ORIGINAL ARTICLE

Evaluation of *IDH1*G105 polymorphism as prognostic marker in intermediate-risk AML

Annette Fasan¹ · Claudia Haferlach¹ · Christiane Eder¹ · Tamara Alpermann¹ · Anne Quante^{2,3} · Annette Peters^{4,5,6} · Wolfgang Kern¹ · Torsten Haferlach¹ · Susanne Schnittger¹

Received: 18 June 2015 / Accepted: 24 August 2015 © Springer-Verlag Berlin Heidelberg 2015

Abstract Germline polymorphisms in genes mutated in acute myeloid leukemia (AML) may have prognostic impact. Therefore, the relevance of the polymorphism IDH1G105 (IDH1105^{GGT} minor allele) was evaluated in the context of concomitant molecular mutations in a cohort of 507 AML cases with intermediate-risk cytogenetics. In addition, a cohort of 475 healthy controls was analyzed for this polymorphism. IDH1105^{GGT} minor allele was found in 10 % of AML patients and 9 % of healthy controls. While no differences were seen with regard to cytomorphology or cytogenetics, immunophenotyping revealed significantly reduced expression of the progenitor marker CD34 in AML cases harboring IDH1105^{GGT} minor allele. Cases with IDH1105^{GGT} minor allele as compared to those with the IDH1105^{GGC} major allele had significantly longer event-free survival (EFS) (median 16 vs 11 months, p=0.013) which was most pronounced in the age

group >60 years (median 14 vs 9 months, p=0.007) and in the *NPM1* mutated/*FLT3*-ITD/*FLT3*wt ratio <0.5 group (median 61 vs 13 months, p=0.012). However, this association is not independent of other prognostic parameters, and we conclude that *IDH1*105^{GGT} minor allele has to be considered in the context of the genetic background of the individual AML analyzed.

Keywords *IDH1* · *IDH2* · Polymorphism · AML · Prognosis

Introduction

Acute myeloid leukemia (AML) is a heterogeneous clonal disorder with regard to underlying cellular and molecular biology, acquired genetic lesions, and associated clinical responses to treatment. To date, recurrent cytogenetic aberrations provide the most important prognostic parameter [18, 42]. However, cytogenetically normal AML (CN-AML) comprises the largest subgroup with approximately 45 % of adult AML cases. These cases can be further characterized by different gene mutations including partial tandem duplication in the MLL gene [14, 39, 43], FLT3 tyrosine kinase mutations (FLT3-TKD) [2, 44], internal tandem duplications in FLT3 (FLT3-ITD) [40], NPM1 mutations [15, 41, 46], and CEBPA mutations [16, 31, 32]. The latter three parameters are used in clinical practice and affect diagnosis, risk assessment, and also guidance of therapy. However, for the majority of patients, novel markers for risk stratification and new therapeutic approaches are still desirable.

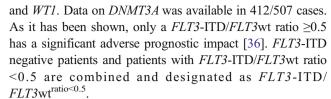
One further potential marker is the mutational status of isocitrate dehydrogenase 1 (IDH1). IDH1, a citric acid cycle enzyme encoded by the IDH1 gene, converts isocytrate to α -ketoglutarate in an $NADP^+$ -dependent manner and is supposed to control redox status in cells. Missense mutations at the arginine 132 codon in exon 4 of IDH1 have been shown to generate

- Annette Fasan annette.fasan@mll.com; http://www.mll.com
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universitat, Munich, Germany
- ³ German Research Center for Environmental Health, Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- ⁶ German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany

Published online: 09 September 2015

the putative oncogenic metabolite 2-hydroxyglutarate and may contribute to leukemogenesis via the induction of DNA hypermethylation. Acquired mutations of *IDH1* have been described with a frequency of approximately 5–10 % in AML and are associated with inferior event-free survival (EFS) and possible adverse overall survival (OS) [38]. IDH2 has the same enzymatic activity as IDH1 but is located in the mitochondrial matrix. In AML missense mutations at the arginin, codons 140 and 172 in exon 4 of *IDH2* have been reported [8, 29]. The newly acquired and distinct enzyme activity gained on mutation of IDH1 and IDH2 proteins provides an attractive and novel therapeutic target. A number of IDH inhibitors are in various stages of development and have been evaluated in preclinical studies [23].

In addition to acquired gene mutations, the impact of germline single nucleotide polymorphisms (SNPs) on diseases came into focus [9, 28, 34]. Effects on RNA stability, splicing, or messenger RNA (mRNA) folding have been suggested as potential mechanisms to explain how SNPs can affect biologic functions or drug sensitivity [35, 45]. Germline polymorphisms in *IDH1* exon 4 have been described, the most common of these being SNP rs11554137, representing a GGC to GGT transversion at the glycine residue 105 (minor allele *IDH1*105GGT). In adult AML patients, the minor allele *IDH1*105GGT is described to be present in about 11 % of cases and was found to be an adverse prognostic marker [21, 47].


