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1 The master equations of an interacting population of di-
viding cells

We consider a population of cells, each defined via its position x ∈ R2, its state Y ∈ [0, 1] and its
age τ ∈ R+. Cells change state Y with rate λ(F ), where F are the cell’s features (cell density,
age, etc.), and divide with age dependent rate γ(τ). First, let us describe how the distribution of
a single cell evolves:

Ṗ(x, Y, τ, t) = ∇2P(x, Y, τ, t) +
∂

∂τ
P(x, Y, τ, t)

− δY,0 · λ(x, t, τ) · P(x, Y, τ, t)

+ δY,1 · λ(x, t, τ) · P(x, Y − 1, τ, t)

− γ(τ) · P(x, Y, τ, t)

where δn,m is the Kronecker delta and ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2
. The first term on the right hand side

accounts for spatial diffusion of the cell in and out of location x, the second term accounts for
aging, the third term accounts for cells transitioning out of state A (Y = 0) and the fourth term
describes cells transitioning into state B (Y = 1). The last term accounts for the loss of the single
cell due to cell division giving rise to a pair of cells.

When considering pairs of cells, we must describe the evolution of their joint distribution
P(x1, Y1, τ1, x2, Y2, τ2, t):

Ṗ(x1,Y1, τ1, x2, Y2, τ2, t) =

(
∇2
x1,x2

+
∂

∂τ2
+

∂

∂τ2

)
· P(x1, Y1, τ1, x2, Y2, τ2, t)

− [δ(Y1) · λ(F1(x1, τ1, x2, τ2)) + δ(s0) · λ(F2(x1, τ1, x2, τ2))] · P(x1, Y1, τ1, x2, Y2, τ2, t)

+ δ(Y1 − 1) · λ(F1(x1, τ1, x2, τ2)) · P(x1, Y1 − 1, τ1, x2, Y2, τ2, t)

+ δ(Y2 − 1) · λ(F2(x1, τ1, x2, τ2)) · P(x1, Y1, τ1, x2, Y2 − 1, τ2, t)

+ δ(τ1) · δ(τ2) · δ(x1 − x2) ·
∫ t

0

dτ ′γ(τ ′)P(x1, Y1, τ
′, t)

− [γ(τ1) + γ(τ2)] · P(x1, Y1, τ1, x2, Y2, τ2, t)

The first line represent diffusion in space and drift in time. The second line corresponds to loss
due to a state change out of state A, where the rate λ depends on the features Fi of cell i, which
is function depending on potentially all system variables (e.g. cell locations when representing
cell density). The third line accounts for a cell in state A (Y1 = 0) at position x1 that transitions
into state B (the forth line is analogous for the second cell). The fifth line includes the gain of
probability due to a division event in the single cell equation creating two cells of age 0. This
term gives rise to the coupling of the equations. For simplicity we assumed that a division event
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at location x gives rise to two cells both located at x as well. Finally, the last term models loss
due to either cell 1 or cell 2 dividing.

The equation for higher numbers of cells (triplets, etc.) become more and more complex as
one has to deal with arising symmetries (see e.g. Dodd and Ferguson [1]).

2 Credibility intervals for proportions from counting

When estimating the probability P (t, t+ dt|Fi(t)) in Equation (9) of the main text, we in fact we
estimate the parameter of a binomial distribution: we observed that k successes (events) occurred
out of n trials and we are interested in the probability p of the success. Clearly, k follows a
binomial distribution with parameters n, p:

k ∼ Binomial(n, p)

Having observed a particular k and n we want to infer the parameter p of the underlying binomial
distribution. In a maximum likelihood setting, one can show that this is just p̂ = k/n. Confidence
intervals for this maximum likelihood estimator can be constructed according to various methods
(Wald-, Wilson-, or Clopper-Pearson confidence intervals, [3]).

We invoke a Bayesian approach instead: using an uninformative conjugate prior for p (which is a
Beta(1/2,1/2) distribution called Jeffreys prior, see [2]), we get the following posterior distribution
for p:

P (p|k, n) ∼ Beta(1/2 + k, 1/2 + n− k) (1)

If we consider the posterior mean p̄, we find

p̄ =
k + 1/2

n+ 1

which is approximately the same as the maximum likelihood estimate (k/n) if k, n are large. We
obtain credibility intervals by calculating the 5% and 95% quantiles of the posterior in Equation (1).

A particularly appealing property of Bayesian credibility intervals is that they will strictly be
within [0, 1], unlike their frequentist counterparts which are not constrained to the [0, 1] domain
of probabilities. This is especially prevalent if the estimated probability itself is close to 0 or 1.

3 Independence of samples

For the machine-learning, we rely on the fact that the individual samples are independent. In
the following we show why this is indeed true. Intuitively, one would think that for example
two samples generated from the same cell, but at different timepoints within that cell are not
independent: not only is there a strong correlation with respect to their features (e.g. because
spatial position will change only slightly with time, and therefore the latter sample will be at a
similar position to the earlier sample) but it seems that also the class labels are apparently not
independent. For example the knowledge that the later sample is undifferentiated immediately
implies that also the previous example is undifferentiated. However, this is not the case. Consider
for example a single cell, that is created at time t0 and differentiates at time tN . The likelihood
of this whole cell in terms of the hazard is

L = λ(tN ) · e−
∫ tN
t0

dτλ(τ) (2)

If we however decide to split up this cell into N individual observations Oi (as we do in the main
text) we get the following likelihood for each observation:

L̃(Oi) =

e
−

∫ ti
ti−1

dτλ(τ)
i 6= N

λ(tN )e
−

∫ tN
tN−1

dτλ(τ)
i = N
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Assuming independence, the overall likelihood is

L̃ =
∏
i

L(Oi) = e−
∫ t1
t0
dτλ(τ) · e−

∫ t2
t1
dτλ(τ) · . . .

