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Abstract

Background: Time-lapse microscopy allows to monitor cell state transitions in a spatiotemporal context. Combined
with single cell tracking and appropriate cell state markers, transition events can be observed within the genealogical
relationship of a proliferating population. However, to infer the correlations between the spatiotemporal context and
cell state transitions, statistical analysis with an appropriately large number of samples is required.

Results: Here, we present a method to infer spatiotemporal features predictive of the state transition events
observed in time-lapse microscopy data. We first formulate a generative model, simulate different scenarios, such as
time-dependent or local cell density-dependent transitions, and illustrate how to estimate univariate transition rates.
Second, we formulate the problem in a machine-learning language using regularized linear models. This allows for a
multivariate analysis and to disentangle indirect dependencies via feature selection. We find that our method can
accurately recover the relevant features and reconstruct the underlying interaction kernels if a critical number of
samples is available. Finally, we explicitly use the tree structure of the data to validate if the estimated model is
sufficient to explain correlated transition events of sister cells.
Conclusions: Using synthetic cellular genealogies, we prove that our method is able to correctly identify features
predictive of state transitions and we moreover validate the chosen model. Our approach allows to estimate the
number of cellular genealogies required for the proposed spatiotemporal statistical analysis, and we thus provide an
important tool for the experimental design of challenging single cell time-lapse microscopy assays.
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Background
Cellular plasticity is the key property essential for multi-
cellular development [1], tissue maintenance [2] and
regeneration [3]. While the notion of state transitions
from multipotent stem cells to mature functional cells is
established, the breakthrough findings on transdifferenti-
ation [4] and reprogramming [5] have sparked renewed
interest into mechanisms driving cellular lineage choice
with the prospect of therapeutic application [6].
To understand differentiation kinetics and thus the ori-

gins of stem cell population heterogeneity, one has to
observe the transition of cells between states of different

*Correspondence: carsten.marr@helmholtz-muenchen.de
1Institute of Computational Biology, Helmholtz Zentrum München, German
Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764
Neuherberg, Germany
Full list of author information is available at the end of the article

lineage potential. However, observing cell state transi-
tions is impossible in data obtained from a single time
point, emerging from e.g. flow cytometry, transcriptome
or immunofluorescence analyses. For example, a clonal
colony of differentiated cells may have originated from
a single differentiated cell following multiple divisions,
or from the simultaneous differentiation of multiple cells
after a few divisions. Continuous time information and the
tracking of individual cells is necessary to distinguish the
two possibilities.
Live cell imaging allows to observe state transitions e.g.

via cell surface markers or cell morphology (Fig. 1a), but
it cannot immediately provide a mechanistic explanation
why the transition occurs. For example, the differentiation
rate of a stem cell towards a more mature cell type may
depend on time [7] (Fig. 1c), cell density [8] (Fig. 1d), the
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Fig. 1 State transitions observed via time-lapse microscopy can be explained by different mechanisms. a During a time-lapse microscopy
experiment cells are imaged over multiple time points. From these images, spatial configuration, cell proliferation and changes in cell state, e.g. via
surface markers (we consider only two states, indicated by black and cyan) can be obtained. However, these observations do not inform about the
underlying mechanisms that caused the transition in cell state. For example, the state transition could be entirely random (b), where cells
spontaneously undergo state transitions (indicated by dice), it could depend on time (c), such that the transition rate changes in the course of the
experiment (indicated by clocks). Alternatively, the transition could depend on local cell density (d), e.g. cells with higher local cell density
preferentially transit from one state to the other

makeup of surrounding niche cells [9] or on a combination
of these features. While it is possible to quantify the
emergence of cellular patterns in colonies [10, 11], it is
impossible to tell from the mere observation if the simul-
taneous differentiation of multiple cells is a random event
or if it is triggered by, e.g., the increased density in the
colony. The inference of features predictive of this state
transition rate requires robust statistical analysis, and thus
a large number of time-lapse microscopy data, which is in
particular for mammalian systems still a challenging and
labor intensive task [12, 13].
Here, we present a model and analysis framework that

can infer the spatiotemporal features predictive of state
transitions and also allows to estimate the number of sam-
ples required for this analysis. To validate the performance
of our framework, we first simulate cellular genealogies
from a generative spatiotemporal model for different sce-
narios of transition rate dependencies. We then develop

an inference method based on generalized linear models
(GLM) and feature selection with L1 regularization. We
show that our method is able to correctly identify the
transition rate as a multi-feature function and determine
the number of required genealogies and allowed tracking
errors for different scenarios. Finally, we use the correla-
tions between cell siblings to validate the chosen approach
and detect shortcomings – either due to non-considered
features, or due to cell-internal effects that drive cell state
transitions.

Methods
A generative model for spatiotemporal cellular
genealogies
Throughout this paper, we use a simple model of cell state
transition with two cellular states I and II (Fig. 2a). A sin-
gle cell in state I (black circle in Fig. 2a) can divide into
two cells in state I, or transition into another state II (cyan
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Fig. 2 Spatiotemporal simulation and analysis of cell state transitions. a In our model, a cell in state I (black) can divide or transition into state II
(cyan). The transition is governed by the transition rate λ, which can depend on features like time, position, cell cycle, or the local cell density. This
unidirectional transition model is inspired by cellular differentiation where a undifferentiated progenitor cell irreversibly transitions into a more
differentiated cell type. b Visualization of a cellular genealogy in space and time with cells in state I (black to gray) and state II (cyan to blue). c Tree
view of the genealogy depicted in b (coloring as in a). d Local cell density is modeled via a set of annular basis functions φk with inner radii k�r and
constant thickness �r (green circles). Cells are indicated as crosses. e Linear combinations of the φk can approximate any density dependence (e.g. a
tophat kernel, upper panel, or a Gaussian kernel, lower panel). f The tree structured data is transformed into a data matrix by discretizing time
(t0, . . . , t4 in this example) and creating one sample (i.e. one column) for each cell at each time interval, simulating a measurement process. For each
cell i and each timepoint t, we record different features (i.e. rows), e.g. cell coordinates xi(t) and yi(t), the spatial features φ i

0(t),φ
i
1(t), . . . (illustrated

in d) and state transition events Y within the time interval

circle), where it can only divide. This unidirectional state
transition could for example model cell differentiation,
where a progenitor transforms into a more differentiated
cell type, but the reverse transition does not occur natu-
rally. The transition rate λ(t, Fi(t)) of a cell i from state I
to state II depends on the features Fi of the cell. Notably,
the features F, like time, cell cycle state, position or local
cell density, can change over time. Specific examples of
the function λ(t, Fi(t)) are introduced later on (see section
“Cell state transition scenarios”).
Mathematically, in our model a single cell is defined by

its 2D spatial coordinates x ∈ R
2 (assuming an in vitro

experimental setting where cells are imaged on a cover-
slip), its state Y ∈ [ 0, 1], where Y = 0 (Y = 1) if the

cell is in state I (II) and its age τ ∈ R
+, i.e. the time

since the last division. The cell division rate γ (τ) is age
dependent to account for non-exponential lifetime of cells
(constant γ would yield unrealistic exponential lifetimes).
This system of dividing cells that undergo state transitions
evolves probabilistically in time and has to be described
by a Master Equation (accounting not only for changes
in Y and x but also considering cell divisions), whose
derivation is sketched in Additional file 1: Section 1.
Instead of solving the intractable Master Equation, we
simulated realizations of the underlying stochastic pro-
cess (Fig. 2b): Since the system has continuous (space x,
age τ ) and discrete (cell state Y ) variables, a standard
stochastic simulation algorithm cannot be applied and a
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hybrid simulationmethodmust be used (see e.g. Haseltine
et al. [14]). Cell position is treated as Brownian motion
(movement speed resembles agile cells, e.g. hematopoi-
etic stem and progenitor cells) and is updated via an
Euler-Maruyama scheme [15].
To evolve the cell state in time for a single cell in state