We focused on the impact of the *IDH1*105GGT minor allele in a cohort of 507 AML patients with intermediate-risk karyotype and compared the incidence of *IDH1*105GGT minor allele to a cohort of 475 healthy controls.

Materials and methods

Patient cohorts

Bone marrow (n=429) or peripheral blood (n=78) samples from 507 AML patients with intermediate-risk karyotype defined according to MRC [17] were screened for $IDH1105^{GGT}$ minor allele. All 507 patient samples were referred to our laboratory for first diagnosis of AML between August 2005 and July 2010. AML was diagnosed according to the FAB and WHO classifications [1, 5].

Two hundred patients were female and 283 male. Median age was 68 years (range 18–100 years). Bone marrow blast percentages ranged from 20 to 100 % (median 68 %) in 495 patients with non-M6 AML. Twelve patients with AML M6 subtype had blast percentages below 20 % (3–17 %, median 10 %), as characteristic for the AML M6 subtype. Data on other molecular markers was available in all 507 cases for *ASXL1*, *CEBPA*, *FLT3*-ITD, *FLT3*-TKD, *NPM1*, *IDH1*R132, *IDH2*R140, *IDH2*R172, *MLL*-PTD, *RUNX1*,

Patients (380/507) received intensive therapy based on different treatment schedules and were in part included into controlled trials of German study groups. Prior to therapy, all patients gave their informed consent for molecular genetic studies. The study design adhered to the tenets of the Declaration of Helsinki and was approved by the institutional review board before its initiation.

Healthy controls

The controls for the present study were selected from The KORA (Cooperative Health Research in the Region of Augsburg, Germany) study, a series of population-based epidemiological surveys of participants living in or near the city of Augsburg, Southern Germany [22, 50]. The study sample was drawn from the F4 study (2006–2008), a follow-up study to the KORA Survey S4 (1999–2001), which comprises 3080 participants. Altogether, 475 individuals from KORA matched by age to the AML cohort were analyzed.

Cytomorphology, cytogenetics, immunophenotyping

Cytomorphologic assessment was based on May-Grünwald-Giemsa stains, myeloperoxidase reaction, and non-specific esterase using alpha-naphtyl-acetate as described before and was performed according to the criteria defined in the FAB and the WHO classifications [1, 4, 20]. Cytogenetic studies were performed after short-term culture. Karyotypes, analyzed after G-banding, were described according to the International System for Human Cytogenetic Nomenclature [24]. AML cases with intermediate-risk karyotypes were selected according to the refined MRC criteria [17]. Cytogenetic results were available for all patients in the study. Immunophenotyping was performed as described previously and was available in 263 cases [25].

Molecular genetic analysis

Isolation of mononuclear cells, DNA extraction, and mRNA extraction as well as random primed cDNA synthesis were performed as described previously [41]. Analyses for mutations in *ASXL1*, *NPM1*, *FLT3*-TKD, *RUNX1*, *WT1*, *IDH1*, *IDH2*, *CEBPA* as well as *MLL*-PTD and *FLT3*-ITD were described previously [2, 3, 13, 19, 27, 37–41].

Screening for *IDH1*105^{GGT} minor allele was performed using a LightCycler-based melting curve assay (Roche Diagnostics GmbH, Penzberg, Germany) in all 507

AML patients using the following primers: forward primer IDH1-F: GCTTGTGAGTGGATGGGTAA, reverse primer: IDH1-R: TATGTACCAGGTATGTCACCTT and hybridization probes IDH1-F anchor probe IDH1-FL: TTTTCCAGGCCCAGGAACAACAAATCAGTT-FL and sensor probe IDH1-640: LCRed640-TCTGTATTGATCCCCATAAGCATGACGAC-p (Fig. 1a). Screening for *IDH1*105^{GGT} minor allele in the KORA control cohort was done by Sanger sequencing using the primers mentioned above (Fig. 1b). Sequencing data was analyzed using Mutation Surveyor Software Version 4.0.8 (Softgenetics, State College, Pennsylvania, USA).

Statistics

Survival curves were calculated for OS and EFS according to Kaplan-Meier and compared using the two-sided log-rank test. OS was the time from diagnosis to death or last followup. EFS was the time from diagnosis to treatment failure, relapse, death, or last follow-up in complete remission. Relapse was defined according to Cheson et al. [7]. Cox regression analysis was performed for OS and EFS with different parameters as covariates. Median follow-up was calculated taking into account the respective last observations in surviving cases and censoring non-surviving cases at the time of death. Parameters which were significant in univariate analyses were included into multivariate analyses. Dichotomous variables were compared between different groups using the χ^2 test and continuous variables by Student's t test. Results were considered significant at p < 0.05. All reported p values are two-sided. No adjustments for multiple comparisons were performed. SPSS (version 19.0.1) software (IBM Corporation, Armonk, NY) was used for statistical analysis.

