Investigating the trace polar species present in diesel using high resolution mass spectrometry and selective ionization techniques

Elize Smit *[†], Christopher P. Rüger [‡], Martin Sklorz ^{‡§}, Stefan De Goede ^{||}, Ralf Zimmermann ^{‡§},

Egmont R. Rohwer [†]

[†] Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria, South Africa

[‡] Joint Mass Spectrometry Centre / Chair of Analytical Chemistry, University of Rostock,
Rostock, Germany

[§] Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany

Sasol Southern Africa Energy, Energy Technology, Klasie Havenga Street, Sasolburg, South

Africa

^{*} To whom correspondence should be addressed. E-mail: hanekom.elize@gmail.com. Telephone: +27762823911.

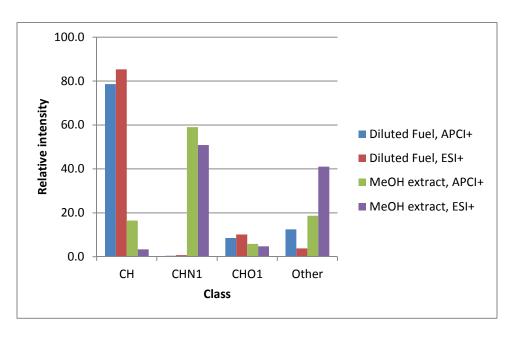

Supporting Information

Table S1. Mass spectral peaks that were used for the internal calibration of FT-ICRMS data.

ESI-positive		ESI-negative		
m/z	sum formula	m/z	sum formula	
134.097	C ₉ H ₁₂ N	183.0116	C ₈ H ₇ O ₃ S	
160.1126	$C_{11}H_{14}N$	205.1229	$C_{13}H_{17}O_2$	
176.1439	$C_{12}H_{18}N$	221.1542	$C_{14}H_{21}O_2$	
202.1596	$C_{14}H_{20}N$	261.2218	$C_{18}H_{29}O$	
256.2065	$C_{18}H_{26}N$	281.2481	$C_{18}H_{33}O_2$	
312.2691	$C_{22}H_{34}N$	301.2168	$C_{20}H_{29}O_2$	
438.41	$C_{31}H_{52}N$	317.2844	$C_{22}H_{37}O$	
471.4178	$C_{30}H_{56}O_2Na$	329.2844	$C_{23}H_{37}O$	
		345.3157	$C_{24}H_{41}O$	
		367.3576	$C_{24}H_{47}O_2$	

Table S2. Ion transmission settings for FT-ICRMS data acquisition (n.a. – not available, n.p. not present in the instrument).

Assembly	Part	ESI (solariX)		APCI (apeX)
		(+)	(-)	(+)
Source Optics	Funnel RF Amplitude	40 Vpp	40 Vpp	150 Vpp
Octopole/Hexapole	Frequency	5 MHz	5 MHz	5 MHz
	RF Amplitude	300 Vpp	300 Vpp	400 Vpp
Collision cell	Frequency	2 MHz	2 MHz	n.a.
	RF Amplitude	1000 Vpp	1000 Vpp	800 Vpp
Transfer optics	Time of flight	0.6 ms	0.6 ms	0.7 ms
	Frequency	6 MHz	6 MHz	n.p.
	RF Amplitude	400 Vpp	400 Vpp	n.p.

Figure S1. Relative intensities of ion classes observed for diluted fuels and methanol extracts when analyzed with ESCI-TOFMS. Similar parameters as discussed in the Experimental section (ESI-TOFMS) were used. The results show that many species forming part of the CH-class were not extracted efficiently with methanol. For the methanol extract, the CH-class was more prominent in the APCI spectrum, therefore showing the selectivity of the different ionization techniques.