I, the simulation proceeds in small time steps �t, during
which a state transition event takes place with probability
(see Additional file 1: Section 5)

Pi(t) = 1 − e−
∫ t+�t
t λ(t′,Fi(t′))dt′ ≈ 1 − e−λ(t,Fi(t))·�t

for some arbitrary, state and time-dependent transition
rate λ (t, Fi(t)). The rate λ is evaluated at the beginning of
each iteration, and the time step �t is chosen sufficiently
small (such that no appreciable change in cell locations
occurs and the rate λ is approximately constant). The cell
divides after 12 hours on average, corresponding to the
typical lifetime of mammalian stem and progenitor cells
[16, 17] (for simplicity, but without loss of generality, we
assumed cell lifetime to be uniformly distributed in the
interval [ 10 h, 14 h]). The cell division replaces the divid-
ing cell by two daughter cells, with positions close to that
of the mother cell and with the same cell state: e.g. a
mother cell in state I gives rise to two daughters in state I.
These cells are then simulated in parallel. Over the course
of the simulation, a cellular genealogy with a distinct cell
state pattern emerges (Fig. 2c). Genealogies are simulated
for 100 hours (8 − 9 generations of cells) corresponding
to the typical observation periods of long term time-lapse
microscopy [17–19].

Local cell density
Local cell density for a single cell is estimated using a ker-
nel f that determines how much each cell contributes to
the local density at a certain point x in space as a function
of intercellular distance. We define the local cell density
ρ
f
i (t) of cell i at time t with respect to a kernel f : R →

[ 0,∞]:

ρ
f
i (t) =

∑
j �=i

f
[
d(xi(t), xj(t))

]
, (1)

where xi(t) is the spatial coordinate of cell i at time t
and d(xi, xj) denotes Euclidean distance. We use either a
tophat kernel (Fig. 2e, upper panel, black line) with

f (r) = I(r < R) , (2)

where I(. . .) is the indicator function of [ 0, 1], or a
Gaussian kernel (Fig. 2e, lower panel, black line) with

f (r) = 1√
2πσ

e−
r2
2σ2 . (3)

For the tophat kernel each cell within distance R con-
tributes equally to the local density experienced by cell i,
whereas cells with distance larger than R do not contribute

at all. For the Gaussian kernel the contribution to the local
cell density decreases smoothly with distance.

Local cell density as a linear combination of basis functions
In order to model and estimate any (radially symmetric)
density kernel f, we approximate f as a linear combination
of basis functions φk , k = 0, 1, . . .

f ≈
∑
k

ωk · φk , (4)

where the φk are defined as

φk(r) = I [k�r < r ≤ (k + 1)�r] ,

and I(. . .) denotes the indicator function. φk resembles a
ring of inner radius k�r and thickness �r (Fig. 2d). For
example, we can recover the tophat kernel with radius R
(Eq. 2) by choosing the coefficients ωk as

ωk =
{
1, k�r < R
0, k�r ≥ R

.

For our analysis, we choose �r = 40 μm, which allows
to resolve short range interactions on the order of eukary-
otic cell diameter (≈ 20 μm) but also long range inter-
actions due to diffusive signaling molecules (max. 25 cell
diameters or 500 μm [20]).

Cell state transition scenarios
We create four datasets corresponding to different scenar-
ios of cell state transition:
1. We consider a scenario where the transition rate is

constant (λ constant), resembling spontaneous transitions
independent of other effects:

λ(t, Fi(t)) = c , (5)

with c = 0.01 h−1. Thus, a state transition in a cell with a
typical 12 h lifetime will occur with probability p = 0.11.
2. For a time-dependent scenario (λ ∝ time), the transi-

tion rate is chosen as

λ(t, Fi(t)) = a · t , (6)

i.e. linearly increasing with time (a = 3 · 10−4 h−2). Note
that λ does not depend on any other feature F of the cell.
A time-dependent transition rate might for example be
encountered in an in vitro stem cell system, where primary
stem cells are isolated, separated from the stem cell niche.
Over time the stem cells are depleted of crucial signaling
molecules previously supplied by the niche cells and start
transitioning into more mature cells.
3. For a density-dependent scenario (λ ∝ density), the

local density of a cell i at time t is mediated by a tophat
kernel (Eq. 2) with R = 300 μm, which is roughly the
distance a cell can move in its lifetime (we assume agile,
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non-adherent cells in our simulations). The transition rate
λ is then defined by

λ
(
t, ρtophat

i (t)
)

= b · ρ
tophat
i (t) , (7)

with b = 0.002 h−1. Density-dependent transition rates
might be relevant for in vitro cultures of embryonic stem
cells, which are known to differentiate when cell density
becomes too large [8]. Another example for density-
dependent transitions are bacteria that use quorum sens-
ing to estimate local cell density and base their fate
decision on that, e.g. by becoming virulent [21].
4. For a time and density-dependent scenario (λ ∝ den-

sity + time), the contributions of the previous two factors
are summed, using a Gaussian kernel (Eq. 3 with σ =
130 μm) to define cell density:

λ
(
t, ρGauss

i (t)
)

= a · t + b · ρGauss
i (t) . (8)

Non-parametric estimation of the transition rate
Given a dataset as described above, we now delineate
two methods to estimate the transition rate from the
data. First, the transition rate λ can be estimated non-
parametrically by considering the definition of the rate as
the probability of a transition in an infinitesimal time dt:

P(t, t + dt|Fi(t)) = λ(t, Fi(t)) · dt , (9)

where P(t, t+dt|Fi(t)) is the probability for a transition in
the interval [ t, t+dt] in the presence of the features F. We
estimate the probability P(t, t + dt|F) of a state transition
in [ t, t + dt] given features F as

P̂(t, t + dt|F) = Number of transition events|(t, F)

Number of cells in state I|(t, F)
,

which is the fraction of candidate cells (in state I) that
transit into state II in [ t, t + dt] having features F. After
rearranging Eq. 9, we obtain

λ̂(t, F) = 1
�t

· Number of transition events|(t, F)

Number of cells in state I|(t, F)

(10)
To measure the uncertainty of the estimates, we calcu-

late Bayesian credibility intervals (see Additional file 1:
Section 2).

