## Short Communication

Correspondence
Zhuang Ding
dingzhuang@jlu.edu.cn

Received 19 May 2015 Accepted 23 June 2015

## Expression of Raf kinase inhibitor protein is downregulated in response to Newcastle disease virus infection to promote viral replication

Renfu Yin,<sup>1</sup> Xinxin Liu,<sup>2</sup> Yuhai Bi,<sup>3</sup> Guangyao Xie,<sup>1</sup> Pingze Zhang,<sup>1</sup> Xin Meng,<sup>1</sup> Lili Ai,<sup>1</sup> Rongyi Xu,<sup>1</sup> Yuzhang Sun,<sup>4</sup> Tobias Stoeger<sup>5</sup> and Zhuang Ding<sup>1</sup>

Newcastle disease virus (NDV) causes a severe and economically significant disease affecting almost the entire poultry industry worldwide. However, factors that affect NDV replication in host cells are poorly understood. Raf kinase inhibitory protein (RKIP) is a physiological inhibitor of c-RAF kinase and NF- $\kappa$ B signalling, known for their functions in the control of immune response as well as tumour invasion and metastasis. In the present study, we investigated the consequences of overexpression of host RKIP during viral infection. We demonstrate that NDV infection represses RKIP expression thereby promoting virus replication. Experimental upregulation of RKIP in turn acts as a potential antiviral defence mechanism in host cells that restricts NDV replication by repressing the activation of Raf/MEK/ERK and  $I\kappa$ B $\alpha$ /NF- $\kappa$ B signalling pathways. Our results not only extend the concept of linking NDV-host interactions, but also reveal RKIP as a new class of protein-kinase-inhibitor protein that affects NDV replication with therapeutic potential.

Newcastle disease virus (NDV), also designated avian paramyxovirus serotype 1 (AMPV-1), is a member of the genus Avulavirus in the family Paramyxoviridae. NDV infections cause a highly contagious and fatal viral disease affecting most species of birds that frequently leads to severe economic losses in the poultry industry across the globe (de Leeuw & Peeters, 1999; Swayne et al., 2013). NDV is an enveloped virus containing a non-segmented, singlestranded, negative-sense RNA genome of approximately 15 186 nt that contains six genes encoding the nucleocapsid protein (N), phosphoprotein (P), matrix protein (M), fusion protein (F), haemagglutinin-neuraminidase protein (HN), large polymerase protein (L) and an additional protein, V, that is expressed by RNA editing of P mRNA (Swayne et al., 2013). Strains of NDV can be classified as highly virulent (velogenic), intermediate (mesogenic) or non-virulent (lentogenic) on the basis of their pathogenicity for chickens (Swayne *et al.*, 2013). The clinical signs of a highly virulent NDV infection in susceptible birds can be extremely different depending on the strain of virus. Virulent strains that cause diarrhoea and frequently haemorrhagic intestinal lesions are called 'viscerotropic velogenic', and strains that cause respiratory and neurotropic signs are called 'neurotropic velogenic' (de Leeuw *et al.*, 2005; Dortmans *et al.*, 2011).

The innate immune response to NDV infection relies primarily on the induction of the IFN response and related pathways (Cheng *et al.*, 2014; Krishnamurthy *et al.*, 2006; Susta *et al.*, 2013). NDV also encounters a range of antiviral responses, which are proposed to depend on the protein kinase R (PKR)-induced PKR/eIF2α signalling cascade and sequestosome 1 (SQSTM1)-mediated selective degradation of mitochondria by autophagy, called 'mitophagy' (Meng *et al.*, 2014; Zhang *et al.*, 2014). Meanwhile, there

<sup>&</sup>lt;sup>1</sup>Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China

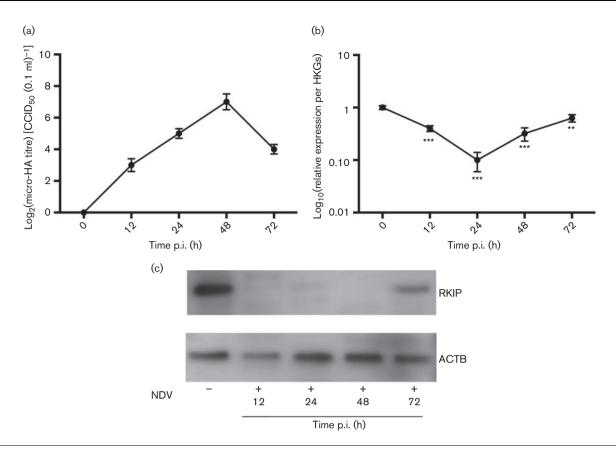
<sup>&</sup>lt;sup>2</sup>College of Quartermaster Technology Science, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, PR China

