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Abstract Germline polymorphisms in genes mutated in acute
myeloid leukemia (AML) may have prognostic impact.
Therefore, the relevance of the polymorphism IDH1G105
(IDH1105GGT minor allele) was evaluated in the context of
concomitant molecular mutations in a cohort of 507AML cases
with intermediate-risk cytogenetics. In addition, a cohort of 475
healthy controls was analyzed for this polymorphism.
IDH1105GGT minor allele was found in 10 % of AML patients
and 9 % of healthy controls. While no differences were seen
with regard to cytomorphology or cytogenet ics ,
immunophenotyping revealed significantly reduced expression
of the progenitor marker CD34 in AML cases harboring
IDH1105GGT minor allele. Cases with IDH1105GGT minor al-
lele as compared to those with the IDH1105GGC major allele
had significantly longer event-free survival (EFS) (median 16
vs 11months, p=0.013) which was most pronounced in the age

group >60 years (median 14 vs 9 months, p=0.007) and in the
NPM1 mutated/FLT3-ITD/FLT3wt ratio <0.5 group (median
61 vs 13 months, p=0.012). However, this association is not
independent of other prognostic parameters, and we conclude
that IDH1105GGT minor allele has to be considered in the con-
text of the genetic background of the individual AML analyzed.

Keywords IDH1 . IDH2 . Polymorphism . AML . Prognosis

Introduction

Acute myeloid leukemia (AML) is a heterogeneous clonal
disorder with regard to underlying cellular and molecular bi-
ology, acquired genetic lesions, and associated clinical re-
sponses to treatment. To date, recurrent cytogenetic aberra-
tions provide the most important prognostic parameter [18,
42]. However, cytogenetically normal AML (CN-AML) com-
prises the largest subgroup with approximately 45 % of adult
AML cases. These cases can be further characterized by dif-
ferent gene mutations including partial tandem duplication in
the MLL gene [14, 39, 43], FLT3 tyrosine kinase mutations
(FLT3-TKD) [2, 44], internal tandem duplications in FLT3
(FLT3-ITD) [40], NPM1 mutations [15, 41, 46], and CEBPA
mutations [16, 31, 32]. The latter three parameters are used in
clinical practice and affect diagnosis, risk assessment, and also
guidance of therapy. However, for the majority of patients,
novel markers for risk stratification and new therapeutic ap-
proaches are still desirable.

One further potential marker is the mutational status of
isocitrate dehydrogenase 1 (IDH1). IDH1, a citric acid cycle
enzyme encoded by the IDH1 gene, converts isocytrate to α-
ketoglutarate in an NADP+-dependent manner and is supposed
to control redox status in cells. Missense mutations at the argi-
nine 132 codon in exon 4 of IDH1 have been shown to generate
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the putative oncogenic metabolite 2-hydroxyglutarate and may
contribute to leukemogenesis via the induction of DNA hyper-
methylation. Acquired mutations of IDH1 have been described
with a frequency of approximately 5–10 % in AML and are
associated with inferior event-free survival (EFS) and possible
adverse overall survival (OS) [38]. IDH2 has the same enzy-
matic activity as IDH1 but is located in the mitochondrial ma-
trix. In AMLmissensemutations at the arginin, codons 140 and
172 in exon 4 of IDH2 have been reported [8, 29]. The newly
acquired and distinct enzyme activity gained on mutation of
IDH1 and IDH2 proteins provides an attractive and novel ther-
apeutic target. A number of IDH inhibitors are in various stages
of development and have been evaluated in preclinical studies
[23].

In addition to acquired gene mutations, the impact of
germline single nucleotide polymorphisms (SNPs) on dis-
eases came into focus [9, 28, 34]. Effects on RNA stability,
splicing, or messenger RNA (mRNA) folding have been sug-
gested as potential mechanisms to explain how SNPs can
affect biologic functions or drug sensitivity [35, 45].
Germline polymorphisms in IDH1 exon 4 have been de-
scribed, the most common of these being SNP rs11554137,
representing a GGC to GGT transversion at the glycine resi-
due 105 (minor allele IDH1105GGT). In adult AML patients,
the minor allele IDH1105GGT is described to be present in
about 11% of cases andwas found to be an adverse prognostic
marker [21, 47].