Estimating the transition rate via generalized linear models
The transition rate can be inferred systematically using
a machine-learning framework. We consider every time-
point of each cell as an observed sample (F(i),Y (i)), where
F(i) is a set of features measured for this sample (absolute
time, time since last division, absolute spatial coordinates,
and different measures of local cell density φk). We use
superscripts to index the samples to clearly distinguish it
from the per-cell indexing via subscripts used previously.
Y (i) ∈ {0, 1} denotes the class label of the sample being
either “state I” (Y (i) = 0) or “transition into II” (Y (i) = 1).

A sample is considered as Y (i) = 1 if a state transition
occurred in the time interval of the sample. Timepoints
after the state transition (either of the cell itself or its
progeny) are discarded (Fig. 2f) since we are interested in
what actually triggers the transition of cells, not the state
of the cell itself. Counter-intuitively, all samples (F(i),Y (i))
are independent, even though, e.g. adjacent samples typi-
cally are strongly correlated with respect to their features
(Additional file 1: Section 3).
We use generalized linear models (GLMs, [22]) to learn

the relation between features F(i) and class labels Y (i) as

E(Y (i)|F(i),w) = μ(i) = g−1(wTF(i)) ,

where μ(i) is the expected value of an exponential fam-
ily distribution, g−1 is called the mean function, and w
is the weights vector that has to be learned from the
data. Choosing a Bernoulli distribution and an exponen-
tial mean function would exactly correspond to our data
generating process (Additional file 1: Section 4). However,
this specific GLM has unfavorable numerical properties
leading to convergence issues [23]. Therefore, we resort
to a GLM that has the desired exponential mean func-
tion but a Poisson instead of a Bernoulli distribution (also
known as Poisson regression) and has better numerical
properties. Note that Poisson regression is generally used
to model count data (where Y (i) ∈ N0), but is a good
approximation to binary data (Y (i) ∈ {0, 1}) in the case
of rare events (see Additional file 1: Section 4). Thus, we
obtain the following log-likelihood (see Additional file 1:
Section 4 for a derivation):

log p(Y |F ,w) =
∑
i

[
Y (i)wTF(i) − ew

TF(i) − log(Y (i)! )
]
.

(11)

Feature selection via L1 regularization
To determine the relevant features of the transition rate
and to exclude features that only indirectly influence the
state transition (as e.g. for scenario 3 with a density depen-
dent λ, where however λ also indirectly depends on time;
see Fig. 3c, d and Results), we apply L1 regularization
to the GLM, also known as Lasso (least absolute shrink-
age and selection operator) [24]. Here one minimizes the
following function with respect to the weights w:

g(w) = − log p(Y |F ,w) + κ · ‖w‖1 , (12)

with ‖w‖1 = ∑
i |wi|. This regularization is equivalent to

placing a Laplace prior with location parameter m = 0
and scale parameter b = κ−1 on the weights [25], resem-
bling our knowledge that most of the weights should be
zero and the resulting model should be sparse. Depending
on the chosen regularization strength κ , one obtains mod-
els of differing sparsity (Fig. 4a). We follow the standard
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approach to determine the optimal regularization param-
eter κ∗: for each κ , we perform ten-fold cross validation
using the deviance of the model as the error criterion
and choose κ∗ based on the 1SE rule [26]: We select
the largest κ (hence the simplest model) that in terms
of its deviance is still within one standard error of the
best κ . Optimization and cross validation of Lasso is per-
formed using the function lassoglm() from theMatlab
Statistics Toolbox.
Additionally, we have to account for the fact that the

classes in our dataset are severely imbalanced with more
non-events than events (at a ratio of 1:200 in our sim-
ulations). Such class imbalance can lead to problems for
machine learning algorithms [27]. Therefore, we down-
sample the majority class (Y (i) = 0) to achieve a ratio
of 1:3, yielding a good tradeoff between class balance and
number of overall samples. Feature selection using Lasso
is applied to this down-sampled dataset via Eq. (12). Since
down-sampling intentionally discards data and Lasso fea-
ture selection is sensitive to data perturbation [25], we
repeat the procedure N = 50 times, each time using a
different sample of the majority class, combining it with
the minority class and fitting the Lasso to this dataset.
This approach is adapted from rare event logistic regres-
sion with replication [28] and is reminiscent of bootstrap
Lasso [29]. Finally, for each feature, we record the proba-
bility of inclusion in the model, i.e. the percentage of the
N iterations that included the feature into the model at
the optimal regularization strength κ∗. We consider those
features to be relevant that have an inclusion probability
larger than 90 % [29]. This yields the final set of fea-
tures for our model. We now fit this sparse model to the
full data without the L1 penalty (a process called “debi-
asing” [25]), since L1 regularization is biased towards too
small weights. We thus obtain our final model, its asso-
ciated weights ŵ and the corresponding transition rate
λ̂(t, F) = −ŵTF · �t.
The inclusion probability threshold (0.9) controls the

probability α of a type I error, i.e. including a feature even
tough it is irrelevant. In addition it is also important to
assess the probability β of type II errors, i.e. the chance
that a relevant feature is not included into the model, or
equivalently, the statistical power = 1 − β , which is the
probability of discovering the feature if it is indeed rele-
vant. The power is a function of sample size and effect size
(the parameters a and b in Eqs. 6–8): The more samples
are available and the larger the effect size, the higher to
probability to discover a relevant feature. Since no ana-
lytical expressions are available, we estimate the statistical
power of our model with respect to a certain feature
through repeated simulation: Given a fixed sample size
and effect size, we generateM independent datasets, apply
the above GLM with bootstrapping-based feature selec-
tion to each dataset, resulting in M different models,

which might have selected different features. We then
approximate the statistical power as the fraction of the M
models that correctly selected the feature of interest. Since
computations become demanding (sample size and effect
size/tracking error have to be varied, see Fig. 5), we choose
M = 10 (Fig. 5) andM = 20 (Fig. 6).

Expected frequencies of subtree patterns in cellular
genealogies
Having estimated the transition rate λ̂ via the regular-
ized GLM, we calculate the number of subtree patterns
expected under this transition rate. In the following we
consider only subtrees of 1 generation, i.e. a mother and its
two daughter cells, but the approach is easily extendable to
larger subtree patterns. The expected frequencies of sister
cell pairs where in either both cells, one cell, or none of
the two cells state transition occurs, can be used to vali-
date the inferred transition rate (see Fig. 7a and Additional
file 1: Figure S1). We define the random variable Ci to
indicate whether cell i underwent a state transition within
its lifetime (Ci = 1) or stayed in state I (Ci = 0). Note
that the Ci describe the state of a cell over its entire life-
time, as opposed to the Y (i) used in the previous section,
which denote the state of a cell at a small time interval
�t. Using the estimated transition rate λ̂, we calculate the
probability of a state transition in a single cell i as

P(Ci = 1) = pi = 1 − exp
[
−

∫ ηi

ζi
dsλ̂(s, Fi(s))

]
(13)

where λ̂(s, Fi(s)) is the estimate of the transition rate the
cell experiences throughout its lifetime [ ζi, ηi] based on its
features Fi(s) (Additional file 1: Figure S1). Similarly, we
derive the probability of a state transition in its sister cell i′
as P(Ci′ = 1). Considering the whole dataset containingM
pairs of sister cells (i, i′), i = 1 . . .M, the expected number
of pairs where both sister undergo a state transition is:

E2 =
M∑
i=1

P(Ci = 1,Ci′ = 1) ,

where P(Ci = 1,Ci′ = 1) is the joint probability of these
events. However, assuming independence between sisters,
this factorizes to

E2 =
M∑
i=1

P(Ci = 1) · P(Ci′ = 1) =
M∑
i=1

pi · pi′ .

