
 

TECHNISCHE UNIVERSITÄT MÜNCHEN 

Lehrstuhl für Biologische Bildgebung 

 

 

 

Multi-Spectral Optoacoustic Tomography: 

Methods and Applications 

 

 

Andreas B. Bühler 
 

 

 

 

 

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik 

der Technischen Universität München zur Erlangung des akademischen Grades eines 

Doktors der Naturwissenschaften (Dr. rer. nat.) 

genehmigten Dissertation. 

 

 

 

Vorsitzender:                            Univ.-Prof. Dr. Samarjit Chakraborty 

Prüfer der Dissertation: 
1.   Univ.- Prof. Vasilis Ntziachristos, Ph. D. 
2.   Univ.- Prof.  Dr. Axel Haase  

  
 

Die Dissertation wurde am 26.07.2013 bei der Technischen Universität München 

eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am  

09.06.2014 angenommen. 

 



ii 

 

  



i 

 

Abstract 

Macroscopic optical small animal imaging plays an increasingly important role in 
biomedical research, as it can noninvasively examine structural, physiological, and 
molecular tissue features in vivo. A novel modality that emerged in the last 
decade is optoacoustic (photoacoustic) imaging, which combines versatile optical 
absorption contrast with high ultrasonic resolution and real-time imaging 
capabilities by capitalizing on the optoacoustic (photoacoustic) effect. Using 
illumination with multiple wavelengths and spectral unmixing methods, 
multispectral optoacoustic tomography (MSOT) has the potential to specifically 
resolve tissue chromophores or administered extrinsic molecular agents non-
invasively in deep tissue with unprecedented resolution performance and in real-
time.  
 
The presented work explores MSOT in the context of small animal imaging. 
Different instrumentation and detection geometry related effects are analyzed 
regarding their influence on the imaging performance. Based on the findings, two 
dedicated MSOT imaging platforms for 2D and 3D real-time imaging of small 
animals and tissue samples are conceived, implemented and imaging performance 
is characterized by simulation, on phantoms and ex vivo in mice.  
 
Beside instrumentation, the utilized signal processing, image reconstruction and 
spectral unmixing strategy is of great importance for achieving best imaging 
results. The research presented shows how reconstruction artifacts can be 
reduced by compensating for the electrical impulse response of the system and 
that the calculation of intermediate projections can alleviate artifacts due to 
sparse angular sampling. Moreover, two regularization approaches for 2D limited 
view reconstructions are presented and a 3D model-based inversion scheme for 
improving 3D reconstructions in the developed systems by modeling the shape of 
the detection elements. Finally, the challenges of multispectral unmixing in deep 
tissue are discussed; two unmixing schemes for detection of molecular agents are 
presented and a method to partially compensate for the effect of light 
attenuation is proposed.   
 
Using the unique imaging performance of the developed methods, it is further 
established that MSOT can actually resolve anatomical, dynamic and molecular 
information in mice and that it can be used for assessing biodistribution and 
pharmacokinetic parameters of molecular probes and contrast agents in tissue. A 
complete whole-body mouse scan is shown, resolving anatomical hemoglobin- 
based contrast. Functional imaging is presented by tracking contrast enhancement 
in the kidneys due to perfusion of systemically administered Indocyanine green 
(ICG). Also the clearance rate of ICG and liposomal ICG from the blood pool is 
determined by means of MSOT. Molecular imaging performance is shown by 
detecting optical reporter agents (here a phosphatidylserine targeting fluorescent 
dye) within mouse xenograft tumors.    
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1 Introduction 

1.1 Motivation 

Small animals, especially mice, are widely used in biomedical research and drug 
discovery as mammalian models to study biological interactions, systemic responses 
and human diseases. Imaging provides a means to probe structural, physiological 
and molecular information noninvasively and in vivo. By enabling extended 
longitudinal studies of the same animal, imaging minimizes the amount of animals 
needed in a particular study. This reduces costs and finally accelerates biomedical 
research [1]. As a consequence, a lot of research is ongoing to develop new small 
animal imaging methodologies that can provide versatile contrast at high resolution 
[1-3].  
 
In 2007, a novel and promising concept called multispectral optoacoustic tomo-
graphy (MSOT) has emerged [4, 5]. Capitalizing on the optoacoustic phenomenon, 
i.e. the generation of acoustic waves due to thermoelastic expansion caused by 
absorption of nanosecond short optical pulses, it combines optical absorption 
contrast with the high resolution of ultrasound and the potential for real-time 
operation. First experiences with MSOT showed that this method is able to resolve 
fluorescent dyes injected in an excised mouse leg [6] and fluorescent proteins in 
zebra-fish [7]. The ability to resolve chromophoric probes or reporter agents that are 
frequently used in biomedical research through several millimeters to centimeters of 
tissue with high resolution, makes MSOT an interesting tool for biomedical imaging 
applications [4].  
 
Yet, in order to fully exploit the potential benefits that the MSOT technology offers, 
especially for preclinical small animal imaging, dedicated small animal imaging 
systems and improved image reconstruction algorithms are necessary. Existing 
implementations presented in the literature until 2009 when this work was started, 
were generally inappropriate for this task and thus in vivo multispectral opto-
acoustic mouse imaging not shown yet. First, because these systems frequently used 
detection arrangements and detector characteristics which yield long acquisition 
times (minutes to hours). Control of animal physiological parameters, motion and 
anesthesia during such extended measurement periods can present a significant 
challenge for obtaining high quality images. Furthermore, interesting in vivo imaging 
studies such as dynamic monitoring the biodistribution of targeted contrast agents 
or functional responses to physiological stimuli require acquisition times in the order 
of seconds to milliseconds and are therefore not possible in such systems [8]. 
Second, because in these systems the mouse was generally completely immersed 
into water, which is used as a coupling medium to propagate the ultrasound waves 
from the sample to the detector. Whereas this is not problematic for ex vivo or 
partial body imaging, this poses severe difficulties considering in vivo whole body 
imaging.  
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The goal of this work is therefore to develop a dedicated small animal optoacoustic 
imaging system and image reconstruction algorithms for convenient and fast in vivo 
imaging of mice and to use the system to examine the potential the MSOT 
technology offers with respect to small animal imaging, with a specific focus on 
visualizing anatomical, functional and molecular information in small animals in vivo.  

1.2 Preclinical imaging today 

Various small animal imaging methodologies are currently available. With respect to 
the information an imaging modality can assess, one distinguishes between anato-
mical, functional and molecular imaging. Anatomical imaging relates to the 
extraction of structural information. It is used to study morphological changes. 
Typically, these images are high resolution images based on endogenous contrast. 
Functional imaging relates to imaging of organ function and movement after 
physiological or pharmacological stimulations. It requires fast image acquisition in 
order to be able to sense temporal changes. Molecular imaging refers to the 
visualization of biological processes at a cellular and molecular level. It generally 
includes the use of molecular probes to target specific classes of cells, receptors and 
other cellular and subcellular constituents [9]. Preferentially, modern small animal 
imaging systems provide all these three types of information.  
 
To develop small animal imaging technologies, two approaches have been followed. 
On the one hand, established radiological modalities, like X-ray computed 
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography 
(PET), single photon emission computed tomography (SPECT) or ultrasonography, 
have been downscaled and adapted to small animal dimensions. On the other hand, 
new imaging modalities have been developed, mostly in the field of macroscopic 
optical imaging. Due to a smaller field of view and modified operation characteristics 
(e.g. higher field strength in MRI, or higher frequencies in ultrasound), these 
downsized radiological systems attain higher resolution and higher detection 
sensitivity than their clinical counterparts [2, 10-12]. For anatomical imaging the 
methods of choice are CT and MRI. Both modalities provide submillimeter resolution 
and excellent deep tissue imaging capabilities. The advantage of CT is imaging speed 
and excellent bone tissue contrast. Soft tissue contrast however is relatively poor. It 
can be improved by using X-ray attenuating contrast agents (e.g. iodinated agents), 
as is done for angiographic imaging. CT is generally not used for molecular imaging. 
A further drawback is the use of ionization radiation. MRI on the contrary is 
insensitive to bones but provides excellent soft tissue contrast. In addition, it allows 
assessment of the blood oxygenation status via the blood oxygenation level 
dependent (BOLD) effect [13], thus can be used for functional imaging. For 
molecular imaging applications, probes labeled with paramagnetic particles (e.g. 
gadolinium) are available. Thus MRI is a methodology which allows anatomical, 
functional and molecular imaging. Drawbacks of MRI are costs and sensitivity, the 
latter being several orders of magnitudes less than for nuclear imaging techniques. 
PET and SPECT are typical molecular imaging modalities. In order to probe molecular 
targets, radionuclides emitting gamma rays are frequently used. By these means, 
PET and SPECT achieve high sensitivity. Drawbacks are low resolution and the use of 
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ionizing radiation. Ultrasonography is the most widespread clinical imaging modality, 
because of its low cost, safe use and real-time image formation but it does not allow 
molecular imaging [11].  
 
Optical imaging is a powerful modality with several advantages over the existing 
radiological techniques. First, optical photons are non-ionizing, therefore non-
hazardous and safe to use for in vivo imaging. Second, optical imaging provides 
versatile contrast. Optical absorption and scattering for instance allows 
differentiation between tissues types and constituents indistinguishable with other 
modalities. Moreover, optical absorption allows assessing the oxygenation status of 
blood, thus can be used, analogous to MRI, to extract functional information [14]. 
Third, many optical reporter agents that probe tissue constituents and their function 
by labeling certain classes of cells, receptors and other entities of cellular activity 
have already been developed for in vitro applications [4]. Utilizing these concepts 
that are well established in vitro for macroscopic in vivo imaging, offers new 
possibilities to extract biological relevant information from living subjects [11].  
 
Among the optical imaging technologies, microscopy is the most common one. It 
provides sub-micrometer resolution and is well established in biochemical research 
as a tool to visualize cellular and subcellular structures and processes in vitro and in 
vivo [9]. The resolution however, relies on the ability to focus light into tissue which 
degrades with depth due to photon scattering in tissue. Microscopic technologies 
are therefore limited to the ballistic regime, which is in the order of 100 µm [15]. To 
image deeper in tissue, confocal microscopy [16] and multiphoton microscopy [17] 
have been developed. These technologies can account for light scattering in tissue 
and allow imaging in depths between 100 - 200 µm and 300 - 500 µm, respectively. 
For whole body small animal imaging, these technologies are generally not suited 
due to the limited imaging depth and the limited field of view. In response, 
macroscopic optical imaging technologies have been developed. Beside photon 
scattering in tissue, which reduces the resolution both in microscopic and 
macroscopic imaging modalities, light attenuation becomes an additional limiting 
factor for macroscopic optical imaging [15]. Therefore macroscopic optical imaging 
modalities generally work in the near-infrared region (NIR) between 650 and 950 
nm, where biological tissue possesses a "spectral window" with reduced light 
attenuation. Imaging depths beyond 5-6 cm in biological tissues are not realistic, but 
they are also not needed for small animal imaging, because the diameter of mice is 
in the order of 2 cm. Early implementations of macroscopic optical imaging systems 
are 2D photographic methods based on epi- or transillumination techniques [2, 18]. 
Target localization and quantification in such planar implementations is however 
complicated due to the loss of depth information, light attenuation and scattering, 
which also reduces the resolution [4]. In response to this, with progress in the 
mathematical description of photon transport in tissue, diffuse optical tomography 
(DOT) methods have been developed. These methods use information from 
different illumination and detection paths and combine them mathematically to 
reconstruct the 3D distribution of the optical contrast inside the imaged object. In 
this way, diffuse DOT yields significantly improved resolution and quantification over 
its 2D photographic counterparts [4]. For detection of fluorescent probes, 
fluorescent molecular tomography (FMT) has been developed [19]. Similar to DOT, 
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FMT uses tomographic illumination and detection patterns combined with 
mathematical models of photon transport to yield quantitative 3D images of 
fluorescence distribution. More recently, new hybrid approaches have been 
developed, such as the combination of FMT with computed X-ray tomography (XCT) 
[20]. In this approach, the anatomical information obtained from the XCT scanner is 
used to assign appropriate optical properties to a priori segmented organs such as 
lung, heart, and bones, leading to improved imaging performance compared to 
stand-alone approaches [21], however with the drawback of using ionizing X-ray 
radiation.  
 
A different and very promising approach is optoacoustic tomography, also termed 
photoacoustic or thermoacoustic tomography [2, 22-24]. This method provides high 
resolution maps of optical absorption by measuring ultrasound waves resulting from 
thermal expansion following the deposition of short light pulses in the imaged 
tissue. Since the method relies on acoustic waves for detection, which are scattered 
2 to 3 orders of magnitude less in tissue than optical photons, optoacoustic 
tomography achieves high resolution while preserving optical absorption contrast 
[23, 25, 26]. In the last decade, optoacoustic imaging has mainly been used to 
visualize hemoglobin-based contrast, owing to the fact that hemoglobin besides 
melanin is one of the strongest absorbers in biological tissue and therefore gives the 
strongest optoacoustic signal. Examples are imaging of superficial vasculature [27], 
tumor angiogenesis [28, 29], breast tumor detection [30] or functional brain imaging 
by monitoring the blood-oxygenation status [23]. Extrinsic contrast agent based 
approaches using dyes [6], carbon [31] and gold nanoparticles [32] or quantum dots 
[33] have also been developed. However, detection of extrinsic probes in presence 
of the strong endogenous background absorbers by using single wavelength 
illumination is challenging. A typical approach to distinguish the probe from the 
background absorbers is the subtraction of background measurements made before 
probe administration. This requires the exact same animal positioning which is 
difficult to realize, especially in longitudinal studies. To overcome this problem, the 
concept of multispectral optoacoustic tomography (MSOT) has been proposed by 
Razansky et al. [6]. To increase the detection sensitivity, MSOT uses multi-
wavelength illumination to take into account the spectral profile of the absorber of 
interest. In initial experiments, MSOT was shown to resolve a fluorescent dye 
injected in an excised mouse leg [6] and fluorescent proteins in zebra-fish [7]. By 
being able to resolve such biologically relevant reporter agents in tissue, MSOT has 
the potential to become an important tool for biomedical research.  

1.3 MSOT – Principle of operation 

The MSOT principle of operation is illustrated in Fig. 1.1. The underlying physical 
principle is the photoacoustic effect, which refers to the generation of acoustic 
waves resulting from the absorption of electromagnetic energy [34]. In the imaging 
process, the object to be imaged is illuminated by short laser pulses in the range of  
1 - 100 ns. Some of the electromagnetic energy is absorbed within the object and 
partially converted into heat. A temperature rise leads to thermo-elastic expansion, 
which, in turn, is followed by a pressure rise.  As a results of the initial pressure rise, 
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a broadband ultrasound wave propagates through the tissue and can be detected 
outside the object. Typically, this is done with ultrasound transducers. The 
amplitude of this pressure wave reflects the local energy absorption. It is possible to 
calculate the distance between the optoacoustic source (i.e. the optical absorber) 
and the detector, from the time of arrival of the pressure wave, i.e. the time elapsed 
between the laser pulse and the detection of the optoacoustic signal (assuming the 
speed of sound in the object is known). By tomographic detection and inversion, the 
spatial distribution of the absorbers in the object can be calculated [26, 35]. In order 
to take the spectral signature of the absorbers into account, MSOT utilizes pulses at 
different wavelengths. This is done in a time-shared fashion. The wavelengths are 
selected according to the absorption profile of the absorbers of interest. Best 
performance can be achieved when the spectral profile of the absorbers differs 
significantly from the background absorbers. To separate the multi-wavelength 
images and resolve the absorber with the spectral profile of interest, multi-spectral 
unmixing algorithms are employed [4]. 
 
 
 

 

Fig. 1.1: Principle of MSOT operation. (a) Pulsed laser light illuminates the tissue of interest: 
Electromagnetic energy is absorbed and partially converted into heat. This creates a pressure wave 
via a thermo-elastic expansion. The pressure wave is detected with ultrasound sensors. Using 
tomographic inversion methods, an image of the initial pressure distribution can be calculated. (b) 
Multi-wavelength illumination can be used to take the spectral characteristics of the tissue 
absorbers into account, thus yielding an increased detection sensitivity compared to single 
wavelength methods. 

 

1.4 Questions addressed in this work 

This work focuses on methods for multispectral optoacoustic imaging, including 
system development, the algorithms necessary for image reconstruction and the 
application of both to small animal imaging. 
 
Specific questions addressed in this work are:  
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1. Regarding instrumentation: 
- Which are the technology and instrumentation related requirements for 

successful MSOT imaging? How does the chosen instrumentation and 
detection geometry affect the imaging outcome? 

- What is an appropriate system design to enable practical in vivo whole body 
MSOT imaging of mice?  

 
2. Regarding signal processing, image reconstruction and multispectral unmixing: 

- What are the optimal signal processing and image reconstruction approaches 
for imaging in the developed system? How to alleviate artifacts due to sparse 
angular sampling? Does the reconstruction accuracy improve when we model 
experimental factors such as the electrical impulse response of the system or 
the shape of the transducer elements? How do these methods perform in 
limited view situations?  

- How to detect specific absorbers in a set of multi-wavelength images? What 
are the challenges in deep tissue with respect to probe detection and 
quantification? Is there a benefit of using blind unmixing techniques? Is there a 
practical approach to achieve correction of light fluence attenuation?  

 
3. With respect to applications: 

- Is it possible to image a whole mouse in vivo? Which structures and organs of 
clinical relevance are visible?   

- Is it possible to monitor dynamic events such as motion or perfusion? Can this 
be done in 2D and 3D? What is the benefit of this capability?  

- Can we specifically detect contrast agents or molecular probes in deep tissue? 
Is it possible to visualize their biodistribution and extract pharmacokinetic 
properties from this? Is there any benefit over other macroscopic optical small 
animal modalities? 

 

 

1.5 Outline of this work 

The presented work is organized as follows:  
 
Chapter 2 provides the theoretical and technical background for optoacoustic 
imaging. It reviews the physics behind and approaches for optoacoustic image 
formation. It also briefly discusses general aspects of instrumentation and effects 
related to hardware deviating from ideal imaging conditions, including bandwidth 
limited detection, finite size detectors, limited view detection and sparse angular 
sampling. The goal of the chapter is to establish the framework necessary to 
appreciate the subsequent chapters, which describe original research on the topic of 
optoacoustic imaging. 
 
Chapter 3 describes the development and characterization of a 2D real-time small 
animal MSOT imaging system. The motivation for assembling such a system is given 
along with a short overview about existing state-of-art small animal imaging 
systems. Design aspects and its technical implementation are discussed, followed by 
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an in-depth characterization of the component performance. It is shown that such 
considerations are important, because some of these parameters (e.g. the electrical 
impulse response), improve accuracy, if they are taken into account during the 
imaging reconstruction process.  
 
Chapter 4 delineates signal processing and image reconstruction for 2D imaging. In 
this case, 2D is defined by the reconstruction of cross-sectional images that are 
reconstructed from tomographic data acquired at a single scanning position using a 
cylindrically focused 1D detector array. Chapter 4 outlines the steps needed for 
generating images of the best quality. Specifically, the following points are 
discussed: (1) correction for the electrical impulse response of the ultrasound 
detectors; (2) reduction of aliasing artifacts and (3) regularization of model-based 
image reconstructions in limited view scenarios.  
 
Chapter 5 deals with the 3D image reconstruction capacity of the system. Since the 
system uses focused detectors to enable cross-sectional real-time imaging, 
conventional 3D image reconstruction approaches assuming unfocused point-
detectors are inappropriate for this task. Simple stacking of cross-sectional slices 
also does not yield satisfying results due to a frequency dependent elevational 
resolution. Therefore an advanced 3D model-based reconstruction algorithm was 
developed accounting for the shape of the detection elements. It was found that the 
algorithm can improve both the 2D and 3D image reconstruction accuracy of the 
system.   
 
Chapter 6 deals with multispectral imaging. Starting with the formulation of the 
multispectral unmixing problem and the particular challenges in deep tissue, namely 
spectral coloring due to wavelength dependent light attenuation, two multispectral 
unmixing algorithms for detection of molecular agents and a method for partial 
compensation of light attenuation effects are presented and tested in simulation 
and on experimental data.  
 
Chapter 7 presents in vivo imaging results that are achieved with the developed 
system. Specifically, whole body anatomical imaging based on intrinsic hemoglobin-
based contrast is shown, as well as 2D functional imaging by tracking perfusion after 
injection of extrinsic contrast agents and 2D molecular imaging by detecting 
systemically administered tumor targeting agents.  
 
Optoacoustic imaging is a 3D problem and has the intrinsic potential for 3D real-time 
imaging. Chapter 8 presents a 3D real-time optoacoustic imaging prototype 
conceived as an attempt improve on the limitations of the 2D real-time system, 
namely the need to scan to acquire a 3D dataset and the strong frequency 
dependent elevational resolution. It will be used to showcase for the first time high 
resolution optoacoustic real-time imaging of small volumes (e.g. excised organs) and 
3D perfusion of fluorescent contrast agents in deep tissue structures.  
 
Finally, at the end of this thesis a conclusion about the work accomplished and an 
outlook about future developments is given. 
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2 Theoretical and technical background 

2.1 Introduction 

The goal of this chapter is to establish the theoretical and technical background for 
successful optoacoustic imaging1. The chapter is divided into three parts:  
 
Section 2.2 presents the physics for optoacoustic imaging. Starting with light and 
sound behavior in tissue, it also discusses optoacoustic signal generation and related 
effects such as the directivity of signals. 
 
Section 2.3 presents technological requirements and general instrumentation for 
optoacoustic imaging as well as detection system related parameters such as the 
electrical and spatial impulse response. An understanding of these parameters is 
important since they influence reconstruction accuracy and thus should be 
considered in the acoustic inversion process, as will be shown in chapters  4 and 5. 
 
Section 2.4 reviews concepts of optoacoustic image formation, including focused 
detector techniques and computed reconstructions available. It also discusses 
spatial resolution and effects related to hardware deviating from ideal imaging 
conditions, including bandwidth limited detection, finite size detection elements, 
limited view detection and sparse angular sampling. Understanding of these factors 
is important for designing an optoacoustic imaging system. It also lays the ground-
work for chapter 4.3, which presents approaches to alleviate these effects.   

2.2 The physics of optoacoustic imaging  

2.2.1 Light in tissue  

All matter is composed of charged particles, like protons, electrons and ions. Electro-
magnetic waves, such as light, interact with these charged particles [35]. When light 
propagates through biological tissue it might therefore be scattered and/or 
absorbed. Scattering refers to the redirection of light and is the strongest in 
structures whose size match the optical wavelength. In the visible and near infrared 
range (400 - 1000 nm), these structures are supporting tissue like elastin or collagen, 
blood cells and cell organelles, such as nucleus, mitochondria or endoplasmic 
reticulum [9]. Absorption means uptake of electromagnetic energy by the electronic 
and vibrational structures of the tissue constituents and is intrinsically sensitive to 
chemical composition [35]. Absorbed light can be converted into heat, consumed in 
a chemical reaction or re-emitted, for example as fluorescence. Important intrinsic 
absorbers in biological tissue are oxygenated (HbO2) and deoxygenated (Hb) hemo-

                                                           
1
 The chapter is based on several books [35, 25, 49], review papers [9, 14, 46, 26, 58] and theses [37, 
41] with both overlapping and complementary content and is complemented by own 
considerations and simulations.   
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globin, tissue pigments like melanin, water and lipids [14]. Fig. 2.1 shows their 
absorption spectra. Absorption in tissue is strongly sensitive to the wavelength. 
There is an optical window between 650 - 900 nm in which the optical absorption of 
tissue drops two orders of magnitude, which allows penetration of light relatively 
deeply (up to several centimeters into biological tissue). Below 650 nm, light 
penetration is hindered by hemoglobin absorption, above 900 nm by water 
absorption. To describe the scattering, one uses the bulk scattering coefficient    
which gives the probability of a scattering event per unit path length. In biological 
tissue,    has an approximate value of 100 cm-1 [35]. To describe the optical 
absorption an analogue expression termed the optical absorption coefficient is used 
with a representative value in biological tissue between 0.15 - 0.5 cm-1 at 750 nm 
[9]. Optical absorption in tissue is weak compared to the scattering. The mean free 
path between two scattering events is only about 0.1 mm, whereas the optical 
absorption length can extend to 10 - 100 mm. As a consequence, light is scattered 
multiple times before being absorbed and progressively loses its directivity shortly 
after entering the tissue. With respect to light propagation in tissue, one therefore 
distinguishes between two regimes: the ballistic regime (under 1 mm), in which light 
is not (or hardly) scattered and therefore still preserves its original directivity, and 
the diffusive regime where light propagates omnidirectionally due to multiple 
scattering events. In the ballistic regime, light transport can still be described by the 
laws of geometrical optics and in the diffuse regime one generally uses the diffusion 
equation [14]: 
 

 

 

  (   )

  
  ⃗⃗  ( ) ⃗⃗  (   )    ( ) (   )   (   )  

(2.1) 
 

 
where  (   ) is the source term,  (   ) the fluence rate in J(m³s)-1, c in ms-1           
the speed of light and  ( )     (  

 
   )  is the diffusion coefficient.                     

  
 
 (   )   is the reduced scattering coefficient established to describe the 

light scattering as an isotropic phenomenon, although each individual scattering 
event is anisotropic. In other words, it is a measure to describe directive scattering in 
 
 

 
Fig. 2.1: Absorption spectra of common tissue absorbers. A hemoglobin concentration of              
150 mg(ml)

-1
 is assumed. Data compiled by Scott Prahl, Oregon Medical Laser Center 

(http://www.omlc.ogi.edu/spectra). 
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an isotropic scattering environment.   is the anisotropy factor which takes into 
account this loss of directivity and has a value between 0.8 and 0.99 in biological 
tissue [9]. 
 
In optoacoustics, light fluence inside tissue is often estimated under continuous 
wave illumination. This is possible because photon propagation through the region 
of interest is significantly shorter than the duration of the laser pulse used for 
excitation [36]. In this case, the diffusion equation (2.1) simplifies to  
 

   ( )  
  

 ( )
 ( )  

 ( )

 ( )
   

(2.2) 
 

 
For uniform broad beam illumination, the light fluence within the object can be 
approximated by the 1D solution of the diffusion equation. It follows the Beer’s law 
and is given by [14]: 
 

 ( )        ( √
  

 
 ) 

(2.3) 
 

  
where   represents the distance from the surface. To get a realistic idea about the 
effect of the light attenuation in tissue, one has to consider tissue-realistic values 
(  

 
    cm-1 and        cm-1). Using these values in Eq. (2.3), we see that 1 cm 

below the surface, the light fluence has already dropped to about 5% of its initial 
value. As will be shown in section 2.2.3.1, the optoacoustic signal strength is 
proportional to the light fluence. Signals from deep inside the mouse are therefore 
weaker than signals from the directly illuminated surface. In this respect, light 
attenuation is a major challenge in optoacoustic tomography which, from an 
instrumentation point of view, has as consequence that the detection system has to 
be very sensitive with a large dynamic range to detect both the weak signals from 
deep inside the mouse and the strong signals from superficial structures [37]. 
Moreover, special attention should be paid to optimizing the light delivery, for 
instance by illumination from several directions, in order to maximize the light 
deposition in deep tissue structures. 
 

2.2.2 Sound in tissue 

Acoustic waves at frequencies higher than 20 kHz are referred to as ultrasound. 
Ultrasound travels through tissue in form of a longitudinal compression wave. The 
propagation speed    [ms-1] of acoustic waves in tissue depends on the density   
[gcm-3] and compressibility    [Pa-1] of the material:  
 

   √
 

  
 

(2.4) 

 
i.e. the denser or more rigid the material, the higher the propagation speed. In soft 
tissue or water, the velocity is about 1500 ms-1. Variations are typically in the order 
of 5%. The sound speed for bones is approximately 3500 ms-1 and in air around    
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330 ms-1 [9]. The product of sound speed and material density is called acoustic 
impedance: 
 

       (2.5) 
 

The unit of the acoustic impedance is the Rayl, corresponding to kgm-2s-1. The 
pressure generated by these acoustic waves depends on the displacement velocity 
of the particles     
 

       (2.6) 
 

If a sound wave hits an interface between areas with different acoustic impedances 
at normal incidence, a fraction of the intensity of the incident wave will be reflected 
back into the first medium according to  
 

  (
     

     
)
 

       
     

(     ) 
 

(2.7) 
 

 
where   is the reflection and   the transmission coefficient describing the 
percentage of the reflected and transmitted energy, respectively [38]. Reflection of 
ultrasonic waves by tissue structures is the basis of ultrasound imaging, where these 
reflected waves are detected and used to form an image. Since the difference in 
acoustic impedance in soft tissue is rather small (between 1.38 and 1.63 MRayl), 
ultrasound imaging only provides limited soft tissue contrast but a good penetration 
depth [9]. On the other hand, the acoustic mismatch between tissue and air             
(Z = 416 Rayl) is quite high. Therefore, whenever acoustic waves are to be detected 
outside the tissue (e.g. in optoacoustic imaging), a matched coupling medium (e.g. 
water) has to be used to enable propagation of the acoustic waves to the detector; 
otherwise they would remain confined in the tissue. If the ultrasound wave arrives 
upon a boundary at an angle   , it is refracted. The change of the angular direction 
of the transmitted wave depends on the speed of sound of the two materials 
according to Snell’s law: 
 

  
     

     
 

   

   
 

(2.8) 
 

 
where   represents the index of refraction. In soft tissue     , thus ultrasound is 
little refracted and generally preserves its direction of propagation. When an 
ultrasound wave encounters a surface roughness or particles much smaller or 
approximately equal to the acoustic wavelength, it is scattered. However, the 
scattering coefficient for ultrasound in tissue is 2-3 orders of magnitudes less than 
for light and can be ignored in optoacoustic imaging [35]. Due to the reduced 
scattering and little refraction of the acoustic waves in soft tissue, ultrasound 
imaging can achieve much higher resolution in deep tissue than optical imaging 
methods.  
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When propagating through tissue, acoustic waves are also attenuated. This is mainly 
due to friction losses when tissue particles are displaced and can be described 
phenomenologically by [39] 
 

 ( )     
  ( ) , (2.9) 

 
where    is the initial amplitude,   the propagated distance [cm] and  ( )      
the attenuation coefficient [dBcm-1] in which      .   is a tissue-dependent 
constant with a typical value of     dBMHz-1cm-1 and   the frequency of the wave 
[MHz] [9]. Hence, biological tissue acts as a low pass filter, attenuating high 
frequencies more than low frequencies. Since resolution depends on the availability 
of high frequencies (cf. section 2.4.3), imaging depth scales with resolution loss. 
Nevertheless in all that follows, acoustic attenuation is neglected because we are 
dealing with macroscopic imaging in the frequency range up to 7 MHz and depths up 
to 2.5 cm. For these frequencies, signal attenuation and distortion due to acoustic 
attenuation is small compared to the signal distortion and filtering due to the 
transducer properties (cf. section 2.3.3) and light attenuation [39].  

2.2.3 Combining light with sound – the optoacoustic effect 

Optoacoustic imaging is based on a phenomenon called the photoacoustic (or 
optoacoustic) effect. It was discovered more than a century ago by Alexander Bell 
[34] and describes the conversion of electromagnetic radiation into acoustic waves 
via a thermoelastic expansion.  

2.2.3.1 Optoacoustic signal generation and wave propagation 
The process of the optoacoustic signal generation can be understood as follows: 
when an object is irradiated with a short laser pulse, and the light is then absorbed 
by the object, some of the absorbed energy is converted into heat. This induces a 
temperature rise (in the order of millikelvins) and pressure builds up. The tissue then 
relaxes by heat diffusion and emission of the optoacoustic waves. 

 Two important timescales exist for optoacoustic signal generation: 

- The thermal relaxation time      defined as the time it takes for the heat to 
dissipate into neighboring volume elements  

 

    
  

 

  
  

(2.10) 
 

 
where    is the size of this elementary volume (resolution-limited voxel) and 
                       (in soft tissue) the thermal diffusivity. If the exciting 
laser pulse is shorter than the thermal relaxation time, the heating, and also 
the generation of the optoacoustic signal, is localized. This is known as the 
condition of thermal confinement [14].  
 

- The stress relaxation time defined as the time the pressure takes to 
propagate through a resolution-limited voxel     
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(2.11) 
 

 
where    is the speed of sound. If the laser pulse is shorter than the stress 
relaxation time then pressure relaxation during the initial pressure rise is 
avoided and the optoacoustic signal generation is optimized. This condition is 
known as stress confinement [14].  

 
Generation and propagation of the optoacoustic signals is described by the 
optoacoustic equation. Under thermal and stress confinement it is [14]: 
 

   (   )

   
   

    (   )   
  (   )

  
  

(2.12) 

 
where  (   ) denotes the photoacoustic pressure [Pa] at location   and time  . 
 (   ) in J(m³s)-1 is the heating function defined as the energy per unit volume and 
unit time deposited by the electromagnetic radiation and converted into heat. 

        ⁄  is the dimensionless and temperature dependent Grüneisen para-

meter which describes the conversion properties of the medium, in which    is the 

isobaric heat capacity in J(kgK)-1 and   the isobaric volume expansion coefficient    
[K-1]. The heating function is proportional to the fluence rate  (   ) of the excitation 
radiation, as well as the optical absorption   ( ) of the medium. Thus, 
 

 (   )    ( ) (   )  (2.13) 
 
Since propagation of light can be considered instantaneous, the heating function is 
generally separable, i.e. it can be decomposed as   (   )    ( )  ( ). In most 
biological tissues, except from bones, lungs and other air-containing body cavities,   
as well as    vary only slightly  and  can therefore be considered as being spatially 
independent [40]. The left hand side of Eq. (2.12) describes the wave propagation, 
whereas the right hand side gives the source of the optoacoustic signal generation. 
The first time derivative in the source term shows that the heating has to be time 
variant, otherwise it is not possible to generate a photoacoustic signal. 
 
For impulse heating, i.e.    ( )   ( ), the temperature rise within the sample is 
given by  
 

 ( )  
  ( )

   
   

(2.14) 
 

 
The corresponding initial pressure at a point   can be expressed as: 
 

  ( )     ( )     ( ) ( ) (2.15) 
 

where    in J(kgK)-1 is the specific heat capacity at constant volume [14]. 
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2.2.3.2 The forward solution 
The optoacoustic equation (2.12) can be solved with the Green function approach 
[14]. Under stress confinement and for delta heating   ( )   ( ) the expression 
for the acoustic field writes [35]  

 

  (   )  
 

    
 

 

  
[

 

   
∫   ( 

 ) (  
|    |

  
)   

 

]  

 

(2.16) 

where the integration is done over the whole illuminated object   and    is a point 
within this object. From the expression we see that a detector at the location   and 
at the time   will sense the integrated pressure, originating from optoacoustic point 
sources on a spherical shell with the radius     and centered at   as shown in Fig. 2.2 
(a). For a homogenous spherical absorber with radius   positioned at   , it is 
possible to derive an analytical solution to Eq. (2.16). It writes [14] 

 

  (   )     (  |     |)
(     ) 

  
 

(2.17) 

 
where   is the Heavyside function,   |    | the distance of the source from the 
detection point and    the amplitude of the initial pressure. Fig. 2.2 (b) displays the 
time resolved photoacoustic signal from three spheres with the radius  a = 500 µm,  
1 and 1.5 mm, positioned at 36, 38 and 40 mm, respectively, in front of the 
detection device. We see the optoacoustic signal has a characteristic bipolar shape. 
The duration of the optoacoustic pulse represents the time the sound needs to 
propagate along the sphere diameter, thus scales with the size of the sphere. The 
positive peak indicates a pressure rise due to compression followed by a pressure 
drop due to rarefaction. The pressure amplitude is proportional to the size of the 
sphere and inversely proportional to the propagated distance. Fig. 2.2 (c) displays 
the frequency spectrum of the signals obtained by a fast Fourier transformation of 
the optoacoustic signals. The spectra are very broad, ranging from low ultrasonic 
frequencies which correspond to the dimensions of the acoustic source, to high 
frequencies from the object boundaries. The maximal amplitude of the spectra 
defines the central frequency    of the source, which is approximately                
for a sound speed within the object of    [41]. The full width at half maximum of the 
lobe defines the bandwidth    of the signal for which the ratio      ⁄       . We 
see that frequency and bandwidth scale with the size of the optoacoustic source. 
The smaller the object, the higher is the central frequency and the broader the 
frequency spectrum. Anatomical structures within tissue span from centimeter-sized 
objects (e.g. organs), to several micrometers (e.g. microvasculature), thus emit 
optoacoustic waves ranging from frequencies of several kilohertz to tens of 
megahertz. With respect to instrumentation this means that broadband detection 
devices are required to accurately detect these signals.  
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Fig. 2.2: (a) The optoacoustic signal, detected at a certain time t, by a point detector at r, comes 
from optoacoustic sources located on a spherical shell centered at the detector position with the 
radius vst. (b) Optoacoustic signal from spherical sources with a diameter of 1, 2 and 3 mm displays 
the characteristic bipolar shape. (c) Corresponding frequency spectra.  

 
 
In experimental conditions the optoacoustic signals are broadened due to the finite 
temporal width of the laser pulse. The broadening is described by a temporal 
convolution between the solution for impulse heating   (   ) and shape of the laser 
pulse    ( )  
 

 (   )    (   )     ( )  ∫   (     )  ( )  

 

  

 
 
(2.18) 

 
where   denotes the temporal convolution operator [42]. 

2.2.3.3 Signal strength in an small animal experiment 
Next, an estimate of the optoacoustic signal strength expected in a small animal 
imaging experiment is derived. A spherically shaped absorber, located within the 
cylinder, is considered as the source of the optoacoustic signal. Furthermore, 
constant and uniform illumination onto the surface of the cylinder is assumed. A 
diagram explaining this geometry is shown in Fig. 2.3 (a). The optoacoustic signal 
from a spherical absorber is given by Eq. (2.17). It depends on the initial pressure   , 
which is proportional to the light fluence and local absorption coefficient (cf. 
2.2.3.2). An estimate of the light fluence   can be derived from the homogenous 
form of the light diffusion equation (2.2). In cylindrical coordinates and taking into 
account the symmetry of the problem (        and        ), it writes [43] 
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(2.19) 

 
This is a modified Bessel equation of the type one zero order and has a solution of 
the type 

 ( )     (√
  

 
 )  

(2.20) 

 
where   is a constant and    the modified Bessel function of the first kind order 
zero. Setting (2.20) into (2.19) for the initial condition  ( )      yields 
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(2.21) 

 
Under assumption that the observation point lies outside the spherical absorber and 
the acoustic attenuation is negligible, it is possible to derive an expression for the 
optoacoustic pressure amplitude at position   generated by a spherical absorber 
with the radius   positioned at    within a tissue mimicking cylinder with the radius 
 , so that: 
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(2.22) 
 

 
where   is the Grüneisen coefficient,   

  the absorption coefficient of the spherical 
optoacoustic source,    [Jm-2] the initial light fluence on the surface of the object,    
the modified Bessel function of the first kind and order zero,  ( )     (  

 
   )  

the diffusion constant,   
 
 and    the optical absorption and reduced scattering 

coefficient of the background, respectively,   the radius of the cylinder,    the sound 
velocity and   |    | the distance between source position and detection point. 
We see that the magnitude of the detected optoacoustic signal is directly related to 
its absorption coefficient, the thermo-acoustic efficiency given by the Grüneisen 
coefficient, its size and the initial light fluence, but inversely related to the distance 
from the transducer and attenuated with respect to the depth. Numerical 
estimations have been performed for realistic experimental values:       , 
  

 
    cm-1,        cm-1,   

      cm-1,       mJcm-2,     cm,       

  mm and     cm. Fig. 2.3 (b) displays the optoacoustic signal strength as a 
function of the distance between source and center of the phantom for different 
source sizes. Fig. 2.3 (c) displays the optoacoustic pressure amplitude for the 
microsphere with a diameter of 500 µm and for different detector distances. Since 
the optoacoustic signals are relatively weak, only a few to a few tens of Pascals are 
available for detection, depending on the exact location within the phantom. Signals 
from deep inside the phantom are approximately 8 times smaller than close to the 
surface. With respect to instrumentation this means that it is important to have a 
sensitive detection device with a sufficiently large dynamic range to be able to 
detect both, the signals from the surface of the animal as well as the weak signal 
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from the inside. We also see that it is important to do multisided illumination, since 
this increases the signal strength from structures deep inside the object (about 16%) 
compared to single side illumination (around 4%, cf. section 2.2.1).   
 

 
Fig. 2.3: Estimation of optoacoustic signal strength. (a) Diagram explaining the geometry of the 
model: An infinite cylinder (top view) with tissue mimicking properties is uniformly illuminated 
from the side. Signals are generated by a spherical absorber in the phantom. (b) Optoacoustic 
pressure amplitude from the spherical optoacoustic source, detected 4 cm away of the center from 
the cylinder as a function of target size and distance from the center of the phantom. (c) 
Optoacoustic pressure amplitude for the microsphere (500 µm), for three different target position 
as a function of the detector location. 

