,
via (b) 13 interactions between clusters (arrows), regulate (c) 9 clusters of 1758 target genes. A representa-
tive gene is displayed for each TF and target cluster. Cluster interaction maps (black=interaction, white=no
interaction) comprise a total of 11232 (50.5%) interactions. (d) Thus, depicted TF modules are likely to
trigger expression responses (heatmaps: red=up-, blue=down-regulation) in respective target modules and
associated biological processes (green annotation). The heatmaps display the differential expression of these
target modules under the indicated knockout (KO) and other experimental conditions (blue annotation).
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oxidative stress and wild type growth in YEP medium, respectively. The genes involved in IMP biosynthetic
process display the reversed expression pattern. In our network, these genes are subject to transcriptional
control by the cad1 TF-cluster. As explained in the subsequent section on TF clusters, these regulators
drive the response to oxidative/osmotic stress and resulting DNA-damage. This initiates repair mechanisms
of the DNA and targeted protein degradation and explains the observed expression pattern of the target
genes strongly reacting to oxidative stress. Among them is the cluster representative ade1, required for ’de
novo’ purine nucleotide biosynthesis (Shakoury-Elizeh et al., 2004a). Other genes of the ADE family, namely
ade4,5,7,13,17 are also contained in the cluster making it the gene family with the most members present
in the cluster.

Sugar transport & glycogen catabolism (hxt2). The hxt2 -cluster represents sugar transporter
responding to different extra-cellular sugar concentrations, and genes involved in glycogen catabolism re-
quired under glucose limitation. Matching these functions, we observed that the genes involved in glycogen
catabolism are strongly up-regulated under thiolutin treatment and strongly down-regulated in media sup-
plied with high glucose concentrations. On the other hand, we could confirm that the genes involved in sugar
transport are not uniformly expressed – some are up- (e.g. hxt1 ) and some are down-regulated (e.g. hxt2 )
under high glucose concentrations (as previously described in (Ozcan and Johnston, 1999)). We found the
hxt2 -cluster among the two most heavily regulated clusters in our network (besides the dse2 -cluster): it
is regulated by the cad1 -cluster (oxidative stress), the pdr1 -cluster (drug response), and the tec1 -cluster
(pseudohypal growth). Thus, we linked the regulation by the cad1 -cluster under oxidative stress with higher
glucose uptake rates and/or release of glucose from the glycogen storage in order to respond to higher energy
requirements under stress. The same holds for the pdr1 -cluster to ensure the pleiotropic drug resistance
of yeast cells. On the other hand, we predicted regulation by the tec1 -cluster under pseudohyphal growth,
i.e. growth under abundant fermentable glucose, so that the expression of glucose transporters is up-regulated
and the expression of glycogen catabolic enzymes down-regulated. This matches the actual observed expres-
sion behavior. hxt2, a member of the hexose transporter HXT family (Ozcan and Johnston, 1999), is the
representative of the cluster. The HXT family is also the gene group with the most members in this cluster
(four additional hexose transporter genes hxt1,3,7,9 are included as well).

Glucose catabolism, energy reserve & nitrogen compound transport (pgi1). The genes in this
cluster have overrepresented functions in the glucose catabolic process (like glycolysis), metal ion transport,
energy reserve metabolic process, and nitrogen compound transport. Thus, this cluster is functionally related
to the hxt2 -cluster. However, while the hxt2 -cluster is responsible for uptake and release of glucose from the
glycogen storage, the pgi1 -cluster performs the energy production via catabolism of glucose, and feeds the
energy reserve with superfluous glucose. Interestingly, these processes are also controlled by the tec1 -cluster
like the hxt2 -cluster. Thus, we found these regulators to be tightly linked to genes involved in glucose usage,
i.e. uptake and catabolism, in times of glucose starvation and abundance, where it is released from and fed
to the energy reserve, respectively. Among the target genes is the cluster representative, pgi1, the glycolytic
enzyme phosphoglucose isomerase (Aguilera and Zimmermann, 1986). In addition, the genes functioning in
metal ion transport, energy reserve metabolic process, and protein refolding are significantly up-regulated
under thiolutin treatment and down-regulated under wild-type and ifh1 (activator of ribosomal protein
expression) induced conditions. Among them is the gene group most strongly represented – the heat shock
proteins hsp26,31,42,78,104 annotated to have chaperone activity.