<sup>&</sup>lt;sup>3</sup>CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China

<sup>&</sup>lt;sup>4</sup>China Animal Health and Epidemiology Center, Qingdao, Nanjing Road 369, Qingdao, Shandong 266032, PR China

<sup>&</sup>lt;sup>5</sup>Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg/Munich, Germany

is increasing evidence suggesting that other classes of genes, such as the interferon-inducible protein ISG12a and IFN-gamma-signalling mediator Rac1, are also involved in virus—host interactions (Liu *et al.*, 2014; Puhlmann *et al.*, 2010). In addition to hosts, viruses, such as herpes simplex virus 1 (HSV-1) (Mostafa *et al.*, 2013), human cytomegalovirus (HCMV) (Cantrell & Bresnahan, 2005), influenza virus (IV) (Goodman *et al.*, 2011) and others (Saribas *et al.*, 2014; Stracker *et al.*, 2004; Trobaugh *et al.*, 2014), regulate host and viral genes to enhance viral replication.


Raf kinase inhibitor protein (RKIP), a member of the phosphatidylethanolamine-binding protein (PEBP) family, has been shown to be involved in numerous cellular processes, such as cell proliferation, differentiation and apoptosis (Johnson et al., 2014; Lopez-Ilasaca et al., 1997; Sisto et al., 2014). Previously identified as a novel inhibitor of cancer metastasis, RKIP is a widely expressed protein that negatively regulates the Raf/MEK/ERK signalling pathway by binding to Raf and blocking Raf-mediated phosphorylation of MEK (Antoun et al., 2012; Yeung et al., 1999). RKIP also works as a scaffold protein that negatively regulates the assembly of the IKK complex leading to the degradation of  $I\kappa B$  releasing the NF- $\kappa B$  complex for nuclear translocation (Beshir et al., 2010; Tang et al., 2010). Furthermore, activation of Raf/MEK/ERK and the NF-κB pathway are required for normal replication of certain viruses, such as IV (Pinto et al., 2011), Kaposi's sarcomaassociated herpesvirus (KSHV) (Ford et al., 2006), human immunodeficiency virus (HIV) (Zhu et al., 2011) and others (Mathers et al., 2014), to promote viral replication, prevent virus-induced apoptosis, and mediate the immune response to the invading pathogen (Hiscott et al., 2001). However, there is little information available in the literature regarding RKIP inhibitory mechanisms in the context of NDV infection. Therefore, in the present study, the role of RKIP in NDV replication and the cellular response to NDV infection were elucidated.

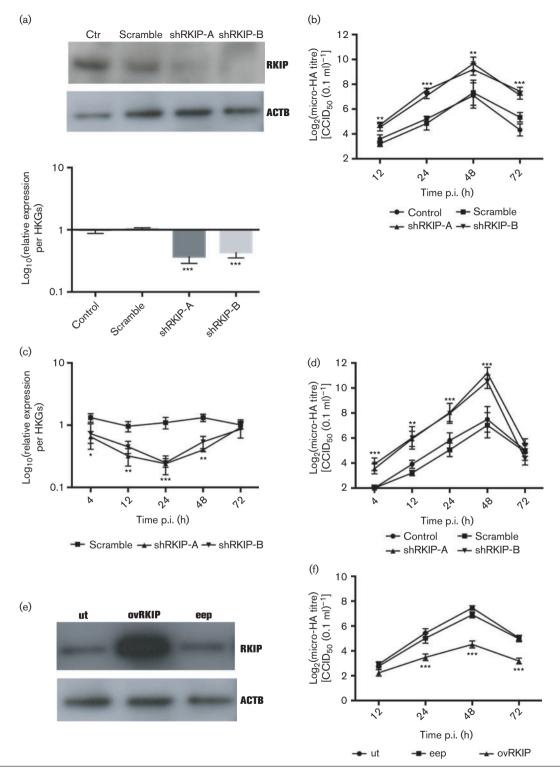
An isolate of the NDV strain NA-1 from geese (velogenic, 10<sup>6</sup> CCID<sub>50</sub> per 0.1 ml) used in this study was replicated in the allantoic cavity of 9- to 10-day-old embryonated specific pathogen-free (SPF) chicken eggs (Merial, Beijing) and purified directly from the allantoic fluid as described in our previous study (Yin et al., 2010). The primary chicken embryo fibroblast (CEF) and the DF-1 cell line were grown in Dulbecco's modified Eagle's medium (DMEM) containing 10 % FBS (Gibco, Life Technologies) and maintained with 5 % FBS. The virus titre was quantified by the micro-HA method as described previously (Yin et al., 2010). Total RNA isolation, first strand cDNA synthesis, quantitative PCR (qPCR) performance with SYBR green and qPCR data analysis have been described previously (Yin et al., 2011). Primers specific to RKIP (forward: GAC-ATTGAGCCATCATCCAG, reverse: CTACGCAGCCACC-TGATCT) were used for detection of mRNA levels. Anti-RKIP, anti-ACTB and anti-mouse IgG-HRP antibodies were all purchased from Santa Cruz Biotechnology. All experimental protocols used in this work were reviewed and approved by the Experimental Animal Council of Jilin University, China.

