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Abstract

Metabolism is highly variable between individuals, even though the underlying key pro-

cesses follow the same physicochemical laws and biological principles. Metabolic phe-

notypes are influenced by different genetic and environmental factors such as nutrition.

For a better understanding of genetic and nutritional influences on human metabolism,

we have analyzed metabolite profiles on different biological scales, ranging from cross-

sectional population data over time-resolved in vivo physiological challenging results to

in vitro experiments using genetically modified cell lines.

Modern high-throughput methods allow for the simultaneous quantification of hundreds

of metabolite levels as readouts for metabolic functions. Yet the analysis and interpre-

tation of the multivariate measurements remains challenging. Biochemical research has

provided detailed knowledge about the relationship of metabolites. Statistical methods

additionally allow for a data-driven reconstruction of metabolic dependencies. In this

thesis we used both resources to build biochemical networks displaying the interplay

of metabolites. In a network-based approach we combined this information with ex-

perimental data for an improved analysis of genetic and nutritional effects on human

metabolism.

We applied this network-based approach first to study the general effects of genetic

variation on metabolism. Here we developed a method to select biochemically related

metabolites for a given metabolic network. Ratios of metabolite pairs selected in this

way were tested for significant associations with single nucleotide polymorphism (SNP).

We evaluated this approach both on in silico data derived from simulated reaction net-

works and data from genome-wide association studies. The network-based ratio method

increased the statistical power, lowered computational demands, facilitated the func-

tional characterization of ratio-SNP associations and allowed for the prediction of new

associations.

Second, for a better understanding of metabolic phenotypes under specific nutritional

and physiological challenges, we studied metabolite profiles of 15 healthy volunteers un-

der fasting conditions. In order to analyze the fasting-induced interindividual variation

of metabolite levels, we developed a model of the fatty acid beta-oxidation (FAO) path-
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way. Based on the FAO model, volunteer-specific conversion rate parameters were derived

from ratios of FAO intermediate metabolite concentrations. Investigating the relation-

ship between phenotypic and metabolic profiles revealed that, compared to absolute

metabolite concentrations, metabolite ratios as readouts for the individual metabolic

capacity facilitated the characterization of distinct metabolic phenotypes.

Third, we additionally analyzed genotype-dependent effects on fatty acid oxidation path-

way dynamics in a human liver cell line using a partial knockdown of the enzyme

ACADS. This enzyme plays an important role in the breakdown of short-chain fatty

acids. We extended the FAO pathway model in order to describe the knockdown-specific,

time-resolved measurements of fatty acid intermediate metabolites. Based on the reac-

tion rates inferred from our model and experimental data we compared the dynamical

changes between wild-type and ACADS knockdown conditions statistically. Model pa-

rameters showed decreased reaction kinetics for short-chain fatty acids resulting from the

ACADS knockdown, and, as a compensatory effect, increased medium- and long-chain

fatty acid-related reaction rates.

The combination of established knowledge about metabolic networks and biochemical

pathways with computational models facilitated the analysis of multidimensional data

for different study designs. As biochemical processes with many coupled reactions can be

studied at a system level, the network-based analysis is a promising approach to obtain

deeper insights into the interplay between genetic effects, nutrition and metabolism.
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Zusammenfassung

Der Metabolismus jedes Menschen beruht auf den gleichen physikalisch-chemischen Ge-

setzmäßigkeiten und biologischen Prinzipien. Dennoch ist der Stoffwechsel jedes Einzel-

nen unterschiedlich. Genetische Faktoren und Umwelteinflüsse prägen den metabolischen

Phänotyp. Einer dieser prägenden Faktoren ist beispielsweise die Ernährung. Um ein

besseres Verständnis über den Einfluss genetischer und ernährungsbedingter Faktoren

auf den menschlichen Metabolismus zu erhalten, wurden Metabolitenprofile auf unter-

schiedlichen biologischen Skalen untersucht. Diese Skala reichte von Populationsstudien

über in vivo-Studien bis hin zu in vitro-Experimenten mit genetisch modifizierten Zellen.