2.2.3.4 Directivity of optoacoustic signals 
Due to the high velocity of light, all of the optical absorbers in the tissue are excited 
simultaneously, thus produce coherent pressure waves. Since ultrasound scattering 
in tissue is low, the coherence is preserved over long distances, causing diffraction 
phenomena due to the interference of the wavefronts originating at neighboring 
points of the source. Objects with a high aspect ratio, like blood vessels for example, 
emit directive radiation. To show this behavior, the directivity pattern for 
optoacoustic sources with the aspect ratios of 1, 2, and 10, respectively, was 
calculated. The resulting wave forms were obtained by the superposition of the 
bipolar signals from optoacoustic point sources, see Eq. (2.17). The results are 
displayed in Fig. 2.4. The optoacoustic source is located in the image center at the 
coordinate (0,0). It has to be considered rotationally symmetric around its 
longitudinal axis. Each point in the image of the first row represents the energy of 
the emitted acoustic wave. The second row depicts the polar plots of the energy 
emitted for a distance of 2, 20 and 40 mm. The graph was normalized to the 0° 
direction. Obviously, optoacoustic sources with an aspect ratio greater one emit 
directive pressure waves. The directivity increases with increasing aspect ratio. In 
small animals anatomical structures (e.g. blood vessels) are arbitrarily shaped and 
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oriented. Therefore, depending on the shape, aspect ratio and orientation of the 
structure, the optoacoustic signals are emitted in a different direction. In order to be 
able to capture the optoacoustic signals from all the absorbers, a closed detection 
surface is required. With respect to designing an imaging system, this means that if 
the object is not completely surrounded with detection elements, structures may be 
invisible, because their emitted signal is not captured by any detection elements. 
This is known as the limited view problem and will be discussed in more detail in 
section 2.4.6. 
  

 

Fig. 2.4: Directivity of optoacoustic signals: Directivity maps for an optoacoustic source with an 
aspect ratio of 1 (a), 2 (b) and 10 (c). Each point represents the emitted energy detectable at this 
position. The corresponding polar plots, normalized to the value at the 0° position, are shown in 
the second row for distances of 2, 20 and 40 mm, respectively. 

 

2.3 Technological aspects of multispectral optoacoustic 
tomography 

2.3.1 Illumination 

2.3.1.1 Pulse duration 
The description of the optoacoustic phenomena, presented in section 2.2.3.1, has 
been derived under the assumption that heat and stress propagation during the 
excitation pulse is negligible. To ensure that these equations are valid and that the 
optoacoustic signals are generated efficiently, the pulse duration of the laser 
employed in the imaging system has to be shorter than the thermal and stress 
relaxation time of the sample. Expressions to estimate these thresholds have been 
presented in section 2.2.3.1, see Eqs. (2.10) and (2.11). They depend on the targeted 
resolution of the system and the thermal diffusivity of the tissue. To give a numerical 
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example we calculate the thermal and stress relaxation time for the system 
developed herein. It aims for a maximal resolution of          . A typical value 
for the thermal diffusivity in soft tissue is                            [14]. The 
corresponding values for the thermal and stress relaxation time are then              
           and          , respectively. Such time-scale values can easily be 
achieved with modern nanosecond laser technologies. Pulse durations exceeding 
these thresholds would compromise the spatial solution of the system by 
broadening the photoacoustic signal.  

2.3.1.2 Laser technologies 
Various nanosecond pulsed laser technologies are available. Herein, we aim for deep 
tissue imaging. Since light attenuation in tissue severely hinders the penetration of 
light, high pulse energies are preferential. Q-switched solid state lasers based on 
neodymium-doped laser crystals (e.g. Nd:YAG) can deliver 10 ns pulses with pulse 
energies of multiple joules in the 1 µm spectral region at a repetition rate of several 
hertz [44] and are therefore very attractive for deep tissue optoacoustic imaging 
[45]. Since MSOT technology uses multi-wavelength illumination, the output 
wavelength of the laser has to be tunable. For deep tissue imaging, the tuning range 
should be in the near-infrared region to benefit from the spectral window in tissue. 
Conversion stages, such as optical parametric oscillators (OPOs), can be employed 
for this purpose. The OPO technology is particularly attractive for MSOT because 
wavelength tuning can be done fast. It depends only on the speed with which the 
orientation of the parametric oscillator crystal can be changed and it allows wide 
tuning ranges. For the imaging of superficial structures, lower pulse energies are 
sufficient and additional technologies like diode-pumped dye lasers, laser diodes or 
fiber lasers become suitable. With pulse repetitions rates in the order of several 
kilohertz, these lasers provide the potential to design fast scanning-based imaging 
systems [45].   

2.3.1.3 Maximum permissible exposure 
The key parameter for yielding good signal-to-noise ratio (SNR) is the per-pulse 
energy. For in vivo applications, however, laser safety standards have to be 
respected. The American National Standards Institute (ANSI) defines the maximal 
permissible skin exposure (MPE) for nanosecond laser up to a repetition rate of      
10 Hz as 20 mJcm-2 per pulse for wavelengths in the visible range (400 - 700 nm), 
which gradually increases through the near-infrared region (NIR) according to the 
formula [35] 
 

                    (          )          (2.23) 
 

 
to 100 mJcm-2 at 1050 nm. For repetitive laser pulses onto the same area the 
exposure limits for the average power deposition have to be met. They are            
200 mWcm-2 in the visible and gradual increase to 1 Wcm-2 in the NIR. 
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2.3.2 Detection of optoacoustic signals 

Detection of the optoacoustic signals is the critical component in optoacoustic 
imaging. For accurate detection, the detection device requires a high sensitivity; a 
broad detection bandwidth and a large dynamic range (cf. section 2.2.3.3.) Various 
approaches to detect the optoacoustic signals have been explored in the literature. 
They can be divided into two categories: piezoelectric detection and optical [46].  

2.3.2.1 Piezoelectric detection 
Piezoelectric detection is adopted from the field of ultrasound imaging. It is based 
on the piezoelectric effect, i.e. the property of certain materials to generate a 
voltage difference at its surface due to a reorientation of its electrical dipoles after 
mechanical deformation. The voltage difference is proportional to the deformation, 
which enables to detect pressure variations and thus measure an acoustic field. On 
the other hand, since the piezoelectric effect is a reversible process it can also be 
used to generate pressure waves by applying a voltage to the material [41, 47]. In 
ultrasound imaging this is used to send an acoustic pulse. The efficiency of the 
material to convert one form of energy to the other is defined by the 
electromechanical coupling coefficient    defined as the ratio of stored mechanical 
energy in thickness resonance mode and the total stored energy [48]. The advantage 
of piezoelectric detection is the high sensitivity, the flexibility to manufacture 
arbitrary shapes and the possibility of parallelization [49]. 

2.3.2.2 Piezoelectric materials 
Piezoelectric materials used for optoacoustic imaging should have a high 
electromechanical coupling coefficient    (i.e. sensitivity) and acoustical impedance 
matched to soft tissue. Three major types of piezocomposites are generally 
available: ceramics, polymers and composites [41].  
 
Ceramics, with lead-zirconate-titanate (PZT) as the most prominent representative, 
have a good electromechanical coupling (   = 0.55) but an acoustical impedance     
(Z   34 MRayl) badly matched to soft tissue (Z   1.6 MRayl) [48]. As a consequence, 
when applied for tissue imaging, there is little energy transfer between tissue and 
piezoelectric material. 
 
Therefore, for tissue imaging, piezoceramics are usually used in form of a composite, 
i.e. piezocomposite rods embedded in a polymer matrix to adjust the acoustic 
impedance to the one of tissue. By varying the ratio between the ceramic and 
polymer content, piezo-composites can be designed flexibly attaining high coupling 
efficiencies. Drawbacks are the higher production costs due to the complicated 
fabrication process [48]. 
 
Piezoelectric polymers such as polyvinylidene fluoride (PVDF) have also been found 
to be useful for biomedical applications. They have the advantage of being better 
matched (Z   3.6 MRayl) to tissue and can easily be produced in thin layers 
necessary for high frequency applications. However, the electromechanical coupling 
is low (   = 0.11) [48] which limits the transducers’ sensitivity [41]. 
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2.3.2.3 Ultrasound transducer 
Ultrasound transducers are highly sophisticated and complex electronic instruments. 
The basic components of a simple single element ultrasound transducer are 
depicted in Fig. 2.5.  
The most important component is the piezoelectric element. It is a resonating device 
which converts the pressure wave into an electrical signal. The resonance frequency 
is determined by the thickness material [48] 
 

   
    

  
 (2.24) 

 
where    is the acoustic wave velocity in the piezoelectric material,   its thickness 
and   an odd integer. The thinner the piezoelectric material, the higher is the 
resonance frequency. The two surfaces of the piezoelectric material are connected 
to electrodes to measure the generated voltage difference. The matching layer in 
front of the piezoelectric material has intermediate acoustic impedance between 
the one of the piezoelectric crystal and the one of tissue. Its purpose is to reduce the 
impedance mismatch between tissue and piezoelectric material in order to improve 
the transfer of acoustic energy into the transducer. The backing material serves to 
damp the reverberations of the piezoelectric material after excitation and therefore 
determines the bandwidth of the transducer. The better it is matched to the 
impedance of the piezoelectric material, the better is the absorption of acoustic 
energy and thus the better the damping of the oscillations and wider the bandwidth 
of the transducer. Conversely, with a mismatched backing, acoustic energy is be 
reflected back into the piezoelectric material, thus little acoustic energy is lost 
yielding ringing and a narrow bandwidth of the transducer. To increase the 
bandwidth of the transducer it is therefore necessary to match the backing material 
to the acoustic impedance of the piezoelectric material. The trade-off of increasing 
the bandwidth is however a loss of sensitivity because most of the acoustic energy is 
absorbed in the backing [47, 48]. With respect to designing an optoacoustic imaging 
system, the technical challenge consists of finding the right balance between 
sensitivity and bandwidth of the transducer, in order to be able to detect the weak 
optoacoustic signals without much signal distortion.  
 
 

 
Fig. 2.5: Components of an ultrasound transducer. 
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The frequency characteristics of an ultrasound transducer are described in terms of 
central frequency [MHz] and fractional bandwidth of the central frequency [%]. A 
transducer with a central frequency of 5 MHz and a bandwidth of 60% has its main 
sensitivity between 3.5 and 6.5 MHz. Outside this spectral region the frequency 
amplitude is lower than -6 dB of its maximal sensitivity.  

2.3.2.4 Optical detection 
Optical detection, based on optical interferometry to probe the ultrasonic 
displacement [50, 51], provides wide and uniform detection bandwidth and small 
size, which is highly interesting for optoacoustic imaging since signals distortions due 
to the element size and bandwidth of the detection element is significantly reduced. 
However, they also have a low sensitivity level, which is two orders of magnitudes 
less compared to piezoelectrical detection devices [52]. For that reason, optical 
approaches are currently only applied for imaging superficial structures [46]. 
Additional drawbacks are difficulties in parallelisation which is desirable in order to 
increase the imaging speed. Optical detection devices might however be very useful 
for minimal-invasive imaging devices, such as intravascular imaging, where size plays 
an important role.  

2.3.3 Electrical impulse response 

Optoacoustic signals are broadband (cf. section 2.2.3.2). Ultrasound detection 
devices on the other hand generally have a relatively limited spectral bandwidth and 
non-uniform frequency characteristics, resulting from the resonance properties of 
piezoelement, backing and the electronics utilized [41]. They act as a band-pass filter 
and thus distort the optoacoustic signals. The distortion of the optoacoustic signals 
is a linear process and can be modeled with the electrical impulse response (EIR) of 
the system according to [53] 
 

  (   )   (   )     ( ) (2.25) 
  
where   stands for a temporal convolution,   (   ) the distorted and  (   ) the 
undistorted optoacoustic signal, respectively.    ( )  represents the electrical 
impulse response of the detection system [54]. It describes how the detection 
system reacts to an impulse excitation, i.e. a source with constant frequency 
spectrum and infinite bandwidth. It is spatially invariant, thus the same for each 
optoacoustic signal and independent of the location of the source. 
 
The distortion of optoacoustic signals due to the electrical impulse response is 
shown in Fig. 2.6 for a spherical absorber with diameter 200 µm and 2 mm. The 
electrical frequency response is assumed to have a Gaussian shape, characteristic for 
piezoelectric detection elements [39], with a central frequency of 3 MHz and a 
fractional bandwidth of 90%. The distortion effect of the optoacoustic signals due to 
the influence of the electrical impulse response is clearly visible. Obviously, the 
detection bandwidth is insufficient to detect the sharp edges of the N shape of the 
optoacoustic signal resulting in a broadening of the signals. The part of the 
optoacoustic signal that decreases linearly, is associated with low-frequencies. For a 
small object the detection bandwidth is suited to accurately detect this part         
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(Fig. 2.6. c), which is however not the case for a big object (Fig. 2.6 d), where a lack 
of low frequencies leads to a completely erroneous representation of this part of the 
signal. A deconvolution approach to correct for the distortion of the optoacoustic 
signals due to the electrical impulse response is presented in section 4.2. 
 

 
Fig. 2.6: Distortion of the optoacoustic signal due to the electrical impulse response of the 
detection system. (a) Electrical impulse response utilized in this simulation study. (b) Depicts the 
Fourier transform of the electrical impulse response, which is the electrical frequency response, 
having a Gaussian shape with a central frequency of 3 MHz and a fractional bandwidth of over 90%. 
(c) Effect of the electrical impulse response on the optoacoustic signal from a spherical source with 
a 200 µm diameter. (d) The same on a spherical source with a 2 mm diameter. 

2.3.4 Spatial impulse response 

Detection of optoacoustic signals with detectors having a finite size leads to a spatial 
averaging and a distortion of the optoacoustic signals because different points    of 
the surface   of the transducer detect the optoacoustic signal  (    ) at different 
time points [55], according to 
 

  ( )  ∫  (  
    )  (  

 )
 

  
(2.26) 

 
It was shown in [56] for an optoacoustic point source    (      ) located at   and 

detected with a detector located at   , the surface integral in Eq. (2.26) can be 
expressed in form of a 1D convolution  
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where 
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(2.28) 
 

 

is the spatial impulse response (SIR) of the transducer element located at    [41]. 
The SIR characterizes the distortion of the pressure profile from an optoacoustic 
point source induced by the detector aperture. Convolved with the electrical 
impulse response (EIR), the spatial impulse response is termed total impulse 
response (TIR).  
 

 
Fig. 2.7: Optoacoustic signals measured with a focused detector for different source positions. (a) 
Source positions for which the signal was calculated. (b) Optoacoustic signal (blue line) and spatial 
impulse response (red line) for the source position "P1". (c) Source position "P2" and (d) source 
position "P3": The influence of the spatial impulse response distorts the optoacoustic signal outside 
the focal point. (e) Depicts the sensitivity field of the transducer.  
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TIR can be used to visualize the anisotropic detection sensitivity of the transducer 
(i.e. its sensitivity field), arising from its finite detection surface and finite detection 
bandwidth. Generally this is accomplished by plotting the amplitude of the total 
impulse response as a function of the geometrical coordinates [41].   
 
Fig. 2.7 displays the optoacoustic signals from three spherical absorbers measured 
with a focused transducer as well as the corresponding spatial impulse response. 
The relative location of the sources is shown in Fig. 2.7 (a). The size and curvature 
radius of the focused transducer was 15 mm x 1 mm and 40 mm, respectively. The 
position of the point sources are the following, in each case with coordinates  given 
in mm: P1 (0,0,0), P2 (0,0,-20) and P3 (0,-5,0). The mechanical focal point of the 
transduce is located at (0,0,0). If the source is located in the focal point (i.e. P1) then 
the acoustic wave arrives at each surface point of the transducer at the same time. 
Thus, the measured signal is not distorted and duration of the measured signal the 
shortest. The spatial impulse response in that case is a delta function, like shown in 
Fig. 2.7 (b). For source positions outside the focus, the detected signals are stretched 
in time and distorted, which is due to the asynchronous arrival of the pressure wave 
at the individual points of the transducer surface, see Fig. 2.7 (c) and (d). The 
sensitivity field of the transducer is depicted in (e). It was obtained by plotting the 
amplitude of the TIR versus its geometrical coordinates. The EIR assumed had a 
Gaussian shape with a central frequency of 3 MHz and a bandwidth of 90%, as 
depicted in Fig. 2.6 (b). In chapter 5 it will be shown how to consider the spatial 
impulse response in the image reconstruction in thus improve the reconstruction 
results.  

2.3.5 Sensitivity 

When designing an optoacoustic imaging system, it is important to achieve high 
signal-to-noise ratio (SNR), since it determines the system sensitivity and thus the 
detectability of an optoacoustic absorber. The SNR depends on various parameters. 
An expression to estimate the SNR in an optoacoustic image as a function of the 
individual parameters can be found in [57]. It writes: 
 

          √   ⁄  (2.29) 

  
where   is the magnitude of the optoacoustic signal arriving at the detector,   the 
ultrasonic detector sensitivity,   the detection aperture of the detector,   the 
number of tomographic projections used in the reconstruction,   the number of 
signal averages and   the noise floor of the system. To achieve high SNR, it is 
therefore important to increase the magnitude of the optoacoustic signal arriving at 
the detector. On the one hand, this can be achieved by optimizing the light delivery, 
since the generated optoacoustic signal is proportional the light fluence (cf. section 
2.2.3.1). On the other hand, by minimizing the source detector distance, the 
optoacoustic signals are attenuated as a function of the distance propagated. 
Another way to improve SNR is increasing the detector sensitivity, enlarging the 
detection element and decreasing the noise floor of the system. Further 
improvements can be achieved by signal averaging and increasing the number of 
tomographic projections used in the reconstruction. However, this increases the SNR 



27 

 

only as a function of their square root. It has to be noted that some of these 
measures have a negative effect on the imaging performance and are therefore less 
desired. For instance, signal averaging prolongs the imaging time and hinders real-
time applications. Big detectors compromise the lateral resolution when standard 
reconstruction methods that do not take the shape of the detector into account are 
used (e.g. the backprojection algorithm), cf. section 2.4.3.1. Hence, from a practical 
imaging perspective, it is more desirable to maximize the optoacoustic signal arriving 
at the transducer, to reduce the noise floor of the system and/or to increase the 
detection sensitivity, than it is to average signals or use big detectors.  

 

2.4 Optoacoustic image formation  

2.4.1 Focused transducer-based techniques 

The goal of optoacoustic imaging is to reconstruct the absorbed energy distribution 
based on a set of measured optoacoustic signals.  
 
The easiest way to achieve this is using a spherical focused detection element. It has 
a narrow acceptance angle and can in first approximation be considered as being 
only sensitive to signals originating within a 1D line along its acoustic axis. Fig. 2.8 (a) 
depicts the sensitivity field of such a spherical transducer. Since the detected signals 
are time resolved, they can be regarded as 1D depth images (A-scan). Thus, the 3D 
reconstruction problem is reduced to 1D. The location of the optoacoustic source 
along the acoustic axis of the detector can be identified exactly from the time of 
arrival of the optoacoustic signals, if the sound speed in the propagation medium is 
known. To form an optoacoustic image, the transducer is scanned over the sample 
to acquire a set of 1D depth images which are then combined to obtain a 2D or 3D 
image. This image formation technique is frequently used in the field of 
photoacoustic microscopy. Implementation where this technique is applied can be 
found in [27, 58, 59]. It has the advantage that the detected pressure signals can be 
directly mapped onto the image space without computational reconstructions.  
 
Similarly, the reconstruction problem can be reduced in first approximation to 2D by 
using cylindrically focused transducers. These kinds of transducers have a wide 
reception angle in one direction and a narrow one perpendicular to it, along the 
focused direction. In first approximation, they can be considered as only being 
sensitive to signals originating from a 2D plane. Although the detected signals are 
time resolved, it is not possible to identify the exact location of the optoacoustic 
source. It can be located everywhere on the arc with the radius r    , surrounding 
the detector position. To form an image, multiple projections need to be acquired 
on a circle around the object and inverted using 2D reconstruction algorithms, one 
of which is presented in the next section. Different slices can be reconstructed 
individually. A 3D image is then obtained by stacking these 2D slices. An example of 
such an implementations can be found in reference [57]. The real-time optoacoustic 
imaging system developed in this work and presented in chapter 3 also uses this 
image formation technique. The advantage of this quasi 2D approach is that for a 
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small amount of detectors it can achieve high in-plane resolution, good sensitivity 
due the large area of focused detectors and thus, real-time imaging performance.  
 
Finally, unfocused transducer elements with a large angle of acceptance generally 
have a small element size. They detect acoustic signals originating from a large 
volume in the tissue. As a result, 3D computed reconstruction algorithms are needed 
to obtain an image. The tomographic dataset is either acquired along a cylindrical or 
spherical surface surrounding the sample, or along an infinitely long 2D plane         
(cf. Fig. 2.9). An implementation of such a system can be found in [60, 61]. 
 

 
Fig. 2.8: Sensitivity fields for different focus types: (a) a spherically focused transducer with an 
element size of 15 mm x 15 mm, (b) a cylindrically focused transducer with an element size of       
0.5 mm x 15 mm and (c) an unfocused transducer with an element size of 0.5 mm x 0.5 mm. The 
transducer is located at position  (-40,0,0) in mm; The radius of the element curvature is 40 mm. 

2.4.2 Computed reconstruction techniques 

Computed reconstruction techniques use mathematical techniques to reconstruct 
an image from the set of measured optoacoustic signals. They are typically based on 
simple delay-and-sum beamforming techniques [26], also known as synthetic 
aperture techniques [14], or on more rigorously derived analytical formulas related 
to the spherical Radon transform. They can be implemented in spatiotemporal 
domain or Fourier domain [62, 63] and exist for several detection geometries 
(planar, cylindrical or spherical), as depicted in Fig. 2.9. They are typically referred to 
as the backprojection formula, because they are based on backprojecting the time-
resolved optoacoustic signals onto spherical shells and summing them up in order to 
form an image. These formulas are exact under ideal conditions, i.e. when the 
wavefront is detected by an infinite number of omnidirectional infinitely broadband 
point detectors distributed on an infinite planar, closed spherical, or infinitely long 
cylindrical detection surface [63].  
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In addition, algebraic or model-based inversion schemes [64-66] have been 
suggested as more accurate alternatives to backprojection algorithms in non-ideal 
detection scenarios. These methods are based on numerically modeling the 
optoacoustic forward problem and using that model in an inversion algorithm to 
reconstruct the image. In contrast to backprojection algorithms, model-based 
schemes can explicitly take into account experimental characteristics which deviate 
from ideal propagation and detection conditions and can also be applied to arbitrary 
detection geometries.  
 
In this work two already existing reconstruction schemes are essentially used, a 
modified version of the universal backprojection algorithm [63] and the 2D 
interpolated matrix model inversion method [66]. Later in chapter 5, a new 
approach is presented, which was conceived during this thesis to improve the 
reconstruction accuracy in the optoacoustic imaging system developed.  
 

 

Fig. 2.9: Three ideal detection geometries for optoacoustic tomography showing (a) a planar 
detection geometry in which the optoacoustic signals are detected along an infinitely long planar 
detection surface, (b) a spherical detection geometry in which the optoacoustic signals are 
detected on a spherical surface completely enclosing the sample and (c) a cylindrical detection 
geometry in which the optoacoustic signals are detected along an infinitely long cylindrical surface 
enclosing the sample. Image inspired by [58] 

2.4.2.1 The backprojection algorithm 
The backprojection algorithm [63] is a closed form time domain solution to the 
optoacoustic equation (2.12) under assumption of thermal and stress confinement 
and delta heating. For a spherical or cylindrical detection geometry, it writes 
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is the backprojection term for detection position    which is backprojected onto 
spherical shells centered at    and  
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the solid angle element subtended by the detection element     with respect to the 
reconstruction point P at position  .   ( ) is the deposited energy,   

  a vector 
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pointing outwards perpendicular to the detection surface   .    is a the solid angle 
of the whole measurement surface and for spherical and cylindrical geometries 
      .  
 
The system, presented in chapter 3, uses a 2D circular detection geometry where 
the detectors are cylindrically focused and lie in the imaging plane. To reconstruct in 
this scenario, a modified two-dimensional backprojection formula is used [24] which 
is defined as 
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The     weightening comes from the solid angle term which is proportional to the 
square of the distance between the receiving element     and the point P, thus 
leads to a compensation factor of    . The solid angle weightening is neglected 
because it had no visible effect on the reconstruction and only increased the 
reconstruction time.  
 
The backprojection formulas are very convenient for optoacoustic image 
reconstruction. Due to their simplicity they are easy to implement, memory efficient 
and fast. In the real-time MSOT system, these formulas are used for real-time 
reconstructions. Although not being exact in the presented conditions, they are very 
useful for detecting the shape and position of the absorbers and for assessing 
parameters such as speed of sound and radius of rotation. On the downside, for 2D 
geometries, i.e. where all detectors and optoacoustic sources are located in one 
plane, they suppress slowly varying image components associated with the light 
fluence or big objects and accentuate fast changes in the image, i.e. object 
boundaries. In addition, backprojection reconstructions in non-ideal detection 
geometries often show negative optical absorption values which have no physical 
meaning [66]. To overcome these drawbacks, Rosenthal et al. developed a 2D 
model-based reconstruction algorithm. 

2.4.2.2 The interpolated matrix model-based inversion (IMMI) 
This inversion method [66] is a model-based reconstruction technique for 
optoacoustic image reconstruction in a 2D geometry, i.e. where all the optoacoustic 
sources and detectors are located in one plane. It employs a discretized semi-
analytical time domain solution of the optoacoustic wave equation (2.12) and can be 
written in form of a matrix relation 
 

       (2.34) 
 

where   represents the optoacoutic signals measured at different positions 
(projections) and instants arranged as a column vector. The column vector   
contains the originating optoacoustic image on the defined grid, i.e. values of the 
heat deposition.   is the acoustic forward-model matrix, it is sparse and does not 
depend on the imaged object, but only on the experimental acquisition geometry.   
is calculated by interpolating for coordinates in-between the grid points in order to 
be able to integrate over arcs, according to formula (2.16). For a fixed acquisition 
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geometry,   has to be calculated only once and can be reused for consecutive 
reconstructions.  
 
The optoacoustic image is obtained by inverting the matrix relation (2.34). A 
common method of doing this is the minimization of the mean square error (MSE):  
 

2

2
minarg Mzpz   (2.35) 

 

where 
2

2
 is an 2l  norm. In Ref. [66] two methods are suggested to solve Eq. (2.34): 

the Moore-Penrose pseudoinverse [67] and the LSQR algorithm [68].  
 
The pseudoinverse of the matrix M is given by 
 

T1T MM)(MM †  (2.36) 
 

where 
T

 denotes the transpose operator. To reconstruct the image, the measured 
optoacoustic signal is then multiplied with the pseudoinverse matrix, i.e. 
 

T

sol pMz
†  (2.37) 

 
The advantage of using the pseudoinverse approach is that it does not depend on 
the measured data but is determined only by parameters of the experimental setup, 
e.g. the position of the sensors employed with respect to center of rotation, the 
sampling resolution, etc. Therefore, given a rigid measurement configuration, the 

pseudoinverse 
†M may be pre-calculated, thus leading to a real time inversion 

procedure which involves only the product operation of Eq. (2.37). The disadvantage 
of this approach is that in order to perform the inversion, the entire matrix   needs 
to be stored in the computer’s memory, which could lead to challenging memory 
utilization, especially for high resolution reconstructions. 
 
The computational requirements for image inversion can be mitigated by the LSQR 
algorithm [68], which capitalizes on the sparse nature of   . This algorithm avoids 
matrix-matrix operations but instead multiplies vectors by the matrix and operates 
on the resulting vectors. In this way, a sequence of approximate solutions z1, z2, …, zn 
to the problem is attained which minimize the residual error  
 

pMz R . (2.38) 
 

As the number of iterations increases, the algorithm converges to a solution which is 
expected to be close to the original image.  
 
The high accuracy achieved by the forward model allows data inversion without 
regularization when 360° tomographic views are available. More importantly the 
model eliminates a variety of image artifacts associated with conventional back-
projection algorithms, such as negative image values and other quantification 
artifacts, and overall offer superior accuracy and image fidelity in a 2D recons-
truction scheme [66].  
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2.4.3 Spatial resolution 

The width of optoacoustic signals in the time domain scales with the size of the 
optoacoustic source. Ultimately, the limiting factor for the achievable resolution is 
the maximally detectable frequency. But it also depends on other factors such as 
duration of the laser pulse, detection geometry, size, shape and number of the 
transducer elements and image formation technique [26].  
 
The small animal imaging system presented in the next chapter uses a cylindrically 
focused transducer array for 2D cross-sectional imaging. Volumetric images are 
obtained by stacking the individual 2D slices. The in-plane resolution therefore 
depends on computed reconstruction techniques whereas in elevation the reso-
lution depends on acoustic focusing.  

2.4.3.1 Spatial resolution achieved by computed reconstructions 
The resolution of an imaging system can be assessed by the point spread function 
(PSF) which describes how the system represents an elementary volume. Xu et al. 
[69] derived an expression to estimate the bandwidth limited resolution of an 
imaging system in an idealized detection scenario (i.e. full view detection, point 
detectors, continuous spatial sampling and constant sound speed), based on the full 
width half maximum (FWHM) of such a point spread function (PSF) 
 

             ⁄  (2.39) 
 

where     is the bandwidth limited resolution,    the sound speed an     the cut-off 
frequency of the transducer. This resolution is spatially invariant.  
 
Real ultrasound transducers however have a finite size detection aperture rather 
than a point. Like shown in section 2.3.4 this adds an extra spatially variant 
broadening of the optoacoustic signals, which is generally not taken into account in 
standard optoacoustic reconstruction algorithms, like the backprojection algorithm 
(c.f. section 2.4.2.1). Hence, the spatial resolution of the optoacoustic imaging 
system gets additionally degraded perpendicular to the acoustic axis of the 
transducer, which is herein referred to as the lateral direction. Xu et al. also derived 
an expression to estimate this degradation by the lateral extension of the PSF. The 
axial extension of the PSF is negligible compared to the lateral blurring. In a spherical 
or circular scanning geometry for an unlimited detection bandwidth and a detector 
with the same curvature properties as the detection surface, it is given by 
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where     is the aperture limited resolution,   the distance between the point 

source and the center of the scan circle,    the radius of the scan circle and   the 
dimension of the detector. 
 
To characterize the spatial resolution in a tomographic system, one distinguishes 
therefore between the axial and the lateral resolution. The axial resolution is the 
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resolution along the acoustic axis of each transducer intersecting the center of 
rotation of the detection surface (or arc in 2D). It depends principally on the 
detection bandwidth of the transducer, i.e.  
 

          (2.41) 
 

The lateral resolution is the resolution perpendicular to the acoustic axis of the 
transducer. It is spatial variant and depends both on the bandwidth and the aperture 
of the transducer element  
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The more the source approaches the center of rotation of the transducer array the 
more the lateral resolution improves until it is only bandwidth limited. An example 
of the spatially variant PSFs is shown in Fig. 2.10. 

 

 
Fig. 2.10: Point spread functions (PSFs) in an optoacoustic tomography system. The dimension of 
the PSF in axial direction, i.e. along a radial line through the center of the detection arc, is constant 
for each position. Perpendicular to it, the PSFs elongates the farther it is located from the center of 
the detection arc.  

 

2.4.3.2 Spatial resolution achieved by acoustic focusing2 
The spatial resolution in a focused detector-based setup is determined by the 
focusing capacities of the detector which, beside the shape of the detection 
aperture, depends on the frequency of the detected signal. Fig. 2.11 depicts the 
sensitivity field of a cylindrically focused transducer for three different frequencies 
(1, 3 and 5 MHz). The point with the coordinates (0, 0) mm corresponds to the geo-

                                                           
2
 The sensitivity fields of the transducer were obtained by calculating the spatial impulse response 

(SIR) with the ultrasound simulation package Field II [94], filtering it to the desired frequency range 
and plotting the amplitude as a function of its spatial coordinates. 
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metrical focus of the transducer. Focusing restricts the sensitivity of the transducer 
to a smaller area. The area of maximized sensitivity is stretched along the acoustic 
axis of the transducer. To characterize the sensitivity field one refers to the -6 dB 
focal zone, i.e. the area within which the pressure amplitude drops to half its value. 
This defines the area of effective imaging. The width of the focal area determines 
the slice thickness which can be achieved; the length determines the monitoring 
depth. We see the strong frequency dependence of the focusing ability of the 
transducer. The higher the frequency of the signal, the better is the focusing and 
therefore the achievable resolution.  
 
A formula to estimate the width   and length   of the sensitivity field for 
cylindrically  focused  transducers  as  a  function  of  the  characteristic  frequency  
  , defined as the 1/e level in the spectrum of the detected signals and the aperture 
angle  , was derived by Khockova et al. [70]. The equations are  
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and  
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where    is the sound velocity in the medium. We see from the formulas that width 
and length of the focal area decrease with an increasing aperture angle and 
increasing characteristic frequency. This trade-off between resolution and 
monitoring depth is a major challenge in designing a focused detector-based 
imaging system.  

 

 
Fig. 2.11: Sensitivity fields for cylindrically focused detection elements. (a) Illustration of the 
geometry.  (b) Sensitivity field for a frequency f = 1 MHz, a focal length F = 40 mm and an aperture 
size of D = 15 mm and a = 1 mm. Sensitivity field of the same detector geometry at (c) a frequency 
of 3 MHz and (d) at 5 MHz. The focal point is located at (0,0) mm. 
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2.4.4 Effects of a limited detection bandwidth on images3 

For exact reconstructions, it is necessary to detect the whole bandwidth of the 
optoacoustic signals. The effects of a limited detection bandwidth are shown in Fig. 
2.13. It depicts optoacoustic reconstructions of a complex phantom in a 2D full view 
(       ) circular detection geometry for different detection bandwidths. The 
detection geometry is presented in Fig. 2.12. Fig. 2.13 (a) depicts the reconstruction 
with an unconstrained and uniform detection bandwidth. It can be considered as 
exact. Fig. 2.13 (b) depicts the reconstruction with a detection bandwidth from 0 to 
2 MHz. It is blurred and cannot resolve small absorbers like the two indicated by the 
arrow. Fig. 2.13 (c) shows the reconstruction with a detection bandwidth between   
1 and 7.5 MHz. Small absorbers are resolved clearly but from the big absorbers only 
the boundaries are visible. The three examples clearly show the importance of 
having an adapted and sufficient large detection bandwidth. High frequencies are 
necessary for resolution and thus the ability to  resolve small  objects ( e.g  vessels).  
 

 
 

Fig. 2.12: 2D detection geometry.    represents the radius of the detection arc,   the width of the 
detection element,     the angular sampling period and    the angular coverage of the detection 
aperture.   

 

 
Fig. 2.13: Effects of limited detection bandwidth. (a) Reconstruction with full detection bandwidth 
(up to 7.5 MHz), (b) detection bandwidth only up to 2 MHz and (c) detection bandwidth between   
1 and 7.5 MHz. Accurate reconstructions require a full detection bandwidth. High frequencies are 
needed for resolution. Low frequencies are required for visualizing big objects.  

                                                           
3
 Optoacoustic signals were simulated using the k-wave optoacoustic simulation toolbox [98]. The 
simulation grid had a size of 802 x 802 x 5 voxels and each voxel a size of 100 x 100 x 100 µm³ thus 
supporting frequencies up to 7.5 MHz. Images were reconstructed with the 2D IMMI algorithm    
(cf. section 2.4.2.2) using 720 tomographic projections uniformly distributed on the 360° detection 
arc. A limited detection bandwidth was simulated by filtering the signals appropriately. 
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Low frequencies are necessary for visualizing low spatial frequencies originating 
from big objects, such as organs, but also slowly varying phenomena like the 
attenuation of light in tissue. Failing in detecting the necessary frequencies leads to 
inaccurate reconstructions. With respect to designing an imaging system this means 
that the detection bandwidth has to be chosen, according to the required imaging 
performance. The system, presented in chapter 3 is for macroscopic small animal 
imaging with a targeted resolution of about 150 µm. In this case the maximal 
required frequency is about 8 MHz according to Eq. (2.39). Preferentially the 
ultrasound detection device has a uniform sensitivity in this spectral range. Since 
this is not the case in experimental imaging systems, present a deconvolution 
approach to correct for a non-uniform detection bandwidth is presented in section 
4.2. 

2.4.5 Effects of a finite detector size4 

In order to achieve the maximal signal-to-noise ratio, detectors should have a large 
element size (cf. section 2.3.5). Yet, the spatial impulse response of large elements 
leads to a distortion of the optoacoustic signals (cf. section 2.3.4). If this effect is not 
considered in the reconstruction, this results in a resolution loss in lateral direction, 
i.e. perpendicular to the acoustic axis of the transducer (cf. 2.4.3.1). This is shown in 
Fig. 2.14: (a) depicts the reconstructions assuming detection with a point detector, 
(b) the reconstructions assuming a 2 mm large and (c) assuming a 6 mm large 
detection element. Comparing the individual reconstructions, we see a loss of 
resolution in lateral direction when using finite size detection elements. Small 
objects, i.e. the two spots indicated by the white arrow, cannot be resolved 
anymore. The loss of resolution is worse for bigger elements and for longer 
distances between the source and center of detection. The resolution along the axis 
of the transducer elements, i.e. along radial lines through the center of rotation 

 

 
Fig. 2.14: Effects of a finite detector size. (a) Reconstruction using signals detected with a point 
detector and (b) a detector having a 2 mm or (c) a 6 mm large detection surface. Detection with 
finite size detectors leads to a lateral resolution loss, which becomes worse the bigger the detector 
and farther the source from the center of the detection circle.  

 

                                                           
4
 Signals have been simulated as mentioned in section 2.4.4. A finite size detector was simulated by a 
set of point detectors and summing up the individual signals. For image reconstruction, the 2D 
IMMI method was used assuming point detectors but the effects are the same for the 
backprojection algorithm. 
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of the detection arc, remains constant. When designing an imaging system it is 
therefore important to reduce the lateral dimension of the detection element in 
order to achieve homogenous resolution. Since this reduces sensitivity, 2D imaging 
approaches using cylindrically focused detectors with a small azimuthal, but large 
elevational dimensions, are a good compromise.   
 

2.4.6 Effects of a limited view detection 

Exact optoacoustic reconstructions require detection of the photoacoustic signals on 
a closed detection surface around the object [26]. In many imaging 
implementations, such as the system described in the next chapter, this cannot be 
achieved due to constraints like limited access or cost. Optoacoustic imaging 
systems, for instance, generally employ water as matching medium between the 
surface of the imaged object and the acoustic detector. In order to be able to 
acquire a complete data set, the object has to be entirely immersed in water. In vivo 
imaging applications however, especially whole body small animal imaging, only 
allow partial immersion of the animal into water resulting into a restricted detection 
surface. This combined with the directivity of optoacoustic signals (cf. section 
2.2.3.4) might render some structures within the object undetectable (invisible), 
while other structures are highly defined. This is known as the limited view problem. 
The condition, under which an object is visible in a given detection geometry, has 
been given by Xu et al. in reference [71]. Accurate boundary detection requires that, 
for each boundary point, the normal line to the boundary's defining curve intersects 
the detection curve (or line for scanning geometries) in at least one point. Points 
without such a normal line intersecting the detection curve are invisible because the 
wavefront is not detected and therefore will be blurred away in the reconstruction. 
The blurring effect is illustrated in Fig. 2.15 (a) for a 2D circular detection geometry, 
in which a round phantom with rectangular insertion is imaged. The findings are 
however also valid in 3D. The detection arc, denoted by the blue solid curve, defines 
a "visibility zone", shown in gray, in which the boundary of the imaged object always 
fulfills the detection criterion, and thus can be accurately reconstructed [71]. 
Sections of the boundary lying outside the detection region, i.e. in the "invisibility 
zone", may be still reconstructed subject to fulfilling the detection criterion. The 
boundary sections which can be accurately reconstructed are marked with a solid 
red line. Fig. 2.15 (b) to (f) show the IMMI reconstruction obtained for the phantom, 
using the detection geometry depicted in Fig. 2.12 for different detection arcs  
(    360°, 240°, 180°, 140°, 90°, respectively). The reconstructions clearly show 
the blurring effect of the object's boundary segments which do not fulfill the 
detection criterion. The blurring is worse for smaller detection arcs and model-based 
reconstructions require specific regularization techniques. This topic is discussed in 
section 4.4. With respect to designing an imaging system, the limited view problem 
implies that the detection arc should be as long as possible and the sample should 
be positioned in the "visibility zone" to maximize the accuracy of the reconstruction.  
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Fig. 2.15: The limited view problem. (a) Reconstructable (red solid line) and "invisible" (red dashed 
line) boundaries of a round object with a square insertion partially lying in the "visibility region" 
(shaded area) and the "invisibility domain" for a detector moving along the blue solid arc. Dashed 
boundaries blur away since they do not fulfill detection criterion, i.e. they do not have a normal 
passing at least through one detector position. (b) IMMI reconstruction of the numerical phantom 
using full view (   = 360°) data and partial view data with (c)    = 240°, (d)    = 180°, (e)              
   = 140° and (f)    = 90°, showing that boundaries do not fulfill the detection criterion blur away. 