In line with the previous studies (Dortmans *et al.*, 2010; Yin *et al.*, 2010), the virus titres in supernatants significantly increased from 12 to 72 h post-infection (p.i.) in DF-1 cells after infection with NDV at an m.o.i. of 1. In detail, viral titres at 12 h p.i. only yielded in a 7.0-fold increase but further increased to 36.8-fold by 24 h p.i. and 111.4-fold by 48 h p.i., followed by a decrease back to 13.0-fold at 72 h p.i., as compared with the uninfected cells (Fig. 1a).

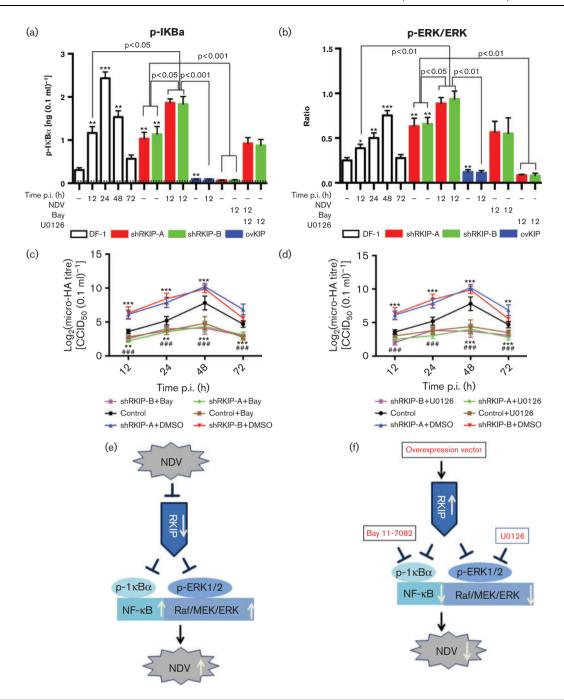
To determine whether the NDV infection was sufficient to regulate RKIP expression, RKIP protein and mRNA levels in NDV-infected DF-1 cells from 12 to 72 h p.i. were characterized. As depicted in Fig. 1(b, c), NDV infection dramatically downregulated RKIP expression in DF-1 cells, with minimum mRNA expression levels at 24 h p.i. (Fig. 1b), followed by undetectable protein levels at 48 h p.i. (Fig. 1c). However, mRNA and protein levels of RKIP were found to partly recover at 72 h p.i., matching decreasing virus titres at this time point. Taken together, the results indicate that NDV infection significantly downregulates RKIP expression, with NDV titres preceding the RKIP expression-repression.