We focused on the impact of the IDH1105GGT minor al-
lele in a cohort of 507 AML patients with intermediate-risk
karyotype and compared the incidence of IDH1105GGT mi-
nor allele to a cohort of 475 healthy controls.

Materials and methods

Patient cohorts

Bone marrow (n=429) or peripheral blood (n=78) samples
from 507 AML patients with intermediate-risk karyotype de-
fined according to MRC [17] were screened for IDH1105GGT

minor allele. All 507 patient samples were referred to our
laboratory for first diagnosis of AML between August 2005
and July 2010. AMLwas diagnosed according to the FAB and
WHO classifications [1, 5].

Two hundred patients were female and 283 male. Median
age was 68 years (range 18–100 years). Bone marrow blast
percentages ranged from 20 to 100 % (median 68 %) in 495
patients with non-M6 AML. Twelve patients with AML M6
subtype had blast percentages below 20 % (3–17 %, median
10 %), as characteristic for the AML M6 subtype. Data on
other molecular markers was available in all 507 cases for
ASXL1 , CEBPA , FLT3 - ITD, FLT3 -TKD, NPM1 ,
IDH1R132, IDH2R140, IDH2R172, MLL-PTD, RUNX1,

and WT1. Data on DNMT3Awas available in 412/507 cases.
As it has been shown, only a FLT3-ITD/FLT3wt ratio ≥0.5
has a significant adverse prognostic impact [36]. FLT3-ITD
negative patients and patients with FLT3-ITD/FLT3wt ratio
<0.5 are combined and designated as FLT3-ITD/
FLT3wtratio<0.5.

Patients (380/507) received intensive therapy based on dif-
ferent treatment schedules and were in part included into con-
trolled trials of German study groups. Prior to therapy, all
patients gave their informed consent for molecular genetic
studies. The study design adhered to the tenets of the
Declaration of Helsinki and was approved by the institutional
review board before its initiation.

Healthy controls

The controls for the present study were selected from The
KORA (Cooperative Health Research in the Region of
Augsburg, Germany) study, a series of population-based epi-
demiological surveys of participants living in or near the city
of Augsburg, Southern Germany [22, 50]. The study sample
was drawn from the F4 study (2006–2008), a follow-up study
to the KORA Survey S4 (1999–2001), which comprises 3080
participants. Altogether, 475 individuals from KORA
matched by age to the AML cohort were analyzed.

Cytomorphology, cytogenetics, immunophenotyping

Cytomorphologic assessment was based on May-Grünwald-
Giemsa stains, myeloperoxidase reaction, and non-specific
esterase using alpha-naphtyl-acetate as described before and
was performed according to the criteria defined in the FAB
and the WHO classifications [1, 4, 20]. Cytogenetic studies
were performed after short-term culture. Karyotypes, analyzed
after G-banding, were described according to the International
System for Human Cytogenetic Nomenclature [24]. AML
cases with intermediate-risk karyotypes were selected accord-
ing to the refined MRC criteria [17]. Cytogenetic results were
available for all patients in the study. Immunophenotyping
was performed as described previously and was available in
263 cases [25].

Molecular genetic analysis

Isolation of mononuclear cells, DNA extraction, and mRNA
extraction as well as random primed cDNA synthesis were
performed as described previously [41]. Analyses for muta-
tions in ASXL1, NPM1, FLT3-TKD, RUNX1, WT1, IDH1,
IDH2, CEBPA as well as MLL-PTD and FLT3-ITD were de-
scribed previously [2, 3, 13, 19, 27, 37–41].