2.4.7 Effects of insufficient spatial sampling 

In optoacoustic tomography, the acoustic field emitted from the object under 
investigation is measured in form of temporal signals along a two-dimensional 
detection surface. In order to be able to reconstruct the object accurately, the 
acoustic field has to be sampled according to the Nyquist criterion, i.e. with a 
temporal and spatial sampling frequency (which is the inverse of the sampling 
period) at least twice the maximum frequency of the detected optoacoustic signal. 
Otherwise, aliasing occurs causing significant reconstruction errors by disguising high 
frequency components above the sampling frequency as low frequency components 
[26]. Anti-aliasing due to the temporal sampling is straightforward by using anti-
aliasing filters prior to the analog to digital (A/D) converter to filter out frequencies 
higher than twice the sampling frequency. Aliasing due to the spatial sampling can 
be avoided by sampling the detection surface with a sampling period smaller than 
half the size of the detection element  . The reason is that the finite size of the 
detection element acts like a spatial frequency filter and thus limits the maximal 
available frequency. For detection scan along a circle, like in a spherical or cylindrical 
scan this is           ⁄  where    is the angular sampling period and    the 
radius of the detection surface. For a detection scan along a line like in a planar scan, 
this is       ⁄  where     are the spatial sampling periods [72]. In practical 
terms, this can be achieved by scanning a single detection element (or an array) 
around (or along) the sample, yet at expense of imaging speed. Herein we aim for 
cross-sectional real-time imaging, thus have to acquire the whole dataset for a 2D 
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tomographic reconstruction in parallel. A multi-element transducer array is 
employed for this purpose. Due to SNR, manufacture and cost reasons, it might 
however not be possible to equip the transducer with enough densely spaced 
elements to achieve a fine enough angular sampling and aliasing artifacts are 
expected. The effects of an insufficient angular sampling are showcased in Fig. 2.16. 
It depicts optoacoustic reconstructions of the phantom using sparse angular 
sampling. The detection geometry is depicted in Fig. 2.12 assuming full view 
detection (       ) and a detector size of      0.7 mm. Fig. 2.16 (a) to (c) show 
the reconstruction with an angular sampling period of          ,        and 
      , respectively. In the first case, the spatial Nyquist theorem is fulfilled, in 
the other both cases not. We can see that insufficient angular sampling causes 
aliasing artifacts which manifest themselves as streak artifacts and image roughness. 
The sparser the angular sampling, the stronger are the artifacts. Streak artifacts are 
generally only seen to radiate from sharp edges because for smoothly varying 
objects high frequencies are absent. The origin of these artifacts can be understood 
intuitively considering backprojection reconstructions where images are formed by 
backprojecting the optoacoustic signals, measured at various tomographic detection 
positions onto spherical shells (or circles in 2D) and summing up the individual 
contributions. If the detection arc is closed and detection positions are densely 
spaced, the arcs originating from the individual backprojected signals will 
compensate each other due to the complementary information from different 
detection position, yielding an image of the actual source distribution. If the spatial 
sampling of the acoustic field is sparse, this compensating effect is missing and 
partial streaks remain. Whereas it is straightforward to fulfill the spatial Nyquist 
theorem in scanning-based setups, this is not possible in some fixed array 
configurations used for real-time image reconstruction. Section 4.3, presents a 
practical approach to alleviate the aliasing effects in such fixed geometry systems 
not fulfilling the spatial Nyquist criterion.  
 

 

 
Fig. 2.16: Effects of insufficient angular sampling. Reconstructions using an angular sampling period 
of (a)         , (b)        and (c)       . Sparse angular sampling leads to aliasing 
artifacts manifested as streaks.  
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2.4.8 Thin slice illumination vs. broad beam illumination 

The imaging system developed is conceived for cross-sectional real-time imaging of 
mice. To examine, whether it is beneficial to do thin slice illumination or to 
distribute the laser energy over a larger area, the 3D light fluence pattern was 
simulated for a cylindrical phantom with mouse mimicking properties (i.e. 2 cm in 
diameter,    = 0.3 cm-1,   

  = 10 cm-1 ) and illumination rings with different widths  
(1, 8 and 16 mm) using a FEM based package for modeling light transport in tissue 
[73]. Fig. 2.17 illustrates the light fluence distribution within the phantom. Cross-
sectional slices through the light fluence distribution are shown in the first row and 
sagittal slices in the second. The profiles along the dashed lines are shown in (g) and 
(h). The ratio between out-of-plane and in-plane energy deposition as a function of 
depth and width of the illumination ring is depicted in (i). Due to strong light 
scattering in tissue, focusing of light to the imaging plane is severely impeded, 
especially for deep tissue structures and optoacoustic signals are also generated 
outside the imaging plane. Thin slice illumination produces less out-of-plane signals 
than illumination of a larger area. On the other hand for the same surface exposure, 
being limited by the MPE, more light reaches deep tissue structures when a larger 
area is illuminated (18 % vs. 4 %). Hence, it is beneficial to use a broad illumination 
beam from a signal to noise ratio point of view. Conversely, from an image 
reconstruction and quantification point of view, it is better to do thin slice illumi-
nation because less out-of-plane absorbers contribute to the photoacoustic signal.  
  

 
Fig. 2.17: Simulated illumination pattern in a cylindrical tissue mimicking phantom. Cross-section 
through the phantom for different widths of the Illumination ring (1 mm, 8 mm, 16 mm) are shown 
in (a) - (c), the corresponding sagittal slices through the phantom in (d) - (f) and the profiles along 
the dashed lines in (g) and (h). The ratio between out-of-plane energy deposition and in-plane 
energy deposition as a function of the position and width of the illumination ring is given in (i).    
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2.5 Summary and Conclusion 

In this chapter the theoretical and technological background for optoacoustic 
imaging was presented.   
 
Starting with a discussion of light and ultrasound behavior in biological tissue, it was 
further explained how optoacoustic signals are generated as well as properties of 
optoacoustic signals and directivity effects due to diffraction. It was also specified 
that in optoacoustic imaging contrast is based on optical absorption, whereas 
resolution stems from the emitted ultrasound waves and thus is independent of 
light scattering. Moreover, an analytical estimate for optoacoustic signal strength 
expected in a small animal imaging scenario was given, being in the range of several 
tens of Pascals depending on their locations, size and absorption coefficient.  
 
In the second part of the chapter, general aspects of optoacoustic instrumentation 
were discussed. Since optoacoustic signals are weak, signal-to-noise ratio is a crucial 
factor. For whole body mouse imaging, it is therefore important to maximize light 
delivery to deep tissue structures, which can be achieved by an optimized 
illumination scheme, high pulse energies (within the laser safety standards), and 
wavelengths in the NIR. Nanosecond pulsed lasers with OPO based wavelength 
tuning are particularly suited for that, since they provide high pulse energies and fast 
wavelength change. With respect to signal detection, piezocomposite transducer 
arrays have the advantage that they can be produced in arbitrary shapes adapted to 
the specific imaging task and parallelized for high frame-rate imaging. It was also 
shown that the detection system distorts the shape of the detected optoacoustic 
signal by its electrical (EIR) and spatial impulse response (SIR). Thus it is important 
that the detection device is sufficiently broadband to avoid signal distortion, 
sensitive and with a sufficiently large dynamic range to capture both the weak 
optoacoustic signals from deep inside tissue and the stronger signals close to the 
illuminated surface. 
 
In the third part of this chapter, optoacoustic image formation was discussed. 
Optoacoustic images can be obtained by using focused transducers or by tomo-
graphic reconstruction methods. Focusing can reduce the reconstruction problem to 
one respectively two dimensions, thus can facilitate the reconstruction problem for 
potential real-time imaging. For optoacoustic image reconstruction, the back-
projection algorithm and the 2D model-based inversion scheme were presented, 
followed by a discussion of the spatial resolution and the artifacts due to bandwidth 
limited detection, finite size detection elements, limited views and sparse angular 
sampling with the goal of providing an understanding of the effects associated with 
the different detection parameters. In that sense, when designing an imaging system 
it is necessary to match the bandwidth of the detection system to the targeted 
resolution and the dimensions of the features to be imaged. Moreover, detection 
elements should have a small lateral dimension to fit more elements on the array, 
thus reduce aliasing artifacts and improve lateral resolution. It is also important to 
increase the length of the detection arc as much as possible and position the sample 
within the visibility zone to avoid limited view artifacts such as blurring of 
boundaries.  Moreover it was shown that for 2D imaging it is best to do thin slice 
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illumination. This reduces the amount of out-of-plane signals, in particular close to 
the surface of the subject. This is important with respect to quantification. In deep 
tissue (> 1 cm) on the other hand, illuminating a big area enables delivering of more 
light energy to deep tissue structures, which is beneficial with respect to SNR.   
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3 An innovative preclinical MSOT system  

3.1 Introduction 

This chapter presents the development of a 2D real-time MSOT system for in vivo 
imaging of small animals that was designed to fulfil the need of biomedical research 
for high frame-rate and practical in vivo whole body imaging capabilities. Previously 
developed optoacoustic imaging systems, were not suitable for this task, because 
they either utilized single element scanning arrangements yielding long acquisition 
times [5, 6, 23, 24, 57, 74] or because they used clinical transducer arrays with 
frequency characteristics and geometries not adapted for small animal dimensions 
[75, 76]. In addition, in these systems the sample was to be completely submersed in 
water. Whereas this is not problematic for ex vivo or partial body imaging, this poses 
severe difficulties with respect to in vivo whole body imaging, because a diving bell 
arrangement is required for delivering anesthesia and respiratory gases, making 
animal position delicate and time consuming. Also, there are hygienic reasons for 
avoiding direct immersion of the animal in water, because animals are frequently 
used as a model system for studying disease and thus might be a carrier of various 
pathological agents. To overcome these limitations, a new concept for whole body 
MSOT small animal imaging was developed. Light energy delivery was optimized 
using cylindrical ring illumination, allowing optimal concentration of light energy 
around the mouse body. Correspondingly, a highly sensitive concave ultrasound 
detector array was used to effectively collect optoacoustic responses from the 
illuminated area. To enable the detection of multiple biomarker spectra, the system 
uses multiple wavelengths illumination. The system design further incorporates an 
acoustically and optically matched membrane, which allows placement of small 
animal in the centre of the imaging system while prohibiting direct contact of tissue 
with the surrounding matching medium, utilized for optimally coupling acoustic 
response from tissue to the detector. I presented this system 2010 in OPTICS 
LETTERS in an article with the title "Video rate optoacoustic tomography of mouse 
kidney perfusion" [77] and successfully showcased on various occasions its ability to 
visualize anatomical, dynamic and molecular information in mice. This chapter starts 
with a short overview about the state of art optoacoustic small animal imaging 
systems published in the literature. It serves as a motivation to see the need for a 
new innovative design of an optoacoustic small animal imaging system. Then, 
technological and design aspects of the individual components in the developed 
system are discussed and it is shown how they are implemented, followed by an in-
depth characterization of the overall system’s performance. This chapter describes 
the iterative process of going from a conceptual small animal imaging system based 
on the optoacoustic effect to a fully functional device that can be utilized in 
biomedical research. To further illustrate this point, the described prototype imaging 
device was successfully commercialized and next-generation MSOT scanners are 
now commercially available from iThera Medical GmbH.  
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3.2 State of the art preclinical optoacoustic imaging 
systems 

Optoacoustic imaging has gained enormous interest in the last years. As a 
consequence, various imaging devices have been developed recently and new 
developments focused on improving imaging performance are emerging 
continuously. Implementations range from optoacoustic microscopes [27, 58, 59, 
78], to devices for macroscopic small animal imaging,  clinical handheld scanners 
[79-82], mammoscopes [83-85] and endoscopic and intravascular imaging systems 
[86-88]. Next, a short overview over optoacoustic small animal imaging systems 
available is given. 

3.2.1 Single transducer scanning-based systems 

Frequently, optoacoustic systems used for small animal imaging are based on a 
single transducer element which is mechanically scanned around the sample in 
order to capture the dataset for a tomographic reconstruction [5, 6, 23, 24, 57, 74]. 
Fig. 3.1 depicts the implementation of Ma et al. [57], which is a representative 
example of such a single element-based imaging system. In the system, the animal is 
directly immersed in water for acoustic coupling. Illumination is achieved by a 
nanosecond pulsed laser. For signal detection a cylindrically focused transducer 
element is utilized. The light beam is focused on a thin plane in order to excite 
photoacoustic signals in semi-transparent samples, only within a narrow volume 
confocal to the focal plane of the detection element. The animal can be rotated 
around its longitudinal axis in order to acquire a 360° tomographic dataset for a 2D 
reconstruction. An additional linear stage allows moving the transducer along the 
longitudinal axis of the animal for acquisition of a volumetric dataset.  

 

 

Fig. 3.1: Single element MSOT system. Illumination is achieved by a pulsed laser. The beam is 
expanded, focused into a sheet of light and split into two beams confocal with the focal zone of the 
transducer element. The sample is immersed in water and can be rotated for acquisition of a 
tomographic dataset for a cross-sectional reconstruction. A linear stage allows translation of the 
transducer and light sheet along the vertical axis of the sample allows for volumetric 
measurements. (Reprinted with permission from [57], Copyright 2009, Optical Society of America). 
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The system was showcased to be able to image zebra-fish [7] as well as the brain 
area of a 10 days old mouse post-mortem [89]. First images of the mouse neck area 
have also been shown. Yet, for large scale in vivo multispectral imaging of mice, the 
system is not suited. A major issue is the long acquisition times (minutes to hours for 
a single cross-sectional image and wavelength). Control of animal physiological 
parameters, motion and anesthesia during these extended measurement periods 
can present a significant challenge for obtaining high quality images. Further-more 
interesting in vivo imaging studies, such as dynamic monitoring, biodistribution of 
targeted contrast agents or functional responses to physiological stimuli all require 
acquisition times in the order of seconds to milliseconds [8] and are not possible 
with the described set-up. Due to the long acquisition time, in vivo multispectral 
imaging applications also become unrealistic. In addition, the animal is immersed in 
water, which complicates in vivo imaging since the animals head has to be kept 
above the water level. Studies of the animal brain in vivo are therefore not possible. 
Dedicated imaging systems for imaging the brain vasculature have been shown by 
Wang et al. in [23], however due to their geometrical arrangement, these systems 
are only suitable for imaging the brain area. Additional limitations arise from the 
projection-dependent and therefore varying illumination. We have shown in [90]      
that projection-dependent illumination may induce erroneous reconstructions. Fig. 
3.2 presents results from a simulation study showing this effect. It shows a tissue 
mimicking phantom with two insertions reconstructed in a rotational system like the 
one developed by Ma [57] with uniform illumination onto the surface and projection 
dependent illumination. In case of the varying illumination, the reconstruction is 
blurred and represents erroneous intensity values. The reason for this can be 
understood easily. Tomographic reconstructions assume that the global pressure 
field is the same for each projection; however, the acoustic field is different for each 
sample orientation because the illumination changes during acquisitions with 
projection-dependent illuminations. As we have further shown in [90], there are 
approaches to compensate this projection-dependent illumination by model-based 
reconstruction however, for the sake of accuracy, projection-dependent illumination 
should be avoided whenever possible.   
 

 
Fig. 3.2: Constant vs. projection-dependent illumination. (a) Simulation of an absorbing phantom 
with two rectangular insertions and uniform illumination from all directions. (b) Projection-
dependent illumination pattern comparable to the illumination in the system presented by Ma et 
al. [90]. (c) Reconstruction with projection-dependent illumination. (Figure published in [90], 
Copyright 2010, Optical Society of America).   
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3.2.2 Array-based systems 

In order to increase temporal resolution, the use of ultrasound transducer arrays 
from clinical ultrasound systems has been considered. However, clinical transducer 
arrays generally do not have the optical geometrical arrangement, sensitivity and 
broadband frequency characteristics for generating high quality optoacoustic images 
from small animals in real-time. To achieve this, ultrasound detectors that are 
adjusted to the need for optoacoustic imaging are required. During the development 
period of the system presented in the next section, two dedicated small animal 
imaging systems have been presented in the literature. Firstly, a 3D small animal 
optoacoustic scanner, utilizing an unfocused multi-element detector array scanned 
on a spherical surface around the animal, generated 3D anatomical images [60]. The 
mouse was completely immersed in water and for in vivo imaging a complicated 
diving bell arrangement was required for delivery of anesthetic and respiratory 
gases, thus considerably complicating animal positioning. Furthermore, the 
illumination was not kept stationary and since the elements were unfocused and 
small, it was only possible to reconstruct an image after signal averaging. This 
caused a complete three-dimensional scan to take about 8 minutes. Moreover, the 
detection system was designed with an US array with a central frequency of 3 MHz, 
diminishing resolution. Thus, high resolution imaging, visualization of dynamic 
processes, or multispectral imaging, all of which require the minimal animal motion 
at each wavelength, was impossible. A different system designed for brain imaging 
based on an 512 element ring-shaped focused ultrasound transducer array was 
presented late 2009 and applied for anatomical imaging of cerebral blood vessels as 
well as for imaging of cortical hemodynamics [8, 91]. Due to its mouse positioning 
and illumination from the top, it was however not suited for whole body imaging 
and since multiplexing was required, also not real-time. Neither did it incorporate 
the MSOT technology.  

 

 
Fig. 3.3: MSOT system and its key components. (a) The MSOT system with its key components 
labeled.  (b) The transducer array and illumination arrangement. (c) The imaging chamber during an 
in vivo measurement. (Panels (a) and (c) published in [92], Copyright 2011, Nature publishing 
group) 
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3.3 System implementation 

The MSOT scanner developed for whole body mouse imaging comprises four major 
hard-ware  components:  (i)  the  illumination  system,  including  a  tunable  pulsed  
laser;  (ii)  the imaging chamber; (iii) the ultrasound detection array and (iv) the 
parallel data acquisition and computing system responsible for system operation 
and image reconstruction. Photographs of the system are shown in Fig. 3.3 and a 
block diagram, describing the system and the interaction of its major components, is 
shown in Fig. 3.4. In the following subsections detailed explanations of the different 
subsystems are given. 
 

 

Fig. 3.4: Block diagram describing the interaction between the key components of the small animal 
scanner.  

3.3.1 Illumination unit 

Illumination comes from a Q-switched Nd:YAG laser, producing 8 ns pulses at a 
wavelength of 1064 nm with a repetition rate of 10 Hz for fast data acquisition. The 
beam is frequency doubled to 532 nm with a second harmonics generator and 
coupled into an optical parametric oscillator (Phocus, Opotek) to obtain a tunable 
wavelength range in the near-infrared (NIR) regime between 700 and 900 nm. The 
tuning curve of the OPO is depicted in Fig. 3.5. Per pulse variations yield a root mean 
square variation of 4%. The maximal pulse energy of this laser system is 115 mJ at 
750 nm. The pulse duration was chosen to fulfill the condition of thermal and stress 
confinement. The wavelength range of the laser is chosen in the near-infrared 
regime to exploit the spectral window for deep tissue imaging. For doing MSOT, it is 
necessary to be able to change the wavelength fast. In the current implementation, 
a wavelength change takes about 2 seconds achieved by turning the OPO crystal. To 
maximize the signal-to-noise ratio, the beam is directed onto the animal’s surface to 
create a ring-shaped illumination pattern of about 8 mm width, coinciding with the 
detection plane of the ultrasound transducer array. A scheme of the illumination 
arrangement with respect to the transducer and animal position is shown in          
Fig. 3.6 (a). Technically, this is realized by using a silica fused-end fiber bundle 
(Model PowerLightGuide, CeramOptec), consisting of 630 fibers (179 μm core 
diameter and a numerical aperture of 0.37) partitioned into ten arms. The input end 
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of the fiber bundle has an active diameter of 5 mm, whereas, at the output end, 
each arm has a diameter of 1.74 mm. The beam is coupled into a fiber bundle using 
a spherical lens (f = 5 mm). The fiber repartition in the bundle is pseudo-randomized 
to make the illumination on the mouse surface less sensitive to fluctuations of the 
beam shape. Due to mechanically constraints (width of the transducer), the 
illumination angle was oblique at an angle of 33° to the normal of the animal’s 
surface. The coupling efficiency of the bundle is about 80%. The distance that light 
propagates through water is only 3 cm to minimize absorption losses. In the current 
configuration the animal is exposed to a maximal fluence of 20 mJcm-2 and average 
intensity of 200 mWcm-2 on its surface (at 750 nm), fulfilling the laser safety 
recommendations (cf. section 2.3.1.3). 

 
 

 
Fig. 3.5: Pulse energy as a function of the wavelength. In the following used for energy 
normalization in multispectral applications.  

 

 

 

 

 

Fig. 3.6: (a) Schematic drawing of the animal holder, illumination device and transducer array. A 
curved array of wide-band and cylindrically focused ultrasound transducers enables parallel data 
acquisition. Optical fibers are used to homogeneously illuminate the object. (b) Arrangement of the 
individual elements in the detection array. (Panel (a) published in [92], Copyright 2011, Nature 
publishing group). 
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3.3.2 Ultrasound detection 

The mouse-body can be approximated as a cylindrical imaging object and it is 
addressed herein by collecting optoacoustic responses using a multi-element 
ultrasound transducer array with elements cylindrically focused onto a common 
plane and arranged on an arc surrounding the animal for cross-sectional imaging. By 
being mostly sensitive to signals originating from a thin slice, the dimensionality of 
the reconstruction problem is reduced to quasi 2D and thus the number of 
projections (i.e. tomographic views) required for a tomographic reconstruction. 
Therefore, from a technological and financial point of view, it becomes possible to 
acquire the complete dataset for a cross-sectional reconstruction in parallel and 
process it fast enough for real-time imaging. In addition, this 2D imaging 
configuration has the advantage of attaining high sensitivity, because the size of the 
detector in elevation can be large and light energy is concentrated on a small 
volume, thus yielding high signals.  
 
In the current implementation, a custom-made cylindrically focused 64 element-
curved transducer array (Imasonic SAS, France) is used, covering a solid angle of 172° 
around the imaged object. According to the detection criterion presented in section 
2.4.6, this arc length allows cross-sectional reconstructions only slightly affected by 
blurring of boundaries due to the limited view problem. The individual transducer 
elements are manufactured using piezocomposite technology with central frequen-
cy of 4.7 MHz and a reception bandwidth (-6 dB) greater than 90%. To maximize the 
sensitivity, the individual elements are directly shaped out of the piezocomposite to 
create a mechanical focus 40 mm in front of the surface of the transducer. The flat 
dimensions of the individual transducer elements are 15 mm × 1.88 mm (lying on a 
40 mm radius spherical surface). The kerf is 0.1 mm. The housing of the transducer is 
metalized to minimize sensitivity to parasitic electromagnetic radiation. The 
sensitivity of the transducer was determined to be 9 µVPa-1 ± 5% over a 1 – 9 MHz 
bandwidth. Having a noise level of 33 µV, this translates to a noise equivalent 
pressure of about 4 Pa. It has to be noted that the current array design is a compro-
mise between imaging performance and cost effectiveness. Image quality can be 
improved by increasing the detection arc and/or the number of elements, whereas 
reducing the length of the total detection aperture or number of elements will 
increase imaging artifacts due to less tomographic views. Within these constraints, 
the transducer parameters and their geo-metrical arrangement are optimized to 
achieve the best possibly fit with the dimensions required for mouse imaging.  

3.3.3 Imaging chamber and animal positioning 

The imaging chamber, of which a photograph is shown in Fig. 3.3, accommodates 
the fiber bundle arrangement for illumination, the transducer array for signal 
detection and an animal holder designed for in vivo imaging. The chamber is filled 
with water for optimal signal coupling. A temperature controlled heating unit 
stabilizes the temperature at 34°C to maintain a constant speed of sound and 
prevent hypothermia of the animal during anesthesia. The animal holder is a novel 
design concept that allows placing the animal either in prone or supine position 
horizontally in the center of the transducer array. A schematic representation of the 
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animal holder is depicted in Fig. 3.7 (a). It comprises a water-impermeable, optically 
and acoustically transparent polyethylene membrane that averts animal contact 
with water while providing a wide tomographic view of approximately 270° for 
multidirectional illumination and tomographic data detection. The shape of the front 
and back plate of the holder allows for immersion of the animal deeply in water 
while keeping a cylindrical shape matching the animal’s body contour. With a 
thickness of about 15 µm, it is thin enough to not interfere with the acoustic waves 

(min   150 µm) and shows sufficient flexibility to tightly wrap around the mouse 
under water due to the water pressure. This can be seen in Fig. 3.7 (b) representing 
a photograph of a mouse, being positioned in the animal holder in supine position 
and submersed in water. The holder also features a gas anesthesia supply through a 
port mounted on the side of the holder where the mouse snout latches on. A linear 
stage (NRT150, Thorlabs) allows linear translation of the animal holder along its long 
axis (z-axis) over a 150 mm range with a minimal step size of 2 µm for acquisition of 
whole body data sets.  
 

 
Fig. 3.7: (a) Schematic representation of the animal holder in which a water proof and optically and 
acoustically transparent membrane is used to avoid direct contact of the animal with water.         
(b) Photograph of the mouse in the animal holder. 

3.3.4 Data acquisition and control unit 

Due to the relatively weak photoacoustic signals (cf. section 2.3.3), the parallel data 
acquisition system should have a low noise floor. The sampling frequency has to be 
chosen to satisfy the Nyquist sampling theorem. The dynamic range of the system 
should be set in order to obtain best signal coverage. In the described implement-
tation, the signals are digitized at a frequency of 60 megasamples per second, by 
eight 12 bit multichannel analog-to-digital converters (Model PXI-5105, National 
Instruments) with an inbuilt anti-aliasing filter, rejecting frequencies above 24 MHz. 
The number of samples to be recorded for each pulse depends on the desired field 
of view. For the current 60 megasamples per second acquisition speed, samples are 
acquired approximately every 16.667 ns, corresponding to ultrasound travel 
distance of 25 μm in water. In that case, 3000 samples will, for instance, cover a field 
of view of 7.5 cm, sufficient to see the entire area covered by the ultrasound array. 
The dynamic range of the acquisition board is set to ± 25 mV, with input impedance 
set to 1 MΩ to maximize voltage transfer. The acquisition process is synchronized by 
the Q-switch trigger of the laser, which drives an embedded controller (NI PXI-8106, 
National Instruments), interfacing to LabVIEW (National Instruments). As a whole, 
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the acquisition system is capable of acquiring 2D cross-sectional images in less than 
1 ms and at a rate of 10 frames per second. Repetition rate is limited by the laser. By 
translating the mouse through the detector, 3D scans can also be obtained, with 
each imaging slice acquired in less than 1 ms. The system can offer multi-wavelength 
scans and if needed, signals can be averaged in order to increase the SNR. The 
multispectral image acquisition sequence, shown in Fig. 3.8, consists of six steps. 
First, the animal is translated along the z-axis in order to center the region of 
interest in the center of the detector. Then, the illumination wavelength and the 
number of averages are selected and the tissue is illuminated correspondingly. In 
the next step, the optoacoustic signals are acquired in a time-resolved manner using 
the 64 different detector channels. This process is triggered by the Q-switch of the 
laser. The collected data are then stored in the PC memory, reconstructed by the 
backprojection algorithm for online visualization and displayed as cross-sectional 2D 
images. After the sequence is completed, the system can be programmed to either 
select another wavelength or to change z-position, after which the sequence starts 
again. For multispectral data sets, the animal typically remains in the same imaging 
plane during acquisition of the selected wavelengths, before moving to the next 
position. In the single wavelength imaging mode, the animal holder can also be 
translated with constant speed without stopping while continuously illuminating and 
acquiring data. Using this method, data from large volumes can be acquired fast.   
 
 
 

 

Fig. 3.8: Flow chart of the multispectral imaging loop. For each position of the translation stage, 
cross-sectional optoacoustic data is acquired at several wavelengths. Afterwards, the stage moves 
to the next position. (Figure published in [92], Copyright 2011, Nature publishing group). 
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3.4 Performance characterization 

A combination of experimental measurements has been performed to systematically 
characterize the performance of the components. Parameters of interest include 
homogeneity of the illumination plane, electrical frequency response of the 
detection system, directivity and sensitivity of the transducers and the signal-to-
noise characteristic of the system.  

3.4.1 Tissue mimicking phantoms  

In this work, tissue-mimicking agar phantoms are used to test the performance of 
the system or developed algorithms with defined datasets. Agar phantoms can be 
produced in various shapes. Their production is straightforward and fast and they 
are stable for several weeks if stored at 4°C. They are made of a 1.5% (w/v) agar 
(Sigma-Aldrich, St. Louis, MO) solution which heated up to the boiling point solidifies 
after cooling down. The acoustic properties of the solidified agar are comparable to 
these of water [93]. Scattering properties (  

  = 10 cm-1) are achieved my adding 6% 
(v/v) of Intralipid-20% (Sigma-Aldrich, St. Louis, MO) to the agar solution before it 
solidifies [57].  Additional dyes like black India ink (Higgins, Sanford Bellwood, IL) can 
be added to the solution to attain defined optical absorption properties. Fig. 3.9 
shows a photograph of a representative tissue mimicking agar phantom with two 
cylindrical insertions.  
 

 
Fig. 3.9: Photography of a tissue mimicking phantom with two cylindrical insertions. The absorption 
coefficient for the background and the two insertions is µa = 0.2, 0.4 and 0.6 cm

-1
, respectively. 

Scattering  is  µs’  = 10 cm
-1

  everywhere.  

3.4.2 Illumination homogeneity 

The system uses a fiber bundle partitioned into 10 arms to create a ring shape 
illumination pattern of 8 mm width at the surface of the sample. To experimentally 
validate the achieved illumination homogeneity inside an object, a tissue-mimicking 
cylindrical agar phantom with a reduced scattering coefficient of   

  = 10 cm-1, an 
absorption coefficient of    = 0.6 cm-1 and a diameter of 1.9 cm was imaged at a 
wavelength of 740 nm. Image reconstruction was done with the 2D IMMI method 
using the PLSQR algorithm (cf. section 4.4.2). From the experimental measurements 
shown in Fig. 3.10 (a), we see minimal illumination inhomogeneities at the surface of 
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the sample which homogenize inside the object due to optical scattering. The slight 
illumination inhomogeneities are due to the quality of the laser beam, which makes 
a uniform coupling of light into the ten arms of the fiber bundle difficult. To reduce 
the sensitivity to coupling, we used a fiber bundle has a pseudo-randomized 
structure shown in Fig. 3.10 (b). A completely randomized fiber distribution in the 
bundle would further reduce illumination inhomogeneities. In section 2.4.8 it was 
discussed that from an image reconstruction and quantification point of view, it is 
better to do thin slice illumination because less out-of-plane absorbers contribute to 
the photoacoustic signal. Herein, the width of the illumination ring was chosen to be 
8 mm, for the reason that the width of the transducer required illuminating at an 
angle (see Fig. 3.6). This is problematic when the diameter of the mouse changes 
because then the illumination ring will shift with respect to the detection plane of 
the transducer array. A wider illumination ring reduces the sensitivity to this effect. 
Future system implementation should therefore focus on reducing the width of the 
transducer array to achieve a possible steep illumination angle and thus enable a 
thinner illumination ring.  
 

 
Fig. 3.10: (a) Illumination homogeneity visualized by imaging an absorbing and scattering agar 
phantom with a 1.9 cm diameter. (b) Pseudo-randomized fiber bundle. Each color represents a 
different arm. 

3.4.3 Electrical impulse response 

In section 2.3.3 we have seen that the electrical impulse response (EIR) of the 
detection system influences the shape of the optoacoustic signals and therefore may 
lead to artifacts in the reconstructions. The EIR was characterized in order to be able 
to compensate for the influence it has on image quality.  

Method 
To measure the EIR of the system we followed the approach presented by Rosenthal 
et al. [53]. It consists of generating an wideband optoacoustic signal in the focal 
point of the transducer, which can be achieved either by illuminating a point-like 
absorber with dimensions much smaller than the achievable resolution of the 
optoacoustic system or by focusing the laser beam to a small spot on a highly 
absorbing black agar slap. The pressure wave   (      ) from a point source 
located at   and detected with a transducer at position    is given by  
 
  (      )   (      )     (      )   (      )     ( )     (      ) (3.1) 
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where   denotes the temporal convolution operator,    (      ) the total impulse 
response,    (      )  the spatial impulse response and    ( )  the electrical 
impulse response of the system. If the source is located at the focal point, each point 
of the detector surface is excited simultaneously, i.e.    (      )   ( ) . 
Moreover, the optoacoustic signal from a point source is proportional to the 
derivative of a delta function  (    )     ( )   ⁄  as seen by substituting 
  ( )   ( ) in the optoacoustic forward solution Eq. (2.16). It then directly follows 
from Eq. (3.1) that 
 

  (    )  
  ( )

  
    ( )   ( )  

    ( )

  
 

    ( )

  
  

(3.2) 
 

 
Hence, the measured photoacoustic signal from an optoacoustic point-source 
corresponds to the derivative of the electrical impulse response of the measurement 
system. To retrieve the electrical impulse response, the measured optoacoustic 
signal has to be integrated over time so that: 
 

   ( )  ∫   (    
 )   

 

 

  
(3.3) 
 

 
A 50 µm black polyethylene microsphere (Cospheric LLC, Santa Barbara, California) 
embedded in a scattering agar phantom was used as a source to generate the 
optoacoustic signals. The microsphere was black, which ensures high absorption and 
thus a strong optoacoustic signal. In order to avoid reflections, due to strong 
impedance mismatches, the phantom was made of agar with matching acoustic 
properties to water and had scattering properties to achieve homogeneous the 
illumination. The microsphere was positioned in the center of rotation of the 
transducer array so that it had the same distance from each transducer element. 
This enabled the simultaneous measurement of the electrical impulse response of all 
elements. The signals were averaged over 1000 laser pulses to increase the SNR.  

Results 
Fig. 3.11 (a) depicts the simulated signal of a 50 µm microsphere and (b) its 
frequency spectrum obtained from the fast Fourier transform. Panel (c) depicts the 
signal after integration and (d) the corresponding frequency spectrum being 
constant within a standard deviation of 3% for frequencies up to 10 MHz. Hence for 
determining the EIR the microsphere is considered small enough. Panel (e) shows 
the mean electrical impulse response (EIR) of the system obtained by averaging the 
impulse responses from the 64 different transducer elements and (f) the corres-
ponding amplitude spectrum of the electrical frequency response (EFR). The error 
bars describe the standard deviation between the 64 channels. The array has a 
central frequency of 4.7 MHz and a -6 dB reception bandwidth between 2.1 and     
6.9 MHz, which translates into a fractional bandwidth of 97%. The -3 dB cutoff fre-
quency is at 7.8 MHz. The variation of frequency response between the individual 
elements is about 3% increasing to 6% towards the low frequencies.  
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Fig. 3.11: (a) Simulated signal of a 50 µm big spherical absorber and (b) its amplitude spectrum.     
(c) Simulated signal after integration and (d) corresponding amplitude spectrum. (e) Experimentally 
determined electrical impulse response of the detection system and (f) corresponding amplitude 
spectrum of the electrical frequency response.  

 
Discussion 
The retrieved values are in good correspondence with the specifications of the 
manufacturer (fc = 5 MHz, BW = 55%). Differences between the individual elements 
are due to fabrication inaccuracies as characterized by the manufacturer. The inter-
element differences are higher in the low frequency range because low frequency 
noise is amplified by the integration. Low frequency components in the signal are 
actually more prone to errors because they are weaker for small sources as seen in 
Fig. 3.11 (b). The difference in bandwidth stems from the pulse-echo method utilized 
by the manufacturer.  As explained by Araque Caballero in [41], the spectral band-
width determined by the pulse-echo method is the convolution of the send and 
receive spectra, which are the same, i.e.                    . The convo-

lution of EIR with itself, effectively squares the frequency of the transducer. On the 
other hand, the method employed herein considers only the receive spectrum, thus 
the difference in the measured optoacoustic bandwidth and the one determined by 



56 

 

the manufacturer. This also shows the importance of determining the EIR in receive 
mode when it is to be used to correct signal distortions in optoacoustic imaging 
scenarios. A method to accomplish this is presented in section 4.2. From the 
measured electrical frequency response it is possible to determine the maximal 
achievable resolution of the system. Solving equation (2.36) for the -3 dB cutoff 
frequency yields for the bandwidth limited resolution               ⁄  = 154 µm. 

3.4.4 Sensitivity distribution of the system5 

Having characterized the electrical properties of the transducer array, we also 
determined its spatial properties, i.e. its sensitivity distribution, which is necessary to 
understand what area the transducer actually covers.  

Method 
The total impulse response (TIR) was measured by scanning the imaging area of the 
transducer with a sub-resolution point absorber (cf. section 2.3.4). According to Eq. 
(3.1), this yields signals in the form     (   )    , from which the TIR can be 
obtained by integration over time.  
 
To allow for scanning of the transducer, the measurement was done outside the 
imaging chamber; all other components were in place as described above. A black 
polyethylene microsphere (Cospheric LLC, Santa Barbara, California) with a diameter 
of 50 µm was used as the optoacoustic source. In order to achieve uniform 
illumination, the microsphere was embedded in a light-scattering cylindrical agar 
phantom, 5 mm in diameter. The phantom was illuminated with a laser beam of 
about 3 mm in diameter, perpendicular to the scanning direction. The source can be 
thus considered a point-like emitter of isotropic, broadband optoacoustic signals. 
First, the transducer array was scanned in the xy-plane within a region of 40 mm by 
40 mm, centered in its mechanical center of rotation. The step size was 800 µm in 
both directions, resulting in a square grid of 51 pixels on each side. Then, the 
transducer was scanned within its yz-plane in a 10 mm by 40 mm region, with a step 
size of 100 µm in z-direction and 800 µm in y-direction. In both cases, the 
microsphere and its illumination were left static and at each scanning position the 
signals were averaged for 50 laser pulses. After integration of the measured signals 
over time, the signals were bandpass-filtered between 500 kHz and 8 MHz in order 
to reduce low frequency noise introduced by the integration. The sensitivity field 
was calculated by plotting the amplitude of the measured signals versus its spatial 
coordinates. Furthermore, the amplitude map was smoothed with a 5 x 5 median 
filter to reduce intensity variations between neighboring pixels due to slight fluctua-
tions of the laser energy during the measurement.  
 
For comparison, the amplitude maps were also numerically simulated. This was 
done with the software package Field II [56, 94]. The program calculates the spatial 
impulse response (SIR) of an arbitrary shaped transducer by dividing the surface of 
the transducer into small sub-apertures and solving Eq. (2.28). In order to yield the 

                                                           
5
 The measurement was done in cooperation with Miguel Angel Araque Caballero who reused the 
data for his work on optoacoustic imaging with full knowledge of sensor properties [41] . 
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TIR, each calculated spatial impulse response was convolved with the electrical 
impulse response (EIR) of the system, determined as described before. Then, the 
simulated TIR was processed in analogy to the experimental one and used to plot an 
amplitude map.  
 

 
Fig. 3.12: Sensitivity distribution of the system. (a) Section through the sensitivity field of the 32

nd
 

transducer element within the imaging plane (xy-plane), with the transducer array as reference.  
(b) Section through the same sensitivity field along the xz-plane with the element as reference.     
(c) Simulated sensitivity field of a single element within the imaging plane. (d) Combined sensitivity 
distribution of all elements within the imaging plane. (e) Sagittal section (yz-plane) through the 
sensitivity field. (f) to (h) Corresponding sections through the measured sensitivity fields. (h) FWHM 
of the sagittal section as a function of the distance from the transducer. The dashed line depicts the 
position of the mouse with an assumed diameter of 2 cm.  

Results 
Fig. 3.12 shows a section of the amplitude map of the 32nd element within the 
imaging plane (xy-plane) and (b) the corresponding section through the yz-plane. 
The transducer array is also depicted for reference. Panel (c) depicts the simulated 
single element sensitivity field and (d) the combined sensitivity field of all elements 
within the xy-plane. Panel (e) depicts the section through the simulated sensitivity 
field within the yz-plane. The experimentally measured sensitivity fields are depicted 
in corresponding order in panels (f) to (j). Panel (h) displays the FWHM of the sagittal 
section as a function of the distance from the transducer. The position of the mouse 
(2 cm in diameter) is represented with dashed lines. Simulated and experimental 
sensitivity fields show high congruence. The focal zone of each transducer element, 
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characterized by the -6 dB zone (i.e. the area in which the sensitivity drops to half its 
maximum value), is approximately 1.6 cm long along the acoustic axis of the 
transducer and 1 cm broad perpendicular to it. The first is referred to as the depth of 
the sensitivity field and the latter as the width. Its thickness, i.e. dimension along the 
z-axis, is approximately 1 mm. All transducers together form a circular shaped 
imaging window with a diameter of about 1.6 cm. The total sensitivity of the system 
increases towards the center of the transducer array.  

Discussion 
Slight discrepancies between the simulations and experimental measurements 
presented herein are due to illumination fluctuations as well as the sensitivity of the 
integration of the experimental signals to low frequency noise. 
 
The -6 dB sensitivity field of single transducer element spans an area of                     
1.6 cm x 1 cm x 0.1 cm, thus does not cover the whole cross section of the mouse. As 
a result some voxels are seen with a high sensitivity from fewer angles than others 
resulting in limited views on the borders of the sample. This is due to the shape of 
the detection elements. The width of the sensitivity field is determined by the width 
of the transducer element (here 1.88 mm) and it can be increased by reducing the 
width of the element. As determined in an additional simulation study following the 
numerical approach presented herein, the width of the detection element has to be 
reduced to at least 0.85 mm to fully cover the 2 cm big area for a frequency range 
up to 8 MHz Actually, reducing the width of the element has an additional benefit; 
by using smaller elements it is possible to fit more elements within the array. This 
improves the angular sampling of the acoustic field and finally the lateral resolution 
(cf. section 2.4.7).   
 