Cell wall, cell division & peptidase activity (dse2). Target genes in the dse2 -cluster encode
predominantly proteins with cell cycle / cell division related functions such as fungal-type cell wall and
cytokinesis, completion of separation, but also pre-replicative complex assembly and exopeptidase activity. In
our expression compendia, the genes with functions in cell wall organization, cytokinesis, and pre-replicative
complex assembly appear strongly up-regulated under wild type growth in YEP medium and strongly down-
regulated in post-dry and oxidative stress conditions. This indicates that the cell cycle is arrested under
harmful conditions by down-regulation of the genes responsible for its execution under favorable conditions.
Arrest of the cell cycle occurs especially when the cell fails to pass the G1-checkpoint (G1-S transition;
ensures proper DNA synthesis) or the G2-checkpoint (G2-M transition; ensures proper mitosis). We exactly
predicted regulators of the G1-S transition (mbp1 -cluster) and G2-M transition (fkh1 -cluster) to control
the dse2 -cluster. Thus, the function and expression of target genes appropriately matches the predicted
regulations. While the mbp1 -cluster predominantly controls G1-related proteins promoting growth and S-
phase preparation (e.g. pre-replicative complex assembly), the fkh1 -cluster especially targets genes involved
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in cytokinesis, completion of separation. In addition, the tec1 -cluster promoting pseudohyphal growth and
filamentation introduces a third facet of the dse2 -cluster regulation. Here, the tec1 cluster mainly regulates
genes involved in cell wall and cell membrane disassembly. Such a gene is the cluster representative dse2,
which degrades the cell wall from the daughter cell causing the daughter to separate from the mother cell
(Colman-Lerner et al., 2001). Groups having more than two members within the cluster are: cdc5,6,20;
chitin synthases involved in cytokinesis (chs1,2,7 ); B-type cyclins (clb1,2,6 ); G1 cyclins (cln1-3 ); daughter
cell specific genes (dse1,2,4 ); and MCM and SWI genes.

Protein catabolism & cell cycle (tof1). Related to the dse2 -cluster, the tof1 -cluster contains genes
involved in S phase related cell cycle events (overrepresented GO-terms: heteroduplex formation, cell cycle,
replication fork, DNA replication, nucleosome). On the other hand, the second major component of this
cluster are protein catabolic genes (overrepresented GO-terms: endopeptidase regulator activity, proteosomal
protein catabolic process and peptide catabolic process). The tof1 -cluster is similar to the dse2 -cluster in two
additional attributes besides similar functions of their member genes. We observed for both gene clusters
striking expression patterns under oxidative stress as compared to wildtype growth. And both are regulated
in our predicted network by the mbp1 -cluster that regulates the cell cycle transition from G1- to S-phase.
However, while the tof1 -cluster is regulated by the mbp1 -cluster alone, we predicted two additional regulator
clusters for the dse2 -cluster (fkh1 and tec1 ; see previous section). This was the reason for separating the
two clusters from one another. The cluster representative is tof1, a subunit of the DNA replication pausing
checkpoint complex Tof1p-Mrc1p-Csm3p (Katou et al., 2003). mrc1 is also included in the cluster. Most
strongly represented are CDC and POL genes with five (cdc5,7,9,21,45 ) and four (pol1,12,30,32 ) members
encoding S phase specific cell division cycle genes and subunits of α and δ DNA polymerase, respectively.