Screening for IDH1105GGT minor allele was performed
using a LightCycler-based melting curve assay (Roche
Diagnostics GmbH, Penzberg, Germany) in all 507
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AML patients using the following primers: forward prim-
er IDH1-F: GCTTGTGAGTGGATGGGTAA, reverse
primer: IDH1-R: TATGTACCAGGTATGTCACCTT and
hybridization probes IDH1-F anchor probe IDH1-FL:
TTTTCCAGGCCCAGGAACAACAAAATCAGTT-FL
a n d s e n s o r p r o b e I D H 1 - 6 4 0 : L C R e d 6 4 0 -
TCTGTATTGATCCCCATAAGCATGACGAC-p
(Fig. 1a). Screening for IDH1105GGT minor allele in the
KORA control cohort was done by Sanger sequencing using
the primers mentioned above (Fig. 1b). Sequencing data was
analyzed using Mutation Surveyor Software Version 4.0.8
(Softgenetics, State College, Pennsylvania, USA).

Statistics

Survival curves were calculated for OS and EFS according to
Kaplan-Meier and compared using the two-sided log-rank
test. OS was the time from diagnosis to death or last follow-
up. EFS was the time from diagnosis to treatment failure,
relapse, death, or last follow-up in complete remission.
Relapse was defined according to Cheson et al. [7]. Cox re-
gression analysis was performed for OS and EFS with differ-
ent parameters as covariates. Median follow-up was calculat-
ed taking into account the respective last observations in sur-
viving cases and censoring non-surviving cases at the time of
death. Parameters which were significant in univariate analy-
ses were included into multivariate analyses. Dichotomous
variables were compared between different groups using the
χ2 test and continuous variables by Student’s t test. Results
were considered significant at p<0.05. All reported p values
are two-sided. No adjustments for multiple comparisons were
performed. SPSS (version 19.0.1) software (IBM
Corporation, Armonk, NY) was used for statistical analysis.

Results

Frequency of IDH1105GGT in AML and healthy controls

The IDH1105GGT minor allele was detected in 10 % (53/507)
of AML and in 9 % (42/475) of the KORA control cohort.
This slight difference (odds ratio of 1.18) does not reach sta-
tistical significance (p=0.25). Also, the frequency of a homo-
zygous IDH1105GGT minor allele was not different between
the AML cohort (2/53, 4 %) and the KORA cohort (2/42, 5 %,
n.s.).

Furthermore, 5/53 patients with IDH1105GGT minor allele
(9 %) had concomitant IDH1R132 mutation; 11/53 patients
with IDH1105GGT minor allele (21 %) had concomitant IDH2
mutation.

Patient characteristics in relation to IDH1105GGT minor
allele

There was no association of IDH1105GGT minor allele with
AML FAB subtype, age, WBC, hemoglobin levels, or platelet
count (Table 1). Immunophenotyping was done in 263 cases.
Patients with IDH1105GGT minor allele had significantly low-
er expression of CD34 (mean positive cells 16±20 vs 30±
30 %, p=0.001).

With regard to cytogenetics, there were no differences be-
tween patients with IDH1105GGT minor allele and patients
with IDH1105GGC major allele (Table 1). Eighty one of 90
cases (90 %) harboring IDH1105GGT minor allele had normal
karyotype. Three patients (3 %) had trisomy 8, and the re-
maining six patients (7 %) had different other aberrations.

Furthermore, we did not detect any correlation of the
IDH1105GGT minor allele to any other mutation analyzed
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Fig. 1 a LightCycler®-based melting curve assay to identify IDH1105GGT minor allele. b Sanger sequence analysis of IDH1 as evaluated by Mutation
Surveyor Software. Left panel shows homozygous base change C > T; right panel shows heterozygous base change C > T
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(Table 2). When focusing the analysis to the >60-year-old and
≤60-year-old age groups, we also found no differences in
composition or amount of concomitant mutations between
patients with IDH1105GGT minor allele and patients with
IDH1105GGC major allele. Restricting the cohort to intensive-
ly treated patients (n=380) revealed a mutual exclusiveness of
IDH1105GGT minor allele and ASXL1 mutations (p=0.037)
(data not shown).