. . . · e−
∫ tN−1
tN−2

dτλ(τ) · λ(tN )e
−

∫ tN
tN−1

dτλ(τ)

= exp

[
−
∫ t1

t0

dτλ(τ)− . . .−
∫ tN

tN−1

dτλ(τ)

]
· λ(tN )

= exp

[
−
∫ tN

t0

dτλ(τ)

]
· λ(tN )

Comparing this expression to Equation (2), we find that they are actually the same. Therefore
the assumption of independence is true.

4 Log-binomial regression and its approximation via Pois-
son regression

In our simulations a single sample (Y (i), F (i)) is created according to

Y (i) ∼ Bernoulli(p(i))

p(i) = 1− exp
[
−λ(F (i)) ·∆t

]
= 1− exp

[
−wTF (i) ·∆t

]
If we switch class labels such that

V (i) =

{
1, Y (i) = 0

0, Y (i) = 1

V (i) ∼ Bernoulli(q(i))

q(i) = 1− p(i) = exp
[
−wTF (i) ·∆t

]
,

we see that the generative model corresponds to a GLM with a Bernoulli distribution and an
exponential mean function

E[V (i)] = q(i) = e−w
TF (i)∆t (3)

This GLM is known as the log-binomial model and suffers from convergence issues as it allows
probabilities greater than 1 (if the exponent in Equation 3 becomes positive). Hence, we choose to
approximate the Bernoulli distribution by a Poisson distribution and keep the desired exponential
mean function. This GLM is also known as Poisson regression [4]. Since the probability mass
function of Bernoulli and Poisson distribution are very similar if p � 1, this provides a good
approximation to the log-binomial model in the case of rare events:

PBer(Y = 0|p) = 1− p
PBer(Y = 1|p) = p

PPoi(Y = 0|p) = exp(−p) ≈ 1− p
PPoi(Y = 1|p) = p · exp(−p) ≈ p(1− p) ≈ p
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The loglikelihood of the model (Equation (11) in the main text) for data (Y,X) and weights
w is obtained as:

log p(Y |F,w) =
∑
i

log[p(Y (i)|F (i), w)]

=
∑
i

log

[
αY

(i) · exp(−α)

Y (i)!

]
=
∑
i

[
Y (i) log(α)− α− log

(
Y (i)!

)]
,

where we plugged in the mass function of a Poisson distribution in the second line and used the
abbreviation α = exp(−wTF (i)∆t). This is simplified to

log p(Y |F,w) =
∑
i

[
−Y (i)wTF (i)∆t− exp(−wTF (i)∆t)− log

(
Y (i)!

)]
.

Note that in the main text (Equation 11), for simplicity we absorbed −∆t into the weights, i.e.

w′ := −∆tw .

5 Event probabilities and rates

Given a transition rate λ(t, F (t)) which depends on other variables F (t), what is the probability
(referred to as P (t) in the main text) of a state transition happening in the interval [t, t+ τ ]?

The number N t+τ
t of transition events happening in a single in [t, t+τ ] obeys an inhomogeneous

Poisson process with time-dependent rate λ(t, F (t)), i.e. it has probability mass function

P
(
N t+τ
t = k

)
=
m(t, τ)k

k!
e−m(t,τ) ,

where

m(t, τ) =

∫ t+τ

t

λ(s, F (s))ds

is the rate integrated over the period of interest. We are interested in k = 0 (no event happens in
[t, t+ τ ])

P
(
N t+τ
t = 0

)
= e−m(t,τ) .

From that it follows that the probability (termed P (t) in the main text) of one or more events
happening in [t, t+ τ ] is

P
(
N t+τ
t > 0

)
= 1− e−m(t,τ) .

Note that for our model, only one state transition can occur (i.e. if the cell changed its state from
I to II, it cannot undergo the transition ever again) but the above formula remains valid, since the
probability of more than one event happening in [t, t+ τ ] is of order m2(t, τ) and hence neglegible
for small τ .
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Figure 1: Calculating the expected frequencies of sister subtrees patterns. For a pair of sister cells
i, j, the individual transition rates λ̂i, λ̂j of both cells are evaluated across their cell cycle using
the previously estimated parameters and yield the probabilities pi, pj of each cell to undergo a
state transition.
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Figure 2: Regularized generalized linear models (GLMs) correctly identify a short range spatial
interaction. A) Regularization path of the GLM applied to a density dependent dataset with
a short range tophat-kernel (R = 40µm). The optimal regularization strength κ∗ determined
by cross validation is shown as a vertical black line. Solid (dashed) lines correspond to relevant
(irrelevant) features in the respective scenario. B) Inclusion probabilities of the features determined
from 50 bootstraps. The model correctly identifies φ0 while φ1 is wrongly included into the mode.
C) Inspecting the reconstructed kernel of local cell density (bars) reveals that the shape of the
kernel is reasonably approximated and the contribution of the irrelevant feature φ1 to the kernel
is small.
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Figure 3: Observed and expected frequencies of sister pairs for the density dependent scenario
and a reduced sample size of 2000 onsets. Compare to Figure 7A of the main text, which shows
the analogous plot for a sample size of 4500 onsets.
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Figure 4: The model performance for a nonlinear (sigmoid) transition rate λ(ρ) = 1
1+(KD/ρ)n

with KD = 5 and n = 5. A) The transition rate as a function of cell density ρ estimated non-
parametrically using Eq. (10) of the main text. B) The regularization path of the GLM fitted to
this dataset (see also Figure 4 of the main text). C) The inclusion probabilities for each feature
show that despite the strongly nonlinear transition rate, the method can identify all relevant
density features and only includes one irrelevant feature (φ7) into the model.
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