The expected number of pairs where a state transition
occurs in only one sister (E1) and in none of the sisters
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(E0) are:

E0 =
M∑
i=1

(1 − pi) · (1 − pi′)

E1 =
M∑
i=1

(1 − pi) · pi′ + pi · (1 − pi′) .

Applying Eq. 13, we can evaluate (E0,E1,E2) in terms of
the estimated transition rate λ̂.
In order to test whether our observed data matches

these expected frequencies (E0,E1,E2) we count the
observed frequencies (O0,O1,O2) in the data and perform
a χ2 test with two degrees of freedom and

χ2 =
3∑

j=1

(Ej − Oj)2

Ej
.

Results
In the following, we use our generative model to simu-
late datasets from the simple cell state transition model
(Fig. 2a) according to four different scenarios, where the
transition rate λ depends on different features (e.g. a time
dependence or cell density dependence). Subsequently, we
apply our proposed inference methods to the data from

different scenarios, assuming the data generating scenario
is unknown. We show how the dependence of λ can be
recovered from the data, e.g. allowing us to distinguish
density- and time-dependent scenarios. Furthermore, we
analyze the impact of sample size and tracking error on
our results in order to assess the required experimental
design.

Estimating the transition rate non-parametrically from
simulated data
In the simplest scenario the rate λ is constant during
the whole time of observation (λ constant, Eq. 5). This
corresponds to state transitions occurring spontaneously
independent of other influences. Using our generative
model for cellular genealogies (see Methods for details),
we generate a sample of 100 genealogies with constant rate
λ. We then reconstruct the rate λ̂ from the data via Eq. 10
(black curve in Fig. 3a). The underlying true rate λ (red
curve in Fig. 3a) is well contained within the Bayesian 95 %
credibility intervals of our estimate (gray areas in Fig. 3a).
Next, we simulate 100 genealogies with a linear time-

dependent transition rate (λ ∝ time, Eq. 6). With the same
approach we estimate λ̂ (see Fig. 3b) and again, we observe
good agreement between the estimated (black curve in
Fig. 3b) and the true transition rate (red curve in Fig. 3b).

Fig. 3 Features regulating the transition rate λ can be estimated non-parametrically from cellular genealogies with annotated state transition
events. a The transition rate estimated from 100 genealogies (posterior mean, black line) agrees well with the true constant transition rate (red line).
Gray areas indicate the 95 % credibility region of the estimate. b The transition rate estimated from 100 genealogies simulated with linear
time-dependent rate agrees well with the true rate (red solid line). c The transition rate as a function of local cell density ρ for 100 genealogies
simulated with density-dependent rate. The estimated transition rate seems to depend on both local density ρ (in line with the simulated form
λ = b · ρ) and time (see inset). d The estimated transition rate λ̂ as a function of both density and time reveals that the time-dependence observed
in the inset in c is an indirect influence (density increases with time, see inset). Instead, the transition rate depends only on local cell density ρ (as
seen by the predominantly uniform pattern of λ̂ in time for fixed ρ , indicated by arrow)
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Fig. 4 Regularized generalized linear models (GLMs) select the relevant features predictive of cell state transitions. a Regularization path of the GLMs
applied to the density dependent dataset. The means (lines) and standard deviations (shaded regions, shown only for the relevant features) of the
regression weights w are plotted against the regularization strength κ across 50 bootstrap samples (see Methods for details). The mean of the
optimal regularization strength κ∗ determined by cross validation is shown as a vertical black line. Solid (dashed) lines correspond to relevant
(irrelevant) features in the respective scenario. b Percentage of bootstrap samples that included the respective features. Included features were
determined as those with non zero weights at κ∗ . Enforcing a 90 % threshold (gray area) on the inclusion probability for each feature, we select the
relevant features of the model. The features φ0,φ1 are not included as their effect is too weak to be detected by the GLM at the current sample size
(see main text). c Reconstructed kernel of local cell density (bars) from the selected features in b. The true underlying tophat kernel shape is shown
in black. As in b, the features φ0,φ1 are not included because their effect is to weak. d-f Analogous to a-c, but for a dataset where the transition rate
λ depends on time and local cell density with a Gaussian kernel. Both features are correctly identified and the density kernel is correctly estimated

We now account for cell-cell communication and con-
sider a transition rate depending on local cell density (λ ∝
density, Eq. 7): the more cells present in the vicinity of
the cell of interest, the more likely it is that a state transi-
tion occurs. We estimate the density dependent rate from
100 simulated genealogies, assuming we already know the
underlying density kernel (this assumption will be relaxed
later on). The estimated rate λ̂(ρ) (black curve in Fig. 3c)
linearly increases with local cell density and the true rate
is well contained within the credibility intervals (gray area
in Fig. 3c), showing that one can identify the influence of
local cell density on the transition rate. Note that the esti-
mates of the transition rates at high density (ρ > 35 in
Fig. 3c) carry large statistical uncertainty (indicated by the
broad credibility intervals) simply because very few cells
are observed in those high local cell densities.
However, if we instead estimate the rate as a function

of time from the same dataset, we would conclude that it
is time-dependent, since the rate strongly increases over
time (see Fig. 3c, inset). This is an indirect dependence:
as time increases, local cell density grows exponentially
and as a result, cells are more prone to undergo a state

transition (see Fig. 3d inset). We can resolve this by esti-
mating the rate simultaneously as a function of time and
local density, λ̂(t, ρ) (Fig. 3d). For fixed local density ρ, the
rate is almost constant across different times (black arrow
in Fig. 3d). However, the transition rate changes consider-
ably if the local density changes. Therefore, we can con-
clude that the true transition rate depends only on local
cell density. Notice however that this conclusion relies on
having sufficiently many samples, yielding a good cover-
age of the (t, ρ) space, and knowledge of the range (R) and
nature of the spatial interaction. If R is chosen too small,
any dependence of λ on the local cell density is hidden
by the dominating indirect time-dependence. Moreover,
analyzing λ̂ visually becomes infeasible for higher feature
dimensions.