To elucidate whether decreased expression of RKIP in NDV-infected cells is the consequence of NDV induction and is beneficial for the virus growth, the effect of RKIP knockdown on NDV replication was assessed. Firstly, two RKIP stable knockdown cell lines from the immortalized chicken fibroblast cell line DF-1, with two distinct small hairpin RNA (shRNA) sequences against RKIP (shRKIP-A: 261-CAGAGAATGGCATCACTTC-280; shRKIP-B: 654-GACACTGGTTTATAGCACT-673) were generated using the RNAi-Ready pSIREN-RetroQ Vector (Clontech, Takara) according to the manufacturer's instructions. As compared with the scramble control, no detection of RKIP protein and 2.6-fold knockdown of mRNA were found in both RKIP knockdown cell lines (Fig. 2a). Both knockdown cell lines demonstrated increased virus titres compared with the scramble control (Fig. 2b). To further validate these results, RKIP transient knockdowns in primary chicken fibroblast (CEF) cells were generated by siRNA (Sangon) at a 25 nM concentration, targeting the same genes as described before for the shRNA knockdown in the DF-1 cell line. CEF cells were treated with either siRKIP-A or siRKIP-B and infected with NDV (m.o.i.=1) 4 h post-transfection (p.t.) for different time points, and both siRNAs were maintained for at least 48 h p.t. and decreased (1.9-, 2.5-, 4.5-, 2.8- and 1.1-fold knockdown of RKIP mRNA at 4, 12, 24, 48 and 72 h p.t. as compared with the scramble control) target gene levels (Fig. 2c). Subsequently, supernatants were analysed for virus titres from 4 to 72 h p.i., and the results confirmed those obtained from the RKIP stable knockdown cell lines. In fact, both RKIP transient knockdown CEF cell preparations displayed an approximately 2.8-, 6.5- and 7.8-fold increase in NDV titre at 4, 12 and 24 h p.i., followed by a further increase




**Fig. 1.** Time-course dynamic of viral replication (a) and RKIP expression (b, c) in DF-1 infected with NDV NA-1 strain at an m.o.i. of 1.qPCR data were normalized to the geometric mean of three different housekeeping genes (ACTB, SHDA and HMBS) and calculated using the  $2^{-\Delta\Delta C_t}$  method. Twenty micrograms total proteins were used for Western blot with ACTB considered as a loading control. All data are derived from two independent experiments. Values are shown as mean  $\pm$  SEM (n=5-6) and differences were considered significant if \*P<0.05, \*\*P<0.01 or \*\*\*P<0.001 as compared with the control group.

of 13.0-fold at 48 h p.i., compared with those detected in the scramble control, respectively. However, by 72 h p.i., similar levels of virus titres (1.1-fold) were exhibited for the scramble and RKIP transient knockdown cells (Fig. 2d), which were not observed for shRNA before. Taken together, these results show that reducing RKIP expression and activity might regulate host response in a way that promotes NDV replication.


After we demonstrated that inhibition of RKIP expression not only increases virus titres in immortalized cell lines, but at the same time increases the amount of virus in CEF cells we aimed to determine whether RKIP might be a potential antiviral target to counteract NDV infections. Therefore, we constructed an RKIP overexpression plasmid based on the CMV-inducible eukaryotic expression vector pCMV-BD (Promega) and thereby generated a DF-1 cell line stably overexpressing RKIP (ovRKIP), according to the manufacturer's instructions. As intended, a significantly higher RKIP expression could be observed in stable ovRKIP transfected cells, over either empty expression plasmid (eep)- or un-transfected (ut) cells (Fig. 2e).

Thereafter, ovRKIP cells were infected with NDV (m.o.i.=1) for 12, 24, 48 and 72 h p.i. and supernatants were analysed for virus titres. Upon NDV infection, as compared with the eep control, virus titres in ovRKIP cells decreased by 31.1, 68.4, 83.6 and 70.9 % at 12, 24, 48 and 72 h p.i., respectively (Fig. 2f). Therefore, our data demonstrate that overexpression of RKIP is sufficient to inhibit NDV growth.

Earlier findings showed NDV infection induced phosphorylation of  $I\kappa B\alpha$ , a crucial player in the activation of the  $I\kappa B\alpha/NF-\kappa B$  signalling axis, and ERK1/2, a kinase for the activation of Raf/MEK/ERK signalling (Ng *et al.*, 2013; Paulmann *et al.*, 2014). To get insight into the pathway of RKIP-related inhibition of virus replication, we set out to confirm whether NDV infection-induced phosphorylation of  $I\kappa B\alpha$  and ERK1/2 also applied under the conditions used here. Phosphorylated  $I\kappa B\alpha$  levels were measured, applying the FunctionELISA  $I\kappa B\alpha$  kit (Active Motif) and the ratio of phosphorylated ERK1/2 levels to ERK levels was measured with the phospho-ERK ELISA kit (Thermo Fisher Scientific, Life Technologies) according