Depth and thickness of the sensitivity field depend on the focusing properties of the 
transducer. As mentioned in section 2.4.1, they are inversely related, i.e. reducing 
the thickness of the sensitivity field to improve the elevation resolution (in z-
direction), results in a shorter depth of field and vice versa. In that sense, we are 
limited to a compromise between elevational resolution and depth of field, 
especially in limited view detection geometries like the one presented here. The 
situation changes for full view (360°) detection. Due to the redundancy of 
information, it is sufficient that each transducer covers only the proximal half of the 
mouse’s cross section. Thus, shorter depths of fields are possible and focusing is 
increased. Yet, when such an toroid focusing approach is applied, half-time image 
reconstruction [95] is necessary. In this case, only the part of the signal which 
corresponds to the area of high focusing is used.  
 

3.4.5 Signal-to-noise ratio characteristics 

Optoacoustic signals are weak and generally affected by noise, which can be due to 
several instrumentation related factors such as system’s thermal noise, insufficient 
electrical and acoustical shielding or electrical and acoustical impedance 
mismatches. The ability to improve SNR in the system by means of signal averaging 
and per pulse laser energy was analyzed. For that a 300 µm in diameter big 
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transparent plastic tube was filled with rabbit blood, embedded in a scattering agar 
phantom and imaged with the system. The SNR was calculated from the resulting 
image according to       ⁄  where   stands for mean signal intensity of the 
blood insertion and   the standard deviation of the background signal.  
 
Fig. 3.13 (a) depicts the SNR as a function of the number of averages (45 mJ/pulse) 
and (b) as a function of the laser energy (single pulse). The SNR increases linearly 
with the laser energy and until 130 averages as the square root of the number of 
averages.  Above 130 averages there is no improvement of the SNR.  
 
The measurements show the importance of an optimized light delivery because SNR 
scales linearly with the light energy whereas it only increases as the square root of 
the number of averages. The inability to further increase SNR by averaging above 
130 averages show that beside stochastic electronic noise, which can be averaged 
out, there is an additional noise source of deterministic nature. An improved 
shielding of the transducer and cabling in further implementations may reduce this 
effect.  
 
 

 

 

Fig. 3.13: SNR as a function of the number of averages (a) and the laser energy (b).   

 

3.4.6 Spatial resolution 

In the small animal scanner one has to distinguish between cross-sectional 
resolution (within the xy-plane) and slice thickness (in z-direction), herein also 
termed elevational resolution. The first is due to tomographic image formation and 
depends on the reconstruction algorithm, the latter due to the focusing properties 
of the transducer.  
 

3.4.6.1 Cross-sectional resolution 
To determine the cross-sectional resolution of the system experimentally, 
measurements of the system’s point spread function (PSF) were made and 
compared to numerical simulations and the analytical formula presented in section 
2.4.3.1. Four micrcospheres (Cospheric Inc., Santa Barbara, CA), each with a 
diameter of 100 µm and embedded in a light scattering agar cylinder, were imaged 
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in the system. The imaging wavelength was 740 nm. No signal averaging was 
performed. The experimental signals were deconvolved with the electrical impulse 
response (cf. section 4.2). For comparison, optoacoustic signals from absorbers with 
a diameter of 100 µm were simulated by summing up theoretical signals from 
spherical absorbers over the transducer surface according to Eq. (2.17). The speed of 
sound in water was c = 1506 ms-1, corresponding to the one used for the 
experimental setup. Experimental and simulated signals were bandpass-filtered 
between 0.05 and 8 MHz. Reconstructions were done with the 2D IMMI method and 
inversion with the PLSQR algorithm (cf. section 4.4.2). The dimension of the PSF was 
estimated from the full width at half maximum (FWHM) of the Gaussian fit through 
the profiles. The resolution   was then obtained by deconvolving the finite size   of 
the object from the FWHM of the fit according to [96]  

 

  √         (3.4) 
  

Results 
Fig. 3.14 (a) depicts the reconstruction of the four microspheres positioned in the 
imaging plane. The profile through the reconstruction of the central microsphere 
along the x-axis is shown in (b). The reconstruction of the simulated data is shown in 
(c) and the resolution of the system, as obtained from the experimental 
measurements, the simulation and theoretical formula, see Eqs. (2.39) and (2.42). 
This is given in (d) as a function of the radial position. The PSF of the system is 
spatially variant.  It elongates in lateral direction (i.e. perpendicular  to  the  acoustic  
axis  of  the  transducer),  when  moved  along  radial  lines away from the center of 
rotation of the transducer array, ranging from 150 µm in the center to about 550 µm 
at 1 cm distance. The dimension of the PSF in axial direction remains constant at 
about 150 µm. Theoretical formula, simulation and experimental measurements are 
in good agreement. Slight differences are due to the limited view problem and 
sparse angular sampling.  
 
 

Discussion 
It has to be noted, that using the 2D IMMI method it is theoretically possible to 
incorporate the spatial impulse response of the detector into the inversion 
procedure, like proposed by Rosenthal et al. [55]. This would correct for the lateral 
resolution loss due to the finite size of the detection element. This approach was 
tested, but it was found that, for the presented geometry, due to the sparse angular 
sampling and the limited view detection, the reconstruction problem is too ill-
conditioned, and thus sensitive to data inconsistencies. On the other hand, for fine 
enough angular sampling (about 3 times per width of the detection element) and 
detection arcs larger than 180°, the method achieved homogenous cross-sectional 
resolution. The better approach is however a reduction of the width of the detection 
element as shown in Fig. 3.14 (d). At 300 µm width, the lateral resolution is 160 µm 
and thus about uniform within the 2 cm big area relevant for mouse imaging.   
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Fig. 3.14: (a) Point spread functions of four 100 µm in diameter big microspheres positioned in the 
imaging plane of the transducer. (b) Profile through the point spread function labeled (1) and the 
Gaussian fit. (c) Simulated point spread functions of 100 µm in diameter big spherical absorbers. (d) 
FWHM of the point spread functions according to experiment, simulation and theoretical formula 
(W = 0.3, 1 and 1.88 mm, respectively) presented in section 2.4.3.1.    

 

3.4.6.2 Elevational resolution 
The system uses focusing to reduce the system’s sensitivity to a disc-shaped plane 
around the center of rotation of the transducer array. Since the focusing capacity 
depends on the frequency content of the optoacoustic signal, the ability to eliminate 
out-of-plane signals is also frequency dependent. To characterize the elevational 
resolution in the system the combined sensitivity field of the system for different 
frequencies (1, 2, 3, 5 and 7 MHz, respectively) was calculated using the ultrasound 
simulation package Field II [56, 94] as described in section 3.3.4. The FWHM of the 
combined sensitivity field in z-direction was taken as a measure of the slice 
thickness. 

Results 
Fig. 3.15 (a) depicts a slice through the combined sensitivity field of the system along 
the yz-plane for the different frequencies and (b) the transducer array for reference. 
The slice thickness of the system clearly varies with the frequency content of the 
signal. The higher the frequency, the better the focusing and elimination of out-of-
plane signals. At 7 MHz the width of the combined sensitivity field is about 800 µm 
over a distance of approximately 8 mm. For lower frequencies, the width of the 
sensitivity field increases rapidly and is about 5 mm at 1 MHz.  
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Fig. 3.15: (a) Section across the combined sensitivity field in the yz-plane through the center of the 
transducer array for different frequencies. The label EIR indicates the sensitivity field for all the 
frequencies allowed by the electrical impulse response of the detector. (b) A cartoon of the 
transducer array with reference. (c) FWHM of the combined sensitivity field for different 
frequencies and positions along the y-axis.  

 

Discussion 
The results described above indicate that small absorbers, located outside the 
imaging plane, have little influence on the cross-sectional reconstruction, because 
such emitted signals have shorter wavelengths, for which the focusing ability of the 
transducer is better. In contrast, a big absorber, located at the same position, affects 
the cross-sectional reconstruction due to the reduced focusing at longer wave-
lengths. The frequency dependency of the slice thickness is an inherent limitation of 
focusing-based image formation; the technique employed in this work to enable 
real-time imaging. For mesoscopic applications, with only slightly scattering samples 
(e.g. zebra fish, pupa), light sheet illumination can be used to excite optoacoustic 
signals only in the imaging plane and thus reduce out-of-plane signals. Yet, for deep 
tissue imaging, light sheet illumination is little effective due to strong light scattering 
resulting in excitation of a much thicker slice than the irradiated area on the surface. 
To correct for out-of-plane signals, it is beneficial to do a 3D reconstruction using 
data from different scanning positions. This will be part of chapter 5 which deals 
with advanced 3D reconstruction methods.  

  



63 

 

3.5 Summary and conclusion 

This chapter described the development of a 2D real-time small animal imaging 
system that fulfills the previously unmet need of biomedical research for high frame-
rate and practical in vivo multispectral whole body imaging capabilities. The novel 
concept incorporates optimized light energy delivery using cylindrical ring 
illumination confocal to the detection plane of a multi-element cylindrically focused 
transducer array and an innovative animal holder design for in vivo imaging. The 
animal holder is comprised of an acoustically and optically matched membrane, 
which allows placement of the animal in the center of the transducer array, while 
prohibiting direct contact with the surrounding matching medium utilized for 
optimally coupling acoustic response from the sample to the detector. The animal 
holder can be translated in elevation in order to collect a whole body data set. For 
spectrally resolved imaging, the system further enables multiple wavelength 
illumination in the near-infrared range.  
 
The characterization of the system’s performance showed good congruence with the 
simulations. The array has a central frequency of 4.7 MHz and a -6 dB reception 
bandwidth between 2.1 and 6.9 MHz. In that sense, its sensitivity is optimized for 
detecting structures with a size of 200 µm. The system’s sensitivity is concentrated 
within a ring shaped area with a 1.6 cm diameter around the mechanical center of 
the transducer array. The in-plane resolution is dependent on the distance from the 
center of rotation and varies from 150 µm in the center to 550 µm at a distance of   
1 cm. The minimally achievable slice thickness determined by the focusing ability of 
the transducer array at maximal frequency, is 800 µm.  
 
It has to be noted that due to cost considerations, the array is comprised of 64 
elements arranged on a 172° arc. Although the detection parameters were 
optimized within these constraints, this is not the optimal solution for mouse 
imaging. Because of sparse angular sampling and limited view detection, we face 
aliasing and blurring effects discussed in sections 2.4.6 and 2.4.7. Reconstruction- 
based approaches to improve on this are presented in sections 4.3 and 4.4. The best 
approach is to increase the detection aperture as much as possible (a 270° curvature 
is feasible with the animal holder concept presented herein), reduce the width of 
the elements (a width of 300 µm would be technically feasible and yield a lateral 
resolution of about 160 µm at 1 cm distance) and maximize the amount of detection 
elements in the array. 
 
Mid 2013 we developed, based on the findings shown herein, an improved version 
of the small animal scanner with more elements (256), a larger detection arc (270°), 
a finer element width (0.7 mm) and toroid-focusing. Initial tests with the new system 
confirm the predictions made with respect to the improved imaging performance. In 
this work the system was not used and hence left outside further discussion.   
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4 Signal processing and 2D image 
reconstruction  

4.1 Introduction 

This chapter deals with methods required to convert the optoacoustic 
measurements into best images. Several steps are required for this purpose: First 
the measured optoacoustic signals have to be freed from the influence of the 
electrical impulse response. An approach how this can be achieved is presented in 
section 4.2. Then, especially for the presented system comprising only 64 detection 
elements, it is necessary to alleviate the aliasing artifacts due to the sparse angular 
sampling. A new method to achieve this, based on the computation of 
supplementary views, is presented in section 4.3. After that, 2D model-based image 
reconstruction in limited view detection scenarios is discussed. In contrast to full 
view detection scenarios, where IMMI inversions work without regularization [66], 
limited view reconstructions suffer from artifacts following a distinct pattern. 
Section 4.4 explains their physical underpinning and presents two regularization 
approaches to alleviate these artifacts for being able to do model-based 
reconstructions in limited view detection scenarios.  

4.2 Correction for the electrical impulse response 

Optoacoustic signals are broadband. Piezoelectric detection devices however have a 
relatively limited bandwidth and non-uniform frequency characteristics. The 
detection system acts as a bandpass filter and can distort the optoacoustic signal. 
Directly using the recorded raw pressure profiles might therefore lead to artifacts 
and loss of accuracy in the optoacoustic reconstructions [53]. The distortion of the 
optoacoustic signals is a linear process and is mathematically modeled by a temporal 
convolution with the electrical impulse response (EIR) of the system (cf. section 
2.3.3). How the EIR can be determined experimentally was discussed in section 
3.4.3. In this section, it is shown how it can be used to improve the reconstructions.  

4.2.1 Method 

To reverse the signal distortion due to the detection system, the detected signals 
have to be deconvolved with the EIR. Theoretically, this can be done in the Fourier 
domain by division with the electrical frequency response (EFR) which is the Fourier 
transform of the EIR. Using experimental data this might be problematic. Due to the 
limited detection bandwidth, noise in the signal can be increased significantly. To 
avoid the amplification of noise Wiener deconvolution is used herein. In the 
frequency domain Wiener deconvolution is defined as    
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where  ( ) is the Fourier transform of the deconvolved optoacoustic signal,   ( ) 
the Fourier transform of the detected signal,    ( ) the frequency response and 
  the noise floor of the detection system. The noise term in the denominator 
attenuates the scaling of noise in the data due to low system sensitivity [35].  
Alternatively, for IMMI reconstruction it is possible to include the electrical impulse 
response into the forward model  by convolving the individual columns of the matrix 
with the electrical impulse response like it is done in [66]. This has the advantage 
that no additional preprocessing of the signals is necessary when the forward matrix 
is calculated (except from signal filtering). Herein, only the Wiener deconvolution 
approach is employed. This approach has the advantage that it can be used for both 
backprojection reconstructions and IMMI inversions. In addition, convolving the 
forward model with the electrical impulse response reduces its sparseness, thus 
increases the matrix size and slows down the inversion, which is faster for sparser 
matrices. More information about IMMI inversions is given in section 4.4.    

4.2.2 Performance tests  

Test data 
A 200 µm big polyethylene microsphere (Cospheric Inc., Santa Barbara, CA) 
embedded in a 1.9 cm diameter scattering agar cylinder (  

     cm-1) and a 
homogenous scattering and absorbing agar cylinder (       cm-1,   

     cm-1) 
with the same dimensions were imaged with the 2D real-time system presented in 
chapter 3. Reconstructions were done with the backprojection algorithm (cf. section 
2.4.2.1) with and without deconvolving the system’s EIR from the measured 
optoacoustic signals.  

Results  
Fig. 4.1 shows the optoacoustic signal from the microsphere and the cylindrical 
phantom before and after deconvolution with the electrical impulse response 
measured as described in section 3.4.3. Before deconvolution the signal from the 
microsphere does not have the characteristic N shape. The signals from the cylinder 
show an additional peak. This creates a ring artifact at the surface of the cylinder (e) 
which might be misinterpreted as part of the object. The ring artifact disappears 
after deconvolution with the measured impulse response of the system. The streaks 
in the background are aliasing artifacts due to an insufficient angular sampling and 
limited view detection. A method to reduce aliasing artifacts is presented in section 
4.3.   

4.2.3 Conclusion 

In order to avoid artifacts in the optoacoustic reconstructions the measured 
optoacoustic signals have to be corrected for the influence of the system’s electrical 
impulse response. One possibility to achieve this is Wiener deconvolution. In all 
following paragraphs experimental signals are corrected for distortion due to the 
EIR.   
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Fig. 4.1: Effects of the electrical impulse response (EIR). A recorded signal of a 200 µm big 
microsphere is shown in (a). Due to the EIR of the detection system, the signal does not show the 
typical N shape profile characteristic for spherical sources. (b) Signal after Wiener’s deconvolution 
with the EIR. (c) Signal from a scattering and absorbing agar cylinder before correction showing an 
additional peak. (d) Signal after deconvolution not showing this peak. (e) Reconstruction of the 
cylinder without correction showing an erroneous ring surrounding the object. (f) Reconstruction 
with the corrected signals not showing this ring artifact.      

 

4.3 Data interpolation to reduce aliasing artifacts 

In optoacoustic tomography the acoustic field emitted from the object under 
investigation is measured in form of temporal signals along a detection surface or 
when using cylindrically focused transducers along a detection circle. In order to be 
able to reconstruct the object accurately, the acoustic field has to be sampled with 
at least twice the frequency of the detected optoacoustic signal. In many opto-
acoustic imaging systems (e.g. the system presented in chapter 3) only an 
insufficient amount of angular views (tomographic projections) can be acquired. As a 
consequence the reconstructions show aliasing artifacts significantly reducing the 
image quality. It has been shown in [72] that in order to avoid these artifacts the 
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spatial sampling period has to smaller than half the size of the detection element, 
i.e.          ⁄  where     is the angular sampling period,    the radius of the 
detection circle and   the size of the detection element. That is, depending on a size 
of the detection aperture a minimal amount of tomographic views       is needed 
to achieve aliasing artifact free reconstructions. Herein, in order to alleviate the 
aliasing artifacts, the use of artificial views is proposed, i.e. additional projections 
obtained by angular interpolation between measured projections. Next the method 
is introduced and tested on simulated and experimental data.  
 

4.3.1 Method 

The basic idea of the method is to supplement the measured projections by others 
obtained using linear interpolation in angle. The approach is heuristically motivated 
by a need of a minimal amount of tomographic views      to form an aliasing 
artifact free image and its successful use in X-ray computed tomography [97]. The 
method can be understood intuitively by considering the backprojection algorithm, 
although its use is not limited to the backprojection algorithm. When using the 
backprojection algorithm images are formed by backprojecting the optoacoustic 
signals measured at various tomographic detection positions onto spherical shells 
(or circles in 2D) and summing up the individual contributions, i.e. 
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where  (    )̅ is the backprojected quantity being computed from the measured 
pressure   (    ̅),    the ith detector position,    (    ) the solid angle element 
under which the detector is seen and   ( )  the reconstructed absorption 
distribution. If the detection arc is closed and detection positions are sufficiently 
densely spaced, the arcs originating from the individual backprojected signals will 
compensate each other due to the complementary information from different 
detection positions, yielding an image of the actual source distribution. If the 
angular sampling of the acoustic field is too sparse (i.e.        ), this 
compensating effect is missing and partial streaks remain. Thus, by its very nature, 
the performance of the backprojection algorithm improves with the number of 
projections available and thus the idea to supplement the available data by artificial 
views. To obtain intermediate views we propose linear interpolation in angle 
between the measured views, i.e. 
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where  (   ) is the interpolated pressure signal for the viewing angle   between 
the two real and neighboring detection positions      and    (i.e.   [       ]). 
Higher order interpolation was also tested but without significant improvements.  
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4.3.2 Method evaluation on simulated and experimental data 

Numerical simulations 
Optoacoustic signals from a complex phantom were simulated using the k-wave 
optoacoustic simulation toolbox [98] for a 2D circular detection geometry with a 
radius of 4 cm and densely spaced point detectors. The simulation grid had a size of 
802 x 802 x 5 voxels and each voxel a size of 100 x 100 x 100 µm³. A finite size 
detection element with a detection aperture of    1 mm was assumed by 
averaging the simulated point detector signals over the detection surface. Images 
were reconstructed with the 2D IMMI algorithm (cf. 2.4.2.2) using 720 (180 and 90) 
tomographic projections uniformly distributed on the 360° detection arc. Artificial 
projections were calculated by linear interpolation in angle to obtain a total of 720 
projections. The results were compared to the reconstruction without aliasing (i.e. 
the one with 720 projections) by calculating the root-mean-square-deviation 
(RMSD).     
 

Experimental data 
The method was also tested experimentally on two phantoms using the 
optoacoustic small animal scanner developed herein. The first phantom consisted of 
several 200 µm diameter microspheres (Cospheric Inc., Santa Barbara, CA) 
embedded in a scattering agar phantom. A photograph of the microsphere 
distribution can be seen in Fig. 4.4 (a). A second phantom was created by printing a 
complex pattern onto a sheet of paper which was then inserted into a scattering 
agar phantom. A photograph of the phantom is shown in Fig. 4.4 (d) before it was 
completely filled with scattering agar. The 2D phantom contains a vessel similar 
structure and various round and ellipsoid shaped objects. Image reconstruction was 
done with the IMMI method on a 301 x 301 grid with a voxel size of 70 µm. For 
inversion the PLSQR algorithm (presented in section 4.4.2) was used.  
 
To determine the number of artificial views required in the developed system to 
achieve optimal results, the signal to noise ratio (SNR) of the images was determined 
for different numbers of tomographic views (64,  96,   128,   192,   224,   256,   320,   
384,   512).  

 

Comparison of real and interpolated views 
The sinogram (i.e. the set of one-dimensional signals placed next to each other in 
order of the viewing angle) of an incomplete data set is shown in Fig. 4.2 (a). 
Unavailable projections are displayed as blanks. The dataset after computation of 
additional views is shown in (b), the correct complete dataset in (c). A comparison 
between a real measured projection and the interpolated one is shown in (d), 
indicating that peaks in the interpolated signals are slightly underestimated.  
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Fig. 4.2: (a) Sinogram of a dataset with insufficient angular views. Angles at which no data was 
sampled are set to zero.  (b) Sinogram after linear interpolation in angle for the missing projections.  
(c)  Sinogram of the complete dataset.  (d) Comparison between real (red) and interpolated (blue) 
signals. 
 

Reconstructions with real and interpolated views 
 

 
Fig. 4.3: The interpolation method tested on simulated data. (a) Full view (360°) reconstruction 
using detectors with an aperture size of 1 mm and 720 angular views sufficient to avoid aliasing. (b) 
Reconstruction with 180 (c) and 90 equidistant angular views. Streak artifacts are visible if an 
insufficient amount of views is used in the reconstruction. The second row shows the corres-
ponding reconstruction using 720 projections supplemented by phantom views. The interpolation 
technique alleviates the aliasing artifacts but also reduces the lateral resolution as indicated by the 
white arrow.  
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Fig. 4.3 shows the optoacoustic reconstructions. In the first row we show the results 
using 720, 180 and 90 real projections. In the second row the reconstructions were 
the measured projections were supplemented with phantom views to obtain a total 
of 720 projections are shown. The reconstruction using 720 projections (a) shows an 
accurate image, the reconstructions with 180 (b) and 90 (c) projections are degraded 
by aliasing artifacts. Conversely, the reconstructed images using phantom views are 
smooth with no (e) or significantly reduced (b) aliasing artifacts. In contrast to a 
reconstruction with the complete dataset a slight loss in lateral resolution is visible 
in the periphery of the phantom as indicated by the white arrow, which worsens the 
sparser the angular sampling. 

Optimal amount of artificial views in the developed system 
The first column in Fig. 4.4 shows photographs of the phantoms utilized. The second 
column depicts the reconstruction with the available 64 tomographic views, the 
third column the reconstruction using 192 tomographic views including 128 
phantom views. Aliasing artifacts are visible in (b) and (e), i.e. when no additional 
views are used. In case of the interpolated data the aliasing artifacts are significantly 
reduced.  A zoom onto the yellow and green areas is shown in (h). As seen by the 
zoom onto the microspheres cluster delineated in red, there is a slight resolution 
improvement in the interpolated case. The SNR computed from the microsphere 
labeled with the green arrow in (b) and the lateral dimension of the microsphere 
labeled with the yellow arrow in (c) are shown in (g) as a function of the total 
number of projections used in the reconstruction. SNR increases until 192 
projections and then starts saturating.  From the microsphere in the periphery, we 
also see a slight lateral resolution loss of about 60 µm when doing the interpolation.   

4.3.3 Discussion and Conclusion 

Undersampling of the acoustic field leads to aliasing artifacts in the reconstruction. 
Whereas this can be avoided in scanning-based setups by a fine enough angular 
sampling, this poses a problem in setups with a fixed detection geometry like the 
one developed herein. To alleviate the aliasing artifacts the use of phantom views is 
proposed. The method consists of calculating one or more artificial views between 
each pair of real views in order to augment the original dataset and then proceed 
with the image reconstruction as usual. The method was tested on simulated and 
experimental data and it could be shown that it can significantly reduce aliasing 
artifacts. The amount of projections needed depends on the imaging system. It 
should be chosen to achieve a spatial sampling finer than half of the detector size 
but not much smaller since this has no positive effect on the reconstruction and only 
increases the amount of data to be processed. As a rule of thumb for a circular 
detection geometry the total amount of projections needed is              ⁄   
where   is the detector size,    the radius of the detection circle and    the total 
detection aperture (in rad). In that sense     projections (real and artificial) 
equidistantly distributed on the 172° arc are a practical value for the small animal 
imaging system developed herein. Since computation time for the interpolation is 
negligible, the image formation time is approximately proportional the number of 
projections  when  using  the  backprojection  algorithm  and  can  therefore  also  be 
used  for  real-time  image display. When  using the  IMMI  method it has to  be  con- 
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Fig. 4.4: The interpolation method tested on experimental data. The first column depicts a 
photograph of the phantom used. The second column shows the reconstruction without inter-
polation and the third column with intermediate views obtained by interpolation.  The zoom onto 
the microsphere cluster delineated in red shows and resolution improvement for the 
reconstruction with interpolation. (g) displays the SNR and lateral dimension of the microsphere 
shown by the yellow arrow in (c) as a function of the number of projections (real + interpolated). 
(h) shows the zoom onto the yellow and green areas displaying a clear reduction of artifacts when 
using the interpolation technique.   

 
sidered that the use of interpolated projections also increases the matrix size. A side 
effect of the interpolation method is a slight lateral blurring and lateral resolution 
loss, which becomes worse with sparser angular sampling. However compared to 
the image improvement by reducing the aliasing artifacts (RMSD 0.015 vs. RMSD 
0.041), this this is an acceptable trade-off. The reason is that the interpolation 
method does not create new information but rather fills the gap in the image space 
due to a lack of spatial views by an estimate obtained from two adjacent 
tomographic views. Objects, whose spatial frequencies are not detected by the real 
measurements, remain invisible in the reconstruction using phantom views. In that 
sense the method can be considered as an adapted spatial blurring filter smoothing 
out streak artifacts due to aliasing. It has to be noted that there might be additional 
ways to reduce aliasing artifacts, for instance by simulating artificial projections 
based on an initial reconstruction using only the measured data set and then 
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recalculating in an iterative way an improved image including the simulated 
projections. Alternatively one could think of employing algebraic reconstruction 
techniques incorporating prior knowledge. Yet, none of these has been examined 
herein, because they are computationally more expensive and time consuming, 
whereas the focus of the presented method is on speed (i.e. achieving high temporal 
resolution) and ease of use. 

4.4 Model-based optoacoustic inversions in partial view 
detection scenarios 

A small animal imaging problem can be addressed as a 2D problem with light sheet 
illumination, to selectively generate optoacoustic signals in a narrow volume, and a 
collection of optoacoustic responses with detectors cylindrically-focused onto the 
same small volume and arranged on an arc surrounding the animal. Rosenthal et al. 
developed the 2D interpolated matrix model-based inversion algorithm (IMMI) 
presented in section 2.4.2.2 for image reconstruction in such a 2D scenario and they 
showed that for full view (360°) detection geometries this method has substantial 
advantages over the standard backprojection algorithms by not suppressing low 
frequency information and avoiding negative value artifacts [66].  
 
Yet, in many imaging implementations full view detection cannot be achieved, due 
to mechanical and practical constraints such as limited access to the imaging plane 
or cost. Conversely, the lack of a complete (360°) tomographic dataset imposes 
inversion challenges and might compromise the accuracy of the reconstruction by 
rendering some parts of the object invisible. This is known as the limited view 
problem and was discussed in section 2.4.6. Hypothesizing that IMMI can also 
improve the reconstructions in limited view detection scenarios compared to back-
projection algorithms (i.e. in the system developed herein), the IMMI method was 
studied in the context of partial view detection. It turned out that IMMI, which 
under ideal full view conditions, yields artifact free reconstructions [66], suffers from 
ill-conditioned forward matrices leading to error-prone reconstructions.  
 
In this section it is shown that the reconstruction errors follow a distinct pattern. 
Based on the distinct properties of the reconstruction errors, two algorithms to 
minimize them in the IMMI framework are proposed and tested in simulations and 
experimentally using tissue mimicking phantoms. The study was published 2011 in 
Medical Physics under the title “Model-based optoacoustic inversions with incom-
plete projection data” [99]. 

4.4.1 Limited view artifacts 

Limited view reconstructions pose a particular challenge in optoacoustic 
tomography. As discussed in section 2.4.2.2  the boundary of an object may be 
invisible in the reconstruction if the detection view is not sufficiently 
comprehensive.  Specifically this happens when there is no normal line orthogonal 
to the boundaries intersecting the detection curve [71], because in such a situation 
the wavefront is not detected. IMMI, which yields artifact free reconstructions 
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under ideal full view conditions [66] suffers from an additional difficulty when 
implemented in limited view scenarios.   
 
As the detection curve is reduced (blue line in Fig. 4.5 a), the inversion of the matrix 
relation in Eq. (2.34) becomes increasingly ill-conditioned and therefore more prone 
to errors. This effect is illustrated in Fig. 4.5 (b), where the condition number of the 
matrix is given for different arc lengths. In the specific scenario of limited view 
reconstruction, the errors are manifested in stripe artifacts, as shown in Fig. 4.5 (c) 
for a 170o detection arc. The artifacts are independent of the method used to solve 
Eq. (2.34), and are obtained for the LSQR algorithm as well as for the pseudo-inverse 
method. The stripes appear in the invisibility zone of the reconstructed image and 
do not fulfill the detection condition. The smaller the detection arc is, i.e. the more 
ill-conditioned the problem is, the stronger the stripes are. In addition, the stripes 
are more accentuated in deeper parts of the region not covered by ultrasound 
detectors. Thus regularization is necessary. 
 

 
Fig. 4.5: (a) Reconstructable (solid red line) and “invisible” (dashed red line) boundaries of a round 
object with a square insertion partially lying in the “visibility region” (gray-shaded area) and the 
“invisibility domain” for a detector moving along the solid blue arc. Dashed boundaries blur away 
since they do not fulfill the detection criterion, i.e. they do not have a normal passing at least 
through one detector position. (b) The conditionnumber of the matrix M as a function of the 
detection arc. The higher the conditionnumber the more error-prone the inversion of M becomes. 
(c) IMMI reconstruction of the phantom. IMMI reconstructions show stripe artifacts in the 
invisibility domain.  (Panels (a)-(c) published in [99], Copyright 2011, Am. Assoc. Phys. Med.) 

 
The origin of the stripe artifacts is the same as the one of the blurring of interfaces 
not fulfilling the detection criterion. The stripes represent objects whose acoustic 
fields are generally undetected in the detector geometry. This effect is illustrated in 
Fig. 4.6 (a) and (b). Fig. 4.6 (a) shows a single stripe in the invisible zone and Fig. 4.6 
(b) shows the energy of the corresponding acoustic field detected at different 
angles. The figure clearly shows that most of the acoustic energy is obtained at 
angles outside the detection arc. As a result of this effect, the available data is not 
sufficient to conclude whether the originating image had such stripes. 
Backprojection algorithms are based on additive formula in which contributions 
from different detectors are projected and summed up to form the image. As a 
result, the lack of data leads to an image without any characteristics that do not 
fulfill the detection condition. In contrast, IMMI is based on an optimization 
algorithm, in which the image is obtained by minimizing the mean square error 
(MSE) in Eq. (2.35). Since objects that do not fulfill the detection criterion have only 
minute effect on the MSE, any form of numerical or experimental inaccuracy may be 
interpreted by the algorithm to have been originated from such objects. Thus, in 
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contrast to backprojection algorithms, in which objects that do not fulfill the 
detection conditions are excluded from the reconstructed image or distorted, in 
IMMI such objects appear almost randomly and might dominate the image in the 
invisible zone. 
 

 
Fig. 4.6: (a) Phantom containing an insertion similar to the stripe artifacts in the “invisibility” 
domain.  (b) The energy of its optoacoustic signal as a function of the detector position indicating a 
high directivity. As a result the optoacoustic signal of such structures cannot be detected in limited 
view detection scenarios with a detection arc smaller than 190° and consequently have a small 
effect on the mean square error in Eq. 6 which is minimized in order to obtain an image.  Any form 
of numerical or experimental inaccuracies may therefore be misinterpreted by the optimization 
algorithm as originating from such objects. (Figure published in [99], Copyright 2011, Am. Assoc. 
Phys. Med.) 

4.4.2 Regularization techniques 

The reconstruction artifacts due to limited view geometry can be significantly 
reduced by regularizing the inversion in IMMI. The regularization is performed by 
exploiting the specific stripe shape of the artifacts. The stripes involve large 
variations in the direction perpendicular to their orientation; therefore, it would be 
beneficial to introduce a constraint that limits variations in this direction, i.e.  
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D stands for a discrete approximation of the first derivative operator  

perpendicular to the ripple orientation. Without the loss of generality, it is assumed 
that we have a detection arc like the one shown in Fig. 4.5 (a). In this case, the stripe 
artifacts are horizontal, and the derivate operator writes as 
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This side constraint penalizes strong variations in the pixel intensities along vertical 
lines (perpendicular to the stripe artifacts).  
 
Two methods for performing the regularization were investigated. A direct method, 
which regularizes the pseudo-inverse of M by using truncated generalized singular 
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value decomposition (TGSVD) and an preconditioned iterative method (PLSQR) 
which searches the solution iteratively in a constrained subspace. The direct 
approach has the advantage of enabling a fast image reconstruction because for a 
given imaging geometry, the regularized pseudo-inverse can be computed in 
advance and be reused for consecutive reconstructions. The iterative method is 
appropriate for significantly larger matrices because in each iteration step only one 
column vector of the matrix is kept in the computer's working memory.  
 

4.4.2.1 Truncated generalized singular value decomposition (TGSVD) 
Truncated singular value decomposition (SVD) [100-103] is a common method for 
regularizing ill-conditioned inversion problems. The SVD of a matrix M is given by   
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where U,V are orthonormal matrices (VTV=UTU=In)  with the column vectors ui and vi  

(i=1...n) and  is the diagonal matrix containing  the singular values i of M in 

descending order (1 >2 …>n). From Eq. (4.6 ) it follows that   
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Given that the matrix M connects the image vector z to the acoustic-signal vector p, 
the vectors vi can be considered as eigen-images, whose corresponding normalized 
acoustic signals ui can be considered as eigen-signals. The eigen-images are arranged 

such that the energy of their corresponding acoustic signal i decreases with the 
index i. Using SVD, the solution to Eq. (2.35) can be written as a superposition of the 
eigen-images     

 

i

n

i i

T

i v
pu

z 



1 

 
(4.8) 
 

  

where pu
T

i are the coefficients of the projection of p to the space spanned by }{ iu . 

The effect that a certain eigen-signal has on the reconstruction is inversely 

proportional to its singular value i . In ill-conditioned problems, 1ni  , 

therefore small variations or even noise in p values corresponding to high index 
eigen-signals can lead to perceived artifacts. 

 
Regularization can be achieved by truncation of Eq. (4.8), i.e.    
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which can improve the stability of the inversion, since high index eigen-images, 
whose contribution to the solution in Eq. (4.8) is determined mostly by modeling 
errors and noise, are omitted in Eq. (4.9).  
 
Ideally, the eigen-images that are cut off would contain only stripe artifacts. 
However, since the singular values usually decay gradually to zero, it is not possible 
to find an accurate cut-off value. For ensuring that stripe artifacts are not contained 
in the truncated solution it is possible instead to employ the generalized singular 
value decomposition (GSVD) [102]. In GSVD, the orthonormality of the eigen-images 
is discarded in order to generalize the decomposition to include the quality measure

2
Lz , where L stands for an generalized discrete derivate operator of order p            

( pnmnpn   ,)(L ). The GSVD of the matrix pair M and L can be written as: 
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It has to be noted that in GSVD, the vectors ix
 play the role of eigen-images and 

that the eigen-images are ordered according to the energy of their corresponding 

normalized eigen-signals iu . In addition, the eigen-images are also organized accor-

ding to the 2l – norm of their derivatives 
2iDx .  

 
For GSVD with p = 1, the solution to Eq. (2.35) can be written as a superposition of 
the eigen-images in the following compact form:   
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The regularized solution is achieved by using the truncated generalized singular 
value decomposition (TGSVD):   
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Because the cut-off eigen-images correspond to large i  values, the transition 

between low and high index eigen-values will be characterized by strong pixel 
variation on the axis on which the derivative operator D acts. Since it is assumed 
that the optoacoustic image does not contain such strong pixel variations, the 
quality of the reconstruction will not be sensitive to the choice of the regularization 
parameter k. TGSVD can be understood as a variation of TSVD in which the role of 

the 2l norm of the solution 
2

z and eigen-images is replaced by the 2l  norm of the 

differentiated images 
2

Dz . In TSVD, the contribution of eigen-images is truncated 

which would require high energy to marginally reduce the residual error, thus 
effectively, penalizing unnecessary high energy contributions. In contrast, in TGSVD 
it is the contribution of eigen-images in which a high energy for the differentiated 
images is required to marginally reduce the residual error which is truncated, thus 
penalizing unnecessary contributions with strong stripe-like variations.  

 
Fig. 4.7 (a) shows the root mean square deviation (RMSD) 
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between reconstruction z and known solution zref for different phantoms in a 170° 
reconstruction as a function of the number of generalized singular values used in the 
reconstruction. We see that an optimal result is obtained for approximately the 
same number of singular values used in the reconstruction. This allows the 
determination the cut-off parameter based on a simulation study and use the same 
value for consecutive reconstructions.  

4.4.2.2 Preconditioned LSQR (PLSQR) 
The standard LSQR algorithm, described in section 2.4.2.2 minimizes the residual 
error Eq. (2.38) under the restriction that the solution lies in the Krylov subspace 
satisfying  
 

 .,...,)( 1 kk spanK vvMpM,M
T   (4.16) 

 
Hence, the solution after iteration k is similar to the solution of the TSVD method, 
i.e. early iterations are generally associated with high singular values of M and the 
late iterations with the low ones. In limited view scenarios in which M is ill-
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conditioned the algorithm approaches the correct solution in early iterations but 
then diverges to a solution, which significantly deviates from the original image. 
Stopping the iterations before the artifacts appear can be a way to regularize the 
inversion. However, similar to the TSVD method, this penalizes high energy values 

2kz  and therefore LSQR is not particularly adapted to deal with the stripe artifacts.  

 

To improve the sensitivity of the regularization to the stripe artifacts the 
preconditioned LSQR algorithm (PLSQR) is employed [104, 105]. In contrast to the 

standard LSQR algorithm, in which stopping of iterations penalizes
2kz , PLSQR 

penalizes the more general functional 
2kLz  and therefore early iterations of the 

PLSQR algorithm are characterized by having low 
2kLz values. By choosing L = D 

the stripe artifacts appear in later iterations than for the standard LSQR algorithm 
and consequently, there is a better separation between image relevant information 
and artifacts, which leads to a better reconstruction accuracy. The images in          
Fig. 4.7 (b) show for the LSQR and PLSQR method the contribution of the iteration 
after which the RMSD between reconstruction and original image has reached its 
minimum. Stopping the iterations obviously leads to a loss of image relevant low 
frequency information for the LSQR method, which is not the case for the PLSQR 
method.  
 

 
 

Fig. 4.7: (a) The RMSD between reconstruction and original image for the four phantoms shown as 
insets in a 170° limited view scenario for the TGSVD method. For all the phantoms the minimum 
RMSD is obtained approximately for the same number of singular values used in the 
reconstruction. Consequently, one can determine the number of SVs used in the reconstruction a 
priori in a simulation study based on an arbitrary phantom. (b) The RMSD between PLSQR 
reconstruction and solution and the corresponding residual error R for 170° reconstructions with 
noisy data (SNR = 8 dB) as a function of the iterations. Since the method is only slightly semi-
convergent, the relative change of R can be used to devise a stopping criterion. The two inlays 
show the contribution of the iteration after the minimum of the RMSD has been reached, for the 
LSQR and the PLSQR algorithm. Stopping the iterations leads to a loss of image relevant low 
frequency information for the LSQR method, which is not the case for the PLSQR method. (Figure 
published in [99], Copyright 2011, Am. Assoc. Phys. Med.)  
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Fig. 4.7 (b) also shows the RMSD and the residual error R as a function of the 
number of iterations. Since the flat part of the residual error and the minimum of   
the RMSD correlate, it is possible to devise a stopping criterion based on the 
normalized relative change of the residual error  
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If it becomes smaller than a predefined threshold Rt , then the iterations are 

stopped. The implementation of PLSQR can be found in [104, 105]. 