Results

Frequency of IDH1105^{GGT} in AML and healthy controls

The $IDH1105^{\rm GGT}$ minor allele was detected in 10 % (53/507) of AML and in 9 % (42/475) of the KORA control cohort. This slight difference (odds ratio of 1.18) does not reach statistical significance (p=0.25). Also, the frequency of a homozygous $IDH1105^{\rm GGT}$ minor allele was not different between the AML cohort (2/53, 4 %) and the KORA cohort (2/42, 5 %, n.s.).

Furthermore, 5/53 patients with *IDHI*105^{GGT} minor allele (9 %) had concomitant *IDHI*R132 mutation; 11/53 patients with *IDHI*105^{GGT} minor allele (21 %) had concomitant *IDH2* mutation.

Patient characteristics in relation to IDH1105^{GGT} minor allele

There was no association of $IDH1105^{GGT}$ minor allele with AML FAB subtype, age, WBC, hemoglobin levels, or platelet count (Table 1). Immunophenotyping was done in 263 cases. Patients with $IDH1105^{GGT}$ minor allele had significantly lower expression of CD34 (mean positive cells 16 ± 20 vs 30 ± 30 %, p=0.001).

With regard to cytogenetics, there were no differences between patients with $IDH1105^{\rm GGT}$ minor allele and patients with $IDH1105^{\rm GGC}$ major allele (Table 1). Eighty one of 90 cases (90 %) harboring $IDH1105^{\rm GGT}$ minor allele had normal karyotype. Three patients (3 %) had trisomy 8, and the remaining six patients (7 %) had different other aberrations.

Furthermore, we did not detect any correlation of the *IDH1*105^{GGT} minor allele to any other mutation analyzed

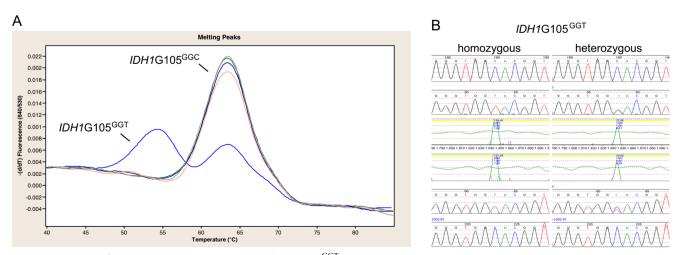


Fig. 1 a LightCycler[®]-based melting curve assay to identify $IDHI105^{GGT}$ minor allele. b Sanger sequence analysis of IDHI as evaluated by Mutation Surveyor Software. Left panel shows homozygous base change C > T; right panel shows heterozygous base change C > T

Table 1 Patient demographics and clinical and molecular characteristics of AML patients according to *IDH1*G105 status

All patients	Total cohort $n=507$	$IDH1105^{GGC}$ major allele $n=454$	$IDH1105^{GGT}$ minor allele $n=53$	p	
Sex					
Female	224 (44 %)	207 (46 %)	17 (32 %)	0.079	
Male	283 (56 %)	247 (54 %)	36 (68 %)		
Age (years)					
Median	68	63	64	0.508	
Range	18-100	18-100	26-88		
WBC count (×10 ⁹ /L)					
Median	24.9	24.4	29.4	0.755	
Range	0.7-600	1.0-600	0.7-177		
Platelet count (×10 ⁹ /L)					
Median	64	64	64	0.325	
Range	3.0-950	3.0-950	10.0-392		
Hemoglobin (g/dL)					
Median	9.2	9.2	9.5	0.613	
Range	4.7–17.5	4.7–17.5	5.1-13.3		
FAB subtype					
M0	18 (4 %)	15 (3 %)	3 (6 %)	0.420	
M1	158 (31 %)	142 (31 %)	16 (30 %)	1.000	
M2	153 (30 %)	139 (31 %)	14 (26 %)	0.636	
M4	133 (26 %)	116 (26 %)	17 (32 %)	0.323	
M5	18 (4 %)	17 (4 %)	1 (2 %)	0.709	
M6	17 (3 %)	16 (4 %)	1 (2 %)	1.000	
nd	10 (2 %)	9 (2 %)	1 (2 %)	1.000	
History of disease					
De novo AML	473 (93 %)	426 (95 %)	47 (89 %)	0.152	
Secondary AML	25 (5 %)	20 (4 %)	5 (9 %)	0.167	
Therapy-related AML	9 (2 %)	8 (0.4 %)	1 (2 %)	1.000	
Cytogenetics [17]					
Intermediate-risk NK	447 (88 %)	399 (88 %)	48 (91 %)	0.822	
Intermediate-risk AK	60 (12 %)	55 (12 %)	5 (9 %)	0.822	

WBC white blood cells, NK normal karyotype, AK aberrant karyotype

(Table 2). When focusing the analysis to the >60-year-old and \leq 60-year-old age groups, we also found no differences in composition or amount of concomitant mutations between patients with $IDH1105^{GGT}$ minor allele and patients with $IDH1105^{GGC}$ major allele. Restricting the cohort to intensively treated patients (n=380) revealed a mutual exclusiveness of $IDH1105^{GGT}$ minor allele and ASXL1 mutations (p=0.037) (data not shown).