**Fig. 2.** RKIP modulates NDV replication *in vitro*. (a) DF-1 stably knocked down with shRNA against RKIP was generated by retro viral infection. Knockdown was confirmed by Western blot (upper) and qPCR (lower). (b) Virus titres were measured in NDV-infected control, scramble, shRKIP-A and shRKIP-B stable knocked down DF-1 cells by the micro-HA method. (c) CEF cells transiently knocked down with siRNA against RKIP were generated by transfection. Knockdown was confirmed by qPCR. (d) Virus titres were measured in transient knockdown CEF cells infected with NDV. (e) Expression levels of RKIP in un-transfected (ut), empty expression plasmid (eep) and RKIP stable overexpressed (ovRKIP) DF-1 cells were measured with Western blot. (f) Virus titres were measured in ut, eep and ovRKIP at 12, 24, 48 and 72 h p.i. of NDV (m.o.i.=1) infection. All data are derived from two independent experiments. Values are shown as mean ± SEM (n=5-6) and differences were considered significant if \*P<0.05, \*\*P<0.01 or \*\*\*P<0.001 as compared with the control or scramble group.



**Fig. 3.** NDV silences RKIP expression which promotes viral replication through enhanced Raf/MEK/ERK signalling and NF- $\kappa$ B pathway activation. The levels of phosphorylated IkB $\alpha$  (a) and ERK1/2 (b) were measured in DF-1, ovRKIP and shRKIP cells treated with different conditions. The limit of detection of p-I $\kappa$ B $\alpha$  level is 0.015 ng per 0.1 ml (dotted line). Virus titres in NDV-infected control DF-1 and shRKIP DF-1 treated with either Bay 11-7082 (c) or U0126 (d). (e) Schemata for interaction between host RKIP and NDV replication. (f) Anti-NDV strategies for RKIP mediated pathway. All data are derived from two independent experiments. Values are shown as mean ± SEM (n=5-6) and differences were considered significant if \*P<0.05, \*\*P<0.01 or \*\*\*P<0.001 as compared with the control group; ###P<0.001 as compared with the respective non-inhibitor treatment.

to the manufacturer's instructions. In fact we also observed significantly higher phosphorylation of both  $I\kappa B\alpha$  and ERK1/2 in shRKIP cells indicating that the Raf/MEK/ERK and  $I\kappa B\alpha/NF-\kappa B$  pathways became activated in cells after

RKIP knockdown and further depleted upon stable overexpression of RKIP in the respective transfected cell lines (Fig. 3a, b). Moreover, NDV infection induced higher phosphorylation of both  $I\kappa B\alpha$  and ERK1/2 in shRKIP cells, not ovRKIP cells at 12 h p.i. Therefore, we thought to test further whether RKIP actually regulates the NDV replication through Raf/MEK/ERK signalling and the IκBα/NF- $\kappa B$  pathway. To test this we used the pharmacological inhibitors Bay 11-7082 and U0126 (Calbiochem, Merck Millipore), which were both dissolved in DMSO at a stock concentration of 100 mM. Bay 11-7082 has previously been shown to specifically inhibit the activation of IκBα/NF-κB and subsequent DNA binding by preventing phosphorylation of the inhibitor of  $\kappa B$  (I $\kappa B$ ) (Kim et al., 2010). U0126, chemically known as 1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadiene, is a small molecule inhibitor of Raf/MEK/ERK signalling by selectively inhibiting phosphorylation of MEK1 and MEK2, family members of the mitogen-activated protein kinase kinases (MAPKKs) (Ong et al., 2015). Firstly we analysed the effect of the inhibitor treatment for either Raf/MEK/ ERK signalling or the  $I\kappa B\alpha/NF-\kappa B$  pathway on the virus titres in RKIP stable knockdown DF-1 cells. To this point, we determined virus titres in shRKIP DF-1 cells infected with NDV (m.o.i.=1), with or without inhibitor treatment. As depicted in Fig. 3(c), shRKIP cells treated with medium conditioned with 20 µM Bay 11-7082 exhibited a decline of virus titres by 93.0, 95.2, 98.4 and 87.7 % at 12, 24, 48 and 72 h p.i. as compared with the non-treated cells. U0126, given at 20 µM in parallel, effectively reduced virus titres by 94.1, 96.5, 98.8 and 86.8 % at 12, 24, 48 and 72 h p.i., respectively (Fig. 3d). Furthermore, treatment of control DF-1 cells with medium conditioned with either Bay 11-7082 or U0126 caused significant reductions in viral titres as compared with cells without treatment (Fig. 3c, d). Our data thus clearly demonstrate that  $I\kappa B\alpha/NF-\kappa B$  signalling as well as the Raf/MEK/ERK pathway are important factors required for NDV propagation and their inhibition limits virus replication. Upon infection, NDV silences RKIP expression, which promotes viral replication through enhanced Raf/MEK/ERK signalling and  $I\kappa B\alpha/NF-\kappa B$  pathway activation.