Estimating the transition rate with generalized linear
models
To approach the aforementioned issues, we infer the
transition rate more systematically using the machine-
learning framework of generalized linear models (GLMs,
see Methods for details). Instead of considering only one
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Fig. 5 The method’s performance is robust for different sample size and effect size. a The statistical power for each feature (the probability of
including the feature into the model) plotted against sample size (other parameters as in Fig. 4a-c). Relevant features have high probability of being
included in the model (power ≥ 0.8) when 2000 or more transition events (corresponding to approximately 44 genealogies) are used for the
analysis. Solid (dashed) lines correspond to relevant (irrelevant) features in the respective scenario. b The power for the density feature φ2 shown as
a function of sample size and relative effect size. The red line indicates the section corresponding to a with a relative effect size of 1. As expected,
power increases with sample size and relative effect size. c,d The power as a function of sample size and relative effect size for all c relevant and
irrelevant d features of the scenario. Colorbar as in b. e-h Analogous to a-d, but for a dataset used in Fig. 4d-f, where the transition rate λ depends
on time and local cell density with a Gaussian kernel
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Fig. 6 The method’s performance is robust for moderate amount of tracking error. a Statistical power plotted against the amount of tracking error
for the density dependent scenario from Fig. 4a-c (4500 onsets). Solid (dashed) lines correspond to relevant (irrelevant) features in the respective
scenario. The correct features are identified reliably (power ≥ 0.8) up to a tracking error of 3 %. For larger tracking error, there is a high probability to
include time (blue curve) into the model even though it is only an indirect influence. Note that tracking error seems to some extent facilitate the
detection of φ0,φ1 (see main text for details). b Analogous to a, but for the dataset where the transition rate λ depends on time and local cell
density with a Gaussian kernel (4500 onsets)

feature at a time, we include all features at once and apply
feature selection to determine the relevant ones. An addi-
tional advantage of this approach is that it is not necessary
to assume any density kernel a priori (as in the previous
section). Instead, we use a set of spatial features φk , whose
linear combination can approximate any kernel (Eq. 4).
We then use the proposed GLM equipped with L1 regular-
ization to learn the relationship between features and class
label and to obtain those features that directly influence
the state transition rate.
We apply this approach to the density-dependent

dataset (λ ∝ density, Eq. 7). Starting with strong regu-
larization (that is, a large κ and consequently a sparse
model) only the most relevant features have non-zero
weights and are included (Fig. 4a). By decreasing the regu-
larization parameter, the weights of the features gradually
increase, making the model more complex. The optimal

regularization κ∗ (the black line in Fig. 4a corresponds to
the mean of κ∗ across the 50 bootstraps) is determined by
cross validation (seeMethods for details). All features with
non-zero weights at κ∗ are included in the model. The
ground truth of features used to simulate the dataset is
indicated by solid (relevant) and dashed (irrelevant) lines
in Fig. 4a.
We estimate the inclusion probability of a feature as

the fraction of the 50 bootstraps that selected the feature
(Fig. 4b). For example, the features φ2, . . . ,φ6 (represent-
ing local cell densities at different radii, see Fig. 2d) are
present in all bootstraps, φ8 is present in 70 % of the
bootstraps, and all other features have low inclusion prob-
abilities. In particular, time is included in only 18 % of
the bootstraps and spatial location (x,y) and time since
last division (cell cycle) have zero inclusion probability.
Choosing a cutoff at 90 % (gray area in Fig. 4b) for a feature

Fig. 7 Expected frequencies of sister pairs reveal if the model can account for the observed genealogical correlations. a Comparison of the observed
and expected frequencies of sister pairs (both, one, or none undergoing a state transition) of the dataset used throughout Fig. 4a-c shows no
significant difference (p = 0.21, χ2-test, see Methods). Fitting the same data, but not accounting for the φ5,φ6 features causes significant deviations
from the expected frequencies (p = 1.3 · 10−6). b P-values of the χ2-test (average and standard deviation over 10 replicates) to compare the
observed and expected frequencies of sister pairs against amount of tracking error for the density dependent scenario. For tracking errors < 5 %,
the method correctly concludes that the frequencies of observed sister pairs are in agreement with the model (applying a significance threshold of
α = 0.05, red dashed line)
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to be included in the final model, we recover all features
(except φ0,φ1) that were used to generate that dataset.
We miss φ0 and φ1 since their contribution to the overall
transition rate is effectively very low: the average num-
ber of cells within φ1 is approximately 0.2, whereas the
average number of cells within e.g. φ7 is approximately 1.
Hence, leaving out φ1 will not change the overall result,
and the algorithm chooses to neglect the feature in favor
of sparsity.
After feature selection, we can reconstruct the density

kernel as a weighted sum of the basis functions φk via Eq. 4
(shown as green bars in Fig. 4c). Here, we observe that
the reconstructed kernel closely resembles the true under-
lying tophat kernel that was used to simulate the data
(shown as a black curve in Fig. 4c). To demonstrate that
the method can faithfully report the range of the spa-
tial interaction, we performed the same analysis on a
dataset with a density dependence mediated via a short
range tophat kernel (R = 40 μm), which indeed can be
recovered from the data (Additional file 1: Figure S2).
We extend the set of relevant features and now con-

sider a scenario where the transition rate depends on time
and on local cell density (λ ∝ density + time, Eq. 8), this
time modeled via a Gaussian kernel (with σ = 130 μm)
instead of a tophat kernel to illustrate the versatility of
our method. Since the Gaussian kernel has infinite sup-
port, a priori there is no clear definition which φi are
relevant. In the following, we define all φi inside the 95 %
quantile of the Gaussian distribution as relevant. This
results in φ0, . . . ,φ4 considered relevant while φ5, . . . ,φ9
are deemed irrelevant.
The regularization path and the feature inclusion prob-

abilities (Fig. 4d, e) show that the GLM correctly selects
both time and local cell density (φ1, . . . ,φ4) with inclusion
probabilities close to 1. Finally, using the weights asso-
ciated with the selected density features we reconstruct
the kernel of local cell density and find that it indeed
matches a Gaussian kernel (Fig. 4f). As before (Fig. 4a-c),
the feature selection procedure misses φ0 due to its rela-
tively small contribution to the overall transition rate. We
conclude that our proposed method is capable of identify-
ing the features that are most predictive of the transition
rate and faithfully filters out indirect influences. Further-
more, we can estimate the shape of the density kernel from
the data.