Prognostic impact of IDH1105^{GGT} minor allele

Survival analysis was restricted to 380 patients having received intensive therapy. Cases with $IDH1105^{GGT}$ minor allele had significantly longer EFS (median 16 vs 11 months, p=0.013) compared to those with the $IDH1105^{GGC}$ major

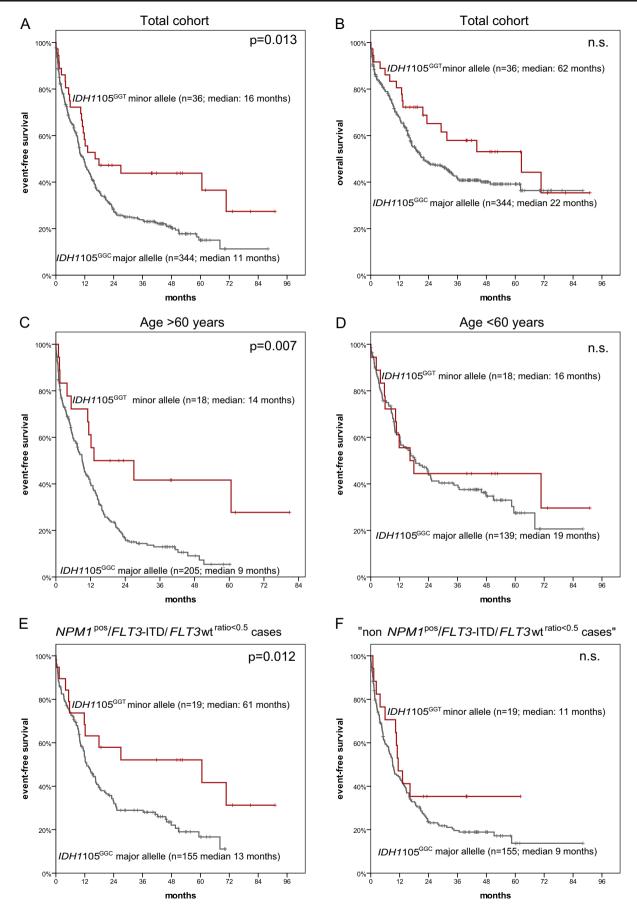
allele in the total cohort (Fig. 2a, b). When focusing the analysis to two separate age groups of >60-year-old and \leq 60-year-old, the favorable impact on EFS was restricted to the age group >60 years (median 14 vs 9 months, p=0.007) (Fig. 2c, d). Regarding OS, significant differences in outcome were seen neither in the total cohort nor in the age-restricted analyses.

The favorable prognostic effect of the $IDH1105^{\rm GGT}$ minor allele was also detectable in the NPM1 mutated/FLT3-ITD/FLT3wt^{ratio<0.5} group with a median EFS of median 61 vs 13 months as compared to those with the $IDH1105^{\rm GGC}$ major allele (p=0.012) (Fig. 2e, f).

Further statistical analyses on prevalence and prognostic influence were performed with the combined mutation status of *IDH1* and *IDH2*, as both *IDH1* and *IDH2*

Table 2 Correlation of *IDH1*G105 status to molecular mutations

Mutation (<i>n</i> =cases analyzed)	$IDHI105^{GGC}$ major allele, n (%)	IDHI105 ^{GGT} minor allele, n (%)	p
ASXL1 (n=507)			
wt	380 (84)	48 (90)	0.309
mut	74 (16)	5 (10)	
CEBPA (n=507)			
wt	409 (90)	50 (94)	0.456
mut	45 (10)	3 (6)	
DNMT3A (n=410)			
wt	216 (59)	27 (63)	0.438
mut	151 (41)	16 (37)	
FLT3-ITD (n=507)			
wt	396 (87)	43 (81)	0.207
mut	58 (13)	10 (19)	
FLT3-TKD (n=507)	,		
wt	405 (89)	49 (93)	0.636
mut	49 (11)	4 (7)	
NPM1 (n=507)		. ,	
wt	227 (50)	20 (38)	0.110
mut	227 (50)	33 (62)	
IDH1R132 (n=507)			
wt	406 (89)	48 (91)	0.626
mut	48 (11)	5 (9)	
<i>IDH2</i> R140 or <i>IDH2</i> R172 (<i>n</i> =			
wt	379 (83)	42 (79)	0.441
mut	75 (17)	11 (21)	
MLL-PTD (n =507)	()	(=-)	
neg	420 (93)	53 (98)	0.240
pos	33 (7)	1 (2)	
RUNXI (n=507)		- (-)	
wt	381 (84)	42 (78)	0.311
mut	73 (16)	11 (22)	0.511
WT1 (n=507)	, 5 (10)	()	
wt	424 (93)	51 (96)	0.560
mut	30 (7)	2 (4)	0.500