Prognostic impact of IDH1105GGT minor allele

Survival analysis was restricted to 380 patients having re-
ceived intensive therapy. Cases with IDH1105GGT minor al-
lele had significantly longer EFS (median 16 vs 11 months,
p=0.013) compared to those with the IDH1105GGC major

allele in the total cohort (Fig. 2a, b). When focusing the anal-
ysis to two separate age groups of >60-year-old and ≤60-year-
old, the favorable impact on EFS was restricted to the age
group >60 years (median 14 vs 9 months, p=0.007)
(Fig. 2c, d). Regarding OS, significant differences in outcome
were seen neither in the total cohort nor in the age-restricted
analyses.

The favorable prognostic effect of the IDH1105GGT minor
allele was also detectable in the NPM1 mutated/FLT3-ITD/
FLT3wtratio<0.5 group with a median EFS of median 61 vs
13 months as compared to those with the IDH1105GGC major
allele (p=0.012) (Fig. 2e, f).

Further statistical analyses on prevalence and prognos-
tic influence were performed with the combined mutation
status of IDH1 and IDH2, as both IDH1 and IDH2

Table 1 Patient demographics
and clinical and molecular
characteristics of AML patients
according to IDH1G105 status

All patients Total cohort IDH1105GGC major allele IDH1105GGT minor allele p
n=507 n=454 n=53

Sex

Female 224 (44 %) 207 (46 %) 17 (32 %) 0.079

Male 283 (56 %) 247 (54 %) 36 (68 %)

Age (years)

Median 68 63 64 0.508

Range 18–100 18–100 26–88

WBC count (×109/L)

Median 24.9 24.4 29.4 0.755

Range 0.7–600 1.0–600 0.7–177

Platelet count (×109/L)

Median 64 64 64 0.325

Range 3.0–950 3.0–950 10.0–392

Hemoglobin (g/dL)

Median 9.2 9.2 9.5 0.613

Range 4.7–17.5 4.7–17.5 5.1–13.3

FAB subtype

M0 18 (4 %) 15 (3 %) 3 (6 %) 0.420

M1 158 (31 %) 142 (31 %) 16 (30 %) 1.000

M2 153 (30 %) 139 (31 %) 14 (26 %) 0.636

M4 133 (26 %) 116 (26 %) 17 (32 %) 0.323

M5 18 (4 %) 17 (4 %) 1 (2 %) 0.709

M6 17 (3 %) 16 (4 %) 1 (2 %) 1.000

nd 10 (2 %) 9 (2 %) 1 (2 %) 1.000

History of disease

De novo AML 473 (93 %) 426 (95 %) 47 (89 %) 0.152

Secondary AML 25 (5 %) 20 (4 %) 5 (9 %) 0.167

Therapy-related AML 9 (2 %) 8 (0.4 %) 1 (2 %) 1.000

Cytogenetics [17]

Intermediate-risk NK 447 (88 %) 399 (88 %) 48 (91 %) 0.822

Intermediate-risk AK 60 (12 %) 55 (12 %) 5 (9 %) 0.822

WBC white blood cells, NK normal karyotype, AK aberrant karyotype

Ann Hematol



mutants cause the loss of the physiologic enzyme function
resulting in elevated 2-hydroxyglutarate levels [12, 49,
52]. No differences were found in outcome between pa-
tients harboring the IDH1105GGT minor allele with and
without an additional mutation in IDH1 or IDH2. Also
within patients with IDH1105GGC major allele, no differ-
ences in outcome were detected between cases with mu-
tated IDH and those without. When considering four
groups according to the presence of the IDH1105GGT mi-
nor allele and IDH mutations, the sole significant differ-
ence in outcome was detected between patients harboring
the IDH1105GGT minor allele and IDH wild type and pa-
tients with IDH1105GGC major allele and additional
IDH1/2 mutation (Fig. 3a, b).