Sample size, effect size and statistical power
Accurate single-cell identification and tracking in time-
lapse movies is still a challenging task and requires, at
least inmammalian systemsmanual data curation [12, 13].
Thus estimating the required sample size for any given
effect size is necessary for efficient experimental design.
To assess the impact of sample size on the performance

of the feature selection, we systematically reduce the

number of observed state transition events (by reducing
the number of genealogies) and calculate the statistical
power of our method, i.e. the probability to detect a cer-
tain effect if present in the data (Fig. 5a, e). Starting at the
original sample size of 4500 onsets (using all 100 genealo-
gies), we find that the power is 1 for the features detected
previously (Fig. 4b, e), suggesting these features can reli-
ably be detected. Similarly, the model’s power with respect
to features φ0 and φ1 is 0, hence those features are not
detectable at the given sample size. Decreasing the sample
size, the power for certain features gradually drops (e.g.
φ2 in Fig. 5a): The data no more contains sufficient sta-
tistical information to identify the feature as relevant. At
a sample size below 1000 events, the power for all fea-
tures is considerably smaller than one such that non of
the features can reliably be identified. However, a sample
size of 2000 onsets (corresponding to 44 genealogies) is
sufficient (based on the established threshold of power >

0.8) to faithfully detect the most important features influ-
encing the transition rate and to distinguish a direct
time-dependence (Fig. 5a) from an indirect one (Fig. 5e).
The statistical power does not only depend on the avail-

able sample size but also on the strength of the effect, i.e.
small effects will be hard to detect for a fixed sample size
than a strong one.We therefore vary the effect strength by
changing the parameters a and b in Eqs. 7, 8 within one
order of magnitude and estimate the power for each fea-
ture not only as a function of sample size but also of effect
strength (relative to our baseline scenarios used in Fig. 4).
As expected the power increases with increasing sample
size and effect strength. For example, in the density depen-
dent scenario, for a large relative effect size of 10, 1500
samples are sufficient to yield a power of 0.8 for feature φ2,
while for small effect size (0.1) more than 4000 samples are
needed to achieve the same power (Fig. 5b). Furthermore,
features φ3, . . . ,φ6 can reliably be identified (power> 0.8)
with more than 2000 onsets almost independent of the
effect strength considered (Fig. 5c). In contrast, φ0 can-
not be detected (power = 0) for any of the given effect
strengths and sample sizes, and φ1,φ2 are only detectable
for both large effect size and sample size (Fig. 5c).
Looking at the irrelevant features (Fig. 5d), the prob-

ability of detecting them as relevant is mostly zero and
they are correctly eliminated from the model. Only for
large effect size, ‘Time’ has non-zero probability of being
contained in the model: Due to the large effect size, state
transitions happen after the first cell division (the tran-
sition rate increases strongly as soon as one daughter
senses the presence of the other) and hence time- and
density-dependence cannot be distinguished.
For the dataset used in Fig. 4d-f, where the transi-

tion rate λ depends on time and local cell density with a
Gaussian kernel, similar patterns are observed (Fig. 5f-h).
Time is identified reliably (power > 0.8) for a sample size
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large than 1500 onsets, while for the other relevant fea-
tures (φ0, . . . ,φ4) more samples or a larger effect size are
needed (Fig. 5g). Interestingly, larger effect size seems to
decrease the power for features φ3,φ4 (Fig. 5g). If the effect
size is very large, most state transitions will happen even
before cells spread out in space such that the outer den-
sity features get populated. Therefore their effect cannot
be inferred from the data.

Influence of tracking error
To obtain genealogies from time-lapse microscopy data,
manual [Schwarzfischer et al., in revision] or automatic
tracking (for an overview of current methods, see [30])
is required. Neither automatic nor manual tracking can
produce perfect genealogies, but will introduce errors
especially when local cell density is high or cells move
fast as compared to the time resolution of the imag-
ing. To test the influence of tracking errors on the our
method, we introduce artificial tracking errors into the
simulated datasets by interchanging the identity of ran-
domly selected cells of the same generation and hence
swapping entire subtrees of the genealogies. The amount
of tracking error is defined as the percentage of all
cells in the dataset where an artificial tracking error
was introduced. We simulate different amounts of track-
ing error with up to 10 % of all cells in the exper-
iment containing a tracking error. Note that tracking
errors impact our analysis only by the creation of spu-
rious state transitions (a cell in state I is at some point
accidentally interchanged with a cell in state II). We
now evaluate the previous results on these erroneous
datasets.
We find that for both the density-dependent (λ ∝

density, Fig. 6a) and the time- and density-dependent sce-
narios (λ ∝ density + time, Fig. 6b) our method reliable
identifies the underlying features (power ≥ 0.8) for up to
3 % of tracking error. For higher amounts of tracking error,
we erroneously identify time as a relevant feature and fail
to identify φ2 as relevant feature in the first scenario (blue
line in Fig. 6a). Note that the wrong inclusion of time is
due to the fact that tracking errors and the spurious state
transitions created by those errors are more likely at later
timepoints where more cells are present. Hence, those
spurious onsets at late timepoint lead to the inclusion of
time into the model.
For the second scenario (Fig. 6b), identification of the

relevant features seems to be very robust with respect to
tracking error, as all of them have power > 0.8 even for
10 % tracking error.
In both scenarios, tracking error seems to facilitate

the detection of φ0 (and φ1 for the density dependent
scenario) that was not detectable previously or only for
large effect size (see Fig. 5c, g). As discussed before, φ0
is removed by the Lasso in favor of sparsity as the other

features are sufficient to explain the data. Tracking error
increases the noise level, i.e. the correlation between rel-
evant features and class labels Y (i) becomes weaker. Since
the other features are no longer sufficient to explain
the transition events, the Lasso includes φ0, which now
significantly improves the model.However, at some point
tracking error and hence the noise level will become
so large that relevant features become decorrelated with
the events and LASSO removes them again in favor of
sparsity.

Model validation using sister correlations
Apparently, our method is able to infer state transition
mechanisms by identifying relevant features even in the
presence of moderate tracking errors. However, what if
we miss to include relevant features in the GLM, e.g.
unobserved influences like nutrient concentrations? In
this section, we show how to use the tree structure – if
available – to validate the chosen model. We investigate
whether the transition rate λ estimated by the GLM is
capable of explaining the observed correlated transition
events within the cellular genealogies. We focus here on
correlations between sister cells, but the approach easily
generalizes to higher order relationships within a geneal-
ogy, like cousin-quartets. Suppose that we obtained a
reasonable estimate λ̂ of the transition rate. Then, the state
transition of one sister cell is independent of the other and
just determined by the transition rate that might differ due
to the spatial context in both cells.With this independence
assumption, we can calculate the probability to observe
sister subtree patterns (where both, one or none of the sis-
ter cells change state) just as the product of the individual
probabilities (see Methods). Note that these probabilities
are calculated over the entire lifetime of each cell finally
resulting in the expected number of sister subtree patterns
for the entire dataset.
Using these frequencies, we assess if the transition rate

estimated by the GLM (agnostic of the tree structure)
is capable of explaining the observed correlations in the
genealogies and therefore is an adequate description of the
data. For the dataset where the state transition depends
only on local cell density (λ ∝ density, Eq. 7), we calcu-
late the expected frequencies of sister subtrees given the
previously estimated transition rate (Fig. 7a, gray bars)
and compare these to the observed frequencies in the
data (Fig. 7a, black bars). No significant differences are
observed (p = 0.21, χ2-test, see Methods), and hence,
there is no indication of correlations beyond what we
expect from the density dependent transition rate, in
agreement with the generative model.
Next, we show how this idea can be used to deter-

mine if all relevant features have been included in the
GLM. To that end, we now deliberately neglect the spa-
tial features φ5,φ6 when fitting the transition rate via
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the GLM. Since these two features influence the tran-
sition rate in the chosen scenario, fitting the impaired
GLM yields a different λ̂ and hence also different expected
frequencies of sister subtrees (Fig. 7a white bars). The
frequencies are significantly different (p = 1.3 · 10−6),
indicating the model is inappropriate, as there is more
correlation in the trees than the model can account for
(due to the missing φ5,φ6). This difference is most pro-
nounced for the pattern where both sister cells change
their state.
Furthermore we performed this analysis for a smaller