wt wild type, mut mutated

mutants cause the loss of the physiologic enzyme function resulting in elevated 2-hydroxyglutarate levels [12, 49, 52]. No differences were found in outcome between patients harboring the *IDH1*105^{GGT} minor allele with and without an additional mutation in *IDH1* or *IDH2*. Also within patients with *IDH1*105^{GGC} major allele, no differences in outcome were detected between cases with mutated *IDH* and those without. When considering four groups according to the presence of the *IDH1*105^{GGT} minor allele and *IDH* mutations, the sole significant difference in outcome was detected between patients harboring the *IDH1*105^{GGT} minor allele and *IDH* wild type and patients with *IDH1*105^{GGC} major allele and additional *IDH1*/2 mutation (Fig. 3a, b).

Univariate and multivariate analysis

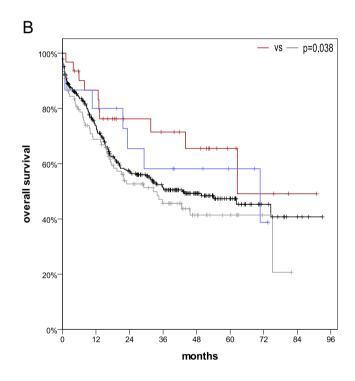
In univariate Cox regression analysis of 380 intensively treated AML patients, the $IDH1105^{\rm GGT}$ minor allele (p=0.014) and NPM1 mutations and FLT3-ITD/FLT3wt ratio<0.5 were associated with better prognosis (p=0.024). Higher age (p<0.001), higher WBC count (p<0.001), FLT3-ITD/FLT3wt ratio ≥ 0.5 (p<0.001), ASXL1 mutations (p<0.001), DNMT3A mutations (p=0.023), RUNX1 mutations (p<0.001), and WT1 mutations (p=0.042) were associated with worse EFS. In multivariate analysis, age (p<0.001), WBC count (p<0.001), and ASXL1 mutations (p=0.004) had independent relevance for EFS. Investigating OS in univariate analysis, NPM1 mutations were associated with better

■ Fig. 2 Kaplan-Meier survival analysis according to IDH1105 allele status. IDH1105^{GGC} major allele (gray) compared to IDH1105^{GGT} minor allele (red). a Event-free and b overall survival analyzed in the total cohort of 479 patients. c Event-free survival in patients >60 years of age and d ≤60 years; e event-free and f overall survival in the subgroup with NPM1 mutated/FLT3-ITD/FLT3wt^{ratio<0.5}

prognosis (p<0.001), whereas higher age (p<0.001), higher WBC count (p<0.001), FLT3-ITD ratio \geq 0.5 (p<0.001), ASXL1 mutations (p<0.001), DNMT3A mutations (p=0.026), MLL-PTD (p=0.004), and RUNX1 mutations (p=0.003) were associated with inferior outcome. In multivariate analysis, age (p<0.001), WBC count (p=0.001), and ASXL1 mutations (p=0.023) had independent prognostic impact (Table 3).

Discussion

In this study, we analyzed the *IDH1*105^{GGT} minor allele located in the 5' region of the same exon as the *IDH1*R132 mutation in a large cohort of 507 patients with intermediate-


- vs - p=0.026

- --- IDH1105^{GGT}minor allele + IDH1/IDH2wt (n=31; median: 27 months)
- --- IDH1105^{GGT}minor allelle + IDH1/IDH2mut (n=16: median: 21 months)
- --- IDH1105^{GGC}major allelle + IDH1/IDH2wt (n=333; median: 12 months)
- // IDH1105^{GGC}major allelle + IDH1/IDH2mut (n=110; median: 16 months)

Fig. 3 Kaplan-Meier survival analysis according to *IDH1* and *IDH2* mutation status. Survival within the total cohort of 380 intensively treated patients. Kaplan-Meier plot showing **a** overall and **b** event-free survival of *IDH110*^{5GGT} minor allele + *IDH1/IDH2*wt (*red*) compared to

risk karyotype AML in the context of other known prognostic markers. The *IDH1*105^{GGT} minor allele was detected in 10 % of AML patients. Furthermore, we analyzed a large healthy control cohort of 475 individuals. *IDH1*105^{GGT} minor allele was detected at approximately the same frequency (9 %), which is in line with previously published data [47].