4.4.3  Performance evaluation 

Numerical simulations 
A numerical study was performed to analyze the three reconstruction schemes 
considered herein, i.e. conventional IMMI and regularized IMMI using TGSVD, and 
PLSQR, under various limited view scenarios. In all the simulations presented in this 
section, the imaged object was a circular phantom with several insertions of variable 
size and shape. The bulk of the phantom had tissue-mimicking optical properties 
with a reduced scattering coefficient of µs’ = 10 cm-1 and absorption coefficient of    
µa = 0.15 cm-1. The insertion had the same scattering coefficient as the bulk, and 
absorption coefficient in values ranging from 0.2 to 0.4 cm-1. The phantom was 
uniformly illuminated on its boundary, where the intensity on the boundary 
accepted the normalized value of 1. The light fluence within the phantom was 
calculated by a FEM solution  to the light diffusion equation [73]. The originating 
optoacoustic image is shown in Fig. 4.8 (a), as well as the detection arc, over which 
the acoustic detectors are positioned. The three reconstruction algorithms were 

tested for the following detection arc spans:  360°, 300°, 240°, 190°, 180°, 170°, 
150° and 120°, respectively. In all the cases the angular increment between the 
transducer positions was held constant at 1°. The optoacoustic signal was simulated 
using the forward model given in Eq. (2.34). To create experimental conditions, the 
photoacoustic signal was corrupted with different levels of white noise: no noise, 
SNR = 28, 21, 8, 3 and 1.7 dB, respectively. The accuracy of the reconstructions was 
evaluated by the root mean square deviation (RMSD) between the reconstruction 
and the known solution given by Eq. (4.15).   
For the PLSQR inversion iterations were terminated when the relative change of the 
normalized residual error fell below the threshold tR = 10-7. The number of genera-
lized singular values used in the TGSVD reconstruction was determined by a 
simulation study based on phantom 4 seen in Fig. 4.7 (a).  

Experimental test data 
In addition to the numerical studies, the performance of the proposed algorithms 
was tested experimentally on tissue-mimicking phantoms. The phantoms were 
imaged in the optoacoustic tomography system described in Ref. [106] and briefly in 
section 3.2.1. The phantom employed in the experimental measurements was 
cylindrically shaped and had a diameter of 16 mm and a background reduced 



81 

 

scattering coefficient of µs’ = 10 cm-1 and a background absorption of 0.5 cm-1. A 
square absorbing insertion (5 mm edge length) was introduced in the center of the 
phantom. The insertion had scattering similar to the background while the optical 
absorption coefficient was set to 2.5 cm-1.  The acoustic signals were measured over 
360° with an increment of 1°. Limited views were simulated by varying the number 
of projections (arc length). All reconstructions were performed on an 80 x 80 grid. 
The reconstructions were performed using the conventional Moore-Penrose 
pseudo-inverse IMMI and the PLSQR and TGSVD regularization techniques in which 
the regularization parameters were determined as in the simulation study. IMMI and 
the backprojection algorithm were also used for comparison.  
 
The presented regularization approach was also tested on a more complex phantom 
imaged in the small animal scanner presented in chapter 3. The 64 measured 
projections were interpolated to a total set of 192. The reconstructed region of 
interest had a size of 21 x 21 mm² and was represented by 301 x 301 pixels. Each 
pixel had a size of 70 µm. The high number of pixels in the image prevented the use 
of TGSVD in reconstruction owing to memory limitations, and thus only PLSQR was 
tested. 

Performance on simulated data 
Fig. 4.8 (b)-(d) depict the RMSD between the reconstructed data and the simulated 
images when utilizing the Moore-Penrose pseudo-inverse, the TGSVD method and 
the PLSQR algorithm, respectively, as a function of the detection arc and the SNR 
assumed. For all three methods, the RMSD does not depend on the detection arc 
when it is wider than 190°. In that case, the model matrix is well conditioned, as 
seen in Fig. 4.5 (c), and regularization is not necessary. For narrower detection arcs, 
however, the forward problem becomes ill-conditioned and its inversion leads to a 
substantial increase in the RMSD of the IMMI reconstruction. Conversely, TGSVD 
and PLSQR reduce the RMSD, albeit not to the levels obtained for detection arcs 
wider than 190°. 
 
Fig. 4.9 shows examples of reconstructed images. The reconstructions were 
obtained for an 80 x 80 grid, the same SNR of 8 dB and for three arc spans (240°, 
170°, and 120°) presented on three columns from right to left. The first three rows 
present the not-regularized, PLSQR, and TGSVD IMMI reconstructions, respectively, 
whereas the fourth row presents the backprojection reconstruction. The figure 
shows that for the 240° wide arc, both regularized and Moore-Penrose pseudo-
inverse based IMMI reconstructions achieve similar visual quality, close to that of 
the original image. In contrast, the backprojection reconstruction suffers from 
negative value artifacts that accentuate the boundary, and does not depict the light 
attenuation in the phantom [20]. In the 170° scenario, stripe artifacts appear in the 
Moore-Penrose pseudo-inverse based IMMI reconstruction. These artifacts are 
barely visible in the two regularized reconstructions, which both achieve visual 
quality close to the 240° case. Similarly, the backprojection reconstruction for the 
170° and 240° cases is approximately the same. When the detection arc’s span is 
further reduced to 120°, the stripe artifacts dominate the IMMI reconstruction. 
Although both regularization methods eliminate these artifacts, they do not achieve 
the  same  visual  quality  as   the  IMMI  reconstructions  in  the  240°  scenario.  The 
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Fig. 4.8: (a) The phantom used in the numerical study representing the map of local laser energy 
deposition as well as the detection arc on which the virtual transducer is assumed to rotate around 
the sample. (b) RMSD between the reconstruction without regularization and the solution for 
different detection arcs and noise levels. (c)-(d) RMSD for the TGSVD method and the PLSQR 
algorithm. Both methods yield results of similar accuracy. The increase of the RMSD is due to the 
blurring of boundaries not fulfilling the detection criteria and not due to the stripe artifacts. (Figure 
published in [99], Copyright 2011, Am. Assoc. Phys. Med.) 

 

 
Fig. 4.9: (a)-(c) Reconstructions without regularization of the phantom shown in Fig. 4.8 (a) based 
on 240°, 170° and 120° detection arcs and 8 dB SNR. For detection arcs smaller than 190°, strong 
stripe artifacts appear which mask underlying object features. (d)-(f) PLSQR and (g)-(i) TGSVD 
reconstructions for the same conditions. Both techniques reduce the stripe artifacts, however the 
blurring of boundaries is still present for detection arcs smaller than 180°. (j)-(l) backprojection- 
based reconstructions. They are obviously not quantitative and suffer also from the blurring of 
boundaries. (Figure published in [99], Copyright 2011, Am. Assoc. Phys. Med.) 
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main effect visible in the 120° regularized reconstructions is blurring of the boundary 
at sections which do not fulfill the detection criterion. The same effect is visible in 
the backprojection reconstruction. 
 

Performance on experimental data 
Similarly to the simulated data, backprojection-based reconstructions accentuate 
the boundaries (Fig. 4.10 (j)-(l)) and exhibit negative value artifacts. In contrast, the 
model-based results, based on full view tomographic data (Fig. 4.10 (a), (d) and (g)) 
are all positive. In the limited view case without regularization (Fig. 4.10 (a) and (b)), 
the model-based reconstructions are corrupted by stripe artifacts which increase 
when the detection arcs becomes smaller. The presented regularization methods 
can greatly reduce these effects (Fig. 4.10 (e)-(f) for PLSQR and (h)-(i) for TGSVD). In 
congruence to the numerical study no differences between both methods are 
visible. Boundaries that do not fulfill the detection criterion, i.e. which do not have 
the normal passing through a detector position, cannot be recovered by either IMMI 
or the backprojection-based reconstructions. 

 

 
Fig. 4.10: Experimental reconstruction from a quadratic insertion (µa = 2.5 cm

-1
) embedded in a 

homogenous scattering (µs’ = 10 cm
-1

) and slightly absorbing (µa = 0.5 cm
-1

) cylindrical background. 
The columns correspond to the following detection arcs 360°, 170°, 120°, (a)-(c) the rows to not-
regularized, (d)-(f) PLSQR, (g)-(i) TGSVD regularized IMMI reconstructions and (j)-(l) to back-
projection reconstructions. IMMI reconstruction without regularization show strong stripe artifacts 
which mask underlying structures, regularization techniques allow correction. Both IMMI and 
backprojection reconstructions suffer from the blurring of boundaries not fulfilling the detection 
criteria.  (Figure published in [99], Copyright 2011, Am. Assoc. Phys. Med.) 
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Compared to the simulated reconstructions, a subsidence of the image background 
is visible opposite to the detection arc (e.g. Fig. 4.10 (e) and (h)) which is due to 
experimental factors like transducers’ frequency response and illumination 
inhomogeneities due to the varying illumination (cf. section 3.2.1) which have not 
been taken into account in the forward model. In the full view case this effect is not 
visible due to the redundancy of the data, i.e. the average of projections from 
opposite directions compensate these effects. 
 
Fig. 4.11 (a) shows a photograph of phantom imaged in the small animal scanner. It 
was produced by printing a complex pattern onto a sheet of paper and embedding it 
into a scattering agar matrix. Fig. 4.11 (b) shows the reconstruction without 
regularization; Fig. 4.11 (c) the corresponding PLSQR reconstruction and (d) the 
backprojection reconstruction. Similar to the previous examples, PLSQR significantly 
reduced the stripe artifacts in the image, attaining higher image quality. Also, 
compared to the backprojection results, the low spatial frequencies are much better 
represented in the image. Since optoacoustic images are presented on a black to 
white colormap, dark areas in the paper phantom appear white in the 
reconstruction.   
 

 
Fig. 4.11: (a) Photograph of the phantom imaged in the small animal scanner. (b) Model-based 
reconstruction without regularization showing artifacts. (c) Reconstruction with the PLSQR 
regularization. (b) backprojection reconstruction.     

4.4.4 Discussion and Conclusion 

The 2D optoacoustic reconstruction problem under limited view scenarios was 
studied using the model-based framework of IMMI. While in full view scenarios 
IMMI yields higher quality reconstructions than backprojection algorithms, in the 
limited view scenario it suffers from strong stripe artifacts that significantly degrade 
the reconstruction quality. These artifacts, which do not appear in backprojection 
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reconstructions, occur when the detection arc covers less than 190° of tomographic 
view. As a result, the optoacoustic data collected do not suffice for accurately 
determining the structure of the image object, leading to an ill-conditioned inversion 
problem. 
 
In order to eliminate stripe artifacts and stabilize the inversion two regularization 
algorithms were employed: TGSVD and PLSQR. For both algorithms, the magnitude 
of the stripe artifacts reduces by introducing a side constraint that penalizes the 
image variation in the direction perpendicular to the orientation of the stripes. In 
TGSVD, generalized singular value decomposition was employed in which the 
singular values are arranged according to the side constraint value of the 
corresponding “singular” images. The regularization is performed by truncating the 
decomposition, eliminating the lowest generalized singular values, responsible for 
the stripe artifacts. In PLSQR, an iterative algorithm is used in which the early 

iterations lead to low values of 
2kDz  and thus the stripe artifacts appear only after 

a very high number of iterations.  
 
Both methods have been tested in a simulation study for representative limited view 
scenarios and noise levels and subsequently validated on experimental data. The 
studies showed that, TGSVD and PLSQR are insensitive to the choice of the 
regularization parameter and therefore consistently lead to accurate reconstructions 
without the stripe artefacts. For detection arcs larger than 180° the results obtained 
are almost as accurate as for complete datasets. For narrower detection arcs, the 
methods presented are able to avoid the stripe artifacts; however the accuracy of 
the reconstructed images degrades due to blurring of parts in the image which do 
not fulfill the detection criterion.  Regarding the reconstruction quality, TGSVD and 
PLSQR yielded comparable results. Yet, clear distinctions exist with regard to the 
computational efficiency. For the direct TGSVD method, the calculation of the 
pseudo-inverse does not require the measured optoacoustic data to be incorporated 
into the inversion process. Thus, especially for systems with fixed geometry, it is 
possible to pre-calculate the regularized pseudo-inverse, save it in the computer 
memory and use the same inverted matrix for all the reconstructions in this 
particular system. Reconstruction then becomes relatively fast because it only 
requires multiplication of a matrix with the vectors of the time-dependent 
optoacoustic measurements. On the other hand, the actual inversion of the forward 
model matrix might still demand a relatively long time and consume large amount of 
computer memory. For instance, in our reconstructions with fairly low resolution, it 
was necessary to invert large matrices of several GB, which would usually demand 
high performance computing resources and even then might normally take several 
hours to complete. 
 
For PLSQR, the reconstruction process becomes memory efficient because, in each 
iteration only a single column is stored in the memory and thus large matrices can 
be easily dealt with. In addition, PLSQR is particularly suited for sparse matrices, 
which are typically constructed by the optoacoustic forward model. However, for 
each reconstruction, the minimization problem in Eq. (2.35) has to be solved again 
for every reconstructed slice.  
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The study has also revealed that regularized model-based reconstruction 
approaches have a clear advantage over the presented backprojection algorithm in 
terms of image quality when 2D limited tomographic view scenarios are considered.  

4.5 Summary and Conclusion 

This chapter was dedicated to signal processing and 2D image reconstruction in the 
developed system.  
 
It was shown that the electrical impulse response of the presented system distorts 
the shape of the optoacoustic signals which creates artifacts in the reconstruction. 
Herein Wiener deconvolution was used to deconvolve the system’s electrical 
impulse response from the measured optoacoustic signals to successfully correct the 
corresponding artifacts.  
 
Also, a technique based on calculating phantom views was presented to alleviate 
aliasing artifacts due to a sparse angular sampling of the acoustic field. The method 
clearly improved the quality of the images reconstructed with the presented system 
but introduced a slight lateral resolution loss. An amount of 192 views (real and 
artificial) was found optimal for reconstructions in the presented system.  
 
In addition, it was shown that 2D model-based reconstructions suffer from stripe 
artifacts in limited view scenarios. Their physical underpinning was explained and a 
direct and an iterative regularization approach were presented to avoid these 
artifacts in optoacoustic reconstructions involving limited views.  
 
The presented signal and image reconstruction approaches are used in most of the 
applications shown in chapter 7. The next chapter presents an advanced 
reconstruction approach taking into account the spatial impulse response of the 
detector, which was conceived in this work to further improve the accuracy of 3D 
reconstructions in the system.    
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5 Advanced image reconstruction 
approaches 

5.1 Introduction 

Since a small animal imaging problem effectively resembles cylindrical measurement 
geometry, it was addressed by collecting optoacoustic responses using detectors 
cylindrically focused onto a common plane and arranged on an arc surrounding the 
animal for cross-sectional imaging. This approach has the advantage that large-area 
focused detectors can be densely placed around the imaged cross-section, leading to 
high in-plane resolution, good sensitivity and, as a result, 2D real-time imaging 
performance, by only a relatively small number of ultrasound detectors. Moreover, 
whole-body datasets can be collected as fast as within 20 seconds by scanning the 
mouse in z-direction, which is the direction perpendicular to the imaged plane. For 
cross-sectional reconstructions a two-dimensional reconstruction algorithm is 
employed assuming optical absorbers confined in the imaging plane. Yet, due to 
strong light scattering in biological tissue, focusing of light to the imaging plane is 
impeded, especially for deep tissue structures, and optoacoustic signals are also 
generated outside the imaging plane. Therefore, the system uses a focused detector 
array to reduce its sensitivity to out-of-plane signals. Yet, the focusing ability of the 
detectors is frequency dependent and thus the reduction of out-of-plane signals (cf. 
section 3.4.6.2). As a consequence, cross-sectional reconstructions might be affected 
by low-frequency out-of-plane signals, which compromise contrast and 
quantification. Moreover, 3D reconstructions suffer from a frequency and spatial 
dependent elevational resolution, defined as the resolution perpendicular to the 
imaging plane. To improve on this, complementary information collected outside 
the imaging plane has to be considered in the inversion procedure. Conventional 3D 
reconstruction approaches assuming point detectors are however not suited for this 
purpose since they do not consider the strong distortion of the photoacoustic signal 
due to the spatial impulse response of a focused detector (cf. section 2.3.4), back-
project the signal into areas they do not originate from and thus yield results worse 
than the one achieved by stacking of the 2D cross-sectional reconstructions. This is 
shown in Fig. 5.1 depicting a slice parallel to the yz-plane through a 3D source 
distribution (a), the corresponding reconstruction obtained by stacking the 
individual 2D backprojection (BP) reconstructions (b) and by using the 3D BP 
algorithm (c). Instead it is necessary to account for the shape and size of the 
detection element in the inversion procedure. First, this was done by Rosenthal et 
al. [55] for a 2D source distribution using the 2D IMMI method. They showed that 
for circular full-view detection geometry and 2D source distribution, it is possible to 
compensate the lateral blurring of the point-spread function due to the finite width 
of a detection element. Caballero et al. [107] showed that this is also possible in a 
linear scanning geometry using spherically focused transducers. Herein, this idea is 
translated to 3D and tested whether it improves the 3D imaging capabilities in the 
small animal imaging system. For that a 3D model-based reconstruction algorithm 
which was published 2012 by Déan-Ben and myself [108] is adapted to incorporate 
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the finite size of the transducer elements. This chapter is organized as follows. The 
theoretical basis of the 3D IMMI method is presented and the approach to 
incorporate the transducer shape into the model is discussed. Then it is explained 
how the translational symmetry of the reconstruction problem can be used to 
compress the matrix and thus reduce the memory requirements for the 
reconstruction problem. Following that the method is tested in numerical 
simulations with controlled data sets to evaluate its performance. The method is 
further tested on experimental data including phantoms and mice acquired with the 
system. The chapter will then conclude with a discussion of the performance 
achieved and the overall advantages and disadvantages of the method.  
 

 
Fig. 5.1: (a) MIP view along x axis of the 3D source distribution reconstructed with (b) the 2D BP 
reconstruction and (c) the 3D BP reconstruction.  

5.2 The 3D IMMI model 

We described the 3D IMMI method in detail in [108]. For the sake of completeness, 
the theory is briefly reviewed herein.  
 
The optoacoustic signal at position r and instant t  is given by 
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where )(' tS  is a time-dependent spherical surface for which ct |'| rr  and ( )H r  

the heating function corresponding to the absorbed electromagnetic energy (cf. 
section 2.2.3). In the 3D IMMI reconstruction procedure, this analytical forward 
model is discretised and inverted by algebraic means. For the discretization of the 
forward model the temporal derivative in Eq. (5.1) is approximated by  
 

,
2

),(),(
),(

t

ttIttI
tp






rr
r  (5.2) 

 
 



89 

 

with 
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The constant term in Eq. (5.1) is neglected for the sake of simplicity assuming 
arbitrary units. Considering a spherical coordinate system centered at r , the surface 
element ),(' tdS r  can be expressed as 

 

 ddtdS cos|'|),(' 2rrr   (5.4) 
 

so that ),( tI r  is given by 
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Thus, Eq. (5.5) can be discretized by considering a set of points in ),(' tS r  at 

positions l'r  equally spaced in   and  , so that 
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For simplicity, the constant term    can be neglected when estimating the 

pressure in arbitrary units. 
 
Considering that the optical absorbers, i.e., the points where the optical absorption

0)'( rH , are confined in a finite 3D region. Then, a discrete region of interest (ROI) 

can be defined consisting of a regular grid of points covering this region (solid circles 

in Fig. 5.2) located at positions k'r . The grid consists of nxy x and y values separated a 

distance xy and nz z values separated a distance z. The points corresponding to 
the discretized integral in Eq. (5.6) are depicted as hollow circles in Fig. 5.2. The 

optical absorption at these points )'( lH r  (for those points inside the grid) can be 

expressed as a function of the optical absorption at the eight neighbouring points of 
the grid by using trilinear interpolation, i.e.: 
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where ' ( ' ' ) /a ax x x xy    , ' ( ' ' ) /a ay y y xy     and ' ( ' ' ) /a az z z z    and 

( ' , ' , ' )k k k kH H x y z . Then, by combining Eqs. (5.2), (5.6) and (5.7) the pressure in 

arbitrary units at a point ir  and at an instant 
jt  can be expressed as a linear 

combination of the optical absorption at the points of the grid, i.e.: 
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which corresponds to the discrete forward model that establishes the pressure as a 
function of the absorbed energy in the discrete ROI. 
 
The theoretical pressure for a set of P transducer positions and I instants can be 
computed as a function of the optical absorption at the points of the grid with Eq. 
(5.8), so that a system of linear equations can be formulated, which is expressed in a 
matrix form as 
 

p MH  (5.9) 
 

being ( ) ( )xy xy zP I n n n   
M  the model matrix, which depends solely on the geometry of 

the optoacoustic set-up and speed of sound in the medium, and H  the optical 
absorption at the points of the grid arranged in vector form. The optoacoustic 
reconstruction consists of calculating the vector H . This is done by minimizing the 
mean square difference between the theoretical pressure Eq. (5.9) and the 

measured pressure mp  at the same transducer positions and instants, i.e.: 

 
2argmin || ||sol m 

H

H p MH  (5.10)     
 

 

 
Fig. 5.2: 3D discretization of the optoacoustic forward model. (a) Grid points of the ROI (solid 
circles) along with the points used to discretize the integral (hollow circles). (b) Trilinear 
interpolation as a function of the eight neighbouring points. (Figure published in [109], Copyright 
2012, IEEE). 

 

5.3 Incorporating the transducer shape into the model 

Detection of optoacoustic signals with detectors having a finite size leads to a spatial 
averaging and distortion of the measured signals because different points    of the 
transducer surface    detect the optoacoustic signal  (    ) at different time points 
according to (cf. section 2.3.4) 
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In the model-based algorithm the time resolved optoacoustic signals    measured at 
the point    is expressed in form of a matrix relation 
 

       
 

(5.12) 
 

where the    represents the optoacoustic source distribution and     the model 
matrix for a point detector at position   . Combining the equations (5.11) and (5.12) 
the optoacoustic signal detected by a finite size detector    can be discretized as    
 

      (∑   ) 
   

 
(5.13) 
 

 
where   represents the forward model for a finite size detector and   one point 
within the detection aperture   of the element. In that sense the forward model for 
a finite size detection element can be built by considering the detection surface as a 
set of discrete points and summing up the matrixes of the individual surface 
elements.  In all what follows, a 3D model-based reconstruction with spatial impulse 
response will be termed 3D MB+SIR.  

5.4 Exploiting the matrix symmetry 

The model matrix   has                 entries, where   stands for the number 

of tomographic views (projections) ,   for the number of time instants at which the 
pressure signal is discretized and     (      ) for the number of voxels in x-, y-, 
and z-direction. Although many of the matrix entries are zero and   sparse, 
becomes huge in 3D imaging scenarios [41]. To give a numerical example, the matrix 
for reconstructing a 22 x 22 x 8 mm³ big region with a rather modest voxel size of 
200 x 200 x 200 µm³ and using 41 x 128 tomographic views (41 scanning positions in         
z-direction x 128 projections in the imaging plane) each comprising about 330 time 
instants, consists of about 1.7 million rows and around 0.5 million columns 
equivalent to approximately 590 Gbyte of data which has to be kept in the working 
memory of the PC. In order to compress the matrix size and reduce the memory 
requirements, a method to exploit the translational symmetry of the problem was 
developed in this work. Fig. 5.3 illustrates the principle. For simplicity the problem is 
illustrated in two dimensions with only three scanning positions in z-direction (   to 
  ). In Fig. 5.3 (a) we see the region of interest to be reconstructed delineated with 
solid lines. Fig. 5.3 (b) depicts the sub-matrix describing the optoacoustic wave 
propagation from the red voxels to the array located at position   .  Each column of 
the sub-matrix represents the time-resolved signals from one voxel to the different 
sensor positions in the transducer array. Let’s consider now scanning position   . 
Due to the symmetry of the problem the sub-matrix describing the wave 
propagation from the green voxels to the transducer array at position    has to be 
the same as the matrix describing the wave propagation from the red voxels to 
position   . Thus it is possible to describe the wave propagation to    by means of 
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the matrix calculated for   . In practical terms we calculate a forward model only for 
the central scanning position (here    ) as depicted in (c),  but for a region of interest 
double the size than the required one. This is necessary to represent all the 
distances. By rearranging the matrix elements like shown in (d) it is then possible to 
describe the wave propagation from each voxel to each transducer element, i.e. 
describe the whole model for a 3D reconstruction. The only condition is that the 

scanning positions are at a whole number multiples of z. Using iterative inversion 
methods (e.g. the LSQR algorithm) which require at each iteration step only a single 
column vector of the matrix and thus allow reordering the matrix elements 
according to the needs, it is possible to do the image reconstruction with a much 
smaller matrix size. The compression factor of the matrix achieved by this means is 
     , where    stands for the number of scanning positions. Coming back to the 
numerical example, this means that the matrix size is reduced by the factor of 20 
and is only about 29.5 Gbyte big.   
 

 
Fig. 5.3: Matrix compression for scanning in z-direction using the translational symmetry of the 
problem. (a) ROI to be reconstructed. For simplicity the problem is illustrated in 2D with only three 
scanning positions (S1-S3). (b) The sub-matrix describing the wave propagation from the red voxels 
in (a) to the array at scanning position 2. (c) The matrix calculated and stored in the computer 
memory. (d) The total matrix describing the wave propagation from each voxel to each sensor 
position. It is obtained by rearranging the elements of (c).   

5.5 Numerical and experimental methods 

5.5.1 Singular value analysis of the system matrix 

In order to investigate how the focusing influences the numerical stability of the 
reconstruction problem a singular value analysis of the system matrix was 
performed. The singular value decomposition (cf. section 4.4.2) provides information 
about the capability of the system to reproduce features in the object space. A good 
imaging system should therefore be able to faithfully resolve as many eigen-images 
as possible. The energy of the acoustic signal from an eigen-image is proportional to 
the corresponding singular value, i.e. an eigen-image with a low singular value has 
little effect on the measured optoacoustic signal. The goal of the reconstruction is to 
recover the object, composed as a set of eigen-images, from the measured data. The 
singular values should therefore be as high as possible to guarantee that the 
corresponding eigen-images have significant effect on the optoacoustic signal and 
thus can be recovered, even in presence of noise. If the singular values are too low, 
the impact of the system noise leads to artifacts in the reconstruction. Therefore, 
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the more singular values are above this threshold, the more accurate and faithful 
the reconstructions with the imaging system.   
 
To reduce memory requirements, and thus actually enable a singular value 
decomposition of the imaging operator, the analysis was reduced to two dimen-
sions, which means scanning of a single detector in z-direction and reconstructing a 
2D source distribution as illustrated in Fig. 5.3 (a). The forward model was calculated 
for a region of interest of 0.2 x 22 x 8 mm³ consisting of 1 x 111 x 41 voxels with a 
size of 200 x 200 x 200 µm³. Scanning in z-direction was simulated for several 
scanning apertures ( 4, 8, 16, 32, 64, 128 and 256 mm, respectively) with a constant 
step-size of 200 µm, both for a point detector and the focused detector of the small 
animal imaging system (height 15 mm, curvature 40 mm). The focused detector was 
simulated by discretizing its active surface by a set of 151 surface elements. The 
matrix of the point detectors was multiplied by 151 to achieve the same scaling. The 
singular value decomposition of the imaging operators were performed in Matlab 
via the built-in singular value decomposition function (svd, MATLAB version 
R2011b). 
 

5.5.2 Implementation of the reconstruction algorithms 

For 3D MB+SIR image reconstruction a forward model was calculated on a 22 x 22    
x 16 mm³ large Cartesian grid consisting of 181 x 181 x 21 voxels with a size of        
122 x 122 x 400 µm³. For detection a 172° cylindrically focused transducer array was 
assumed comprising 128 elements confocal to the central slice of the region of 
interest. Each element of the array was shaped in elevation with a curvature radius 
of 40 mm and a chord length (height) of 15 mm in analogy to the elements 
employed in the small animal imaging scanner. In contrast, in azimuth direction 
(width) the elements were considered as point detectors to decrease computational 
burden. The shape of a single element is depicted in Fig. 5.6 (a). As explained in 
section 5.4, the calculated matrix is sufficient to model scanning in z-direction over 
21 scanning positions within a 22 x 22 x 8 mm³ large volume and a step size of      
400 µm by using symmetry relations. A voxel size of 400 µm in z-direction was 
chosen corresponding to half the maximal resolution that can be achieved by 
focusing (cf. section 3.4.6.2) to reduce memory requirements. The height of 8 mm 
corresponds to the width of the illumination ring. The spatial impulse response of 
the detection element was included into the model by summation of the matrices 
corresponding to individual surface elements of the transducer’s active aperture 
according to Eq. (5.3) with a discretization period of 100 µm, i.e. each detector 
element consisted 151 point detectors. For the given parameter set, a finer 
discretization had no positive effect on the calculated model and only prolonged the 
computation time. For inversion the LSQR method (cf. section 4.4.2.2) was used, 
modified to exploit the translational symmetry of the matrix in each iteration step.  
All operations were implemented in Matlab and executed on a workstation with 
sixteen X5650 Intel Xeon cores, each with 2.67 GHz, and 144 Gb of RAM. For 
computation of the forward model the 16 processors run in parallel. For inversion 
only one core was used. The final size of the matrix, its computation time and the 
time for the inversion can be found in Table 1. 
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The results were compared to 2D backprojection (2D BP), 2D IMMI  (2D MB), 3D MB 
assuming point detectors and 3D MB+SIR reconstructions using only data from one 
scanning position (3D MB1SP+SIR). Volumetric images were obtained by stacking the 
individual cross-sectional slices. In the case of the 3D MB1SP+SIR reconstructions, 
only the central slice from the reconstructed volume was used.  
 
After reconstruction all results were linearly interpolated to a grid with uniform      
50 x 50 x 50 µm³ voxel size.  
 

Study nx, ny ,nz 
voxel size 

[µm] 
Parray Pscan 

Tcalc 

[h] 
matrix size 

[Gb] 
1-iter 

[s] 
3D MB+SIR 181 x 181 x 21 122 x 122 x 400 128 21 1.2 92.6 633 

3D MB1SP+SIR 181 x 181 x 21 122 x 122 x 400 128 1 1.2 48 5 

Table 1: Parameters for the matrices: nx, ny, nz : number of voxels describing the region of interest;  
Parray: sensors in the array; Pscan: number of scanning positions in z-direction, Tcalc: time it took to 
calculate one projection in the forward model, 1-iter: time it took to do one iteration.  

5.5.3 Sliding volume technique 

Big objects like whole mice cannot be reconstructed in a single inversion procedure, 
because the matrix describing the forward problem would be in the order of         
900 Gbytes, even when using the translational symmetry, which is too large to be 
stored in the working memory of the computer. Therefore a sliding volume 
technique was devised. It is illustrated in Fig. 5.4 and consists of scanning a smaller 
volume of interest along the longitudional axis of the object (z-direction), recons-
tructing each volume with the 3D MB+SIR method using data from adjacent 
scanning positions and then concatenating the central slices of the individual 
reconstructions. This is comparable to the 3D MB1SP+SIR technique, except that 
data from several scanning positions is used for the inversion. The size of the volume 
of interest and scanning positions used in the reconstructions depends on the field 
of view of the transducers. If the field of view is constraint as it is the case for 
focused detectors, only the detectors which actually detect signals from the central 
slice of the volume of interest have to be considered in the inversion.  
 

 
Fig. 5.4: Sliding volume technique for three scanning positions. The volume depicted by the grid 

and centered at zi is reconstructed using data acquired with the array at scanning positions zi-4, zi 

and zi+4. By scanning the volume through the sample and concatenating the central slices (here at 

zi), a 3D reconstruction is obtained.  
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5.5.4 Simulation of theoretical signals 

The reconstruction approaches were tested on a three dimensional truncated 
parabolic absorbers distribution, 
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where   denotes the radius of one absorber    its position and           , 
         z     . The optoacoustic signal of such a truncated parabolic 
absorber can be calculated analytically and is given by [110]  
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where for simplicity the transducer is supposed to be located at the origin of the 
coordinate system and the source at   . To consider the effect of the spatial impulse 
response (SIR), these analytical signals were averaged over the transducer surface 
according to Eq. (5.11) with a discrete spatial sampling period of 10 µm and a 
temporal sampling frequency of 200 MHz. The speed of sound was chosen to be 
1506 ms-1 corresponding to the one used in the experimental imaging situations. 
 
Moreover, signals were simulated for a complex 3D source distribution using the 
previously presented forward model, but on a different grid (ROI: 22 x 22 x 14 mm³, 
voxel size: 135 x 135 x 200 µm³). To avoid committing the inverse crime, the signals 
were further convolved with the electrical impulse response of the imaging system 
(cf. section 3.4.3). A cross-sectional and sagittal slice through the source distribution 
is depicted in Fig. 5.7 (d) and (e). Its extension in z-direction is 7.2 mm. Outside this 
area zero absorption was assumed.    

5.5.5 Image quality assessment  

Image quality was assessed by visual inspection. For that each reconstructed image 
was normalized to its maximum and displayed on the same colorbar. In case of the 
simulation study, the Pearson’s correlation coefficient (Eq. (6.8)) between 
reconstruction result and solution was calculated as a metric of reconstruction 
accuracy.    

5.5.6 Experimental data 

The method was also tested on experimental data acquired with the small animal 
imaging system. Two phantoms and one mouse were imaged.   

Phantom data 

The phantoms were embedded in a 1.9 cm in diameter big agar cylinder with light 

scattering properties achieved by adding intralipid. The first phantom consisted of 5 
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black polyethylene microspheres with an approximate diameter of 200 m 

(Cospheric BKPMS 180 - 210 µm) positioned along one line in the same slice as 

shown in Fig. 5.10. The second phantom was a loop made out of a blue 300 µm in 

diameter big thread. A photograph of the thread is shown in Fig. 5.11. The imaging 

wavelength was 750 nm and the step size for scanning in the elevational direction 

was 400 µm in both cases. For reconstruction, the same matrix as in the simulation 

study was employed. Since the system only allows measuring 64 projections per 

scanning position, the interpolation technique presented in section 4.3  was used to 

attain a set of 128. The iterations were terminated when the relative change in the 

residual error Eq. (4.17) was below 0.001.   

Mouse data 
One CD-1 nu/nu mouse (Charles River Laboratories, Sulzfeld, Germany) was imaged 
in vivo in supine position, i.e. lying on its back. The mouse was anesthetized with 
Isoflurane. A whole body dataset was acquired in 400 µm steps. For reconstructing 
the mouse, a sliding volume technique was used. The region of interest had a size of 
22 x 22 x 8 mm³ and was scanned in 400 µm steps in z-direction throughout the 
mouse. Each volume was reconstructed using data from 11 scanning positions 
symmetrically arranged around the central slice. Likewise the inversion procedure 
was terminated when the residual error was below 0.1%. The final 3D reconstruction 
was obtained by concatenating all the central slices of the individual 
reconstructions.     

5.6 Results 

5.6.1 Numerical stability of the imaging operator 

Fig. 5.5 depicts the singular values in ascending order. For the same scanning 
aperture, the singular values of the point detectors are higher than for the focused 
detectors. This shows that the image reconstruction problem is more ill-conditioned 
for focused detectors and thus more affected by data inconsistencies. Also, less 
eigen-images can faithfully be recovered for a given noise level. When increasing the 
scanning aperture, singular values decay slower. This shows that by increasing the 
scanning aperture, the image reconstruction problem stabilizes and the object can 
be reproduced more accurately. Yet, the rate of improvement is considerably slower 
for focused detectors than for point detectors and actually becomes insignificant for 
scanning apertures beyond 16 mm. The reason is the limited field of view of the 
focused detector due to which, at a given distance, it does not detect signals from 
the object anymore. Overall, this study shows that by scanning a focused detection 
element, it is not possible to resolve all eigen-images and thus yield perfect 3D 
reconstructions, even by accurate modeling of the detectors. Some structures, in 
particularly the one perpendicular to the scanning direction, can simply not be 
resolved. This is in contrast to point detectors which, for a sufficiently long scanning 
aperture and sufficiently high SNR, can achieve this. On the other hand, focused 
detectors, due to their increased detection aperture, have the advantage of yielding 
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a higher SNR, which actually lowers the noise level of the system and the threshold 
below which the eigen-images become not useful.   
 

 
Fig. 5.5: Singular value analysis of the imaging operator for point and finite size detectors as a 
function of the scanning aperture. 
  

5.6.2 Comparison between analytical and simulated signals 

 
Fig. 5.6: Comparison between analytical signal and signal obtained from the model. (a) Shape of the 
transducer element and source distribution (b) for which the signal was calculated. The numbers 
next to the absorbers present their radius. (c) Comparison between analytical signal and signal 
from the model and the corresponding frequency spectra (d).   
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Fig. 5.6 compares the analytical signal and the signal from the model. The transducer 
for which the signals were calculated is shown in (a) and the source distribution in 
(b). The signals are shown in (c) and the corresponding frequency spectra in (d). The 
two signals show good agreement, both in the time and frequency domain, ensuring 
that the model is accurate. Minimal deviations at high frequencies are due to 
discretization errors produced by approximating the actual absorber distribution on 
a discrete grid. This can be improved by a finer discretization of the reconstruction 
grid.   

5.6.3  Optimal choice of the region of interest 

Fig. 5.7 depicts cross-sectional reconstructions obtained with the 3D MB1SP+SIR 
method for the complex numerical phantom reconstructed on different regions of 
interest: (a) 22 x 22 x 1.2 mm³ (b) 22 x 22 x 7.6 mm³ and (c) 22 x 22 x 14 mm³.  The 
originating source distribution is shown in (d) and (e). The correlation coefficient 
between reconstructed cross-sectional slice and solution for different heights of the 
region of interest is given in (f). It shows that in order to achieve the most accurate 
reconstruction it is necessary to select the height of the reconstructed region of 
interest according to the volume within which optoacoustic signals are generated. 
Herein, these are 7.2 mm. If the height of the region of interest is too small, low 
frequency out-of-plane signals are projected into the imaging plane leading to an 
over-estimation of   low  frequency  components  as  shown  in  Fig. 5.7  (a).   On  the 
 

 
Fig. 5.7: Cross-sectional 3D MB1SP+SIR reconstructions of simulated data for regions of interest 
with varying heights: (a) 1.2 mm, (b) 7.6 mm  and (c) 14 mm height.  A cross-sectional and sagittal 
slice through the originating 3D source distribution is shown in (d) and (e), respectively. The dashed 
lines indicate the location of the slices reconstructed.  (f) shows the correlation coefficient between 
cross-sectional reconstruction and solution for different heights. Best accuracy is obtained when 
the region of interest corresponds to the area where the signal is generated from. Scalebar: 5 mm.  



99 

 

 
other hand, if the height of the region of interest is larger than the originating source 
distribution (e.g. Fig. 5.7 (c) ), then the energy of the signal is distributed within a too 
big volume leading to an underestimation of low frequency components. 

5.6.4 Algorithm performance with simulated data  

Fig. 5.8 depicts sagittal slices through the 2D MB (a), 2D BP (b), 3D MB1SP+SIR (c), 
3D MB (d) and 3D MB+SIR (e) reconstruction of the truncated parabolic absorber 
distribution shown in (f). The focusing-based image formation techniques (a)-(c) 
display differently sized absorbers with different length. In addition, in the peri-
phery, the absorbers show a banana shape. Both effects are due to frequency 
dependent focusing imperfections in combination with time of flight differences. 
The 3D MB reconstruction with point detectors representing the visually most 
appealing result obtained after 2 iterations is shown in (d). Stopping the iterations 
that early was necessary because otherwise, due to the strong mismatch between 
model and experimental data, the model diverged to a solution merely representing 
artifacts, overall confirming that 3D reconstructions assuming point detectors are 
not suited in case of focused detection elements. On the other hand, the 3D MB+SIR 
reconstructions resemble closely the originating source distribution. The absorbers 
do not show the banana shape and display more accurate intensity values. The 
actual source distribution could however not be resolved. The reason is the ill-
conditionedness of the imaging operator due to which the inversion procedure 
becomes semi-convergent. This can be seen in Fig. 5.8 (e) depicting the residual 
error (R) and correlation coefficient (cc) as a function of the iteration step. First the 
method approaches the solution but then converges to an erroneous result by 
introducing errors. Reasons for the ill-conditionedness of the inversion are the 
limited detection arc of 172° (cf. section 4.4) and the finite detector size (cf. section 
2.4.5).  
 

 
Fig. 5.8: Sagittal slices through the truncated parabolic absorber distribution reconstructed with  2D 
MB (a), 2D BP (b), 3D MB1SP+SIR (c), 3D MB (d) 3D MB+SIR (e) algorithm and solution (f).                
(g) Residual error (R) and correlation coefficient (cc) between solution and 3D MB+SIR recons-
truction as a function of the iteration showing semi-convergence of the method.  Scalebar: 4 mm. 

 
Fig. 5.9 compares the reconstruction methods on the complex source distribution. 
The first row shows cross-sectional slices through the reconstructed volume and the 
second row transverse slices. The dashed lines in (e) and (j), respectively, indicate 
where the slices are taken from. Again, as seen from the images and the correlation 
coefficient, best results are achieved with the 3D MB+SIR method. 2D MB 
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reconstructions suffer from low frequency out-of-plane signals which reduce 
contrast and mask the high frequency components. 2B BP reconstructions on the 
other hand accentuate small structures and boundaries but lack low frequency 
information. 3D MB+SIR and 3D MB1SP+SIR reconstructions do not show such 
problems. But only the 3D MB+SIR algorithm manages to improves the image quality 
in z-direction, yet only to a limited extent, due to the semi-convergence of the 
method.  