Moderne high throughput Methoden ermöglichen die quantitative Bestimmung hun-

derter Stoffwechselprodukte als Signal für die zugrunde liegenden metabolischen Prozesse.

Die Analyse und Interpretation dieser multivariaten Messwerte gestaltet sich jedoch

als komplex. Biochemische Grundlagenforschung liefert detailliertes Wissen über den

metabolische Prozesse. Mit modernen statistischen Methoden können zudem daten-

basiert die Verbindungen zwischen Metaboliten rekonstruiert werden. Darauf aufbauend

wurden in meiner Arbeit biochemische Netzwerke entwickelt, die das Zusammenspiel

von Metaboliten des menschlichen Stoffwechsels beschreiben. Methodisch wurde in einem

netzwerk-basierten Ansatz diese Beschreibung mit experimentellen Daten verknüpft, um

die Analyse zu den Auswirkungen von Genotyp und Ernährung auf den menschlichen

Stoffwechsel zu verbessern.

Mit dem netzwerk-basierten Ansatz wurde zunächst der allgemeine Einfluß unterschied-

licher genetischer Ausprägungen auf den Stoffwechsel untersucht. Dazu wurde eine Me-

thode entwickelt, biochemisch relevante Metaboliten an Hand eines metabolischen Netz-

werkes zu identifizieren. Auf diese Weise wurden Ratios von Metabolitenpaaren aus-

gewählt und auf deren Assoziation zu Einzelnukleotid-Polymorphismen (SNP) getestet.

Dieser Ansatz wurde einerseits an Hand von Daten aus in silico Simulationsreakti-

onen und andererseits mit Ergebnissen aus genomweiten Assoziationsstudien evaluiert.

Als Ergebnis kann festgestellt werden, dass die netzwerk-basierte Ratio-Methode die

statistische Power erhöht, die erforderliche Berechnungsdauer verringert, die funktionale
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Charakterisierung von Ratio-SNP Assoziationen erleichtert und die Vorhersage neuer

möglicher Assoziationen erlaubt.

Um ein vertieftes Verständnis über unterschiedliche metabolische Phänotypen zu er-

langen, wurden in einem zweiten Schritt die Metabolitenprofile von 15 gesunden Teil-

nehmern einer Challenge-Studie im Fastenzustand untersucht. Dazu wurde zunächst ein

Modell des oxidativen Abbaus der Fettsäuren (FAO) entwickelt. Auf Basis dieses Mo-

dells wurden aus den Ratios der Konzentrationen von Zwischenprodukten Teilnehmer-

spezifische Reaktionsraten ermittelt. Bei der Untersuchung der Zusammenhänge von

Phänotyp und Metabolitenprofil konnte gezeigt werden, dass im Vergleich zu abso-

luten Metabolitkonzentrationen die Ratios von Metabolitenpaaren besser die individuelle

Stoffwechselaktivität der Teilnehmer widerspiegeln.

Als Drittes wurden Einflüsse des Genotyps auf die Dynamik des oxidativen Abbaus von

Fettsäuren in einer humanen Leber-Zelllinie mit Hilfe eines partiellen knockdowns des

Enzyms ACADS untersucht. ACADS spielt beim Abbau kurzkettiger Fettsäuren eine

wichtige Rolle. Das FAO Modell wurde erweitert und angepasst, um die Zeitverläufe der

knockdown-spezifischen Konzentration von Metabolit-Zwischenprodukten zu beschrei-

ben. Mittels der Reaktionsraten, die durch das Modell auf Basis experimenteller Daten

geschätzt wurden, konnten die dynamischen Änderungen beim oxidativen Abbau unter

Wildtyp- beziehungsweise knockdown-Bedingungen statistisch verglichen werden. An

Hand der Modell-Parameter konnte gezeigt werden, dass durch den knockdown von

ACADS die Rate für Umwandlungsreaktionen kurzkettiger Fettsäuren verringert wird.