Ho et al. [21] analyzed frequency and prognostic impact of IDH1105^{GGT} minor allele in a cohort of 274 adult de novo AML patients not selected for cytogenetics. They report the majority of patients with normal karyotype harboring IDH1105^{GGT} minor allele to have unfavorable risk features according to FLT3-ITD status. We were not able to confirm this, as we saw no differences in frequency of FLT3-ITD within the intermediate-risk cytogenetics group between IDH1105^{GGT} minor allele and IDH1105^{GGC} major allele cases (Tables 1 and 2) or in the cytogenetically normal subgroup of cases (data not shown). Furthermore, in our cohort, IDH1105^{GGT} minor allele and IDH1R132 mutation are not mutually exclusive as described by Ho et al. as we detected five cases (10 %) with coincident IDH1105^{GGT} minor allele and IDH1R132 mutation. We also were not able to confirm the mutually exclusiveness of IDH1105 GGT minor allele and

- --- IDH1105^{GGT}minor allele + IDH1/IDH2wt (n=31; median: 63 months)
- --- IDH1105^{GGT}minor allelle + IDH1/IDH2mut (n=16; median: 71 months)
- --- IDH1105^{GGC}major allelle + IDH1/IDH2wt (n=333; median: 43 months)
- IDH1105^{GGC}maior allelle + IDH1/IDH2mut (n=110; median; 33 months)

 $IDH1105^{\rm GGT}$ minor allele + IDH1/IDH2mut (blue), $IDH1105^{\rm GGC}$ major allele + IDH1/IDH2wt (black), and $IDH1105^{\rm GGC}$ major allele+IDH1/IDH2mut (grey)

Table 3 Influence of different biological and leukemia-associated parameters on OS and EFS in 380 AML patients in univariate and multivariate analysis

Parameter	EFS univariate		EFS multivariate		OS univariate		OS multivariate	
	p	RR	p	RR	p	RR	p	RR
Age*	< 0.001	1.292	< 0.001	1.301	< 0.001	1.387	< 0.001	1.374
WBC count#	< 0.001	1.075	< 0.001	1.079	< 0.001	1.069	< 0.001	1.089
IDH1G105	0.014	0.575	NS	_	NS	_	NS	_
<i>IDH1</i> R132	NS	0.954	_	_	NS	1.020	_	_
IDH2R140	NS	0.915	_	_	NS	0.988	_	_
<i>IDH2</i> R172	NS	0.892	_	_	NS	0.948	_	_
NPM1 ⁺ /FLT3-ITD/FLT3wt ^{ratio<0.5}	0.024	0.761	NS	_	< 0.001	0.600	NS	_
$FLT3$ -ITD/ $FLT3$ wt ^{ratio} ≥ 0.5	0.002	1.654	NS	_	< 0.001	2.048	NS	_
ASXL1	< 0.001	1.946	0.004	2.351	< 0.001	2.406	0.023	2.077
DNMT3A	0.023	1.340	NS	_	0.026	1.402	NS	_
<i>MLL</i> -PTD	NS	_	NS	_	0.004	1.974	NS	_
RUNX1	0.018	1.457	NS	_	< 0.001	1.884	NS	_
WT1	0.042	1.502	0.044	1.773	NS	_	NS	-

Age and peripheral blood cell counts were considered as continuous parameters *EFS* event-free survival, *NS* not significant, *OS* overall survival, *RR* relative risk *Per 10 years of increase, # per 10×10^9 /L

CEBPA mutations as described by Wagner et al. [47], as we found coincident *IDH1*105^{GGT} minor allele and *CEBPA* mutation in three cases (6 %). Overall, we observed a random distribution of the *IDH1*105^{GGT} minor allele independent of all genetic subgroups suggesting that there is no preponderance for carriers to acquire any specific alteration. This corresponds with data published for *WT1* SNP rs16754 indicating a similar distribution of the SNP in molecular genetic subgroups of CN-AML [10].

Wagner et al. [47] reported the IDH1105^{GGT} minor allele to be a negative prognostic factor in a cohort of 275 adult CN-AML. We were not able to confirm these data. Even when restricting survival analysis to our CN-AML patients (n= 337), no negative prognostic impact of IDH1105^{GGT} minor allele was seen (data not shown). The cohort of Wagner et al. is limited to a maximum of 60 years of age, and thus, mean age is 10 years younger than in our cohort. In our cohort, neither a negative nor a positive prognostic impact was detectable in CN-AML patients ≤ 60 years of age (n=139). However, we detected a favorable impact of IDH1105^{GGT} minor allele on EFS in patients >60 years of age. Since we detected a mutual exclusiveness of IDH1105^{GGT} minor allele and ASXL1 mutations in the subcohort of intensively treated patients, it is likely that the better prognosis observed in patients with IDH1105^{GGT} minor allele compared to cases with IDH1105^{GGC} major allele is not caused by the polymorphism itself but rather by the absence of ASXL1 mutations. The lacking prognostic effect of minor allele *IDH1*105GGT per se is supported by two studies. Ravandi et al. [33] found no association with achievement of complete response (CR), remission duration, EFS and OS, and *IDH*1 SNP in a cohort of 170 de novo AML patients. Damm et al. [11] investigated a cohort of 460 pediatric AML cases and observed no effect of *IDH*1105^{GGT} minor allele on EFS or OS.