In line with others reports, our data show that  $I\kappa B\alpha/NF-\kappa B$ signalling is essential for efficient virus propagation, as inhibition of IκBα phosphorylation by IKK inhibition via Bay 11-7082 results in reduced virus titres, such as Venezuelan equine encephalitis virus (Amaya et al., 2014), IV (Mazur et al., 2007; Pinto et al., 2011) and coxsackievirus (Sobotta et al., 2012). Previous studies showed that NDV replication does not require NF-kB p50 and cRel and, accordingly, embryonic fibroblasts (MEF) derived from p50<sup>-/-</sup> and cRel-'/- mice revealed no defect during the early time of infection. Increased NDV replication was, however, observed in MEF lacking NF-κB RelA (p65) subunit, since RelA is a specific requirement in early virus-induced IFN- $\beta$  expression, although RelA, p50 and cRel play a relatively minor role in overall IFN- $\beta$  production upon NDV infection (Wang et al., 2007, 2010). But in the present study, we found that blocking phosphorylation of the  $I\kappa B\alpha$  by the IKK-specific inhibitor Bay 11-7082 impaired NDV propagation.

Our conclusion is that the drop in NDV titres at 72 h p.i. was a result of the recurrence of RKIP expression because the RKIP gene expression increase from 24 to 72 h p.i. preceded the drop of NDV titres from 48 to 72 h p.i. Since NDV infection obviously regulates PKIP expression, virus titres will need to precede RKIP gene expression if upstream of them. Also Fig. 2(c, d) shows that the effect, as transient siRKIP knockdown, had disappeared at 72 h p.t., and no difference in viral titre was observed at this time point, when comparing siRNAs, scramble and control CEF.

In summary, we show that NDV infection represses host RKIP expression, which subsequently results in enhanced Raf/MEK/ERK signalling and  $I\kappa B\alpha/NF-\kappa B$  pathway activation, since this pathway is usually inhibited by RKIP activity (Fig. 3e). NDV replication, however, requires Raf/MEK/ERK and  $I\kappa B\alpha/NF-\kappa B$  signalling, and virus propagation is, therefore, less efficient if these pathways are obstructed (Fig. 3f). Targeted overexpression of RKIP, therefore, can be exploited as an antiviral defence mechanism, and the results of this study could not only help to improve our understanding of NDV host interactions but also suggest a new avenue for the development of novel antiviral strategies.

## **Acknowledgements**

This study was partly supported by three grants from Jilin University (4305050102TS and 450060501486 to R. Y., 4305050102S4 to X. L.), two grants from National Science Foundation of China (31402195 to R. Y., 31272561 to Z. D.), one grant from Specialized Research Fund for the doctoral program (201100611105 to Z. D.) and one grant from Chinese Special Fund for Agri-scientific Research in the public interest (201303033 to Z. D.). None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

## References

Amaya, M., Voss, K., Sampey, G., Senina, S., de la Fuente, C., Mueller, C., Calvert, V., Kehn-Hall, K., Carpenter, C. & other authors (2014). The role of  $IKK\beta$  in Venezuelan equine encephalitis virus infection. *PLoS One* **9**, e86745.

Antoun, G., Bouchard-Cannon, P. & Cheng, H. Y. M. (2012). Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein. *J Neurosci* 32, 4867–4877.

Beshir, A. B., Ren, G., Magpusao, A. N., Barone, L. M., Yeung, K. C. & Fenteany, G. (2010). Raf kinase inhibitor protein suppresses nuclear factor-κB-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression. *Cancer Lett* 299, 137–149.

**Cantrell, S. R. & Bresnahan, W. A. (2005).** Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. *J Virol* **79**, 7792–7802.

Cheng, J., Sun, Y., Zhang, X., Zhang, F., Zhang, S., Yu, S., Qiu, X., Tan, L., Song, C. & other authors (2014). Toll-like receptor 3 inhibits