Univariate and multivariate analysis

In univariate Cox regression analysis of 380 intensively treat-
ed AML patients, the IDH1105GGT minor allele (p=0.014)
and NPM1 mutations and FLT3-ITD/FLT3wtratio<0.5 were as-
sociated with better prognosis (p=0.024). Higher age
(p<0.001), higher WBC count (p<0.001), FLT3-ITD/
FLT3wt ratio ≥0.5 (p<0.001), ASXL1 mutations (p<0.001),
DNMT3A mutations (p= 0.023), RUNX1 mutations
(p<0.001), and WT1 mutations (p=0.042) were associated
with worse EFS. In multivariate analysis, age (p<0.001),
WBC count (p<0.001), and ASXL1 mutations (p=0.004)
had independent relevance for EFS. Investigating OS in uni-
variate analysis, NPM1 mutations were associated with better

Table 2 Correlation of
IDH1G105 status to molecular
mutations

Mutation (n=cases analyzed) IDH1105GGC major allele, n (%) IDH1105GGT minor allele, n (%) p

ASXL1 (n=507)

wt 380 (84) 48 (90) 0.309

mut 74 (16) 5 (10)

CEBPA (n=507)

wt 409 (90) 50 (94) 0.456

mut 45 (10) 3 (6)

DNMT3A (n=410)

wt 216 (59) 27 (63) 0.438

mut 151 (41) 16 (37)

FLT3-ITD (n=507)

wt 396 (87) 43 (81) 0.207

mut 58 (13) 10 (19)

FLT3-TKD (n=507)

wt 405 (89) 49 (93) 0.636

mut 49 (11) 4 (7)

NPM1 (n=507)

wt 227 (50) 20 (38) 0.110

mut 227 (50) 33 (62)

IDH1R132 (n=507)

wt 406 (89) 48 (91) 0.626

mut 48 (11) 5 (9)

IDH2R140 or IDH2R172 (n=507)

wt 379 (83) 42 (79) 0.441

mut 75 (17) 11 (21)

MLL-PTD (n=507)

neg 420 (93) 53 (98) 0.240

pos 33 (7) 1 (2)

RUNX1 (n=507)

wt 381 (84) 42 (78) 0.311

mut 73 (16) 11 (22)

WT1 (n=507)

wt 424 (93) 51 (96) 0.560

mut 30 (7) 2 (4)

wt wild type, mut mutated
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GGT minor allele (n=36; median: 16 months)

GGC major allelle (n=344; median 11 months)

p=0.013

GGT minor allele (n=36; median: 62 months)

GGC major allelle (n=344; median 22 months)

n.s.

GGT  minor allele (n=18; median: 14 months)

GGC major allelle (n=205; median 9 months)

GGT minor allele (n=19; median: 61 months)

GGC major allelle (n=155 median 13 months)

pos/ -ITD/ wt ratio<0.5 cases

p=0.012

GGT minor allele (n=19; median: 11 months)

GGC major allelle (n=155; median 9 months)

n.s.

p=0.007

"non pos/ -ITD/ wt ratio<0.5 cases"
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prognosis (p<0.001), whereas higher age (p<0.001), higher
WBC count (p<0.001), FLT3-ITD ratio ≥0.5 (p<0.001),
ASXL1 mutations (p<0.001), DNMT3A mutations (p=
0.026), MLL-PTD (p=0.004), and RUNX1 mutations (p=
0.003) were associated with inferior outcome. In multivariate
analysis, age (p<0.001), WBC count (p=0.001), and ASXL1
mutations (p=0.023) had independent prognostic impact
(Table 3).

Discussion

In this study, we analyzed the IDH1105GGT minor allele lo-
cated in the 5′ region of the same exon as the IDH1R132
mutation in a large cohort of 507 patients with intermediate-

risk karyotype AML in the context of other known prognostic
markers. The IDH1105GGT minor allele was detected in 10 %
of AML patients. Furthermore, we analyzed a large healthy
control cohort of 475 individuals. IDH1105GGT minor allele
was detected at approximately the same frequency (9 %),
which is in line with previously published data [47].