sample size with 2000 onsets (which are sufficient to
recover themost relevant features, see Fig. 5a) and recover
a similar result (see Additional file 1: Figure S3): While
observed and expected frequencies of sister subtrees are
not significantly different, impairing the model leads to
significant differences in the sister subtree frequencies.
Our approach to validate the model using sister corre-

lations (Fig. 7a) relies on entire correct trackings of both
sister cells, as we integrate over the entire lifetime of
these cells in Eq. 13. Analogous to Fig. 7a, we evaluate
whether we observed frequencies of sister subtrees match
the expectations of the model (which was also fitted to the
dataset containing the tracking errors) via a χ2-test for
different amounts of tracking error. For the density depen-
dent scenario, we find that up to 5 % of tracking error, we
do not observe significant differences between observed
and expected frequencies (α = 0.05), correctly indicating
that the density dependent transition rate can explain the
observed frequencies (Fig. 7b). However, more than 5 %
of tracking error result in substantial changes of the sister
correlations, which cannot be explained by the model of
the transition rate (shown by the significant differences in
frequencies).

Discussion
In this paper, we have presented a method to investigate
mechanisms driving cell state transition events observed
in cellular genealogies. As two features explicitly regu-
lating the transition rate, we have here considered time
and local cell density. Our method is complementary to
the approach by Snijder et al. [31] who showed that the
response of a cell to a certain stimulus (in their case, a
virus infection) strongly depends on each cell’s “popula-
tion context”, that is, its localization within the colony, its
cell density and cell cycle stage. This approach, which has
been applied to the analysis of high-content screens by
Knapp et al. [32], is designed for static data and a single,
controlled perturbation. The cells are subject to a treat-
ment at a defined timepoint and their response is recorded
by a single image. For our purpose a static approach,
where the timepoint of the event is predetermined, is not
applicable. Instead, we assume that cells undergo state
transitions spontaneously, and hence transition events can

happen at any point in time but their probability chances
over time due to the changing environment the cells
experience.
Our method currently assumes a linear relationship

between features and the transition rate (see Eq. 11).
Hence, it is necessary to discuss whether the model can
recover relevant features in the presence of nonlinearities
or how it can be adapted. In general it is difficult to pre-
dict the outcomewhen fitting a GLM that assumes a linear
transition rate to data generated with a nonlinear tran-
sition rate. On the one hand, performance might suffer
as the model cannot capture the nonlinearities and might
potentially select the wrong features. On the other hand,
nonlinearities might simplify the task of identifying rele-
vant features. For example, if the transition rate is a steep,
sigmoid function of cell density, this influence will be
easier to detect than a linear one: In feature space, the
samples with transition events (Y (i) = 1) will be clearly
separated from the samples without events (Y (i) = 0)
in the nonlinear case, while in the linear case there’s a
continuum and no clear separation between those two
classes. We simulated a scenario where the transition rate
is a sigmoid function of cell density (Additional file 1:
Figure S4). Here, our method can still deduce the relevant
features despite the nonlinear relation. More generally,
one can extend the presented method to handle non-
linearities: The set of features F can be augmented by
nonlinear transformations, e.g. by including quadratic or
interaction terms (e.g. φ2

i ,φiφj) into the data matrix and
feature selection is performed on this extended set. Alter-
natively, the GLM can be replaced by nonlinear classifiers,
e.g. random forests [33]. While those methods can handle
nonlinear relationships in the data, they lack the build-
in feature selection of LASSO and will in general not be
sparse. For random forests, one can instead use the cal-
culated feature importance measures to perform feature
selection.
In our model, we assume that cells can undergo just

a single fate transition (black cells turn into blue cells,
Fig. 2a), while for example in stem cells, fate decisions
are often binary, i.e. cells have to choose between two
mutually exclusive follow-up states. For illustration, let
us assume that black cells turn either into blue or red
cells. The proposed method can easily be adapted to
this setting. Two different scenarios should be distin-
guished: 1) The two transitions are entirely independent,
i.e. there exist two separate transition rates λ1, λ2 and
whatever fate is chosen first determines the resulting cell
state [34]. In this case, one can simply split the dataset
into the cells undergoing the one transition and those
cells undergoing the other transition and fit the model
to both sets separately. 2) The transition time is deter-
mined by a single transition rate λ, and the outcome
(blue vs red cell) is determined by a probability p, which
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might again be a function of features such as cell den-
sity. Here, one would first build a model for the tran-
sition rate λ (simply treating red and blue cells alike)
and in a second step build a model of p (considering
now only blue and red cells). If it is unknown which
setting applies a priori, both have to be analyzed and
later compared to determine which one best explains the
data.
Our model assumes a homogeneous cell population,

i.e. all cells in state I (Fig. 2a) are equivalent and share
the same transition rate. In reality however, apparently
homogeneous cell populations often contain subpopula-
tions that behave differently but cannot be distinguished
a priori by e.g. surface markers. In our context one could
imagine two subpopulations of cells in state I: One sub-
population that undergoes state transitions in response to
cell density (i.e. the transition rate is a function of cell
density), while the other subpopulation obeys a transi-
tion rate that is a function of time. In our model that
is unaware of the subpopulations, two potential results
can be imagined: The model might identify time and cell
density as relevant features but it will miss the fact that
cells respond to either one of those features. Alterna-
tively, the model might consider both density and time
as irrelevant as neither of them is capable of explain-
ing all the observed data, but just a fraction of it. Here,
one has to use more flexible models than a GLM. A nat-
ural choice are “Mixtures of generalized linear models”
[35], where instead of fitting a single GLM to the data,
multiple GLMs are fitted which are responsible for dif-
ferent parts of the data. Ideally this would result in a
mixture model with two GLMs, one containing only den-
sity features, the other containing only time as relevant
variables.
In time-lapse microscopy, the cell’s state is usually

read out via surface markers. We here assume that a
change in such surface marker expression reports a cell
state transitions immediately. However, the marker might
not be perfect, i.e. if the cell undergoes the transition
but the marker changes only several hours later caus-
ing a delay between the event and its observation. If
this delay is short relative to the autocorrelation time
of the relevant features (e.g. if the cell density a few
hours after the state change is still comparable to the
density at the transition), our proposed method is still
capable of detecting the effect. However, delays becomes
more difficult to handle in the same way that track-
ing error degrades the performance: The noise level
increases and decorrelates predictors and response vari-
ables. A much longer delay (e.g. several generations)
might be caused by cell intrinsic processes, e.g. a new
gene expression program is initiated after the state tran-
sition and a change in phenotype (the upregulation of
a marker gene) is observed only once this program has

been completed. This causes correlations between related
cells that cannot be explained by the observed features
(see ‘Model validation using sister correlations’). Here,
one has to model the delay explicitly, exploiting the fact
that the particular correlations between the cells inform
about the delay length: For example, if one observes
strong correlations between sister cells, but no correla-
tions between cousins, this would indicate a delay of about
one generation.
Note that our approach shares certain aspects with Cox