Several studies reported on effects of synonymous variants. Kimchi-Sarfaty et al. [26] found that synonymous SNPs alter the interaction of the ABC transporter ABCB1 with its substrates and inhibitors. Capon et al. [6] showed that a synonymous SNP in the corneodesmosin gene leads to increased mRNA stability. A study of Nackley et al. [30] gave evidence for synonymous SNPs being capable of affecting protein expression by alteration of mRNA stability. IDH1105^{GGT} minor allele is reported to cause elevated levels of the oncometabolite 2-hydroxyglutarate (2-HG) in the plasma, similar to somatic mutations in *IDH1* and *IDH2* [51]. However, levels of cellular 2-HG production depend on subcellular localization of IDH1 and IDH2 proteins. Ward et al. [48] demonstrated that mutations in *IDH1*, which is located in the cytosol, result in less cellular 2-HG accumulation compared to mutations in *IDH2*, which is located in the mitochondria. Moreover, the extent of 2-HG production from mitochondrial IDH2 mutations depends on the particular site that is mutated. IDH2R140 mutations result in less cellular 2-HG accumulation than IDH2R172 mutations, which also correlates with the weaker impact of IDH2R140 mutations regarding impairment of cell differentiation relative to IDH2R172 mutations. Furthermore, mutations in cytosolic *IDH1*R132, structurally analogous to mutations in mitochondrial

IDH2R172, do not produce as much 2-HG when overexpressed in cells at comparable levels. Finally, also subcellular compartmentalization of metabolic flux can affect the ability of IDH mutations to result in cellular 2-HG accumulation. As Wiseman et al. [51] demonstrated, IDH1105^{GGT} minor allele also results in only moderate elevation of cellular 2-HG compared to the somatic mutations IDH1R132, IDH2R140, and IDH2R172, which also might lead to only a moderate impairment of cell differentiation. The significantly reduced expression of the progenitor marker CD34 in cases harboring IDH1105^{GGT} minor allele in the present series may also be considered in line with a weaker impact of the SNP regarding impairment of cell differentiation. However, this finding was not reflected in blast count or cell morphology.

In conclusion, we detected the *IDH1*105^{GGT} minor allele in intermediate-risk AML at the same frequency as in healthy controls. However, studies on clinical relevance of the *IDH1*105^{GGT} minor allele are controversial. We demonstrate the *IDH1*105^{GGT} minor allele to be associated with favorable prognosis in intensively treated AML patients with intermediate-risk karyotype in patients >60 years of age. However, this association is not independent on other prognostic parameters. The consideration of our data in relation to already published studies implies that *IDH1*105^{GGT} minor allele per se has no independent prognostic relevance but has to be considered in the context of the genetic background of the individual AML analyzed.

Conflict of interest CH, WK, TH, and SuS have equity ownership of MLL Munich Leukemia Laboratory GmbH. AF, TA, and CE are employed by MLL Munich Leukemia Laboratory GmbH.

References

- Arber DA, Brunning RD, Le Beau MM (2008) Acute myeloid leukemia (AML) and related precursor neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer (IARC), Lyon, pp 110–123
- Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S (2008) Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood 111:2527–2537
- Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107:3847–3853
- Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33:451–458
- Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103:620–625

- Capon F, Allen MH, Ameen M, Burden AD, Tillman D, Barker JN, Trembath RC (2004) A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet 13:2361–2368
- Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, LoCocco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Lowenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649
- Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W, Ko BS, Wu SJ, Huang SY, Hsu SC, Chen YC, Huang YN, Chang YC, Lee FY, Liu MC, Liu CW, Tseng MH, Huang CF, Tien HF (2010) Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 115:2749–2754
- Collins FS, Guyer MS, Charkravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278: 1580–1581
- Damm F, Heuser M, Morgan M, Yun H, Grosshennig A, Gohring G, Schlegelberger B, Dohner K, Ottmann O, Lubbert M, Heit W, Kanz L, Schlimok G, Raghavachar A, Fiedler W, Kirchner H, Dohner H, Heil G, Ganser A, Krauter J (2010) Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J Clin Oncol 28:578–585
- 11. Damm F, Thol F, Hollink IH, Zimmermann M, Reinhardt K, van den Heuvel-Eibrink MM, Zwaan CM, de Haas V, Creutzig U, Klusmann JH, Krauter J, Heuser M, Ganser A, Reinhardt D, Thiede C (2011) Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia 25:1704–1710
- Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancerassociated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744
- Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S (2007) Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood 110:1308–1316
- 14. Dohner K, Tobis K, Ulrich R, Frohling S, Benner A, Schlenk RF, Dohner H (2002) Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol 20: 3254–3261
- Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266
- Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, Tobis K, Dohner H, Dohner K (2004) CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 22:624–633
- Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring

- chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354–365
- 18. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, Wheatley K, Burnett AK, Goldstone AH, On behalf of the Medical Research Council Addult and Children's Leukemia Working Parties (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML 11 trial. Blood 98:1312–1320
- Grossmann V, Schnittger S, Schindela S, Klein HU, Eder C, Dugas M, Kern W, Haferlach T, Haferlach C, Kohlmann A (2011) Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deepsequencing technology. J Mol Diagn 13:129–136
- Haferlach T, Kern W, Schoch C, Hiddemann W, Sauerland MC (2003) Morphologic dysplasia in acute myeloid leukemia: importance of granulocytic dysplasia. J Clin Oncol 21:3004–3005
- 21. Ho PA, Kopecky KJ, Alonzo TA, Gerbing RB, Miller KL, Kuhn J, Zeng R, Ries RE, Raimondi SC, Hirsch BA, Oehler V, Hurwitz CA, Franklin JL, Gamis AS, Petersdorf SH, Anderson JE, Godwin JE, Reaman GH, Willman CL, Bernstein ID, Radich JP, Appelbaum FR, Stirewalt DL, Meshinchi S (2011) Prognostic implications of the IDH1 synonymous SNP rs11554137 in pediatric and adult AML: a report from the Children's Oncology Group and SWOG. Blood 118:4561–4566
- Holle R, Happich M, Lowel H, Wichmann HE (2005) KORA—a research platform for population based health research. Gesundheitswesen 67(Suppl 1):S19–S25
- Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, Boyiadzis M (2014) DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 28:1774–1783
- Mitleman F (ed) ISCN (1995) Guidelines for cancer cytogenetics, supplement to an international system for human cytogenetic nomenclature, (S Karger, Basel 1995)
- Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T (2004) Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 104:3078–3085
- Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315:525– 528
- 27. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B, Dicker F, Schnittger S, Dugas M, Kern W, Haferlach C, Haferlach T (2010) Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 28:3858–3865
- 28. Lander ES (1996) The new genomics: global views of biology. Science 274:536–539
- 29. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, DiPersio JF, Wilson RK, Ley TJ (2009) Recurring mutations found

- by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058-1066
- Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933
- Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/ enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27:263–270
- Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, De Botton S, Thomas X, Raffoux E, Lamandin C, Castaigne S, Fenaux P, Dombret H (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 100:2717–2723
- 33. Ravandi F, Patel K, Luthra R, Faderl S, Konopleva M, Kadia T, Brandt M, Pierce S, Kornblau S, Andreeff M, Wang X, Garcia-Manero G, Cortes J, Kantarjian H (2012) Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer 118:2665–2673
- Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517
- Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM (2007) The sounds of silence: synonymous mutations affect function. Pharmacogenomics 8:527–532
- Schnittger S, Bacher U, Kern W, Alpermann T, Haferlach C, Haferlach T (2011) Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia 25:1297–1304
- 37. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, Kohlmann A, Illig T, Klopp N, Wichmann HE, Kreuzer KA, Schmid C, Staib P, Peceny R, Schmitz N, Kem W, Haferlach C, Haferlach T (2013) ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27:82–91
- Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T (2010) IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 116:5486–5496
- Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Buchner T, Wormann B, Hiddemann W, Griesinger F (2000) Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 14:796–804
- 40. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T, Haferlach T, Hiddemann W (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66
- Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, Haferlach T, Hiddemann W, Falini B (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106:3733–3739
- Schoch C, Haferlach T (2002) Cytogenetics in acute myeloid leukemia. Curr Oncol Rep 4:390–397
- 43. Steudel C, Wermke M, Schaich M, Schakel U, Illmer T, Ehninger G, Thiede C (2003) Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosome Cancer 37:237–251

- Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, Ehninger G, Illmer T (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335
- Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383:281–291
- 46. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, Erpelinck CA, Delwel R, Lowenberg B, Valk PJ (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106:3747–3754
- 47. Wagner K, Damm F, Gohring G, Gorlich K, Heuser M, Schafer I, Ottmann O, Lubbert M, Heit W, Kanz L, Schlimok G, Raghavachar AA, Fiedler W, Kirchner H, Brugger W, Zucknick M, Schlegelberger B, Heil G, Ganser A, Krauter J (2010) Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 28:2356–2364

- Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK, Thompson CB (2013) The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem 288:3804

 –3815
- 49. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alphaketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234
- Wichmann HE, Gieger C, Illig T (2005) KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67(Suppl 1):S26–S30
- Wiseman DH, Small HF, Wilks DP, Waddell ID, Dennis MW, Ogilvie DJ, Somervaille TC (2014) Elevated plasma 2hydroxyglutarate in acute myeloid leukaemia: association with the IDH1 SNP rs11554137 and severe renal impairment3. Br J Haematol 166:145–148
- Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