Iron ion homeostasis & proteasome (sec24). Half of the genes in the sec24 -cluster are involved
in iron ion homeostasis and the other half are components of the proteasome regulatory particle, base sub-
complex. While genes annotated to iron ion homeostasis appear predominantly up-regulated in experiments
where members of the nonsense mediated mRNA decay (NMD) pathway have been knocked out (e.g. nam7,
xrn1, and UPFs), the majority of genes annotated to proteasome regulatory particle, base subcomplex are
down-regulated under these conditions. In contrast, the latter are up-regulated under sugar stress and cell
cycle related knockouts (clb1 and cdc36,39,40 ) implying higher proteolytic activity under these conditions.
The cluster representative is sec24, which is required for cargo selection during vesicle formation in ER to
Golgi transport Duden (2003). Regulated by aft1 and reb1, most strongly represented in this cluster are
the SEC and FRE gene families: there are five additional SEC genes (sec4,8,9,23,61 ) and five FRE genes
(fre1-3,5-6 encoding ferric reductase) contained in the cluster.

Sulfur amino acid metabolic process (met16). The genes of the met16 -cluster encode enzymes
of the sulfur amino acid metabolic process. In our expression compendia, these genes are significantly up-
and down-regulated under thiolutin and phenelzine treatment, respectively. Thiolutin is a sulfur-containing
antibiotic, which is a potent inhibitor of yeast RNA polymerases. While thiolutin blocks in general transcrip-
tion in yeast, Pelechano and JE (2008) observed that genes functioning in the sulphur amino acid metabolic
process are induced in response to the weak stress induced by low concentrations of thiolutin (see also Grigull
et al. (2004)). Phenelzine, on the other hand, is a non-selective and irreversible monoamine oxidase inhibitor,
which has been linked to decreased concentrations of sulfur amino acids in rat brains (Benedetti et al., 1990,
1991). As judged from gene expression in yeast, we argued that this seems to be due to down-regulation
of the responsible MET genes. The regulation in both cases is carried out through combined control by
the met4,28,31,32 and cbf1 transcription factors of the met4 -cluster as explained below. The cluster rep-
resentative is met16, a 3’-phosphoadenylsulfate reductase involved in sulfate assimilation and methionine
metabolism (Thomas et al., 1990). In addition, 19 other genes of the MET gene family are also included in
the cluster.

Respiratory chain (atp17). The majority of genes in this cluster perform functions in the mitochon-
drial respiratory chain such as hydrogen ion transmembrane transporter activity. Experimental conditions
associated with differential expression of these genes are oxygen availability (aerobis: up; anaerobis: down)
and corresponding transcription factor perturbations (e.g. hap4 over-expression). Our predicted regulatory
interactions place the atp17 -cluster under control of hap1 and the hap2/3/4/5 complex, which agrees well
with existing knowledge (Zitomer and Lowry, 1992). atp17 itself encodes the subunit f of mitochondrial ATP
synthase (Spannagel et al., 1997). Other subunits of the ATP synthase, a key enzyme of the respiratory
chain, are also contained in the cluster (atp1-5,7,14-18,20 ). In addition, the cluster contains eight subunits
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of cytochrome c oxidase (cox4-9,12,13 ), and all seven subunits of the ubiquinol cytochrome-c reductase
complex (qcr1,2,6-10 ).

Cytosolic ribosome (rpl34a). The rpl34A-cluster contains genes coding for ribosomal proteins. These
genes are significantly up-regulated over a wide range of favorable growth conditions, including wild type
growth and knockout of nam7 (an ATP-dependent RNA helicase involved in nonsense mediated mRNA
decay) and bar1 (an aspartyl protease helping yeast cells to find mating partners). On the other hand,
we observed a significant down-regulation under harmful conditions where growth is slowed or stopped,
e.g. under post-dry and thiolutin treatment conditions and also in experiments where the components of the
SBF complex (swi4 and swi6 ) have been knocked out. In our network, we predicted the majority of RPL
genes to be regulated in concert by fhl1, ifh1, sfp1, and rap1. As explained in the section on TF clusters
below that matches their known functionality. Among the ribosomal genes is also the cluster representative
rpl34A, which encodes a component of the large 60S ribosomal subunit (Planta and Mager, 1998). In total,
the cluster contains 64 RPL-genes, coding for protein components of the large 60S ribosomal subunit, and
45 RPS-genes, coding for protein components of the small 40S ribosomal subunit.