Ho et al. [21] analyzed frequency and prognostic impact of
IDH1105GGT minor allele in a cohort of 274 adult de novo
AML patients not selected for cytogenetics. They report the
majority of patients with normal karyotype harboring
IDH1105GGT minor allele to have unfavorable risk features
according to FLT3-ITD status. We were not able to confirm
this, as we saw no differences in frequency of FLT3-ITD
within the intermediate-risk cytogenetics group between
IDH1105GGTminor allele and IDH1105GGCmajor allele cases
(Tables 1 and 2) or in the cytogenetically normal subgroup of
cases (data not shown). Furthermore, in our cohort,
IDH1105GGT minor allele and IDH1R132 mutation are not
mutually exclusive as described by Ho et al. as we detected
five cases (10 %) with coincident IDH1105GGT minor allele
and IDH1R132 mutation. We also were not able to confirm
the mutually exclusiveness of IDH1105GGT minor allele and

�Fig. 2 Kaplan-Meier survival analysis according to IDH1105 allele
status. IDH1105GGC major allele (gray) compared to IDH1105GGT

minor allele (red). a Event-free and b overall survival analyzed in the
total cohort of 479 patients. c Event-free survival in patients >60 years of
age and d ≤60 years; e event-free and f overall survival in the subgroup
with NPM1 mutated/FLT3-ITD/FLT3wtratio<0.5

A B

Fig. 3 Kaplan-Meier survival analysis according to IDH1 and IDH2
mutation status. Survival within the total cohort of 380 intensively
treated patients. Kaplan-Meier plot showing a overall and b event-free
survival of IDH1105GGT minor allele + IDH1/IDH2wt (red) compared to

IDH1105GGT minor allele + IDH1/IDH2mut (blue), IDH1105GGC major
allele + IDH1/IDH2wt (black), and IDH1105GGC major allele+IDH1/
IDH2mut (grey)
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CEBPA mutations as described by Wagner et al. [47], as we
found coincident IDH1105GGT minor allele and CEBPA mu-
tation in three cases (6 %). Overall, we observed a random
distribution of the IDH1105GGT minor allele independent of
all genetic subgroups suggesting that there is no preponder-
ance for carriers to acquire any specific alteration. This corre-
sponds with data published forWT1 SNP rs16754 indicating a
similar distribution of the SNP inmolecular genetic subgroups
of CN-AML [10].

Wagner et al. [47] reported the IDH1105GGT minor allele to
be a negative prognostic factor in a cohort of 275 adult CN-
AML. We were not able to confirm these data. Even when
restricting survival analysis to our CN-AML patients (n=
337), no negative prognostic impact of IDH1105GGT minor
allele was seen (data not shown). The cohort of Wagner et al.
is limited to a maximum of 60 years of age, and thus, mean
age is 10 years younger than in our cohort. In our cohort,
neither a negative nor a positive prognostic impact was detect-
able in CN-AML patients ≤60 years of age (n=139).
However, we detected a favorable impact of IDH1105GGT

minor allele on EFS in patients >60 years of age. Since we
detected a mutual exclusiveness of IDH1105GGT minor allele
and ASXL1 mutations in the subcohort of intensively treated
patients, it is likely that the better prognosis observed in pa-
tients with IDH1105GGT minor allele compared to cases with
IDH1105GGC major allele is not caused by the polymorphism
itself but rather by the absence of ASXL1mutations. The lack-
ing prognostic effect of minor allele IDH1105GGT per se is
supported by two studies. Ravandi et al. [33] found no

association with achievement of complete response (CR), re-
mission duration, EFS and OS, and IDH1 SNP in a cohort of
170 de novo AML patients. Damm et al. [11] investigated a
cohort of 460 pediatric AML cases and observed no effect of
IDH1105GGT minor allele on EFS or OS.