 

 
Fig. 5.9: Reconstructions of a complex phantom using the four algorithms. The first row depicts 
cross-sectional slices from the reconstructed volume, the second row slices along the xz-plane. 
From the left to the right we see 2D MB, 2D BP, 3D MB1SP+SIR and 3D MB+SIR reconstructions and 
the originating source distribution, respectively. (k) shows the correlation between reconstruction 
and solution as a function of the algorithm. (l) Residual error and correlation coefficient as a 
function of the iteration step.  Scalebar: 5 mm   

 

5.6.5 3D reconstructions using experimental data 

Phantom data 
Fig. 5.10 depicts the maximum intensitiy projection (MIP) of the volumetric 
reconstruction of the microsphere phantom along the x-direction using the 2D MB 
(a), the 2D BP (b), the 3D MB1SP+SIR (c) and the 3D MB+SIR algorithm (d). The 
profile through the third microsphere along z-direction is shown in (f). The length of 
the reconstructed microspheres as determined from their full-width-at-half-
maximum (FWHM) in z-direction is given in (g). For the three stacking-based 
approaches, the microspheres are displayed with a length varying between 1.3 mm 
in the center of the region of interest and 3 mm in the periphery. In the periphery, 
they have a slight banana shape due to a longer time of flight in combination with a 
reduced focusing capacity.  The microspheres in the 2D BP reconstructions are about 
200 - 400 µm shorter than for the 2D MB and 3D MB1SP+SIR algorithm.  Best results 
are obtained for 3D MB+SIR reconstructions. The length of the microspheres is 
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reduced to 900 ± 100 µm and is about uniform within the ROI. The 3D MB+SIR 
reconstructions do also not show the banana shape.   
 

 
Fig. 5.10: Maximum intensity projection along the x-axis of the microsphere phantom 
reconstructed with (a) 2D MB, (b) 2D BP, (c) 3D MB1SP+SIR and (d) the 3D MB+SIR algorithm, 
respectively. (e) Photography of the microsphere phantom. (f) Profiles through microsphere 3 along 
the z-axis. (f) Length of the microspheres in z-direction as determined by their FWHM. Modeling 
the detector surface homogenizes resolution along the z-axis compared to stacking the cross-
sectional reconstructions. 

 
Fig. 5.11 shows in the first row a MIP view along the x-direction of the 3D 
reconstruction of the thread phantom obtained with the four approaches. The 
second row depicts a cross-sectional slice through the 3D volume as indicated by the 
yellow line.  The profiles along the red line are shown in panel (i). A photo of the 
thread is shown in Fig 5.11 (j) for reference. The MIP view along the x-axis shows 
that 2D BP, 2D MB and 3D MB1SP+SIR reconstructions are blurred in z-direction. 
Structures parallel to the y-axis are hardly visible. In contrast, when the spatial 
impulse response and data from several scanning positions is considered in the 
reconstruction, apparent improvement is achieved. The form of the thread is more 
accurately resolved and structures parallel to the y-axis are clearer visible. Out-of-
plane signals are also reduced as seen from the cross-sectional images. The 
displayed thickness of the thread is in the order of 1 mm in z-direction and about  
300 µm within the xy-plane. Thus it is displayed correctly in the xy-plane but not 
along the z-direction. The effect of the directivity of optoacoustic signals in 
combination with limited view detection is also perceived in this example, as the 
part of the thread oriented along the z-direction is reconstructed with higher 
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amplitude. The effect is however reduced compared to the other three approaches, 
for which elongated structures perpendicular to the scanning directions are hardly 
visible.  
 

 
 

Fig. 5.11: Reconstruction of the thread phantom. The first row shows MIP views of the 
reconstructed volume using the (a) 2D MB, (b) 2D BP, (c) 3D MB1SP+SIR and (d) 3D MB+SIR 
algorithm, respectively. The second row depicts a cross-sectional slice through the reconstructed 
volumes as indicated by the yellow line. (i) shows a plot along the red line and (j) a photograph of 
the thread phantom. Scalebar: 2 mm.   

 
In vivo mouse data 
Finally, Fig. 5.12 depicts the whole body mouse reconstructions. The first four rows 
depict 2D MB, 2D BP, 3D MB1SP+SIR and 3D MB+SIR reconstructions, respectively. 
The fifth row a cross-sectional slice from the kidney region. The first column shows a 
MIP view of the whole 3D volume along the y-direction and the second column a 
single 300 µm thick transverse slice. The position where the cross-sectional and 
transverse slices were taken from are indicated by the red and yellow dashed line. 
Similar to the previous examples, the 3D MB+SIR method yields significantly 
improved results. Elongated structures approximately perpendicular to the scanning 
direction, like the vertically oriented blood vessels seen in (e), are clearly resolved, 
which is not the case for the other three methods. As in the simulation study, small 
structure and boundaries are accentuated with the 2D BP algorithm, whereas they 
are masked in the 2D MB reconstructions by low frequency out-of-plane signals 
reducing contrast.  
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Fig. 5.12: Whole body mouse reconstructions. The first four rows show 2D MB, 2D BP, 3D 
MB1SP+SIR and 3D MB+SIR reconstructions, respectively. The fifth row shows cross-sectional slices 
from the area indicated by the red dashed line. The MIP view of the whole volume along the y-axis 
is shown in the first column, the MIP along a 300 µm thick transverse slice in the second column.   
1: right kidney, 2: sagittal sinus, 3: vena cava. 

5.7 Discussion and conclusion 

Whereas scanning-based setups utilizing cylindrically focused transducers have 
many advantages such as enabling cross-sectional real-time imaging, good SNR and 
high in-plane resolution, accurate image reconstruction is a very challenging 
problem. This is because the spatial impulse response of the focused detector 
significantly distorts the measured optoacoustic signals. As a consequence, standard 
3D reconstruction formula assuming point detectors are not suitable for image 
reconstruction.  
 
To improve optoacoustic reconstructions in such a setting, the spatial impulse 
response has to be considered in the inversion process. Since this is not possible 
using analytical inversion formulations, such as the backprojection algorithms, a 3D 
model-based inversion scheme was adapted to account for the shape of the 
detection elements (3D MB+SIR). The spatial impulse response was included into the 
model by discretizing the active surface of the transducer by a set of point detectors. 
The method was tested in numerical simulations and validated on experimental data 
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from the small animal scanner and showed in both cases clear improvement of the 
reconstructions compared to the previously available and utilized 2D BP and 2D MB 
methods.  
 

Best performance was achieved when tomographic views from several scanning 
positions were used in the inversion procedure. Structures perpendicular to the 
scanning direction, which were blurred in the 2D focusing-based approaches, were 
clearly resolved with the new method. Microspheres were displayed with a length of 
about 900 ± 100 µm in z-direction, independent of their positions and did not display 
the banana shape typically for the stacking approaches due to a combination of 
spatial dependent focusing and time of flight differences. But also 2D 
reconstructions, i.e. reconstructions which involve data from only one scanning 
position, became more accurate with the proposed approach. The advantage of 3D 
MB1SP+SIR  compared to the 2D MB reconstructions is that the result is less affected 
by out-of-plane artifacts, which reduce contrast and mask small structures. This is 
because the method knows that the signal can come from a 3D volume and thus 
does not project all the low frequencies out of-plane signals, for which the focusing 
is weak, into the imaging plane. In contrast, the 2D MB method is based on the 
assumption that it only receives in-plane acoustic signals, which is not completely 
valid in deep tissue due to the illumination of a bigger area and light scattering. 
Compared to backprojection reconstructions, the representation of low frequency 
information is improved, when the reconstructed volume corresponds to the 
illuminated area, i.e. the volume signals are generated from. A too big volume leads 
to an underestimation of low frequency information in the imaging plane, a too 
small volume to an overestimation. This is because the model distributes the energy 
within the whole region of interest according to sensitivity distribution of the 
system. Backprojection formulas underestimate the low frequencies because they 
do not consider the spatial impulse response and are only valid for 3D closed 
detection geometries. Also, they cannot deal with arbitrary detection geometries 
like the model-based inversion schemes. Since the system of equation is highly 
underdetermined for one scanning position, which becomes worse the more voxels 
are to be resolved, regularization is necessary. Herein, this was achieved by stopping 
the iterations, when the relative change in the residual error Eq. (4.17) become 
lower than 0.1%. What stacking of 3D MB1SP+SIR reconstructions could not achieve, 
was resolving structures perpendicular to the scanning direction. This actually 
requires that data from several scanning position is used in the reconstruction. Such 
complementary information reduces the ill-conditionedness of the inversion 
problem and helps finding a more accurate solution. Nevertheless, due to the 
limited view detection in the small animal scanner and the finite detector size, the 
inversion procedure remained semi-convergent and iterations had to be stopped to 
avoid creation of artifacts. The heuristically determined stopping criteria for experi-
mental data acquired with the small animal scanner was a relative change in the 
residual error lower than 0.1%. Additional simulations not shown herein indicated 
however that this issue improves for transducer arrays with more elements and a 
longer detection arcs, thus yielding even more accurate reconstructions.  
 
Concerning practical image reconstruction this means that when only data from one 
scanning position is available, it is best to use the newly developed 3D MB1SP+SIR 
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method for a region of interest corresponding to the illuminated area, i.e. the region 
where signals can originate from. When data from several scanning positions is 
available, the 3D MB+SIR approach gives the best results. But in contrast to point-
detectors, for which a sufficiently long scanning aperture can yield exact recons-
tructions, focused detectors cannot achieve this due to their constrained field of 
view. Thus there is also no benefit in enlarging the scanning aperture beyond the 
actual field of view of the transducer.  
 
Yet, as all algebraic reconstruction problems, the method becomes very time and 
memory consuming as the resolution increases. The memory requirements for a 3D 
reconstruction are easily in the order of several hundreds of Gigabytes, although the 
matrix describing the imaging problem is sparse. The sparseness of a matrix with 
modeled detector shape is lower compared to the point detector analogue, thus 
more memory is required. This is because the finite detector size acts as a lowpass 
filter elongates the signal and thus reducing the number of zero elements. To reduce 
memory requirements and make model-based 3D reconstructions actually feasible, 
a method to exploit the translational symmetry of the reconstruction problem was 
devised and resulted in a size reduction of       where     stands for the number of 
scanning positions included in the model. Moreover, non-isotropic voxels were used.  
Nevertheless, the memory requirements were still in the order of 100 Gbytes and a 
workstation computer with 144 Gbytes of RAM was necessary to do the recons-
truction. Having established that considering the spatial impulse response in the 
inversion procedure actually improves the reconstructions in such a cylindrically 
scanning-based setup, future research has to focus on investigation of methods to 
further compress the matrix size in order to enable faster and higher resolution 
reconstructions. A promising approach to achieve this might be the decomposition 
of the forward model by wavelet packets as proposed and shown for the 2D case by 
Rosenthal et al. [111]. Beside reduction of the matrix size, this method has the 
advantage of enabling fast image reconstruction, especially in fixed array 
configurations. When the matrix is inverted, then the image reconstruction process 
is merely a multiplication of a matrix with a vector.  
 
Moreover, approximating the detector surface by point detectors is computationally 
expensive. Acceleration in building the forward model was achieved by neglecting 
the azimuthal extension of the transducer. This was possible herein for two reasons: 
First, because in the presented system the width of the detection element has minor 
influence on the optoacoustic signal compared to its elevation extension. Second, 
because in order to correct the in-plane spreading of the point spread function (cf. 
section 3.4.6.1) by modeling the spatial impulse response, complementary views are 
required, either from overlapping detector positions, or from opposing views which 
both were not available in the small animal scanner. Nevertheless, it took three days 
to compute the forward model for the presented examples. Although this is quite 
long, this has little effect on practical imaging, because in the presented system, due 
to the fixed array configuration and controlled water temperature, the matrix has to 
be only calculated once and can be reused for other reconstructions. To speed up 
the modeling of the transducer surface, current work at IBMI focuses on 
approximating the active surface of the detection element by a set of lines instead of 
points. This reduces computation time, especially for broad flat detection elements. 
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On the other hand, the approximation by points presented herein leaves more 
flexibility for modeling curved or arbitrary shapes. To further speed up the 
computation time, the calculation of the forward model can be implemented on the 
Graphics Processing Unit (GPU) of the computer to achieve a higher order of 
parallelization.   
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6 Multispectral imaging 

6.1 Introduction 

The motivation of this research is the need for a tool to visualize different photo-
absorbing molecules of biological importance, non-invasively, with high spatial 
resolution, deep inside living tissue, in particularly in mice. Because some highly 
concentrated and strongly absorbing intrinsic chromophores, such as hemoglobin or 
melanin, dominate single wavelength images, it can be challenging to identify 
specific substances, such as extrinsically administered contrast agents or genetically 
expressed proteins, within such a background, even if the selected wavelength 
corresponds to the absorption maximum of the agent of interest. This is illustrated 
in Fig. 6.1 (a) showing single wavelength images from the liver area of a euthanized 
mouse through which two plastic tubes were inserted and filled with the 
fluorochromes Indocyanine Green (ICG) and Cyanine7 (Cy7), respectively. It is not 
possible to identify the tubes within the tissue background signal solely based on 
their signal intensity in either of the images.  
 

A typically approach to differentiate administered probes from intrinsic background 
absorbers is the subtraction of background measurements made before probe 
administration. Yet, this requires the exact same animal positioning which is difficult 
to realize, especially in longitudinal imaging studies where measurements are 
required on time-points several hours or even days apart [4].  
 

To overcome this limitation, multi-wavelength illumination in combination with 
multi-spectral unmixing has been proposed by Razansky et al. in [6]. It allows the 
spectral signatures of the absorbers to be taken into account as an additional source 
of information and thus enables their specific detection. Fig. 6.1 (b) depicts the 
spectral profiles obtained from the two locations (1 and 2) where the tubes are 
located and from a blood vessel (3) clearly indicating different spectral 
characteristics based on which it is possible to differentiate between  absorbers  and 
resolve them  individually as shown in (c) and (d).  
 

This chapter deals with the problem of multispectral imaging in deep tissue. Starting 
with the formulation of the multispectral unmixing problem and the particular 
challenges in deep tissue, namely spectral coloring due to wavelength dependent 
light attenuation, two multispectral unmixing algorithms for detection of molecular 
agents are presented and tested in simulation and on experimental data. The first is 
a spectral fitting approach which attempts to detect molecular agents by fitting the 
multispectral dataset in a least squares sense to a set of spectral components 
assumed to represent the absorbing entities [4]. The second method proposed by 
Glatz et al. and myself in 2011 [112], is a blind unmixing approach, which, in contrast 
to the spectral fitting approach, does not require a priori knowledge about 
absorbing spectra. It detects the agent by statistical means as spectral outliers that 
exhibit a significantly different spectrum than the surrounding background. The 
rational for employing a blind unmixing approach for spectral decomposition is that 
for in vivo tissue measurements, reliable spectral information for all potential 
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contributions to the signal is generally not available, due to spectral coloring and 
reconstruction inaccuracies and unexpected background absorbers. Also, the spectra 
might change depending on the biochemical environment or the concentration 
[112]. The spectrum of hemoglobin (cf. section 2.2.1) for instance depends on its 
oxygenation level and the spectrum of Indocyanine Green (ICG), a frequently used 
fluorescent dye, on its concentration [113].  
 

In the second part of this chapter, methods for light attenuation correction are 
discussed. As photon fluence is strongly attenuated in tissue as a function of depth 
and wavelength due to scattering and absorption, absorbers at different depths will 
be excited differently. Thus an absorber embedded deep within tissue may appear 
weaker than one close to the tissues surface so that the overall comparability of 
signals from different depths is severely limited. A method is proposed based on a 
ratio normalization using images acquired at several different wavelengths. 
Moreover, it will be shown in simulation and experiments that this approach can 
partially compensate for this effect. 
  

 
Fig. 6.1: (a) Single wavelength images at 700, 750, 800 and 900 nm, respectively, from the liver area 
of a euthanized mouse. Two plastic tubes were inserted into the mouse and filled with the fluo-
chromes Cy7 and ICG, respectively. The tubes are masked by the background signal from the tissue. 
(b) Spectral profile obtained from the locations labeled 1, 2, 3 indicating the ability to differentiate 
between different absorbers.  Unmixed Cy7 component and unmixed ICG component. 

6.2 Multispectral unmixing for specific absorber 
detection 

6.2.1 The multispectral unmixing problem 

Optoacoustic images are proportional to the absorbed electromagnetic energy 
 (    ), thus the product of light fluence  (    ) and the combined contribution of 
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all absorbing moieties localized within the resolution limited elementary volume at  
 , i.e. 
 

 (    )   (    )∑     (    )   (    )∑   (  )  ( )  
 

   

 

   
 

(6.1) 
 

 
where     (    )    (  )   ( ) is the absorption coefficient of the j-th absorber,  

  (  )  its molar extinction coefficient at the wavelength   and   ( )  its 

concentration (cf. section 2.2.3.2).  
 
The goal of multispectral imaging and unmixing is the specific and spatially resolved 
detection of photo-absorbers (e.g. molecular probes) in deep tissue based on their 
distinct spectral signature. From Equation (6.1) we see that this is a very challenging 
task. On the one hand, because not only the probe contributes to the spectrum 
measured from a single image pixel, but also numerous other tissue constituents, 
such as oxygenated and deoxygenated hemoglobin (most dominant), but also others 
like melanin, water, lipids and unknown metabolites [4]. This is because the 
resolution is too low to resolve the different spectral entities (i.e. absorbing 
molecules) individually. On the other hand, we see that the reconstructed intensity 
value is proportional to the light fluence. As photon fluence is strongly attenuated in 
tissue as a function of depth due to scattering and absorption, additional difficulties 
arise in form of a signal drop with depth and since the fluence attenuation in tissue 
is wavelength dependent in tissue to a potential distortion of the spectral response. 
This is known as spectral coloring and has as consequence that the measured 
spectral profile in deep tissue deviates from the original spectral signature. The 
actual distortion depends hereby on the absorbers present in the illumination path 
[114]. Moreover, experimental factors, which are difficult to account for in the 
image reconstruction, such as out-of-plane signals (cf. section 3.4.6.2), acoustic 
heterogeneities, noise or limited-view detection, may result in reconstruction 
artifacts without physical meaning (e.g. negative values) which further complicate 
the spectral unmixing problem. Finally there might be motion, especially when 
imaging living objects, due to breathing, heartbeat, pulse or involuntarily muscle 
activity.  Motion is problematic, because, for MSOT to work robustly, it is important 
that the set of multi-wavelength images is acquired from the same tissue slice or 
volume, i.e. having the tissue at the same position, orientation and at the same 
morphological and physiological state throughout the wavelength scanning process. 

6.2.2 Spectral fitting  

Assuming that it is possible to correct for the light fluence  (    ) in Eq. (6.1), then 
it is possible to set up a system of linear equations, which takes the form  
 

     . (6.2) 
 

where   nm  is the measurement matrix with   being the number of data 
points (i.e. pixels in each image) and   the number of single wavelength images 

acquired.    lm is the mixing matrix in which the columns contain the spectral 
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signatures of the    distinct sources (i.e. optoacoustic absorbers). It determines how 

the sources contribute wavelength-wise to the measured data.   nl  is the 
unknown matrix containing the concentration of each distinct absorber in the mixed 
pixel [4]. Knowing the absorption spectra of the expected sources, i.e. the matrix  , 
Eq. (6.2) can be solved for the unknown concentrations    in each pixel in the sense 
of least square minimization for instance by the Moore-Penrose pseudoinverse    
(cf. Eq. (2.36)) [4, 112]          

       (6.3) 
 

For experimental data, i.e. in presence of measurement errors, Taruttis [37] pro-
posed to add a non-negativity constraint to the inversion of Eq. (6.2) for instance by 
using the lsqnonneq algorithm (MATLABR2011b, The MathWorks Inc., Natick, MA, 
2011). The reason is that conventional least square inversion allows every possible 
combination of absorption spectra, thus also those which yield unphysical negative 
concentrations. Using a non-negativity constraint can avoid this.  

6.2.3 Blind unmixing 

Blind unmixing techniques are widely used in various fields including among others 
astronomy [115], pattern recognition [116] and fluorescent imaging [117]. They do 
not require any exact a priori information about the spectra of the target or 
background absorbers. Instead the multispectral data set is analyzed in a statistical 
sense to find similarities and differences in the spectral behavior of the data [118]. 
The probe is then identified as the spectral component that shows a different 
spectral behavior than the background. Herein, a combination of principal compo-
nent analysis (PCA) [119] and independent component analysis (ICA) [120] is used 
for blind target detection.   

6.2.3.1 Principal component analysis (PCA) 
Principal Component Analysis (PCA) [119] is a blind unmixing technique based on the 
assumption that the measured data (i.e. the single wavelength images) is statistically 
correlated, whereas the source components (i.e. the absorbing entities) are mutually 
uncorrelated. For unmixing the correlated measurement data is transformed into a 
new coordinate system spanned by uncorrelated orthogonal basis vectors which are 
called principal components. The projections onto the basis vectors are the un-
correlated source components. In this basis the source components are ordered 
according to the largest variance and hence energy, i.e. the first principal component 
presents the data with the largest variance, the second one the largest remaining 
variance, and so on [112, 121]. Since all measurements are perturbed by noise, 
which should have less variance or energy than the actual data, PCA yields a sorting 
of the data according to their information content, i.e. the first components with a 
lot of variance represents the most relevant information, whereas the components 
of higher order mostly represent noise [122]. Consequently, PCA can be used for 
dimension reduction by omitting the principal components of higher order.  
The transformation matrix       that projects the measured data   onto the new 
orthogonal basis constituting the principal components can be obtained from the 
eigenvalue decomposition of the covariance matrix of   and yields  
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               (6.4) 

 
where   is the orthonormal eigenvector matrix of the covariance matrix of   and 
     the matrix of the calculated principal components.  The eigenvalues of the 
covariance matrix are an indicator of the data variance for this component, i.e. can 
be used to distinguish relevant components from noisy ones. The eigenvectors can 
be considered as the estimated spectral absorption profile of the unmixed 
components  [112, 118].  

6.2.3.2 Independent component analysis (ICA) 
This technique is based on the assumption that the source components of the mixed 
multispectral dataset are statistically independent. In analogy to PCA, the 
measurement data is expressed in a new basis following the stronger criterion of 
statistical independence [112]. In order to identify these source components, the 
algorithm seeks a transformation 
 

           (6.5) 
 

of the dependent multispectral dataset    into a set of independent variables, 
where      stands for the transformation matrix and      for the independent 
components. This is accomplished by minimizing their Gaussianity because accor-
ding to the central limit theorem, statistical independent variables are less Gaussian 
than their mixed counterparts [112]. Herein, the FastICA algorithm [123] is used to 
do the independent component analysis. It finds the independent components by 
iteratively maximizing the kurtosis (fourth order statistical moment) as a measure 
for the non-Gaussianity. The spectra of the independent components can be 

obtained from      
 . By not relying on orthogonality of the basis vectors, ICA 

generally achieves better separation of the different spectral components than PCA 
which tries to represent the data in an orthogonal space [121]. However, in contrast 
to the PCA algorithm, the ICA algorithm does not provide the eigen-values and 
therefore no measure of the component’s significance. It rather retrieves a set of 
randomly-ordered components, one for each available dataset [121]. Therefore, 
especially for big datasets comprising much more wavelengths than actually 
expected absorbers, ICA needs some preprocessing in order to eliminate 
components of low relevance. Otherwise the dataset will contain many components 
only representing noise which makes interpretation of the data challenging [112].  

6.2.3.3 Combined PCA-ICA 
The idea to overcome this problem is a presorting of the data with the PCA 
algorithm according to their relevance. By omitting all the noise terms (i.e. the high 
order components) a reduced number of measurements can be given to the ICA 
algorithm, which reduces the complexity while preserving almost all the 
information. The number of PCA components kept generally is chosen according to 
the expected number of sources constituting the mixture, i.e. 3 in case of normal 
tissue without melanin and one extrinsic contrast agent. The actual spectral 
unmixing is then done with the ICA algorithm based on the reduced subset of PCA 
data. This improves the performance of the ICA algorithm since noisy data is omitted 
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and simplifies the identification of the relevant spectral sources due to the reduced 
amount of output data. The unmixing according to the PCA-ICA scheme is then 
 

                 
   (6.6) 

 
where     

  is the transformation matrix of the reduced subset [112]. Contrary to 
pure PCA or ICA, the spectra obtained from the PCA-ICA approach are not the 
absorption spectra of the actual source components but rather the spectra of the 
independent components in the principal component space. The reason is that the 
reduced principal components are used as input data for the ICA algorithm and not 
the measured data. To obtain the actual absorption spectra the unmixed component 
matrix can be inverted and multiplied with the original measurement matrix 
according to  

           
  (6.7) 

 
where   denotes the Moore-Penrose pseudo-inverse and   the matrix with the 
absorption spectra [112].  

6.2.3.4 Automatic component identification 
To automatically identify the probe component within the unordered components 
obtained from the ICA algorithm, the Pearson’s correlation coefficient between the 
unmixed and the theoretical spectrum of the probe were calculated as proposed by 
Glatz [124]. It is defined as   
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(6.8) 
 

 
where    denotes the i-th value of the unmixed spectra,    the values of the 
theoretical spectra and   ̅,  ̅ the corresponding mean values. The Pearson’s corre-
lation coefficient yields values between -1 and 1 and it is maximal for positive 
correlation, zero for no correlation and minimal for negative correlation. Since the 
spectra resulting from the ICA algorithm might be inverted, the maximum of the 
absolute value | | was used to automatically identify the component.  

6.2.4 Motion artifact reduction by averaging 

For MSOT to work robustly, the tissue sample to be imaged has to be in exact the 
same position, orientation and physiological state during the multi-wavelengths 
acquisition process. Since MSOT is a high-resolution modality, even moderate 
motion of the subject during acquisition of the multi-wavelengths dataset may 
compromise the accuracy of the unmixing result. Yet when imaging live subjects, 
there is always motion due to respiration, heartbeat or involuntary muscular 
activities. To compensate for these movements, several techniques can be applied. 
Ideally, one uses a high power laser with a high repetition rate and fast wavelength 
tuning, so that a multispectral dataset can be acquired within a time interval during 
which movements are insignificant. Beginning 2013 such a laser source has become 
available and using this technology we could develop the first handheld multi-
spectral-optoacoustic imaging device for clinical applications [125]. During this thesis 
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this technology was however not available yet. Alternatively one could use external 
triggering to acquire data at the same instance during a breathing or heartbeat 
cycle. This is a standard technique in imaging modalities like CT or MRI. Yet, it 
requires the use of additional devices such as heart-monitors and intubation, which 
make the imaging process tedious [37, 126]. Alternatively image registration 
methods [127] might be used, which detect movement in between single laser 
pulses and compensate for them by reversing the deformation. Due to the non-
linear nature of the deformation and the wavelength dependency of the image 
features sophisticated registration methods are required. Investigations of such 
methods are beyond the scope of this work. Therefore, for multispectral imaging of 
living subjects, signal averaging is applied, although not necessary from a signal to 
noise ratio point of view, to average out the movement. The drawback of this 
approach is a slight loss of resolution and an increased imaging time.  

6.2.5 Tests with simulated and experimental data 

The ability of the presented unmixing algorithms to detect specific absorber based 
on their spectral signature is tested in numerical simulation, on phantoms and ex 
vivo mouse data.  

Numerical simulations 
A 2 cm diameter cylindrical phantom was simulated. The background absorption of 
the phantom was assumed to be 70% oxygenated blood with an absorption 
coefficient of             at a wavelength of          and a constant 
reduced scattering coefficient of   

         . These values were chosen to mimic 
average mouse tissue properties in the near infrared [9]. In addition we assumed 16 
insertions, always four of them containing the fluorescent dyes Cy7 (Molecular 
Probes®) and Indocyanine green (ICG, Pulsion) as well as oxy-hemoglobin (Hb) and 
deoxy-hemoglobin (HbO2) on top of the background absorption.  
A schematic representation of the phantom is shown Fig. 6.2 (a) and the spectral 
profiles of the different absorbers in (b). The concentration of the absorbers within 
the insertion was varied to yield absorption coefficients between 0.2 and 1 cm-1 at 
the peak absorption for the fluorescent dyes and the isobestic point for Hb and 
HbO2 respectively.   
 

 
Fig. 6.2: (a) The phantom employed in the simulation study. Background absorption was assumed 
to be 70% oxygenated blood.  The 16 insertions were filled with ICG, Cy7, Hb and HbO2, 
respectively. (b) Absorption spectra of ICG, Cy7, Hb, HbO2 and the tissue background absorption as 
utilized in the simulation study.  
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Light fluence in the phantom was simulated for 21 equally spaced wavelengths 
ranging from 700 to 900 nm using a FEM based package for modeling Near-Infrared 
light transport in tissue [73]. Light fluence at the boundary of the object was 
assumed constant for the illumination, i.e.  (   )    (    ). The absorbed light 
energy (i.e. the initial optoacoustic pressure) was obtained by multiplying the ab-
sorption coefficients with the simulated light fluence distribution according to 
equation (2.13).  
 
The set of 21 images corresponding to the different wavelength was unmixed using 
spectral fitting and blind unmixing based on the PCA-ICA method. For ICA the four 
most relevant components were kept as identified by PCA.    

Experimental data 
Experimental measurements were done with the developed small animal scanner. 
21 images were acquired with equally spaced wavelengths ranging from 700 to 900 
nm. Signals were deconvolved with the electrical impulse response and filtered 
between 0.05 and 7 MHz in case of the first phantom and from 0.2 to 7 MHz in case 
of the second phantom. For inversion, the PLSQR algorithm was used. The single 
wavelength images were normalized by the laser tuning curve to compensate for 
energy variations between different wavelengths.    
 
In a first experiment an agar phantom was imaged. Black India ink and intra-         
lipid were added to the agar solution to yield a background absorption with a 
constant absorption coefficient             and a reduced scattering coefficient  
  

         . Two insertions with Cy7 and two insertions with gold nanorods (GN) 
were included at different depths within the phantom. The peak absorption of these 
contrast agents was approximately           as measured with a spectrometer. 
White straws, enclosing the insertions, were used to avoid diffusion of the contrast 
agents. In addition to the contrast agents, india ink and intralipid was also included 
in all four insertions with absorption equal to the background. The unmixing was 
done with the spectral fitting method using the non-negativity constraint and the 
absorption spectra of ink, GN and Cy7 (Fig. 6.3 (a)) and by blind unmixing.  
 
In a second experiment, in order to showcase detection of contrast agents in deep 
tissue, two plastic tubes with an inner diameter of 300 µm were inserted at different 
depths along the longitudinal axis of a five weeks old euthanized CD1 mouse. Hair 
was removed with a hair removing lotion. The tubes were filled with ICG. Since ICG 
binds to plasma proteins, which slightly changes the absorption spectrum compared 
to their solution in water [128], the ICG was dissolved in 35mg/ml albumin, in order 
to work with an absorption spectrum more similar to in vivo conditions. Four 
concentration were tested (c = 1.25, 2.5, 5 and 10 µM, respectively) with a peak 
absorption of    = 0.5, 1, 2 and 4 cm-1, respectively, at a wavelength of 800 nm. The 
spectral profiles measured with the spectrometer are depicted in Fig. 6.3. In one 
experiment, the ICG solution in the inner tube was replaced with a 4 µM Cy7 
solution having a peak absorption of               . The multispectral datasets 
were acquired from the liver area. Signals were averaged 50 times. The laser per 
pulse energy was 70 mJ at a wavelength of 850 nm. For unmixing spectral fitting and 
PCA-ICA based blind unmixing was used. Furthermore, the signal to noise ratio of 
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the unmixed results were determined according to        ⁄ , where   stands for 
mean unmixed signal intensity in the area of the absorber and   the standard 
deviation of the background signals.  
 
 

 
Fig. 6.3: Absorption spectra of absorbers used in (a) the phantom experiment and (b) the mouse 
experiment. 
 

6.2.6 Results – spectral unmixing without light fluence 
correction 

Spectral coloring in a typical small animal experiment 
Fig. 6.4 illustrates the effect of spectral coloring due to wavelength dependent light 
fluence attenuation. Fig. 6.4 (a) and (b) shows the simulated initial pressure at       
750 and 800 nm, respectively.  The spectral profiles from the different insertions are 
depicted in (c)-(f). They are normalized to their maximum to highlight the spectral 
coloring. From the outside to the inside the tubes are labeled with increasing 
numbers. Fig. 6.4 (g) shows the spectral profile obtained from the two tubes 
inserted into the mouse and filled with ICG and (h) the same profiles normalized to 
their maximum. We see that the amplitude of the initial optoacoustic pressure and 
its spectral behavior change with depth. This is due to the wavelength dependent 
light attenuation in tissue. When propagating through tissue, light is scattered and 
absorbed by objects in the propagation path. Thus an absorber embedded deep 
within tissue sees less light energy and with a different spectral characteristic than 
one close to the animal’s surface and consequently also displays a different spectral 
behavior in the image. Nevertheless we also see that, even 1 cm inside the tissue, 
the characteristic signature of the dye insertions, i.e. the characteristic peak at 
around 750 nm and 800 nm for Cy7 and ICG respectively, is conserved. On the other 
hand, the spectra of Hb and HbO2 lose their characteristic features. This is because 
their absorption spectra is much closer to the overall background absorption being 
70% oxygenated blood and thus more affected by the spectral coloring because 
when propagating through tissue the light fluence is dominantly attenuated in the 
spectral bands characteristic for Hb and HbO2. Overall, the example clearly illus- 
trates the challenge of accurate unmixing due to light fluence attenuation and the 
extent of the spectral coloring phenomenon in deep tissue MSOT imaging.  
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Fig. 6.4 Effect of light fluence attenuation. (a) Single wavelength image at 750 nm and (b) at         
800 nm. Normalized spectral dependency of the initial pressure generated in (c) the ICG, (d) the Cy7  
(e) the HbO2 and (f) the Hb insertion of the simulated phantom. (g) Spectral profile of the two tubes 
within the mouse and (h) normalized to their maximum. Light fluence attenuation leads to a signal 
decrease and a distortion of the spectral signature.  
 

Unmixing results - numerical simulation 
The results of the simulation study are shown in Fig. 6.5. The unmixing results 
obtained by spectral fitting are shown in the first column, the results of PCA-ICA 
unmixing in the second and the unmixed signal intensity as a function of the 
absorption coefficient of the probe in the insertion (which is generally proportional 
to the probe concentration) in the third column. The first row shows the results for 
the Cy7 component and the second row for the unmixed ICG component. In the 
shown images the probe had a peak absorption of 0.6 cm-1. For all five absorber 
concentrations tested both spectral fitting and blind unmixing could resolve the 
probes based on their spectral signature. The amplitudes are however reduced for 
greater depths due to the increased attenuation of light. Also, there is slight cross-
talk visible, which is less for PCA-ICA unmixing than for spectral fitting. This is due to 
spectral coloring. The unmixed signal intensity scales linearly with the probe’s peak 
absorption for the tested concentrations yet due to light attenuation with reduced 
slopes for deeper insertions.   
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Fig. 6.5: Unmixing results of the simulation study. The first column depicts the results obtained by 
spectral fitting, the second column by blind unmixing, the third column the intensity of the 
unmixed signal as a function of the absorption coefficient of the dye. The first row depicts the 
unmixed Cy7 component, the second row the unmixed ICG component. 

Unmixing results - experimental phantom 
Fig. 6.6 displays the results of the phantom experiment. Single wavelength images at 
750 nm (approximately the absorption peak of Cy7) and at 780 nm (almost the ab-
sorption peak of GN) are shown in the first column. The small black arcs are due to 
acoustic reflections due to impedance mismatches between agar and straw. The 
unmixing results obtained by spectral fitting are shown in the second column and 
the results of blind unmixing in the third. The inner insertions are weaker than the 
outer ones due to light attenuation. Again, the result of spectral fitting shows slightly 
more cross-talk than the one for blind unmixing.   
 

 
Fig. 6.6: Unmixing results of the phantom study. The first column depicts single wavelength images 
at (a) 750 nm and (d) 780 nm. The second column, i.e. (b) and (e), depicts the results obtained by 
spectral fitting and in the third column, i.e. (c) and (f), the results obtained by blind unmixing are 
presented: (a)-(c) for unmixed Cy7 as well as (d)-(f) for GN.     
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Unmixing results - Ex vivo mouse  
Fig. 6.7 depicts the results of the ex vivo mouse imaging. A single wavelength 
reconstruction acquired at 800 nm is presented in Fig. 6.7 (a) showing several 
anatomical structures, notably liver blood vessels. Both tubes are filled with 5 µM 
ICG. Although imaged at the peak absorption wavelength of ICG, the tubes cannot 
be recognized in a single wavelength image due to the strong inherent background 
absorbers masking the tubes. Fig. 6.7 (b) and (e) depicts the ICG component after 
spectral fitting for a ICG concentration of 2.5 and 10 µM. Fig. 6.7 (b) and (e) the blind 
unmixing results for the same concentrations. The tubes are now clearly recogni-
zable. One is located in the center, the other in the periphery of the body of the 
mouse. Although having the same concentration, the inner tube is displayed with a 
lower intensity than the outer tube. This is due to light attenuation. Fig. 6.7 (d) 
depicts the SNR of the two tubes resolved as a function of concentration and the 
unmixing algorithm. Again we see the linear dependency between unmixed signal 
strength and peak absorption also with varying slopes for different depths. Overall 
blind unmixing yields a higher SNR then the spectral fitting methods.  Fig. 6.1 depicts 
the results from the situation where the outer tube was filled with ICG and the inner 
tube with Cy7 showing that it is possible to simultaneously resolve several 
chromophores.  

 
Fig. 6.7: Multispectral unmixing in deep tissue. Panel (a) shows a single wavelength image             

(= 800 nm) from a mouse’s liver region in which we inserted two tubes filled with ICG (5 µM). 
Panels (b) and (e) depict the unmixing results obtained by spectral fitting for two different ICG 
concentrations clearly showing the two tubes invisible in the single wavelength images. Panel (c) 
and (f) show the results of blind unmixing. Panel (d) shows the SNR of the unmixed signal of the 
outer and inner tube for both methods as a function of different peak absorptions. 

6.2.7 Discussion  

In this section the subject of multispectral imaging for molecular probe detection 
was presented. It was shown that accurate unmixing is a challenging task because of 
the wavelength dependent attenuation of the light fluence in tissue, due to which 
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the measured spectral signature and amplitude of the absorber signal is distorted. 
Also not all absorbers contributing to the MSOT signal might be known.  
 

Therefore, in addition to spectral fitting where the multispectral dataset is fitted in a 
least squares sense to a set of spectral components assumed to represent the 
absorbing moieties, a blind unmixing scheme was presented which, in contrast to 
spectral fitting, does not require exact a priori knowledge about the signature of the 
all the absorbing entities but detects different spectral components based on 
statistical means.  
 

Both methods were tested on simulated and experimental data, without a priori 
correction of the light fluence. It was found that both methods could specifically 
resolve molecular probes (here ICG and Cy7) over general tissue background 
absorption, even in deep tissue where the spectral signatures are affected by 
spectral coloring.  The signal to noise ratio achieved blind unmixing was higher than 
for spectral fitting and visible cross-talk less suggesting that blind unmixing has 
better detection capabilities in deep tissue where the distortion of the spectral 
signatures is increased.  
 

Yet, in both cases the intensities of the unmixed components did not represent the 
exact absorption values. Because of light fluence attenuation, they were reduced 
with depth. For a specific position the signal intensity scaled linearly with the peak 
absorption value of the absorber. Hence even when light fluence attenuation effects 
are not corrected, it is possible to detect the location of a specific absorber by 
means of MSOT but it is impossible to quantitatively compare signals from different 
depths. On the other hand localized comparison of different probe concentrations 
seems possible. In that sense MSOT has the potential to examine the temporal 
pharmacokinetic behavior of molecular probes in tissue (e.g. its dwell time at a 
specific location), in particular when the probes is rather localized as it was in the 
examples shown. In such a situation the overall light fluence distribution is hardly 
affected by a change of probe concentration and thus maintained over time.  
 

However, if a large amount of probe significantly changes its spatial distribution over 
time, e.g. at the beginning it is distributed throughout the tissue, but after a while it 
is localized within a small area, or if tissue oxygenation significantly changes, then 
the overall light fluence distribution will also change and with it the measured 
spectral signature from the probes, overall compromising the unmixing accuracy and 
thus comparability of the results. This can be seen from the spectral coloring 
examples presented. The measured spectra of Hb and HbO2 are significantly more 
corrupted in deep tissue by spectral coloring than the one of ICG and Cy7. Thus 
unmixing becomes more error-prone with depth and yields more biased results. The 
reason is that an absorber distorts the spectra of the incident light fluence in exactly 
the spectral bands characteristics for its spectral signature. Thus the more absorbers 
with a specific absorption profile are present in tissue; the more the measured 
spectra of the downstream absorbers are corrupted in their signature bands.  In this 
sense it is beneficial for molecular probe detection, if the probe is localized and has 
a spectral signature significantly differing from the one of the background absorbers.   
 