6.3 Transcription factor clusters

Response to oxidative stress & DNA damage (cad1). This cluster contains major regulators of the
response to oxidative stress and resulting DNA damage. Among them are five of eight members of the Yap
family, namely yap1 and cad1 (yap2 ), major oxidative stress regulators; cin5 (yap4 ) and yap6, involved
in osmotic stress response; and yap7, of currently unknown function (Rodrigues-Pousada et al., 2010). In
addition, the cluster contains rfx1, a major transcriptional repressor of DNA-damage-regulated genes (Zaim
et al., 2005), and xbp1, a transcriptional repressor that binds to promoter sequences of the cyclin genes and
that is induced by stress or starvation during mitosis (Mai and Breeden, 1997).

Pleiotropic drug response (pdr1). This TF cluster consists of four major functional subgroups, all
tightly connected to the cellular response to various kinds of drug and nutrition stress.
The first group contains pdr1, pdr3, stb5 and msn1. While msn1 is a general regulator of drug response
(Chang et al., 2003), pdr1, pdr3 and stb5 (known to build homodimers, and heterodimers with each other)
are very specific regulators of the regulation of the multi-drug resistance in yeast (Akache et al., 2004).
The second group contains nrg1, mga1 and ash1, known to regulate pseudohyphal growth, i.e. growth
in conditions of nitrogen limitation and abundant fermentable carbon sources like glucose (Arkowitz and
Bassilana, 2011). nrg1 is a negative regulator of glucose-repressed genes (Zhou and Winston, 2001), mga1
a suppressor of pseudohyphal growth defects (Lorenz and Heitman, 1998), and ash1 a positive regulator of
pseudohyphal growth linked to mating switching and cell cycle (Cosma, 2004).
The third functional component of this TF cluster consists of sut1, rox1, ixr1, and rim101. All four TFs are
involved in gene expression under hypoxia, i.e. deprivation of sufficient oxygen levels. sut1 induces (Regnacq
et al., 2001), whereas rox1 represses hypoxic gene expression (Kastaniotis and Zitomer, 2000). ixr1 is also
annotated to play a role in the cellular response to hypoxia (Lambert et al., 1994), whereas rim101 generally
contributes to the response to anoxic, anaerobic, and pH stress (Lamb et al., 2003).
The fourth subgroup is only loosely connected, as all members are involved in different nutrition stress
responses: ino4 derepresses inositol/choline-regulated genes (Santiago and Mamoun, 2003), pho4 activates
transcription of phosphate metabolism in response to phosphate limitation (Zhou and EK, 2011), smp1
contributes to the response to osmotic stress (de Nadal et al., 2003), cup9 represses peptide transport (Byrd
et al., 1998), and rlm1 responds to stress in order to maintain cell integrity (Jung et al., 2002).

Pseudohyphal growth & oxidative stress response (tec1). This TF cluster consists of three major
subgroups, which are functionally interconnected with each other. The first group contains tec1, ste12, sok2,
phd1, and flo8, which are all regulators of pseudohyphal and invasive growth (Liu et al., 1996; Pan and
Heitman, 2000; Chou et al., 2006; Brueckner et al., 2011). The second group contains skn7, sko1, and msn2,
regulators of the response to osmotic and oxidative stress (Martinez-Pastor et al., 1996; Rep et al., 2001; He
et al., 2009). And the third group contains the general repressor-activator protein rap1, and the regulator of
ribosomal protein transcription fhl1. The three groups work tightly together in the response to osmotic and
oxidative stress, which is known to induce pseudohypal and invasive growth in yeast (Zaragoza and Gancedo,
2000). In response to stress and growth conditions, ribosomal protein gene transcription is then regulated
by fhl1 and rap1 (Zhao et al., 2006); in its role as a transcription activating factor, the largest group of rap1
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target genes are those that encode ribosomal proteins(Lieb et al., 2001).
G2/M regulation & mating type switching (fkh1). This TF cluster contains six TFs – fkh1, fkh2,