- Newcastle disease virus replication through activation of proinflammatory cytokines and the type-1 interferon pathway. *Arch Virol* **159**, 2937–2948.
- **de Leeuw, O. & Peeters, B. (1999).** Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily *Paramyxovirinae. J Gen Virol* **80**, 131–136.
- de Leeuw, O. S., Koch, G., Hartog, L., Ravenshorst, N. & Peeters, B. P. (2005). Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. *J Gen Virol* 86, 1759–1769.
- Dortmans, J. C., Rottier, P. J., Koch, G. & Peeters, B. P. (2010). The viral replication complex is associated with the virulence of Newcastle disease virus. *J Virol* 84, 10113–10120.
- Dortmans, J. C., Koch, G., Rottier, P. J. & Peeters, B. P. (2011). Virulence of Newcastle disease virus: what is known so far? *Vet Res* 42, 122.
- Ford, P. W., Bryan, B. A., Dyson, O. F., Weidner, D. A., Chintalgattu, V. & Akula, S. M. (2006). Raf/MEK/ERK signalling triggers reactivation of Kaposi's sarcoma-associated herpesvirus latency. *J Gen Virol* 87, 1139–1144.
- Goodman, A. G., Tanner, B. C., Chang, S. T., Esteban, M. & Katze, M. G. (2011). Virus infection rapidly activates the P58(IPK) pathway, delaying peak kinase activation to enhance viral replication. *Virology* 417, 27–36.
- **Hiscott, J., Kwon, H. & Génin, P. (2001).** Hostile takeovers: viral appropriation of the NF- $\kappa$ B pathway. *J Clin Invest* **107**, 143–151.
- Johnson, G. L., Stuhlmiller, T. J., Angus, S. P., Zawistowski, J. S. & Graves, L. M. (2014). Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. *Clin Cancer Res* 20, 2516–2522.
- Kim, Y. S., Kim, J. S., Kwon, J. S., Jeong, M. H., Cho, J. G., Park, J. C., Kang, J. C. & Ahn, Y. (2010). BAY 11-7082, a nuclear factor- $\kappa$ B inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. *Int Heart J* 51, 348–353.
- Krishnamurthy, S., Takimoto, T., Scroggs, R. A. & Portner, A. (2006). Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. *J Virol* 80, 5145–5155.
- Liu, N., Long, Y., Liu, B., Yang, D., Li, C., Chen, T., Wang, X., Liu, C. & Zhu, H. (2014). ISG12a mediates cell response to Newcastle disease viral infection. *Virology* 462-463, 283–294.
- Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. & Wetzker, R. (1997). Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. *Science* 275, 394–397.
- Mathers, C., Schafer, X., Martinez-Sobrido, L. & Munger, J. (2014). The human cytomegalovirus UL26 protein antagonizes NF- $\kappa$ B activation. *J Virol* 88, 14289–14300.
- Mazur, I., Wurzer, W. J., Ehrhardt, C., Pleschka, S., Puthavathana, P., Silberzahn, T., Wolff, T., Planz, O. & Ludwig, S. (2007). Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF- $\kappa$ B-inhibiting activity. *Cell Microbiol* 9, 1683–1694.
- Meng, G., Xia, M., Wang, D., Chen, A., Wang, Y., Wang, H., Yu, D. & Wei, J. (2014). Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. *Oncotarget* 5, 6365–6374.
- **Mostafa, H. H., Thompson, T. W. & Davido, D. J. (2013).** N-terminal phosphorylation sites of herpes simplex virus 1 ICP0 differentially regulate its activities and enhance viral replication. *J Virol* **87**, 2109–2119.
- Ng, S. S., Li, A., Pavlakis, G. N., Ozato, K. & Kino, T. (2013). Viral infection increases glucocorticoid-induced interleukin-10 production through