Although blind unmixing achieved higher detection sensitivity than spectral fitting, it 
might be beneficial in some situations to use spectral fitting. The reason is that 
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spectral fitting is deterministic in contrast to the blind unmixing approaches which 
incorporate uncertainty in their performance. When doing spectral fitting, the data 
is projected onto a fixed set of axis defined by the input absorption spectra. Blind 
unmixing on the other hand is data driven and searches a set of independent axis 
which serves, when the data is projected onto, to highlight different patterns in the 
data. Thus, if the structure of the data changes (i.e. if there are non-stationary 
absorbers or if new absorbers manifest) then the choice of axis might also change 
[121]. To assure the same choice of axis and thus make unmixing results from 
different time points comparable, the complete dataset should be unmixed at the 
same time.  
 

Concerning detection sensitivity, it was possible to resolve 2.5 µM of ICG about 1 cm 
deep inside tissue with a signal to noise ratio of 5 with spectral fitting and 7 with 
blind unmixing. According to the Rose criterion, this is sufficient to distinguish image 
features at 100% certainty [122, 129]. Yet this value has to be treated with caution 
and must not be considered as a universally valid sensitivity limit. Actually, the probe 
detection capability depends on a multitude of parameters, which have not all been 
examined in this work. Important factors are also the location, microenvironment, 
shape and orientation of the absorbing structure. If the absorber is located behind 
an air filled cavity, the optoacoustic signal from the probe might not be able to 
propagate to the transducer because of impedance mismatches, thus remains 
invisible. Utilizing limited view detection this might also happen due to the 
directivity of optoacoustic signals. Additional important factors for molecular probe 
detection by multispectral means are the probes spectral characteristics with 
respect to the background absorption, its efficiency to generate an optoacoustic 
signals but also the wavelengths selection and the unmixing algorithm employed.  

6.3 Approaches for light attenuation correction 

As seen from the previous section light fluence attenuation is a big challenge in deep 
tissue multispectral optoacoustic imaging. As photon fluence is strongly attenuated 
in tissue as a function of depth and wavelength due to scattering and absorption, 
absorbers at different depths will be excited differently. Thus, an absorber 
embedded deep within tissue may appear weaker than one close to the tissues 
surface so that the overall comparability of signals from different depths is severely 
limited. Also their reconstructed spectral signature will change depth. As a 
consequence spectral unmixing becomes challenging and blind unmixing approaches 
may be required to support unmixing in such a situation (cf. section 6.2.3).  

6.3.1 Existing correction attempts 

Several attempts have been proposed in the literature to correct for this 
inhomogeneous excitation artifacts. Approaches range from corrections by dividing 
the optoacoustic image by an analytical Bessel function as an estimate for the light 
fluence [36], over simulated light fluence distributions [130] and empirical 
correction attempts [131] to sparse decompositions [132] and non-linear model-
based inversion schemes [133]. All the methods have their advantages and 
drawbacks.  
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The normalization by a Bessel function is a practical approach for cylindrically 
shaped homogenous phantoms with uniform background scattering and absorption 
and homogenous surface illumination. Under these conditions the light fluence is 
given by a modified Bessel function of the first kind (see section 2.2.3.3), which can 
be used to normalize the optoacoustic reconstruction to correct for the light 
attenuation. However for mice, which have spatially dependent optical properties 
and no cylindrically shape, this approach is only a crude approximation.  
 

Normalization with a simulated light fluence can be applied to different shapes but 
also requires a priori knowledge of the underlying optical properties and the 
illumination distribution on the tissue boundaries. Yet, both are generally unknown 
or only partially known in experimental imaging scenarios therefore not followed 
herein [134].   
 

Empirical correction attempts are based on reference measurements using the same 
tissue type than the one overlaying the region of interest to obtain an estimate of 
the light transmission. Beside their impracticability, the method has the additional 
drawback of being highly dependent upon the tissue structure, composition and 
physiology [58].   
 

Sparse decomposition is data driven approach which does not require any a priori 
knowledge about the optical properties. It separates light fluence from the optical 
absorption based on the assumption that slowly varying information in the image 
corresponds to the light fluence and fast varying information to optical absorption 
and uses methods of sparse signal representation to isolate optical absorption from 
light fluence. This makes it more robust in experimental situations than the 
approaches based on a numerical estimation of the light fluence [132]. The method 
was tested on experimental phantoms and mice imaged in the small animal scanner. 
Whereas the method worked on simple agar phantoms, it could not correct for the 
light attenuation in mice. In addition, due to the long computation time of 
approximately 3 hours per 2D image, the method becomes impractical in many 
experimental situations.   

6.3.2 Ratio normalization 

Herein a different method is proposed based on a ratio normalization using images 
acquired at several different wavelengths. Jetzfellner and myself published this 
approach in its basis form 2011 in [134]. The method uses two images at different 
wavelengths for which the probe spectrum changes considerably but the back-
ground absorption remains approximately constant. The two images are then 
subtracted and divided by the one for which the probe absorption is low according 
to 
 

  
 (    )  (    )   (    )  (    )

 (    )  (    )
 

  (    )    (    )

  (    )
 

(6.9) 
 

  

to obtain an image   of relative absorption change normalized by the background 
absorption on a per pixel basis. In Eq. (6.9),  (    ) stands for the light fluence and 
  (    ) for the absorption coefficient. Under the assumption that the light fluence 
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is wavelength independent, this normalization eliminates the light fluence. The 
resulting image represents a measure for the probe concentration which is 
proportional to the absorption change normalized to the total background absorp-
tion. Yet subtraction is not a very sensitive unmixing method. Hence, in order to 
work efficiently, this approach requires probes with a steep spectral absorption 
profile in a narrowband wavelength range (< 40 nm) for which the background 
absorption is approximately constant.   
 
To increase the sensitivity of the approach, the method can be extended to several 
wavelengths in combination with spectral unmixing. The result of the spectral 
unmixing being proportional to  ( )  ( ), where  ( ) represents the effect of the 

light fluence and   ( ) the probe concentration, is then divided by an estimate of 

the light fluence     ( )  
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   ( ) 

(6.10) 
 

 
to yield an image independent of changes in signal strength due to the light fluence. 
To estimate the light fluence it is convenient to use a single wavelength image close 
to 797 nm being the isobestic point of hemoglobin which is the dominant back-
ground absorber in the near infrared wavelength range. Since the molar extinction 
coefficients of oxygenated and deoxygenated hemoglobin are the same at this 
wavelength, the optoacoustic image       ( ) (        )  is proportional to the 
blood concentration and in contrast to other wavelengths not dependent on its 
oxygenation status. Moreover, when the blood is homogenously distributed in 
tissue, i.e.       ( )       , then the optoacoustic image is proportional to the 
light fluence, thus can be directly used for correcting the influence of light attenua-
tion. Yet, blood is generally not homogenously distributed in tissue. There might be 
areas (e.g. blood vessels) where the blood concentration is higher than elsewhere. In 
such a case the image can be low pass filtered to remove such areas with sharp 
variations in the background absorption.  

6.3.3 Tests using simulated and experimental data 

The presented normalization approach has been tested in simulation and experi-
mentally on an agar phantom and an ex vivo mouse. The phantoms used in the study 
have been described in detail in section 6.2.5. The results of the blind unmixing 
study have been used for testing the normalization approach. The light fluence 
estimate was computed from the 800 nm single wavelength image, reconstructed 
with the PLSQR algorithm for a frequency band of 50 kHz to 6 MHz. For removing 
blood vessels in the normalization image a median filter was used with a kernel of     
40 x 40 pixels (medfilt2.m  MATLABR2011b, The MathWorks Inc., Natick, MA, 2011). 
In case of the experimental data, a constant value defined as 1.001 times the 
minimum of the normalization image was added to the denominator to compensate 
for unphysical negative values present in experimental situation and avoid division 
by zero. 
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6.3.4 Results 

Simulation study 

The results of the simulation study are shown in Fig. 6.8. The single wavelength 

image at 800 nm is shown in panel (a) for the absorbers with a peak absorption 

value of 0.6 cm-1. The estimate of the light fluence obtained by lowpass-filtering the 

800 nm reconstruction is shown in panel (d). Panel (b) and (c) depict the unmixed 

Cy7 component without and with light fluence correction and (d) the profiles along 

the insertions. The corresponding images for the ICG insertions are shown in (f)-(h).  

The ratio between the retrieved concentration within an insertion and the outer 

insertion is shown as a function of the peak absorption value in (i) and (j). The 

method could recover, depending on the concentration, 89 ± 5% and 92 ± 3% of the 

correct ICG and Cy7 value respectively. The correcting effect is less at higher 

absorber concentrations because they increase the spectral variations in the light 

fluence patter and thus impede the estimation thereof.    
 
 

 
 
Fig. 6.8: Results of the simulation study with wavelength dependent background absorption.         
(a) Single wavelength image at 800 nm. (b) Unmixed Cy7 component without and (c) with light 
fluence correction. (d) Profile through the retrieved components. (e) Estimated light fluence used 
for correcting the unmixing results. (f) Unmixed ICG component, (g) corrected for light attenuation 
and (h) the corresponding profile. (i) and (j) depicts the ratio between the recovered concentration 
in the different insertions and the outer one as a function of  the peak absorption value.  
 



124 

 

Phantom data 
Fig. 6.9 displays the results of the phantom experiment. Panel (a) shows a single 
wavelength image 750 nm. Panel (b) and (c) depicts the unmixing results without 
compensation of the light attenuation. The inner insertions are weaker than the 
outer due to light attenuation. Panel (d) shows the estimate of the light fluence used 
for correcting the unmixing results. It was obtained by lowpass-filtering the 800 nm 
reconstruction with a 40 x 40 median filter. A binary mask obtained by segmenting 
the image before smoothing was used to eliminate values outside the support of the 
object due to the smoothing. Panels (e) and (f) show the unmixing result after 
division by the estimated light fluence. The profiles through the insertions along the 
dashed lines are shown in (g) and (g). Before correction the strength of the inner Cy7 
insertion was about 64% (65% for GN) of the outer one, after correction 103% (98% 
for GN). The presented normalization approach obviously corrects for the amplitude 
reduction due to light attenuation but also increases the noise level in the image as 
seen in panel (f). 
   

 
Fig. 6.9: Results of the phantom study. (a) Single wavelength image at 750 nm showing the 
phantom with the two insertions. (b) Unmixed Cy7 and (c) unmixed GN signal. (d) Estimated light 
fluence used for correcting the unmixing results. (e) Light attenuation corrected Cy7 component 
and (f) GN component. (g)-(h) Profiles through the unmixed components along the dashed line 
before and after division by the estimated light fluence. 

Ex-vivo mouse 
Fig. 6.10 depicts the results of the deep tissue imaging experiment. The first row 
shows the unmixed component before (a) and after (b) light fluence correction for 
an ICG concentration of 2.5 µM. The profile along the dashed line is shown in (c). 
The corresponding images for a 10 µM concentration are shown in the second row. 
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(g) and (h) show the estimated light fluence for these two concentrations. The ratio 
between the retrieved MSOT signals of the two tubes without and with light fluence 
correction as a function of the concentration is shown in (g). Before normalization 
the relative amplitude of the inner tube was 21 ± 6% of the outer tube, after 
normalization 83 ± 8% depending on the concentration. The normalization obviously 
corrects the effect of light attenuation but as seen from the images also increases 
the noise level.  
 

 
Fig. 6.10: Results of the study in real tissue. (a) Single wavelength image at 800 nm from the liver 
region of mouse post-mortem with two plastic tubes inserted containing ICG. (b) Estimated light 
fluence. (c) Profiles through the unmixed results before and after light attenuation correction.      
(d) Unmixed ICG component and (e) light attenuation corrected ICG component.   

6.3.5 Discussion  

Optoacoustic signals are proportional to the absorbed electromagnetic energy. Due 
to light attenuation in tissue an absorber deep inside tissue appears weaker than the 
same absorber close to the tissue surface. Thus, comparison of signals obtained 
from absorbers at different depths is inherently difficult.  
 
To account for light attenuation effects, a simple but efficient normalization 
approach has been proposed in which the unmixed optoacoustic images are divided 
by an estimate of the light fluence heterogeneity obtained from a low pass filtered 
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single wavelength image acquired close to the isobestic point of hemoglobin. The 
approach was tested in simulation, on experimental phantoms and ex vivo mouse 
data and revealed higher reconstruction accuracy than reconstructions without light 
fluence correction by displaying similar absorbers located at different depth with 
comparable amplitudes. In this manner, the normalization approach presents a 
potent alternative to correction methods that employ complex calculations for 
fluence estimations inside tissues typically based on estimates of unknown tissue 
scattering properties.  
 

The method has nevertheless some inherent limitations. Being a normalization 
method it may increase the noise in the resulting images. In addition, it is based on 
the assumption of small spectral variations of the light fluence, thus only corrects 
the wavelength independent effects of the light attenuation. For that reason, the 
method could correct the attenuation effects with a higher accuracy for the ink 
phantom (which has an almost flat background absorption spectrum) than in the 
simulation study or the mouse experiment. Also, presence of a significant amount of 
probe in big areas may change the light fluence pattern and thus hamper the 
estimation of the light fluence distribution. 
 

To overcome this limitation, light attenuation correction should ideally be done on a 
per-wavelength basis before the unmixing. However, errors in the estimation of the 
light fluence would potentially scale up in the unmixing and thus significantly 
compromise the quantification accuracy. In fact, an accurate estimation of the light 
fluence is a difficult task which does not only require precise knowledge of the 
optical absorption and scattering coefficients but also accurate reconstruction of the 
low frequency information representative for the light fluence. The system develop-
ped herein uses cylindrically focused ultrasound transducers for 2D image 
reconstruction. Yet, acoustic focusing is frequency dependent and the system 
detects more out-of-plane signals in the low frequency range than in the high 
frequency range. This in combination with the limited view detection leads to errors 
in the reconstruction of the light fluence and thus makes light fluence corrections in 
single wavelength images very challenging. The method proposed herein is a 
ratiometric approach based on a division of two images. In this way this approach 
yields a relative measure and directly eliminates artifacts due to experimental 
inaccuracies such as out-of-plane signals but also spatial differences due to varying 
detector sensitivity [134].  
 

It has also to be noted that with the current experimental system, for some areas of 
the mouse’s body (e.g. lung area, intestines), reconstructed single wavelength 
images might show unphysical negative value artifacts in the upper part of the 
image (i.e. distant to the transducer) which are due to acoustic heterogeneities 
within the mouse in combination with experimental limitations of the current setup 
such as out-of-plane signals and limited view detection. In such a situation the 
method presented herein is compromised and applicable only after adding a 
constant term to the normalization image to avoid division by zero. Due to these 
experimental limitations the correcting effect achieved in ex vivo mouse experiment 
was also reduced compared to the simulation study. Yet, it is expected that this 
issue of negative values is improved in systems with more detection elements, an 
increased detection arc (about 270°) and potentially light sheet illumination to 
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reduce out of plane signals, so that the method becomes applicable on whole cross-
sections everywhere in the mouse.  
 

Overall, the presented approach is a direct, fast and straightforward method to 
compensate for the wavelength independent part of light fluence attenuation which 
despite of its simplified character generates a satisfying correction of the light 
fluence attenuation.  
 

6.4 Summary and conclusions 

In this chapter the subject of specific absorbers detection by multispectral means 
was discussed. The challenges were explained and two unmixing approaches 
presented: the first is based on fitting  known absorption spectra to  the set of multi-
wavelength images, the latter is a blind unmixing approach involving principal and 
independent component analysis and does not require any a priori knowledge about 
the spectra of the absorbers present in tissue. In deep tissue blind unmixing yields 
higher detection sensitivity than spectral fitting which is due to the depth dependent 
distortion of the spectral profiles following wavelength dependent light attenuation.   
 

We have also seen that due to light attenuation in tissue, the same absorber at 
different depths is reconstructed with different amplitudes, thus complicating 
comparison of signals from different depths. A simple ratiometric approach was 
presented, based on the normalization of the unmixed components with the 
lowpass filtered single wavelength image acquired at 797 nm corresponding to the 
isobestic point of blood in order to compensate the depth dependent amplitude 
reduction. The approach could correct for the wavelength independent part the light 
attenuation yielding an improved amplitude ratio.  
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7 Applications 

7.1 Introduction 

Various in vivo small animal studies, employing the small animal scanner and 
algorithms developed herein, have been performed to validate and characterize the 
imaging performance resolving anatomical, functional and molecular contrast by 
means of MSOT. As mentioned in the introductory chapter, it is of high scientific and 
economic interest to develop an imaging methodology capable of achieving this. The 
next chapter presents a few applications and is structured as follows: section 7.2 
shows morphological imaging based on hemoglobin contrast. Section 7.3 showcases 
imaging of perfusion after injection of Indocyanine Green (ICG). Section 7.4 show-
cases molecular imaging capabilities by detecting agents that target phosphatidyl-
serine on apoptotic cells within tumor tissue. Finally, section 7.5 showcases the 
ability to study pharmacokinetics by tracking the temporal evolution of normal and 
liposomal ICG in the blood stream. 

7.2 Anatomical imaging based on hemoglobin-based 
contrast 

The purpose of this section is to validate the feasibility to do whole body imaging of 
mice resolving intrinsic hemoglobin-based contrast. Some of the work described 
herein was published in Nature Protocols in 2011, under the title “Volumetric real-
time multispectral optoacoustic tomography of biomarkers” [92].    

Method 
For imaging the mice were anesthetized using Isoflurane and positioned in supine 
position in the animal holder. The mice were translated through the imaging plane in 
order to obtain different cross-sectional images along their body. After imaging, the 
mice were euthanized, frozen and cryosliced for anatomical validation of the 
optoacoustic images. In addition one mouse was imaged at the liver area with a 
frame rate of 10 Hz in order to track movements due the breathing motions. The 
imaging wavelength was 750 nm in all the cases. All procedures involving animals 
and their care were conducted in full agreement with the institutional guidelines, 
complying with national and international laws and regulations. 

Results 
Fig. 7.1 shows a stack of representative cross-sectional optoacoustic reconstructions 
of a mouse imaged in supine position. The reconstruction was done with the 2D 
IMMI method. Fig. 7.1 (b)-(d) show slices through the mouse‘s abdomen, liver area 
and head as well as photographs of the corresponding cryoslices. There is accurate 
congruence between features in the non-invasive optoacoustic images and the 
anatomical photographs of the cryosliced mouse. The abdominal image for instance, 
clearly reveals the kidneys, the spleen, the spine and major vessels like the vena 
cava. In the upper abdomen image we see the liver with its internal vasculature, in 
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the head slice the brain with surrounding vessels. Differences observed in the 
images and the cryoslices can be explained by slight organ movements between the 
optoacoustic and cryoslice imaging, the different vertical resolutions of the two 
methods and differences in the exact location that the images and the cryosliced 
images were acquired from.  
 
Fig. 7.2 shows a whole body scan of a second mouse. Images were reconstructed 
with the 3D MB+SIR algorithm. Cross-sectional slices are shown in (a). Maximum 
intensity projections in y-direction of 0.3 mm thick coronal slices from different 
depths are shown in (b)-(c). The location of the slices is indicated in the cross-
sectional reconstructions depicted in (a). Organs like kidney and liver and major 
vasculature like vena cava, portal vein or the sagittal sinus are clearly visible in the 
coronal slices. MIPs of the whole mouse from two different orthogonal views are 
shown in (e) and (f).    
 
Real-time imaging is showcased by monitoring the respiratory motions of a mouse at 
a 10 Hz frame rate. Fig. 7.3 (a)-(c) depicts three consecutive frames from the time-
series acquired. Arrows indicate structures which undergo strong movements.      
Fig. 7.3 (d)-(f) shows the superposition of the first frame (blue) and the consecutive 
frames (red) in order to highlight the movement. There is obvious movement 
between consecutive frames. Individual images are however not affected by the 
movement, since all the data necessary for a reconstruction is acquired at a single 
laser pulse, thus free of blurring due to motion.   

 

 
Fig. 7.1: Single wavelength optoacoustic images of mouse anatomy. (a) Stack of crossectional 
optoacoustic images throughout the whole body of a nude atymic CD1 mouse, as well as individual 
reconstructions done at the abdominal (b), thoracic (c) and head (d) levels. Photographs of the 
corresponding ex vivo cryoslices are also shown. 1: kidneys, 2: spine, 3: spleen, 4: vena cava,            
5: liver, 6: brain, 7: sagittal sinus. (Panels (a) and (c) published in [92], Copyright 2011, Nature 
publishing group). 
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Fig. 7.2: In vivo whole body scan of a mouse at 800 nm. (a) Cross-sectional slices at different heights 
indicating where the longitudinal slices have been taken from. (b) MIP in y-direction over a 1 mm 
thick volume at position k, (c) position l and (d) position m. (e) shows the MIP of the 3D recons-
truction along the y-axis and (f) along the x-axis. 1: sagittal sinus; 2: right kidney; 3: vena cava;        
4: portal vein; 5: ischiatic vein; 6: middle vein; 7: vasculature below rips; 8: liver. 
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Fig. 7.3: Consecutive frames of a video acquired at the liver region showing the respiratory 
movements of a 5 weeks old CD1 mouse imaged at a 10 Hz frame rate (a)-(c). Arrows indicate 
structures which move due to the respiratory movement. Overlay between the frame of the first 
time-point (blue) and the consecutive frames (red) accentuating the movement of the structures 
(d)-(f).   

Discussion 
The unique design of the system enables convenient whole body imaging of living 
mice. This is showcased by the stack of cross-sectional images throughout the whole 
body of a living mouse. All major organs, such as kidneys, spleen, liver and brain, can 
be visualized non-invasively based on PA imaging. Since MSOT is sensitive to 
hemoglobin contrast, the vasculature is also clearly visible. One can further 
recognize that the image quality is superior in the lower part of the image. This is 
due to the limited view problem as discussed in section 2.4.6. In order to image 
other clinically relevant structures such as heart, intestine or carotid arteries in more 
detail, the mouse can be positioned in prone position. Such images where shown by 
Taruttis et al. in [135-137], using the system developed herein for cardiac imaging 
applications. In future implementations with more detection elements and an 
almost closed detection arc the image quality in the upper half will improve 
significantly making the currently required prone/supine position change obsolete. 
Since the system is optimized to acquire a dataset for a cross-sectional recons-
truction in parallel without the need of data averaging, it is possible to translate the 
animal at constant speed during continuous data acquisition for a fast whole       
body scan. If the animal is translated at 4 mms-1, then a single wavelength whole 
body scan can be done within 20 s. This is considerably faster than the 8 minutes of 
scanning time achieved in other optoacoustic small animal scanner (cf. section 
3.2.2). Eventually, a stack of cross-sectional 2D images can be fed in a volumetric 
visualisation toolbox for direct 3D or maximum intensity pseudo 3D representation. 
However, coronal or sagittal slices have a lower resolution than cross-sectional ones, 
because the resolution in z-direction depends on the focusing capacities of the 
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transducer. Since the complete dataset for a cross-sectional reconstruction is acqui-
red in parallel, the individual cross-sectional images are free of motion artefacts. 
This is clearly shown by imaging the liver during a breathing motion of the mouse. 
Each individual image is sharp without blurring, although motions occur as seen by 
comparing consecutive frames. This performance characteristic is unique to the 
optoacoustic imaging system developed herein and imaging systems that are able to 
achieve such real-time image formation, are not yet described elsewhere. 

7.3  Imaging of perfusion 

The goal of this study is to achieve functional imaging by tracking dynamic changes. 
Here, we monitor kidney perfusion after intravenous injection of Indocyanine Green 
(ICG). In addition, it is shown for the first time in vivo that multispectral unmixing 
can be used to detect extrinsic absorbers such as ICG based on their spectral 
signature. This study was published 2010 in Optics Letters under the title “Video rate 
optoacoustic tomography of mouse kidney perfusion”  [77]  and it was to my know-
ledge the first time that dynamic processes have been monitored deep inside tissue 
by means of optoacoustic imaging and that multispectral unmixing was applied to 
resolve contrast agents in living mice.    

Method 
For imaging, a female, 8 weeks old CD1 mouse was anesthetized with a mixture of 
ketamine and xylazine and hair was removed with a hair removing lotion. The animal 
was then placed in the supine position in the imaging chamber and 300 nmol of 
Indocyanine Green (ICG) solution was injected systemically. Indocyanine green is a 
fluorescence dye widely used in clinical applications, such as ophthalmic angio-
graphy, for determining cardiac output, hepatic function, and liver blood flow. Upon 
intravenous injection, ICG rapidly binds to plasma proteins and is thereby confined 
to the vascular space [138]. This and its absorption maximum at 805 nm near the 
isobestic point of oxyhemoglobin and deoxyhemoglobin makes it particularly suited 
for angiographic applications [113]. Following single-pulse measurements of kidney 
perfusion at constant position and at a wavelength of 800 nm, a multispectral 
dataset of the kidney was acquired at 9 wavelengths (750, 770, 790, 810, 830, 850, 
870, 890 and 910 nm, respectively). In contrast to the video-rate perfusion imaging 
that was performed at 10 Hz without averaging, here 50 averages were acquired per 
wavelength in order to average out the movements of the mouse. Per-wavelength 
energy variations were corrected by powermeter readings done before imaging. For 
unmixing the spectral fitting method presented in section 6.2.2 was employed using 
three spectra (ICG, oxygenized and deoxygenized hemoglobin) shown in Fig. 7.6 (b). 
Fluence variations inside the tissue have not been corrected. After imaging, the 
animal was euthanized, cryosliced and photographed for confirmation of the non-
invasive optoacoustic images. 

Results 
Fig. 7.4 depicts results from the real-time imaging studies and corresponding 
confirmatory ex vivo imaging. Fig. 7.4 (a) shows a stack of subsequent single 
wavelength (800 nm) optoacoustic slices obtained in vivo from the pelvis and the 
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kidney region. Fig. 7.4 (b) shows the slice which was imaged during the injection of 
ICG while the photograph of a cryoslice through the mouse kidneys at a similar 
height is presented in Fig. 7.4 (c). There is accurate congruence between features in 
the non-invasive optoacoustic imaging and the anatomical photograph of the 
cryosliced mouse. Beside the kidneys, the spine, surrounding muscle and vasculature 
are also clearly identified on the optoacoustic image. Differences observed in the 
images can be explained by slight organ movements between in vivo and ex vivo 
imaging and differences in the exact height that the in vivo images and the 
cryosliced images were acquired from.   
 
Fig. 7.5 shows a time series of images acquired in real time after ICG injection as 
single wavelength images (a) and as an overlay of the contrast enhancement 
observed (color) superimposed on the image before injection of ICG (b). Frames at 
different time points were selected to show the dynamics of ICG kidney perfusion. 
About 16 seconds after injection of ICG there is the first appearance of ICG in the 
imaging plane, showing as a localized activity in the center of the image. In the 
subsequent slices, a gradual spread of the dye into the kidneys can be observed 
while an increasing number of vascular structures enhance their contrast due to 
presence of ICG. 540% contrast increase was measured in the vessel in (a) 
highlighted by the arrow.  
 
Finally, Fig. 7.6 (a) shows a multi-spectral optoacoustic (MSOT) image, which detects 
the ICG presence based on its unique spectral signature instead of resolving it as an 
absorption difference over a background image. ICG has a characteristic absorption 
spectrum [113] in the 750-900 nm spectral window that differs significantly from the 
spectra of blood [6] and overall background tissue (Fig. 7.6 (b)) and it was resolved 
herein with per-pixel multispectral decomposition [4].  

 

 

Fig. 7.4: (a) A stack of representative slices of a 3D dataset of the pelvis and kidney region of a 
female 8 weeks old CD1 mouse. (b) Cross-sectional optoacoustic image before injection of the slice 
in which the kinetics of ICG was monitored. (c) Photograph of a cross-sectional cryoslice at a height 
corresponding to that shown in (b): 1. vena cava, 2. portal vein, 3. kidneys, 4. spinal cord,                 
5. backbone muscles and 6. spleen. (Figure published in [77], Copyright 2010, Optical Society of 
America).  
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Fig. 7.5: (a) Crossectional optoacoustic images at different timepoints of the kidneys of a female 
CD1 mouse illuminated at 800 nm after having injected 0.33 µmol of ICG. (b) Superposition of the 
difference image and single wavelength image before injection. (Figure published in [77], Copyright 
2010, Optical Society of America). 

 

 

 
Fig. 7.6: (a) Superposition of a single wavelength image (890 nm) and the unmixed component 
corresponding to the ICG signal. (b) Molecular extinction coefficient of ICG [113], oxygenized and 
deoxygenized hemoglobin. (Figure published in [77], Copyright 2010, Optical Society of America). 
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Discussion 
Functional imaging performance was demonstrated by resolving mouse kidney 
anatomy and perfusion using ICG, an exogenously introduced blood-pool agent. 
Images produced were congruent with corresponding photographs of the mouse 
anatomy, based on cryoslices obtained from the same animal imaged with MSOT. 
Spectral unmixing further demonstrated the ability of the system to visualize exter-
nally administered contrast based on its unique spectral signature without using 
background measurements made prior to the probe administration. Kidneys play a 
crucial role in physiology, they filter the blood to remove waste from the blood 
stream and excrete them, and maintain homeostasis (electrolyte concentrations, 
control of blood volume and regularization of blood pressure) [139].  Also, a number 
of diseases are related to altered renal perfusion, such as essential hypertension 
[140] or acute renal failure [141] and therefore many efforts have been made to 
visualize the renal morphology and perfusion. Existing techniques reach from 
invasive contrast-specific flow measurements in computed tomography (CT) [142-
144], magnetic resonance imaging [145] and ultrasound [146], to non-invasive 
techniques like arterial spin-labeling techniques [147]. Optoacoustic tomography, 
providing in real-time both anatomical and functional information about the 
perfusion, can therefore become a promising alternative for these existing methods.      

7.4 Molecular imaging 

A versatile pool of optical reporter agents and imaging methods for enhancement 
and probing of anatomical features and molecular pathways in tumor tissue is 
available [3, 148]. The optical contrast is provided by fluorochromes [19] and other 
organic dyes, quantum dots [33] and several forms of nanoparticles [31, 149] with a 
large selection of accumulation, targeting and activation mechanisms [150, 151]. 
However, their in vivo visualization is challenging, due to intensive light scattering in 
tissues. As a consequence, established methods such as fluorescence molecular 
tomography generally attain low spatial resolution and suffer from low imaging 
speed [152, 153]. Moreover, questions related to the exact probe localization (e.g. 
necrotic foci within the tumors versus surface of the tumor blood vessels) cannot be 
answered using those methods. MSOT on the other hand, yields high resolution 
even in deep tissue. The goal herein is to showcase that MSOT can be used to detect 
such molecular contrast agents in tumors. This is done exemplarily for novel optical 
probe comprising a synthetic zinc(II)-dipicolylamine complex conjugated to a near-IR 
carbocyanine fluorophore (subsequently called PSS-794). It has recently been shown 
that this probe can selectively target anionic membrane-bound phosphatidylserine 
(PS), exposed by dead and dying cells within xenograft tumors in rat and mouse 
models [154]. Usually restricted to the inner leaflet of the plasma membrane, 
phosphatidylserine is selectively exposed as an early event during cell apoptosis, 
which is a crucial mechanism of cell number control in various physiological and 
pathological events [155]. Herein it is shown that PSS-794 can be detected in tumors 
in vivo with high resolution using MSOT. This study was published  2012 in EJNMMI 
research with the title “High resolution tumor targeting in living mice by means of 
multispectral optoacoustic tomography” [156]. 
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Materials and methods 
For imaging, four female, 8 weeks old athymic CD-1 nude mice, containing 4T1 
tumor allografts were used. The tumors were obtained by injecting 0.8 x 105 4T1 
cells subcutaneously into the mouse’s neck where they were allowed to grow for 7 
days, reaching a diameter of 0.4 to 0.5 cm. The PSS-794 imaging probe was prepared 
as previously reported [157]. The first two tumor-carrying mice were injected intra-
venously via the tail vein 24 hours prior to imaging with 6 mgkg-1 (100 nmol) and      
3 mgkg-1 (50 nmol) of the probe, respectively. A third mouse was injected 3 hours 
prior imaging with probe amount of 3 mgkg-1 (50 nmol). For control, a fourth mouse 
was injected with 3 mgkg-1 (50 nmol) of Indocyanine Green (ICG), a non-targeted dye 
having spectral characteristics similar to PSS-794 in the near-infrared [77]. The mice 
were anesthetized with a mixture of ketamine and xylazine and placed in the supine 
position in the animal holder. Cross-sectional multispectral optoacoustic image data-
sets were acquired through the tumor at 6 different wavelengths in the NIR-window 
(700, 740, 760, 780, 800 and 900 nm, respectively).  
 

Reconstruction of single-wavelength optoacoustic images was done with interpo-
lated matrix model inversion (IMMI) method [66]. Prior to inversion, the raw opto-
acoustic signals were bandpass-filtered between 50 and 7 MHz and deconvolved 
with the combined electrical impulse response of the ultrasonic detectors and the 
acquisition system. For inversion of the forward matrix, the iterative PLSQR algo-
rithm has been used. To selectively detect the biodistribution of the probe over 
intrinsic tissue absorption background, blind multispectral unmixing (cf. section 
6.2.3) was applied.  
 

For validation purposes, one mouse was also imaged ex vivo with a 360° free-space 
FMT-XCT system, which combines fluorescence molecular tomography (FMT) with 
small animal X-ray CT (XCT) into a hybrid imaging device [158]. The system was 
capable of simultaneous three-dimensional visualization of small animal anatomy 
and biodistribution of fluorescent probes in vivo. For volumetric FMT reconstruct-
tions, 12 angular projections distributed over full 360° range were acquired close to 
the excitation and emission wavelengths of PSS-794. Following the FMT-XCT 
measurement, the euthanized mice were cooled to - 80°C. For further verification of 
the in vivo MSOT and FMT images, cross-sectional colour photographs (RGB) and 
fluorescence images were also obtained using a cryotome, supplemented by a 
home-built multispectral epi-fluorescence system [159]. The system consisted of a 
white light source and a sensitive CCD camera with motorized filter wheels for 
selection of the excitation and emission wavelengths. 
 

After cryolicing, selective tissue samples in the tumor area were used for histological 
validation for highly specific detection of apoptosis using commercially available 
annexin V antibody (Abcam PLC, Cambridge, United Kingdom).  

Results 
Fig. 7.7 depicts the molar extinction coefficient of the targeted PSS-794 probe in     
35 mgml-1 albumin, acquired using a fiber optic spectrophotometer (model USB 
2000, Ocean Optics Inc., Dunedin, FL), as well as the spectra of oxygenized and 
deoxygenized haemoglobin. The spectrum of PSS-794 has a characteristic shape with 
an absorption maximum at 810 nm close to the isobestic point of blood. It thus 
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differs significantly from the major background tissue absorbers, making it well 
suited for multispectral optoacoustic detection with high sensitivity. 

 

 
Fig. 7.7: Molar extinction coefficient of PSS-794 in 35 mgml

-1
 albumin along with extinction spectra 

of oxygenized and deoxygenized hemoglobin. (Figure published in [156], Copyright 2012, Springer).      

 

 

Fig. 7.8: Imaging of targeted marker (PSS-794) in 4T1 tumor-bearing mice. In the first column the 
MSOT images are shown. (a) and (d) show superposition of a single-wavelength (anatomical) 
optoacoustic image (in gray scale) and the unmixed component corresponding to the PSS-794 signal 
in colour for the two mice imaged 24 hours after injection. (h) shows the unmixed PSS-794 signal 
for the mouse imaged 3 hours post injection, and (k) the ICG signal also imaged 3h post injection. 
The second column shows the corresponding epi-fluorescence images of cryoslices through the 
tumor. Color photograph of cryoslices are shown in the third column. The tumor margins are 
delineated in yellow.  (Figure published in [156], Copyright 2012, Springer).         
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 Fig. 7.8 (a), and (d) show the spectrally unmixed MSOT signals from the two mice 
imaged in vivo 24 hours after injections. The single wavelength optoacoustic images 
acquired at 900 nm are shown in grey scale while the spectrally unmixed MSOT 
signals are superimposed in colour. Fig. 7.8 (h) shows the result from the mouse 
imaged 3 hours after injection and Fig. 7.8 (k) the result for the mouse injected with 
ICG. The PSS-794 signal is visible in all the three cases, whereas signal from ICG is not 
detectable. Apparently, analysis of the high-resolution MSOT images clearly shows 
that the PSS-794 probe mainly accumulates in the blood vessels surrounding the 
tumours while no infiltration of the probe into the tumour mass occurs.  
 
On the other hand, reconstruction of the subsequent ex vivo FMT measurement, 
shown in Fig. 7.9 (c), generally confirms the fact that the probe accumulated around 
the tumour areas. Yet, due to the lower resolution of the method, it is difficult to 
determine whether the fluorescence signal is originating only from the vasculature 
or from within the tumour parenchyma. The exact origin of the fluorescence signal is 
also not recognizable from the poorly resolved transillumination fluorescence image 
(Fig. 7.9 (d)). The results of the validation cryo-slicing and epi-fluorescence studies, 
made on euthanized mice, are shown in Fig. 7.8 (b), (e), (i), (l). The colour pictures of 
the cryo-sliced mouse in Fig. 7.8 (c), (f), (j) and (g) show the actual location of the 
tumor mass, which can also be readily delineated on the single-wavelength 
optoacoutic images. In summary, both the in vivo MSOT and the ex vivo epi-
fluorescence images clearly reveal that the fluorescence signal of the PSS-794 probe 
is localized in the blood vessels surrounding the tumour. Observation of the    
Annexin V-positive areas in the histological image in Fig. 7.9 (e) suggests that only a 
relatively small number of apoptotic cells exist in the tumor. 

 

 

Fig. 7.9: Comparison between optical imaging and MSOT. (a) shows the MSOT image and (b) the 
corresponding epi-fluoresence image. An FMT-XCT reconstruction is shown in (c) and a planar 
transillumination image in (d). (e) Representative histological slice of the tumor mass. (Figure 
published in [156], Copyright 2012, Springer).   
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Discussion  
Previous studies have shown that the fluorescent PS-targeting probe, PSS-794, can 
be used to image apoptotic/necrotic tissues often found inside tumors by optical 
methods  [160]. 
 
Here, it is demonstrated for the first time that PSS-794 does not infiltrate into the 
tumor mass of 4T1 tumor allografts. Lack of depth resolution during planar 
fluorescence imaging may lead to the conclusion that PSS-794 is concentrated in the 
tumor mass, whereas it is actually located in the periphery around the tumor. Even 
the use of three-dimensional optical tomography (FMT) has not attained the 
sufficient spatial resolution that would enable the determination of the precise 
location of the probe. In contrast, the much higher resolution of the MSOT revealed 
accumulation of the PSS-794 in the blood vessels surrounding the tumor area and 
clearly showed no infiltration into the tumor mass. This lack of extravasation has 
been also confirmed by the post-mortem epi-fluorescence images. This suggests that 
the imaging time-point (1 week post tumor cell inoculation), the vasculature of the 
model is not leaky. The lack of extravasation can be explained by the fact that both 
ICG and PSS794 are known to associate with serum proteins, and it is hard for the 
large protein/dye complex to extravasate from the neovasculature, especially if 
there is a high interstitial pressure in the tumor [161].  The unspecific ICG dye is not 
detected in the imaging area at all, which suggests that the observed PSS-794 signal 
is the results of targeting a certain biomarker, most likely the phosphatidyl-
serine(PS) exposed on vessel walls of the neovasculature [162, 163]. There is 
evidence that 20 to 40% of the blood vessel surfaces in all tumors and metastases 
that are larger than 1 mm expose PS, even though these endothelial cells are vital 
and not apoptotic [164]. Moreover, it normally takes 6 to 24 h to exert the enhanced 
permeability and retention (EPR) effect [165]. Thus the strong PSS-794 signal at the 
tumor-border by 3 h (Fig. 7.8  h) cannot be explained either by the EPR effect. This is 
because, if the tumor vasculature were to be leaky, both PSS-794 and ICG should 
have been observed within the tumor parenchyma.  In any case, the current study 
showcases the power of MSOT to uncover new high resolution information about 
the precise location of imaging probes within sites of disease. 
 