Several studies reported on effects of synonymous variants.
Kimchi-Sarfaty et al. [26] found that synonymous SNPs alter
the interaction of the ABC transporter ABCB1 with its sub-
strates and inhibitors. Capon et al. [6] showed that a synony-
mous SNP in the corneodesmosin gene leads to increased
mRNA stability. A study of Nackley et al. [30] gave evidence
for synonymous SNPs being capable of affecting protein ex-
pression by alteration of mRNA stability. IDH1105GGT minor
allele is reported to cause elevated levels of the
oncometabolite 2-hydroxyglutarate (2-HG) in the plasma,
similar to somatic mutations in IDH1 and IDH2 [51].
However, levels of cellular 2-HG production depend on sub-
cellular localization of IDH1 and IDH2 proteins. Ward et al.
[48] demonstrated that mutations in IDH1, which is located in
the cytosol, result in less cellular 2-HG accumulation com-
pared to mutations in IDH2, which is located in the mitochon-
dria. Moreover, the extent of 2-HG production from mito-
chondrial IDH2 mutations depends on the particular site that
is mutated. IDH2R140 mutations result in less cellular 2-HG
accumulation than IDH2R172 mutations, which also corre-
lates with the weaker impact of IDH2R140 mutations regard-
ing impairment of cell differentiation relative to IDH2R172
mutations. Furthermore, mutations in cytosolic IDH1R132,
structurally analogous to mutations in mitochondrial

Table 3 Influence of different biological and leukemia-associated parameters on OS and EFS in 380 AML patients in univariate and multivariate
analysis

Parameter EFS univariate EFS multivariate OS univariate OS multivariate

p RR p RR p RR p RR

Age* <0.001 1.292 <0.001 1.301 <0.001 1.387 <0.001 1.374

WBC count# <0.001 1.075 <0.001 1.079 <0.001 1.069 <0.001 1.089

IDH1G105 0.014 0.575 NS – NS – NS –

IDH1R132 NS 0.954 – – NS 1.020 – –

IDH2R140 NS 0.915 – – NS 0.988 – –

IDH2R172 NS 0.892 – – NS 0.948 – –

NPM1+/FLT3-ITD/FLT3wtratio<0.5 0.024 0.761 NS – <0.001 0.600 NS –

FLT3-ITD/FLT3wtratio ≥0.5 0.002 1.654 NS – <0.001 2.048 NS –

ASXL1 <0.001 1.946 0.004 2.351 <0.001 2.406 0.023 2.077

DNMT3A 0.023 1.340 NS – 0.026 1.402 NS –

MLL-PTD NS – NS – 0.004 1.974 NS –

RUNX1 0.018 1.457 NS – <0.001 1.884 NS –

WT1 0.042 1.502 0.044 1.773 NS – NS –

Age and peripheral blood cell counts were considered as continuous parameters

EFS event-free survival, NS not significant, OS overall survival, RR relative risk

*Per 10 years of increase, # per 10×109 /L
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IDH2R172, do not produce as much 2-HG when
overexpressed in cells at comparable levels. Finally, also sub-
cellular compartmentalization of metabolic flux can affect the
ability of IDH mutations to result in cellular 2-HG accumula-
tion. As Wiseman et al. [51] demonstrated, IDH1105GGT mi-
nor allele also results in only moderate elevation of cellular 2-
HG compared to the somatic mutations IDH1R132,
IDH2R140, and IDH2R172, which also might lead to only a
moderate impairment of cell differentiation. The significantly
reduced expression of the progenitor marker CD34 in cases
harboring IDH1105GGT minor allele in the present series may
also be considered in line with a weaker impact of the SNP
regarding impairment of cell differentiation. However, this
finding was not reflected in blast count or cell morphology.

In conclusion, we detected the IDH1105GGT minor allele in
intermediate-risk AML at the same frequency as in healthy
controls. However, studies on clinical relevance of the
IDH1105GGT minor allele are controversial. We demonstrate
the IDH1105GGT minor allele to be associated with favorable
prognosis in intensively treated AML patients with
intermediate-risk karyotype in patients >60 years of age.
However, this association is not independent on other prog-
nostic parameters. The consideration of our data in relation to
already published studies implies that IDH1105GGT minor al-
lele per se has no independent prognostic relevance but has to
be considered in the context of the genetic background of the
individual AML analyzed.
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