- ERK-mediated phosphorylation of the glucocorticoid receptor in dendritic cells: potential clinical implications. *PLoS One* **8**, e63587.
- Ong, Q., Guo, S., Zhang, K. & Cui, B. (2015). U0126 protects cells against oxidative stress independent of its function as a MEK inhibitor. ACS Chem Neurosci 6, 130–137.
- Paulmann, D., Bortmann, S., Grimm, F., Berk, I., Kraemer, L., Vallbracht, A. & Dotzauer, A. (2014). NF- $\kappa$ B activation induced by hepatitis A virus and Newcastle disease virus occurs by different pathways depending on the structural pattern of viral nucleic acids. *Arch Virol* 159, 1723–1733.
- Pinto, R., Herold, S., Cakarova, L., Hoegner, K., Lohmeyer, J., Planz, O. & Pleschka, S. (2011). Inhibition of influenza virus-induced NF- $\kappa$ B and Raf/MEK/ERK activation can reduce both virus titers and cytokine expression simultaneously in vitro and in vivo. *Antiviral Res* **92**, 45–56.
- Puhlmann, J., Puehler, F., Mumberg, D., Boukamp, P. & Beier, R. (2010). Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. *Oncogene* 29, 2205–2216.
- Saribas, A. S., Mun, S., Johnson, J., El-Hajmoussa, M., White, M. K. & Safak, M. (2014). Human polyoma JC virus minor capsid proteins, VP2 and VP3, enhance large T antigen binding to the origin of viral DNA replication: evidence for their involvement in regulation of the viral DNA replication. *Virology* 449, 1–16.
- Sisto, M., Lisi, S., D'Amore, M. & Lofrumento, D. D. (2014). Rituximab-mediated Raf kinase inhibitor protein induction modulates NF- $\kappa$ B in Sjögren syndrome. *Immunology* 143, 42–51.
- Sobotta, K., Wilsky, S., Althof, N., Wiesener, N., Wutzler, P. & Henke, A. (2012). Inhibition of nuclear factor  $\kappa$  B activation reduces *Cossackievirus B3* replication in lymphoid cells. *Virus Res* 163, 495–502.
- Stracker, T. H., Cassell, G. D., Ward, P., Loo, Y. M., van Breukelen, B., Carrington-Lawrence, S. D., Hamatake, R. K., van der Vliet, P. C., Weller, S. K. & other authors (2004). The Rep protein of adenoassociated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication. *J Virol* 78, 441–453.
- Susta, L., Cornax, I., Diel, D. G., Garcia, S. C., Miller, P. J., Liu, X., Hu, S., Brown, C. C. & Afonso, C. L. (2013). Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens. *Microb Pathog* 61-62, 73–83.
- Swayne, D. E., Glisson, J. R., McDougald, L. R., Nolan, L. K., Suarez, D. L., & Nair, V. L. (editors), (2013). *Diseases of Poultry*. Ames, IA: Wiley.
- Tang, H., Park, S., Sun, S. C., Trumbly, R., Ren, G., Tsung, E. & Yeung, K. C. (2010). RKIP inhibits NF- $\kappa$ B in cancer cells by regulating upstream signaling components of the I $\kappa$ B kinase complex. *FEBS Lett* 584, 662–668.
- Trobaugh, D. W., Gardner, C. L., Sun, C., Haddow, A. D., Wang, E., Chapnik, E., Mildner, A., Weaver, S. C., Ryman, K. D. & Klimstra, W. B. (2014). RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. *Nature* 506, 245–248.
- Wang, X., Hussain, S., Wang, E. J., Wang, X., Li, M. O., García-Sastre, A. & Beg, A. A. (2007). Lack of essential role of NF- $\kappa$  B p50, RelA, and cRel subunits in virus-induced type 1 IFN expression. *J Immunol* 178, 6770–6776.
- Wang, J., Basagoudanavar, S. H., Wang, X., Hopewell, E., Albrecht, R., García-Sastre, A., Balachandran, S. & Beg, A. A. (2010). NF- $\kappa$  B RelA subunit is crucial for early IFN-beta expression and resistance to RNA virus replication. *J Immunol* 185, 1720–1729.
- Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K. D., Rose, D. W. & other authors (1999).

Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. *Nature* **401**, 173–177.

Yin, R., Ding, Z., Liu, X., Mu, L., Cong, Y. & Stoeger, T. (2010). Inhibition of Newcastle disease virus replication by RNA interference targeting the matrix protein gene in chicken embryo fibroblasts. *J Virol Methods* 167, 107–111.

Yin, R., Liu, X., Liu, C., Ding, Z., Zhang, X., Tian, F., Liu, W., Yu, J., Li, L. & other authors (2011). Systematic selection of housekeeping genes for gene expression normalization in chicken embryo fibroblasts

infected with Newcastle disease virus. Biochem Biophys Res Commun 413, 537–540.

Zhang, S., Sun, Y., Chen, H., Dai, Y., Zhan, Y., Yu, S., Qiu, X., Tan, L., Song, C. & Ding, C. (2014). Activation of the PKR/eIF2 $\alpha$  signaling cascade inhibits replication of Newcastle disease virus. *Virol J* 11, 62.

**Zhu, X., Zhou, F., Qin, D., Zeng, Y., Lv, Z., Yao, S. & Lu, C. (2011).** Human immunodeficiency virus type 1 induces lytic cycle replication of Kaposi's-sarcoma-associated herpesvirus: role of Ras/c-Raf/MEK1/2, PI3K/AKT, and NF-κB signaling pathways. *J Mol Biol* **410**, 1035–1051.