In conclusion, MSOT was used to accurately detect the targeted PSS-794 probe in 
vivo over strong background absorption of blood with spatial resolution up to       
150 µm, attaining unprecedented image quality for deep-tissue imaging of optical 
contrast. The enhanced resolution of the MSOT clearly showed that the probe 
mainly localizes in the vessels surrounding the tumor, suggesting that the probe 
gains its tumor selectivity by targeting the PS that is exposed on the surface of the 
tumor blood vessels. The MSOT results further correlated well with cryoslices and 
epi-fluorescence images of ex vivo specimens. Overall, this study demonstrates the 
high potential of MSOT to broadly impact the fields of tumor diagnostics and 
preclinical drug development.  
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7.5 Determining pharmacokinetic properties by MSOT 
imaging 

Pharmacokinetics (PK) involves the study of drug absorption, distribution and 
elimination and is an important part of drug development, because PK parameters    
- such as the clearance rate of an administered agent from the blood pool - 
determine drug exposure and thus efficacy [166]. Moreover, regulatory agencies 
require PK analysis to be part of any new drug application. Typically, 
pharmacokinetic para-meters are determined by bleeding the animal at specific time 
points in order to measure the concentration of the agent. In order to be able to 
draw a meaningful curve containing multiple time points, this has to be done for 
several animals and thus requires a lot of time, money and is prone to inter mouse 
variations. Possessing a method to determine pharmacokinetic properties of a probe 
non-invasively and in vivo is therefore highly beneficial. It can reduce the amount of 
animals needed and associated costs and accelerates drug development. The goal of 
the research, presented in this section, is to use the real-time imaging ability of the 
MSOT system developed herein to determine the clearance rate of externally 
administered agents in living animals non-invasively. In this experiment liposomally 
encapsulated Indocyanine green (ICG) and non-encapsulated ICG was used. ICG is a 
clinically approved fluorescent dye. It is cleared from the bloodstream by the liver 
followed by biliary excretion and has a half-time in the blood stream between 150 
and 180 s [167]. Compared to free ICG, liposomally encapsulated ICG displays a 
slight red-shift and increased stability, both with regard to shelf-life and in vivo 
stability [168]. Furthermore, the formulation contains a PEGylated lipid that leads 
extended circulation times compared to non-PEGylated formulations. PEGylation of 
particles leads to decreased uptake by the reticulo-endothelial system (RES), the 
main clearance mechanism for liposomes [169]. 

Methods 
ICG-containing liposomes were provided by iThera Medical, GmbH (Neuherberg, 
Germany). Briefly, 100 µmol of neutral lipids dissolved in chloroform were dried by 
rotary evaporation followed by 1 hour desiccation. The lipids were then hydrated 
with 5 mL HEPES buffered saline (150 mM NaCl, 7.5 mM HEPES; pH = 7.4) containing 
2 µmol ICG. After bath sonication the liposomes were extruded 11 times through a 
200 nm membrane followed by a second extrusion through a 100 nm membrane  
(11 times). Lastly, the liposomes were purified from en-capsulated ICG by gel 
filtration (Sephadex CL-4B); the encapsulation percentage was 99%, leading to a final 
ICG concentration of 0.4 mM. 
 
For imaging, two female BALB/c nude mice were anesthetized with Isoflurane and a 
tail vein catheter was placed before the animal was positioned in prone position in 
the imaging chamber. A well-perfused abdominal region of the mouse was then 
continuously imaged immediately before and for 30 minutes after injection of         
50 nmol of ICG or liposomal ICG. Multiple wavelengths (710, 735, 760, 800, 850 and 
900 nm, respectively) were used, allowing for spectral unmixing and 50 averages 
were taken at each wavelength to account of animal movement. After imaging the 
mice were euthanized and the ICG content in plasma was determined by fluores-
cence spectroscopy [168].  
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Optoacoustic images were reconstructed with the IMMI method. For separation of 
the spectral components, spectral fitting was performed. The input spectra were the 
spectrum of ICG, oxygenized and deoxygenized hemoglobin.  
 
To analyze the pharmacokinetics of the injected probes in plasma, the unmixed 
MSOT signal corresponding to the ICG component was monitored in a large vessel as 
indicated in Fig. 7.10 by the red circle. Furthermore, the experimental data was 
fitted to an exponential function to determine the half-life of the probes in the 
plasma.  

Results 
Fig. 7.10 depicts the unmixed ICG components superimposed onto the 900 nm single 
wavelength images. The transparency map of the overlay scales linearly with the 
intensity of the unmixed signal. Images are shown for free and liposomal ICG at 
three different time-points: before injection (left panels), directly after injection 
(middle panels) and 30 minutes after injections (right panels). In contrast to 
liposomal ICG, free ICG cannot be detected in the t = 30 min image. Fig. 7.11 depicts 
the measured concentration versus time curves for the two components and their 
numerical fit. Unmixed ICG values were converted to ICG-concentrations by 
extrapolating from ICG concentration in the blood pool measured post-mortem                
30 min after injection by fluorescence spectroscopy. From the fit the half-life of free 
ICG in the blood pool was calculated to be 3 min and the half-life of liposomal ICG to 
be 106 min. 

 

 
Fig. 7.10: Visualization of clearance of non-encapsulated and liposomal ICG from the bloodstream. 
Images show the unmixed ICG signal superimposed onto the single wavelength image acquired at 
900 nm. Images are shown for three time points: pre-injection (left panels), immediately after 
injection (middle panels) and 30 minutes post injection (right panels). The red circles indicate the 
region of interest the signals were acquired from.  
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Fig. 7.11: Measurement and pharmacokinetic modeling of the ICG plasma-concentration vs. time 
curves. The vessels within which the ICG concentration is tracked are indicated in Fig. 7.10 by the 
red circles. Unmixed optoacoustic values were converted to ICG-concentrations by determining ICG 
plasma levels at t = 30 min by fluorescence spectroscopy and extrapolation.  

 

Discussion 
This study showed the ability of MSOT to non-invasively examine the clearance of 
free and liposomal ICG from the blood pool. The half-life of ICG was determined to 
be about 3 minutes which is in good agreement with the values from literature 
[167]. Liposomally encapsulated ICG was retained much longer in the plasma 
yielding a half-life of 106 minutes. The circulation time of liposomes can be tuned by 
changing the degree of PEGylation. The polymer shield influences surface charge, 
hydrophilicity, steric effects and plasma protein binding of the liposomal formu-
lation, all leading to decreased uptake by macrophages that constitute the RES 
[170]. Although a multispectral dataset was used herein to determine the clearance 
rate of the probes from the blood stream, an alternative approach is to use single 
wavelength images, acquired at the absorption peak of the probe and subsequent 
monitoring of the optoacoustic signal strength within the area of interest. Compared 
to the multispectral approach, the single wavelength approach can yield a much 
higher temporal resolution with up to ten data points per second. The multispectral 
approach on the contrary has the advantage that it resolves the probe over the 
background, i.e. in addition to the information about the probe’s pharmacokinetics; 
it can also provide information about its biodistribution. Temporal resolution of 
multispectral data acquisition can be improved by minimizing the number of 
wavelengths imaged or by faster tuning lasers. In conclusion, this study showed the 
possibility to determine the pharmacokinetics of administered drugs quickly and 
non-invasively by means of MSOT without the need of bleeding or sacrificing the 
animal, thus reducing the number of animals needed and saving time. Overall, this 
study shows that MSOT can help accelerating the screening of new drug-candidates.  
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7.6 Conclusion 

MSOT is unique with its combination of resolution, penetration depth and molecular 
sensitivity. No other imaging modality offers this performance. Although the distinct 
properties of MSOT were theoretically known [4], MSOT has not been used for 
imaging mice before. Utilizing the properties of the small animal scanner developed 
herein, several examples of the use of MSOT for resolving anatomical, dynamic and 
molecular information in living mice are established. This has tremendous potential 
for small animal imaging. 
 

Specifically, a whole-body scan of a mouse based on intrinsic contrast was presented 
and it was shown that clinically relevant targets such as kidney, liver, spleen, heart 
and brain, as well as the major vasculature, are accessible with the system.   
 

Moreover, it could be showcased that it is possible to monitor dynamic processes 
such as breathing motions and perfusion after injection of ICG with unprecedented 
temporal and spatial resolution. It was also the first time that systemic administered 
ICG was resolved over background absorbers by means of MSOT.  
 

Molecular imaging performance was showcased by detecting phosphatidylserine 
targeting contrast agent in tumor xenografts. MSOT yielded a superior image quality 
and resolution than established fluorescence imaging techniques such as epi-
fluorescence imaging and hybrid FMT/XCT. Also, it was the first study showcasing 
that targeting fluorescent agents can be detected by means of MSOT in vivo. 
 

Finally, benefiting from the high temporal and spatial resolution of the system it 
could be shown that pharmacokinetic properties such as the clearance rate of 
contrast agents (here liposomal and normal ICG) from the blood pool can be 
determined.  
 

The results shown here can be transferred to many different imaging settings and 
scenarios in cancer research and drug development in general.  Lately, this has been 
shown on several occasions in more biological oriented studies by colleagues using 
the developments presented herein.  
 

Selected examples are: 
- Imaging of the mouse heart cycle [135] and monitoring cardiovascular dynamics 

by means of circulating gold nanorods [136] done by Taruttis et al. 
- Imaging tumour heterogeneities by means of MSOT done by Herzog et al. [171] 
- Brain and Glioblastoma tumor characterization by Burton et al. [172] 
- Imaging of vaccinia virus-mediated melanin production by Stritzker et al.  [173] 
- Use of gold nanoprisms as optoacoustic signal amplifiers for in vivo bioimaging 

by Bao et al. [174]. 
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8 Towards 3D real-time imaging 

8.1 Introduction 

In the previous chapters it was shown that 2D optoacoustic imaging using a 1D 
cylindrically focused detector array is limited by a frequency dependent suppression 
of out-of-plane signals. As further shown, this can be improved by scanning the array 
over several positions and modeling the spatial impulse response of the transducer. 
Nevertheless the elevational resolution remains lower than the inplane resolution. 
Moreover, the presented model-based inversion schemes are computationally very 
demanding, so that large scale imaging studies become impractical.  
 
With the goal to overcome these limitations a second system has been conceived. 
Using a 2D transducer array, i.e. elements arranged on a surface rather than a 1D arc 
and thus not relying on acoustic focusing for suppression of out-of-plane signals, it 
attains a higher elevational resolution than the previously presented 2D imaging 
system. Moreover, the system can image small 3D volumes in real-time. This 
approach has several potential advantages: First, dynamic processes, such as the 
biodistribution of molecular probes, can be monitored in the entire volume of 
interest. Second, motion artifacts that degrade the image quality when imaging 
living specimen can be avoided. Third, three dimensional information in real-time 
could enable image guided interventions like needle biopsies and localized drug 
deposition [175]. Finally, 3D real-time performance can greatly decrease the time 
required for experiments and increase throughput.  
 
A proof-of-principle study, using a sparse distribution of only 15 transducers, 
showcased the feasibility of three-dimensional, real-time imaging. However, only 
simple and isolated objects such as rods or point-sources were imaged, albeit with 
poor resolution and inappropriate for biological samples as only 15 detectors were 
used [176]. Thus there still was a need to establish the ability for real-time 3D 
imaging in tissue. Efficient implementation of such an imaging system is however 
challenging as it requires simultaneous collection of time-resolved optoacoustic 
signals from a large number of points (projections) around the imaged object as well 
as sufficiently fast data collection and processing capabilities. The system described 
here, utilizes simultaneous acquisition of signals from 256 points distributed over a 
spherical surface surrounding the sample. Thereby, volumetric reconstructions can 
be obtained at 10 frames per second, limited by the pulse repetition rate of the 
laser. The system was published 2012 in Optics Express with the title ”Three-
dimensional optoacoustic tomography at video rate” [177] and was used to 
demonstrate the previously undocumented ability to do 3D real-time imaging of 
tissue. In the following paragraphs the system is described and its ability to image 
complex static structures and dynamic processes in real-time and in 3D is 
showcased. At the end, suggestions for improvements for future implementations 
are discussed. 
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8.2 Materials and methods 

8.2.1 Imaging system 

A layout of the imaging system is depicted in Fig. 8.1 (a) from two orthogonal views. 
A photograph of the implementation is shown in (b). It is based on a custom-made 
256 element  transducer array  (Imasonic SaS, Voray, France) covering a solid angle 
of 240° in azimuth and 75° in elevation around the imaged object. By having a larger 
detection aperture than the 2D imaging system it can detect more complementary 
tomographic views. In between the two hemispheres there is a 1.9 cm gap for 
illumination purposes. Illumination is therefore normal to the surface of the sample 
and not effected by different mouse diameters, in contrast to the 2D real-time 
imaging system with slightly oblique illumination. The individual elements are 
manufactured using piezocomposite technology with a central frequency of 
approximately 3.3 MHz and bandwidth (FWHM) of 4.3 MHz. The electrical impulse 
response of the system was determined as described in section 3.4.3 and is shown in 
Fig. 8.1 (b). The individual elements, having dimensions of 4 x 4 mm2, are arranged in 
space in 8 rows as depicted in Fig. 8.1 (d). The number of elements per row is        
[28, 32, 34, 34, 34, 34, 32, 28], respectively. The inter-element spacing in azimuth 
direction is 1.5 and 2.5 mm in elevations. Sections along the xy-, xz- and yz-plane of 
the simulated sensitivity field of a single transducer are shown in the first column of 
Fig. 8.1 (e) while sections through the combined sensitivity field, i.e. summation of 
the sensitivity fields of all the elements, are displayed in the second column of Fig. 
8.1 (e). In this way, an effective imaging region of about 12 x 9 x 7 mm3, defined by 
the region within -6 dB of the combined sensitivity field, can be covered using a 
single laser pulse. The sensitivity of the system was determined to be 7 µVPa-1  ± 5% 
over a 1 to 7 MHz bandwidth. Excitation light originates from a tuneable (680-900 
nm) optical parametric oscillator laser (Phocus, Opotek Inc., Carlsbad, CA), delivering 
less than 10 ns pulses with repetition frequency of 10 Hz (cf. section 3.3.1). The 
beam is guided into a custom-made silica fused-end fiber bundle (CeramOptics 
GmbH, Bonn, Germany) consisting of 630 fibers partitioned into 10 arms. The 
individual arms are attached at the illumination gap to create a ring-shaped 
illumination pattern of approximately 9 mm width upon the surface of the imaged 
object. The optoacoustic signals are digitized at a sampling frequency of 40 
megasamples per second by two synchronized custom-made multi-channel analog 
to digital converter, each with 128 channels and a 12-bit resolution over a 16 mV 
range (Falkenstein Mikrosysteme, Taufkirchen, Germany). The laser’s Q-switch 
provides the trigger for the acquisition. The sample is placed in the holder presented 
in section 3.3.3, comprising of a transparent and water impermeable membrane 
that averts direct contact of the imaging object with water. A linear stage (LTM 80F 
300, OWIS GmbH, Staufen, Germany) allows translation of the sample holder in the 
axial z-direction for acquisition of three-dimensional data sets from different regions 
of the sample.  
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Fig. 8.1: The imaging system. (a) A schematic representation of the major components seen from 
two different directions. (b) Photograph of the system. (c) Frequency response of the transducer. 
(d) Arrangement in space of the individual transducer elements. (d) Sections through the sensitivity 
field of a single transducer element (first column) and the combined sensitivity field of the system 
(second column). The sections are centered at (0,0,0). The single transducer element is located at   
(-5,0,0 ) cm. The -6 dB combined sensitivity field region is depicted in red in (d). (Panels (a), (c), (d) 
and (e) published in [177], Copyright 2012, Optical Society of America). 

8.2.2  Signal processing and image reconstruction 

In a first step, the signals are deconvolved with the electrical impulse response      
(cf. section 4.2) and then bandpassfiltered with a Chebychev filter with cut-off 
frequencies of 0. 1 and 7 MHz to remove low and high frequency noise. The filtered 
signals are subsequently used for image reconstruction with a modified back-
projection algorithm in which the signals are weighted with the sensitivity field of 

the particular transducer element so that the absorbed laser energy   (  
 ) at a 

point   
  is given by 
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  . This kind of weighting avoids that signals are backprojected into 

areas, where the sensitivity of the elements is low, i.e. where they are not detected 
from. The sensitivity field of a single transducer element (Fig. 8.1 (d) first column) 
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was computed numerically as previously described in section 3.4.4 using the open-
source software Field II [56, 94]. As we have  shown in [108], 3D model-based 
reconstructions yield slightly better results than the backprojection approach, yet 
due to the increased computational burden were not considered herein for real-
time imaging. 

8.2.3 System characterization 

Basic imaging performance was tested with two different phantoms using illumi-
nation at 760 nm. All images were acquired without averaging, i.e. using single laser 
pulses. The first phantom consisted of a light scattering cylinder with a diameter of 
1.9 cm containing a 100 µm in diameter black absorbing microsphere (Cospheric LLC 
Santa Barbara, CA). The microsphere was moved in the imaging plane to three 
different positions, namely (0,0,0), (-5,0,0) and (-10,0,0) mm, in order to characterize 
the resolution of the system in different directions. For each position, the corres-
ponding point-spread-function was calculated with the backprojection algorithm 
within a volume of 22 x 22 x 3 mm³ consisting of 600 x 600 x 75 voxels and 
compared with the analytical formula (cf. 2.4.3.1). The second phantom was used in 
order to showcase the real-time performance of the system. It consisted of a 
transparent tube with an inner diameter of 300 µm embedded in a scattering agar 
cylinder. The tube was perfused with diluted ink yielding an absorption coefficient of 
5 cm-1. The ROI was 21 x 21 x 10 mm³ while the reconstruction was done using      
201 x 201 x 100 voxels. 

8.2.4 Mouse imaging 

To test performance in the presence of realistic heterogeneous tissues, an excised 
mouse heart embedded into a scattering agar cylinder was imaged. Likewise, the 
reconstruction was done with the sensitivity-weighted backprojection algorithm. 
The ROI contained a volume of 15 x 15 x 10 mm³ and consisted of 151 x 151 x 100 
voxels. 
 
Whole body imaging performance was showcased with a 10 days old CD1 mouse. 
The mouse was euthanized according to approved institutional regulations regarding 
animal experiments while the hair was removed with a depilatory lotion. It was 
placed in the animal holder in supine position and scanned with 200 µm steps along 
its longitudinal axis over a total distance of 4 cm. The imaging wavelength was        
760 nm. For each scanning position, a volume of 16 x 16 x 8 mm³ was reconstructed 
using 161 x 161 x 81 voxels. The individual volumes were then merged into a larger 
volume by averaging the intersecting parts.  In that way it was possible to cover the 
whole length of the mouse.     
 
Finally, several in vivo experiments were performed in order to assess the real-time 
operation. In the first experiment, the heartbeat of a 10 day old mouse was 
visualized. For this, a CD1 mouse was anesthetized, shaved and placed in prone 
position into the animal holder. The water temperature was stabilized at 32°C. 
Ultrasound gel was used to improve acoustic coupling. Signals were acquired at the 
heart level with a frame rate of 10 Hz. The laser wavelength was set to 850 nm. In 
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the second experiment, perfusion of contrast agent through the brain of an adult 
atymic CD1 mouse was monitored. The mouse was injected with 130 nmol of 
Indocyaninegreen (ICG) through its tail vein while imaging was done at 800 nm 
wavelength (near the absorption peak of ICG) with a frame rate of 10 Hz.  

8.3 Results 

8.3.1 System characterization 

Fig. 8.2 (a)-(f) depicts cross-sectional images of the microparticle with the first and 
second row representing cross-sections within the xy-plane and yz-plane, respect-
tively. The positions of the microsphere are (0,0,0) mm (see first column), (-5,0,0) 
mm (cf. second column) and (-10,0,0) mm (cf. third column). Clearly, the resolution 
is anisotropic and is also not constant along some of the axis. The radial and 
transverse resolutions are subsequently estimated as the full width at half maximum 
(FWHM) along the radial and transverse directions in analogy to the resolution 
estimation in section 3.4.6. The radial resolution of approximately 200 µm is only 
bandwidth limited, thus spatially invariant and in good agreement with the 
theoretically predicted value (cf. chapter 2.4.3.1). The transverse resolution however 
varies significantly between 200 µm in the center of the array, degrading to 
approximately 850 µm at a distance of 10 mm from the center, as shown in Fig. 8.2. 
The reconstructed microsphere at the center of the transducer array is slightly 
elongated towards the z-direction. The reason for this is the reduced elevational 
aperture (75°) of the system, which provides relatively limited view in this direction. 
A larger elevational angle and more transducer elements would improve the 
resolution. The 3D real-time imaging capability has been showcased by monitoring 
ink flow through a plastic tube. Consecutive frames are shown in Fig. 8.3. A video 
(Movie 1) of the ink flowing through the tubing imaged at 10 frames/s is available in 
the online version of reference [177].   

 

 

Fig. 8.2: Radial and transversal resolution of the system as a function of the position. The insets 
show reconstructed images of a 100 µm microsphere located at the coordinates (0,0,0) mm (first 
column),  (-5,0,0) mm (second column), and  (-10,0,0) mm (third column). The first row depicts the 
cross-sections through the microsphere along the xy-plane. The second row the cross-sections 
along the yz-plane. (Figure published in [177], Copyright 2012, Optical Society of America).     
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Fig. 8.3: Visualization of ink flowing through a plastic tube. Each frame, displayed by maximum 
intensity projection (MIP) of the 3D volume, depicts one time instant.   

8.3.2 Mouse data 

Fig. 8.4 depicts the maximum intensity projection (MIP) images of the excised mouse 
heart along two representative directions along with a cross-sectional slice and a 
photograph of the excised mouse heart. Single shot images acquired within 100 ms 
are shown (no averaging). A rotational movie (Movie 2) showing the MIP from 
different viewing angles is also available in the online version of reference [177].  
High resolution anatomy of the heart can be clearly identified in the images, 
including the two ventricles separated by the septum, the aortic arch as well as 
some other coronary vessels.  
 

Fig. 8.5 (a) depicts the MIP of optoacoustic images of the sacrificed 10 day old 
mouse, with the corresponding photograph shown in Fig. 8.5 (b). A rotational video 
(Movie 3) showing the reconstruction from different angles is further available in 
reference [177].  Since optoacoustic imaging is dominantly sensitive to hemoglobin-
based contrast, mainly the vasculature of the animal is visible. High resolution 
details (sagittal sinus, the frontal cerebral arteries or the longitudinal fissure of cere-
brum) are also visible when zooming into the mouse brain (Fig. 8.5, panels (c)-(f)).  
 

 

Fig. 8.4: Single shot imaging of an excised mouse heart. The maximum intensity projection (MIP) of 
the heart along two directions is shown in (a) and (b). (c) depicts a cross-sectional slice through the 
heart. (d) shows a photograph of the mouse heart. A movie file (Movie2) showing the volume 
rotating is available in the online version of the journal. 1: Septum; 2: right ventricle; 3: left 
ventricle; 4: aorta; 5: coronary vessels. (Figure published in [177], Copyright 2012, Optical Society of 
America). 
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Fig. 8.5: Volumetric reconstruction of a babymouse. (a) MIP of the mouse vasculature. (b) Photo-
graph of the babymouse to indicate the orientation of the volumentric reconstruction. (c) MIP of a 
1 cm thick region through the mouse brain, (d) a corresponding cryoslice, (e) the MIP from the top 
and (f) a photograph of an excised mouse brain. 1: Transverse sinus; 2: longitudional fissure of 
cerebrum; 3: left supraorbital vein; 4: thoratic aorta; 5: right iliac artery; 6: sagittal sinus; 7: frontal 
cerebral arteries; 8: superior cerebral vein. (Figure published in [177], Copyright 2012, Optical 
Society of America).    
 

Fig. 8.6 shows cross-sectional reconstructions of the 10 days old mouse imaged at  
the heart region during a diastolic (a) and systolic (b) phase of the heart cycle as well 
as a photograph of a cryoslice through a mouse’s heart area for comparison. A video 
(Movie 4) is available in reference [177]. The video is displayed in slow motion at 5 
frames/s, even though the images have been acquired at 10 frames/s. One can 
recognize the heart, including the septum (1), the two ventricles (2 and 3) and the 
lung (4). Both in the images and the video, one can clearly see the change of the size 
of the heart due to the pumping movement. An increase of the signal intensity in the 
left ventricle during the diastolic phase is also visible due to the filling of the 
ventricle with oxygen enriched blood coming from the lungs. In the movie file it is 
also possible to distinguish between the heart and breathing motions. The breathing 
motions are less frequent and have larger magnitude as compared to the heart 
movements. Naturally, the reconstructions from the heart area have generally poor 
quality and low resolution, presumably due to propagation artifacts introduced by 
lungs which contain acoustically-mismatched air cavities.  
  

 

Fig. 8.6: Cross-sectional reconstructions of a babymouse at the heart region during (a) a diastolic    
and (b) a systolic phase. 1: Septum; 2: left ventricle; 3: right ventricle; 4: lung. (c) depicts a cryoslice 
through the heart area of a mouse for comparison. (Figure published in [177], Copyright 2012, 
Optical Society of America). 



152 

 

 
Finally, Fig. 8.7 depicts perfusion of ICG through the brain of an adult mouse. Panels 
(a)-(c) correspond to MIP images along the z-axis at three different time points while 
(d)-(f) are MIPs along the y-direction captured at the same time points. One can 
clearly recognize an enhancement in the vasculature contrast following injection of 
the ICG. Panel (g) depicts the average optoacoustic signal strength in the vein 
indicated by the white arrow. Although the data is affected by laser energy 
fluctuations, a clear tendency is visible. During the first 10 seconds the signal is 
constant while a sudden increase of the signal strength occurs right afterward due to 
the ICG injection, followed by a plateau in the optoacoustic signal strength.  
 

 
Fig. 8.7:  3D imaging of brain perfusion after injection of ICG. (a)-(c) MIP of the reconstructed 
volume along the z-direction at three different time points. (d) - (f) corresponding MIP along the     
y-axis. (g) signal intensity as a function of time in the vessel indicated by the arrow in (f). 1: Trans-
verse sinus; 2: superior cerebellar vein. (Figure published in [177], Copyright 2012, Optical Society 
of America).         

8.4 Discussion and conclusion 

It was described how the optoacoustic phenomenon can be leveraged for generating 
a complete volumetric tomographic dataset using a single laser pulse. This 
characteristic is unique to the system described in this chapter and this possibility 
does not exist in other imaging modalities, as it is usually necessary to perform 
sequential excitation of the object from multiple source locations in order to acquire 
tomographic data required for efficient volumetric image reconstructions. This is 
also the approach taken in previously described, dedicated 3D small animal 
photoacoustic imaging systems (cf. section 3.2.2). In these systems, the ultrasound 
array containing 64 transducers is rotated around the imaging object to acquire 
several thousand tomographic views that are used for 3D reconstruction. Although 
high isotropic resolutions can be achieved using this methodology, the temporal 
resolution is poor, rendering such systems less useful for dynamic studies. 
 
In contrast,  with the optoacoustic tomography system that is described here, it is 
shown to be possible to attain three-dimensional optoacoustic volumetric 
reconstructions of approximately 12 x 9 x 8 mm³, with a single laser pulse (under    
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20 ns), using simultaneous acquisition of optoacoustic responses from 256 locations 
(projections around the object). This limits the temporal resolution to the laser 
repetition rate, which is 10 frames/second in the current set-up, but could be 
modulated for future implementations. Compared to scanning-based setups, which 
require several pulses to form a volumetric image, the 3D reconstructions herein are 
not affected by animal motion. By relying on tomographic reconstruction for image 
formation instead of focusing, the elevational resolution is improved compared to 
the previously developed 2D system. Moreover, by having a larger detection 
aperture, the system can acquire more complementary views and is less sensitive to 
the limited view problem (cf. section 2.4.6). It was established that a sequence of 
three-dimensional images at a frame rate of 10 Hz can be retrieved with the system, 
which allows tracing dynamic events such as perfusion of contrast agents, breathing 
and heartbeat. Having shown for the first time the ability to track non-invasively 
dynamic processes in 3D in deep tissue is an important technological and scientific 
advance, which promises wide-ranging applications in biological research, drug 
development and clinical practice. 
 
However, it has to be noted that the presented implementation suffers from some 
limitations with respect to whole body imaging of mice. Most importantly, the 
system images volumes with the dimensions of 12 x 9 x 8 mm³, this is a relatively 
small effective imaging volume compared to the whole body of an adult mouse. 
Obviously, if volumes larger than 12 x 9 x 8 mm³ need to be imaged, it is necessary 
to scan the imaging volume through the sample, optimally in all three spatial dimen-
sions (x, y and z) to have maximal sample coverage, and merge the reconstructed 
volumes. Feasibility of this approach has been shown in Fig. 8.5, but comes at the 
price of decreased temporal resolution. Also, the resolution is anisotropic and 
strongly degrading away from the center of the transducer array. Both effects are 
due to a combination of sparse transducer distribution, limited view detection, the 
rather big size of the elements, which constrain their field of view and distort the 
measured signal, and the big width of the illumination gap preventing detection of 
signals from the surface (cf. sections 2.4.5, 2.4.6 and 2.4.7). Rotation of the trans-
ducer around the z-axis (or the x- and y-axis) to reduce the sparseness of the angular 
sampling would improve the image quality within the effective imaging volume but 
is inappropriate for imaging whole mouse cross-sections due to the strong degra-
dation of the lateral resolution outside the center.  
 
To improve the imaging quality and make the system suitable for whole body mouse 
imaging, it is important to capture the ultrasound waves from as many positions as 
possible and to maximize the angles of acceptance for each point of the illuminated 
volume. Thus the transducer elements have to be sufficiently small, so that each one 
sees the whole cross-section of the mouse, and densely distributed over a possibly 
closed detection surface (cf. section 2.4.2). With the data acquisition and processing 
technology utilized in this study, we can currently collect and process up to 512 
tomographic projections in parallel, with potential for future improvements. Hence 
by using more detection elements, there is a way to improve the presented image 
quality. Nevertheless, previously described dedicated 3D small animal imaging 
systems use several thousand tomographic views to reconstruct a whole mouse 
[60]. Thus from a technical and economic point of view, this amount of data is too 
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much to be acquired with a single transducer array in parallel. High quality 3D 
imaging of big volumes such as mice require scanning (rotating) of the detection 
device around the sample and are therefore currently not feasible in real-time. 3D 
real-time imaging will rather find its application as a diagnostic tool for localized 
probing of small tissue volumes, for example in handheld mode. Based on the 
experience acquired from this initial prototype, current research at the institute for 
biological and medical imaging (IBMI) focuses on the development of such devices, 
for pre-clinical and clinical applications.   
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9 Conclusion and future outlook 

This chapter summarizes the accomplishments of the presented work and gives an 
outlook on future developments. 

9.1 Conclusion 

At the beginning of this thesis in the year 2009, multispectral optoacoustic 
tomography (MSOT) was in its infancy. Although the advantages of the technology 
(rich optical contrast, high ultrasound resolution, save use and potential real-time 
operation) were theoretically known and initial proof-of-principle experiments 
resolving fluorescent dyes in excised mouse legs or fluorescent proteins in 
mesoscopic zebra-fish became available, there was no experience with in vivo 
multispectral optoacoustic imaging of mice nor adequate small animal imaging 
systems and questions about the general feasibility, the optimal approach and the 
benefit of MSOT as a small animal imaging modality were open.  
 
An important goal of this work was the development of a novel concept for an 
optoacoustic small animal imaging system for practical multi-spectral whole-body in 
vivo imaging of mice, easily accessible for the research community. Therefore 
different instrumentation and detection geometry related effects were analyzed at 
the beginning of this thesis, with respect to their influence on the image recons-
truction accuracy. It was shown that the optoacoustic signal strength scales with the 
deposited light energy, therefore light delivery is an important issue. Also shown 
was, that optoacoustic signals are broadband with its frequency content depending 
on the size of the optoacoustic source. The detection device should therefore 
provide a detection bandwidth adapted to the frequency content of the signals from 
the structures to be resolved. Moreover, it was shown that a finite size detector acts 
as a low-pass filter and blurs the reconstruction. Therefore, from a resolution 
standpoint, detectors should be as small as possible. However, this contrasts SNR 
requirements, due to which detector elements should be big. Lastly, it was shown 
that sparse spatial sampling creates aliasing artifacts and limited view detection 
leads to potentially “invisible” objects.     
 
Based on the findings a 1D multi-element piezocomposite transducer array, with 
elements cylindrically focused onto a common plane and arranged on an arc around 
the imaged object, in combination with confocal illumination, was considered the 
best suited approach for detection of the optoacoustic responses in a small animal 
imaging experiment. It has the advantage of providing high in-plane resolution, good 
sensitivity and 2D real-time performance utilizing only a relatively small number of 
ultrasound detectors.  
 
A prototype small animal imaging system was implemented based on this concept 
including an innovative animal positioning approach that shields the animal from the 
surrounding coupling medium and thus allowing in vivo whole body scans without 
the need to reposition the animal. Overall, the system provides cross-sectional 
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imaging at the laser-repetition rate and whole body imaging by translating the 
animal along its longitudinal axis. Imaging and component performance was 
analyzed on phantoms and mice. The cross-sectional resolution was determined to 
be between 150 and 550 µm depending on the position. The ability to do whole 
body imaging was demonstrated by scanning a whole mouse and resolving the 
anatomical hemoglobin contrast. Imaging of dynamic processes was exemplarily 
shown by tracking breathing motions and monitoring contrast enhancement in the 
kidneys due to perfusion of systemically administered Indocyanine green, a clinically 
approved near-infrared fluorochrome, frequently tagged to a specific compounds to 
make them detectable by fluorescent means. Molecular imaging performance was 
exemplarily showcased by resolving the Indocyanine green in the kidneys over the 
intrinsic background absorbers based on the probes spectral signature by 
multispectral means and by detecting optical reporter agents (here a 
phosphatidylserine targeting fluorescent dye) within mouse xenograft tumors. 
Overall, these proof-of-concept studies showcased for the first time the ability of 
MSOT to resolve in parallel anatomical, functional and molecular information, non-
invasively in living mice. Having established that it is possible with the system to 
access all areas of the mouse body, resolve dynamic processes and detect molecular 
agents, it follows that the system can be applied to study different biological 
scenarios and molecular probes, in particular pharmacokinetics and biodistribution 
of such agents and thus can become a powerful tool for biological research. In the 
meantime the system was used by coworkers on various other occasions for 
instance for imaging the cardiovascular system including heart cycle and heart 
infarction [135-137, 178], pharmacokinetics and biodistributions of various contrast 
agents (e.g. gold nanorods, fluorescent dyes) [174, 178], tumor heterogeneities 
[171] and glioblastoma brain tumors [172].  Today, follow-ups of the initial system 
are commercially available by iThera Medical GmbH6, thus validating the existing 
need within the biomedical research community for imaging equipment that is 
capable of answering such biological questions. 
 
In addition to the 2D real-time system, a 3D real-time system was built in this work. 
It was showcased of being capable of imaging small tissue volumes in 3D at the laser 
repetition rate. It was the first system that could image complex structures (e.g. an 
excised mouse heart), brain perfusion (contrast enhancement due to circulating ICG) 
and a heart cycle in real-time and 3D. Compared to the 2D approach relying on 
focusing to suppress out-of-plane signals, the 3D approach has the advantage of 
achieving higher elevational resolution and, since it depends on computed recons-
tructions, quasi-independent of the frequency of the optoacoustic signal. Yet, for 
real-time imaging of bigger volumes, e.g. adult mouse cross-sections, the system has 
to be optimized by a denser spatial sampling (i.e. more detection elements), a size 
reduction of the detection elements to reduce the effect of the spatial impulse 
response and a smaller illumination gap.   
 
Beside system development, a big emphasis of this work was put on algorithm 
development for improving reconstruction and multispectral unmixing accuracy. In 
that context, it was shown that it is important to compensate for the electrical 
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impulse response of the detection system to avoid reconstruction artifacts due to 
signal distortion. Moreover, an interpolation technique was presented to alleviate 
aliasing artifacts due to the sparse angular sampling in a fixed array configuration. In 
addition, 2D model-based image reconstruction was analyzed in limited view 
detection scenarios and it was found that for detection arcs shorter than 180° the 
inversion becomes severely ill-conditioned leading to stripe artifacts. To compensate 
for these artifacts and make 2D model-based image reconstruction actually possible 
in the limited view small animal imaging system, two regularization schemes have 
been presented. It was also shown that standard 3D reconstruction approaches 
which assume point detectors (e.g. the 3D backprojection algorithm) are inadequate 
for 3D reconstructions in a scanning-based setup employing cylindrically focused 
detectors due to the signal distortion by the finite detector size.  Stacking of cross-
sectional slices yield better results in such a situation but images are still affected by 
the frequency dependent focusing properties of the detector.  To improve on the 3D 
reconstruction capability of the system, a 3D model-based reconstruction approach 
was adapted to incorporate the specific shape of the detector into the model. It was 
shown that by this means, 3D image reconstruction becomes more accurate in 
particular by better resolving structures oriented perpendicular to the scanning 
direction. But also 2D reconstructions, i.e. cross-sectional image reconstructions 
using only data from one scanning position, become more exact with this newly 
developed approach, compared to the initially available backprojection and 2D IMMI 
methods. By matching the volume of interest in the model to the actual volume 
where signals are generated from, one can reduce the erroneous projection of out-
of-plane signals into the imaging plane.  
  
Finally, the aspect of multispectral unmixing was analyzed, which refers to the 
detection of molecular probes over background absorbers based on their spectral 
signature. It was shown that it is possible to detect molecular probes by these 
means even deep inside the mouse. Quantitative unmixing, i.e. the exact 
determination of the molecular probe concentration is however severely 
complicated by wavelength dependent light attenuation in tissue causing spectral 
coloring and signal reduction with penetration depth. So that it becomes difficult to 
compare signals from different depths. Since this strongly depends on the actual 
absorber distribution and the oxygenation saturation level of the tissue, it is 
challenging to compensate for this effect in a quantitative manner. In addition, there 
are practical instrumentation related limitations such as limited view detection and 
frequency dependent out-of-plane signals which cause additional inaccuracies. As an 
initial step, blind unmixing by independent component analysis was considered for 
probe detection in such a scenario with an undefined corruption of the spectral 
signature and for localized probes it showed higher detection sensitivity compared 
to spectral fitting approaches. Moreover, it was shown that normalization of the 
unmixing results by an estimate of the light fluence heterogeneity obtained from a 
low pass filtered single wavelength image acquired close to the isobestic point of 
hemoglobin can partially compensate the signal reduction with depth due to light 
fluence attenuation. Unmixing errors due to spectral coloring are however not 
corrected thereby. More advanced approaches to compensate for these artifacts 
including accurate light fluence modeling are currently under investigation.  
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In conclusion, this work presents system and algorithm development for multi-
spectral optoacoustic tomography of small animals. It was established on selected 
examples that MSOT can actually resolve in high resolution, anatomical, dynamic 
and molecular information in mice overall showcasing the tremendous potential of 
the technology.   

9.2 Outlook 

Imaging performance achieved in this work was limited by the use of only 64 
elements arranged on a short (172°) detection arc. It will significantly improve by 
upgrading the presented system with a transducer array comprising more elements 
arranged on a longer detection arc (at least 270°). Having more complementary 
information available, the optoacoustic inversion problem will become more stable 
and artifacts less overall benefiting molecular probe detection and quantification 
thereof. It has however to be noted, that for a 2D imaging system utilizing a 1D 
cylindrically focused array like the one developed herein, due to the mapping of a  
3D source distribution to a 2D signal distribution and consequent reconstruction of 
2D slices, there will be always some quantification inaccuracies due to out-of-plane 
signals despite all the improvements achieved by modeling the transducer surface. 
When targeting accurate volumetric reconstructions, closed detection surfaces with 
possibly small detection elements are required.    
 
Concerning algorithm for molecular target detection there are various other 
multispectral unmixing algorithms with different strength and weaknesses available 
from the literature [118], which, due to the presented limitations of the utilized 
once, could yield better molecular agent detection performance. Promising initial 
results7 have been achieved by statistical background modeling using adaptive 
matched filter approaches [179]. Future research should focus on a performance 
comparison of different algorithms to identify the most suited one.   
 
Also, the problem of an exact light fluence correction is still unsolved, especially in in 
vivo imaging situations with unknown optical properties. Benefiting from improved 
image quality, the presented correction attempts are however expected to perform 
better and more robustly. Due to the strong ill-conditioning and non-linearity of the 
optical problem, accurate inversion will remain an important challenge in the future.    
 
Nevertheless, because to its unique performance characteristics and the ability to 
resolve optical absorption contrast with high resolution deep inside tissue, MSOT 
increasingly attracts biomedical professional with the goal to use it as a tool for 
biomedical oriented applications and various studies are currently under 
investigation.  
 
Moreover, the presented developments and methods can be translated to clinical 
setting. Dima et al. used the presented transducer array with adapted illumination 
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 Personal communication from Stratis Tzoumas at the Institute for Biological and Medical Imaging  
(IBMI) 
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scheme for non-invasive imaging of human carotids [80]. This proof of principal 
study showed that it is possible to reach this clinical relevant structure and thus may 
give the possibility to use optoacoustic imaging as a diagnostic tool for early arthro-
sclerosis detection. Moreover, the system is currently used for imaging arthritic 
inflammation in the finger joints. Following up our initial experiences with 3D real-
time imaging, Déan-Ben et al. developed a cup shaped system for real-time imaging 
of small 3D volumes in hand-held mode. Benefiting from novel fast per pulse tuning 
laser technology becoming available, we have also recently published the first real-
time multispectral optoacoustic handheld scanner [125] and demonstrated tracking 
of oxygenation changes in tissue in real-time. Using this system we are currently 
evaluating the ability to use MSOT in analogy to clinical ultrasound imaging as a 
diagnostic tool to examine tissue viability.  
 
Furthermore, various research groups all over the world have presented other 
compelling optoacoustic imaging implementations ranging from optoacoustic micro-
scopy with resolution between 15 and 45 µm depending penetration depth (1 to      
3 mm) [27, 58, 59], to optoacoustic endoscopy and intravascular catheters, and to 
mammo-graphy systems [83-85]. If the current pace of technological innovations 
and method development is kept, it is expected that in the next 5-10 years MSOT 
will become an important tool in biomedical imaging and clinical decision making.   
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