proportional hazard models [36]. The standard Cox pro-
portional hazards models use fixed covariates measured
once per individual to predict the time to an event for
that individual. However, they can be extended to account
for time varying covariates (measured several times per
individual) using the counting process reformulation by
Andersen and Gill [37]. Analogous to our approach, one
then considers small time intervals where the covariates
are constant and builds a model that predicts whether
an event happened in these small intervals. This refor-
mulation is also crucial for our approach as it allows to
handle the tree structure of the data by dissecting it into
small intervals. The main difference of our model to pro-
portional hazards is the form of the hazard rate (in our
context the transition rate), which in our case is linear in
the covariates (see Eqs. 6–8), while in the Cox propor-
tional hazard model it is multiplicative in the covariates.
This choice is motivated by the form of the transition
rate in an earlier study [7]. In general our assumption is
equally strong as the proportional hazards assumption,
however not relying on the proportional hazards machin-
ery is beneficial as one then can easily exchange the GLM
framework by alternative machine learning techniques if
required.
In the current formulation, we assume that the tran-

sition rate of a cell i at time t is a function only of the
features Fi(t) at time t (the transition event is a point pro-
cess) and not a function of the history Fi(s), s < t of the
cell. On the one hand this is advantageous because no
extensive tracking of cells over multiple generations, but
only an accurate cell segmentation at time t is required
to assess all observable features Fi(t) such as cell density.
On the other hand, the method cannot identify a history-
dependence of the transition rate, e.g. in a scenario where
a cell integrates over the previously experienced cell densi-
ties via some internal mechanism. However, given reliable
single cell tracking data and hence reliable timecourses
of the features Fi(t) for single cells i instead of snap-
shots, the presented approach can be extended to also
detect history dependent transition rates. To that end,
one has to augment the feature vectors entering the GLM
by time-shifted versions of those features, i.e. including
not only present cell density, but also densities at previ-
ous timepoints, and fits the model as proposed. This is
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analogous to applying the idea of Granger causality [38] to
feature timecourses Fi(t) and binary cell state timecourses
Yi(t), i.e. inferring what features (including their history)
contain information to predict the state-timecourses.
Accounting for potential history-dependence with time-
shifted versions of the original features complicates the
inference problem due to the increasing feature space,
potentially requiring a larger sample size. However, the
following reasons might still allow for a faithful inference:
(i) The Lasso regularization with bootstrapping is known
to work well even for high dimensional problems [29]. (ii)
Since the features have considerable autocorrelation (local
cell density does not change rapidly over time for typi-
cal cell speeds), one only has to include the time-shifted
features at intervals greater than the autocorrelation time.
This leads to fewer features than considering every pos-
sible time-shift for each original feature. Still, if the tran-
sition rate depends on a very long history (e.g. several
generations) this approach might become infeasible due
to the increasingly large features space. Here one has to
augment the problemwith some additional regularization,
e.g. enforcing the weights of neighboring time-lags to be
similar [39].
We showed how the kernel for spatial interactions can

be learned from the data using a set of concentric basis
functions with width �r controlling the resolution of the
kernel. From a biological perspective the most interest-
ing quantity of the interaction kernel is its range, i.e. the
distance on which cells communicate and influence each
other. A kernel range on the order of a typical cell size
indicates that state transitions are initiated or inhibited
due to cell-cell contact (e.g. Delta-Notch signaling [40]).
Large kernel range suggest communication via signaling
molecules, e.g. cytokines that are able to instruct cell fate
choice in stem- and progenitor cells [17, 41]. This range
can be inferred using a relatively coarse kernel resolu-
tion (large �r, also see Additional file 1: Figure S2). A
fine resolution (small �r) has to be chosen if the pre-
cise shape of the kernel is of interest. From the exact
shape of the kernel one could learn about the signaling
mechanism, e.g. how the signal is integrated by the receiv-
ing cells. For example, a long range tophat kernel would
indicate a threshold response in the signal-receiving cell,
i.e. the cell’s surface receptor transfers the signal into the
cell only if the signaling molecule exceeds a certain con-
centration. A long range Gaussian kernel would instead
indicate that the receiver responses gradually to the signal.
However, a fine kernel resolution comes at the expense
of a more challenging inference problem: Not only does
the number of features φi increase (if the same overall
range of interactions has to be covered) but more impor-
tantly, the contributions of the individual φi becomes
weaker such that they are more likely eliminated by the
Lasso regularization (analogous to φ0,φ1 in Fig. 4a-c).

This can either be compensated by increasing the sample
size or putting constraints on the weights of the φi,
e.g. enforcing the weights of neighboring φi to be
similar, resulting in smooth kernels (similar to fused
lasso [39]).
With respect to regulating features, our method can

be extended to any other parameter that is experimen-
tally accessible. In terms of tumor growth for example,
the presence (or local density) of distinct cancer cell
subtypes might influence transitions between states of
different proliferative potential [42]. This could be ana-
lyzed by introducing cell type specific density features φc

i
that take into account only a certain cell type c when
calculating local cell density. For blood progenitor cells,
including the expression levels of Pu.1 [43], a pivotal
fate determining factor [44], as a feature will allow to
compare extrinsic and intrinsic [45] effects on cellular
plasticity.

Conclusion
Our approach is designed for dynamic data provided by
time-lapsemicroscopy, which allows to observe state tran-
sitions in their spatiotemporal and genealogical context.
The requirements for an appropriate dataset are (i) single-
cell genealogies obtained from automatic or manual cell
tracking, (ii) at least as many annotated state transitions
as determined by our analysis, and (iii) the identification
of all cells surrounding a transition event in an sufficiently
large radius. To the best of our knowledge, no such dataset
exist up to now, but manual and automated tracking tools
increase accuracy and efficiency ([13, 46]; [Schwarzfischer
et al., in revision]). Moreover, our method relies only on
short trackings of one cell cycle to quantify sister corre-
lations (Fig. 7). Since fluorescent fate markers exist for
various systems, morphological quantification has been
shown to be usable for fate recognition [47], and robust
cell segmentation algorithms work on full time-lapse
movies [16], we believe that adequate datasets from vari-
ous cell systems will emerge in the near future. Due to the
method’s generality, many different types of cell state tran-
sitions can be investigated in their spatiotemporal context:
For example, one can study the influence of cytokine sig-
naling between differentiating blood stem- and progenitor
cells [17], i.e. if the presence of one celltype (potentially
secreting the cytokine) promotes specific differentiation
decisions. In mouse embryonic stem cells the impact of
cell-cell interactions on transitions between Nanog-high
and Nanog-low cells [48, 49], or on the cell fate deci-
sion between epiblast and primitive endoderm [50] could
be analyzed with our proposed method. Similarly, transi-
tions between cancer stem cells and non-tumorigenic cells
[51], or the epithelial-mesenchymal transition, which is
thought to initiate tumor metastases [52] can be analyzed
in their the spatiotemporal context.
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