mcm1, ndd1, swi5, and ace1 – that are all involved in the regulation of specific cell cycle phases and the
mating type switching (initiated in G1). The forkhead transcription factors fkh1 and fkh2 regulate the
expression of G2/M phase genes and donor preference during mating type switching (Zhu et al., 2000; Cöıc
et al., 2006). mcm1 is a pleiotropic regulator of cell-type-specific transcription and pheromone response.
mcm1 also activates transcription of genes involved in G2/M-phase of mitosis and regulates mating type
switching in cooperation with fkh1 and fkh2 (Kumar et al., 2000). ndd1 positively regulates G2/M-phase
genes and is recruited by the forkhead TFs and mcm1 to G2/M-specific promoters (Koranda et al., 2000).
Among the genes regulated by fkh1 and fkh2 are also swi5 and ace1, which are transcription factors required
for the subsequent temporal wave of cell cycle regulated gene expression in the M/G1 phase interval Spellman
et al. (1998).

Cell cycle progression from G1 to S (mbp1). This TF cluster contains four TFs: mbp1, swi4, swi6,
and mal33. mbp1, swi4 and swi6 are known to form regulatory complexes that drive the expression of genes
of the G1/S transition, including cyclins and genes required for DNA synthesis and repair (Bean et al., 2005).
mal33, regulator of maltose fermentation, is a further downstream transcription factor, regulated itself by
mbp1 (Iyer et al., 2001).

Iron utilization & homeostasis (aft1). This is the smallest TF cluster consisting of only two TFs:
aft1 and reb1. aft1 is involved in iron utilization and homeostasis (Shakoury-Elizeh et al., 2004b), whereas
reb1 is the general RNA polymerase I enhancer binding protein (Bordi et al., 2001). The clustering indicates
how aft1 recruits (or is recruited to) the RNA polymerase, presumably via physical interaction with reb1.

Sulfur amino acid metabolic process (met4). This cluster contains met4, the major activator of
the sulfur amino acid metabolic process, along with stabilizing (met28 ) and DNA-binding cofactors (met31,
met32, and cbf1 ), which are known to work in a regulatory complex (Lee et al., 2010). The cluster also
contains gcn4, which facilitates general amino acid control and, thus, also regulates met4 (Mountain et al.,
1993). A TF involved in branched-chain amino acid synthesis, namely leu3, is also contained (Friden and
Schimmel, 1988).

Respiration (hap4). This cluster represents the TFs that control respiration in dependence of heme
via hap1, or independent from heme via hap4, in complex with hap2, hap3, and hap5 (Zitomer and Lowry,
1992). The cluster also contains gln3, a transcriptional activator of genes regulated by nitrogen catabolite
repression (Magasanik and Kaiser, 2002). The link between gln3 and the HAPs is indirect and is established
by the retrograde regulators rtg1 and rtg3. These TFs are known to regulate specific HAP target genes
in response to mitochondrial dysfunction and particular nitrogen sources discriminated via the DAL/NAP
genes under gln3 control (Zaman et al., 2008).

Ribosomal protein regulation (fhl1). This cluster contains the major regulators of ribosomal protein
transcription fhl1 and sfp1, and the coactivator of fhl1, namely ifh1 (Marion et al., 2004; Zhao et al., 2006).
Interestingly, fhl1 and sfp1 are known to bind via the general regulatory proteins rap1 and ste12, which are
also contained in the cluster.
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