Als einen möglichen Kompensationsmechanismus schlug das Modell die Erhöhung der

Reaktionraten für mittel- und langkettige Fettsäuren vor.

Die vorliegende Arbeit zeigt, dass Kenntnisse über biochemische Stoffwechselwege und

metabolische Netzwerke in Verbindung mit rechnergestützten Modellen die multidimen-

sionale Analyse der Ergebnisse unterschiedlich angelegter Studien ermöglichen und erle-

ichtern. Beim Studium biochemischer Prozesse und deren zahlreichen Neben- und Fol-

gereaktionen ist diese netzwerk-basierte Analyse eine vielversprechende Methode, um auf

molekularer Ebene zu einem vertieften Verständnis über die Zusammenhänge zwischen

gentischen Effekten, Ernährung und Stoffwechsel zu gelangen.
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Chapter 1

Introduction

Metabolism is highly variable between individuals [10], even though the underlying key

processes follow the same physicochemical laws and biological principles. Metabolic re-

actions are influenced by all layers of cellular and physiological processes, ranging from

genetic regulation over protein modifications to hormone signaling. Moreover, diet, age,

life-style, but also disease state, drug treatment or the gut microbiome determine the

metabolic phenotype. Despite those internal and external influences, homeostasis can be

achieved for most cases. However, there is a fine line between natural benign variation

of metabolism [48] and cases when the organism cannot respond in a robust way to

perturbations, which may lead to pathophysiological metabolic conditions [97].

For disease diagnostics, chemical compounds in body fluids have been quantified for

more than 100 years, pioneered by Garrod’s work on inborn errors of metabolism [74].

Recent advances in analytical chemistry allow for detecting large numbers of metabolite

molecules, providing a unique fingerprint of the metabolic state. Metabolites resemble

the final entities of the biochemical information flow from genes to transcripts to pro-

teins to metabolic reaction compounds. For this reason, metabolic profiling in bio fluids,

tissues and cells can be a valuable indicator of an organism’s phenotype, as metabolite

levels display endpoints of characteristic biological reactions. The upcoming challenge is

to analyze this data and interpret the subsequent results at a system level. Biochemical

research has provided detailed information about individual enzymatic reactions and

1
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insight into the assembly and interaction between different parts in the network of me-

tabolism, allowing for a network-based analysis of metabolic phenotypes with respect to

the interplay of metabolites, enzymes and transport proteins [13, 102].

In this thesis, we will address the question how to integrate the knowledge about bio-

chemical networks with large-scale metabolite data for the investigation of genetic and

nutritional influencing factors of metabolism. We will apply this network-based analysis

at different biological scales for distinct experimental setups, ranging from cross-sectional

population data (Chapter 2) over time-resolved in vivo challenging results (Chapter 3) to

in vitro experiments using genetically modified human liver cells (Chapter 4). In Chap-

ter 2 we describe a network-based metabolite ratio selection method that we developed

for an improved analysis of genome-wide association studies with metabolic traits. In

Chapter 3 and Chapter 4 we present model-based methods for the investigation of fatty

acid metabolism. For each scenario, the key task is to develop appropriate models for

the analysis of metabolomics data as the main readout of biological functions, allowing

for a better understanding of the complex interplay between genetics, nutrition and me-

tabolism.

Before all of this we will provide in the following a short primer on metabolism, meta-

bolic networks and metabolite measurement techniques. Furthermore an overview about

genome-wide association studies on metabolic phenotypes is given. In addition we will

briefly describe modeling methods which are used to analyze biochemical systems.

1.1 Metabolism, metabolomics and nutrition

Metabolism defines the set of all biochemical reactions that take place in a living organ-

ism [19]. In a linked series of metabolic reactions, substrate metabolites are converted

into product compounds. The collection of interdependent biochemical steps, which in-

clude all reactions needed for fulfilling a specific metabolic function, can be defined as

biochemical pathways [167]. These building blocks of metabolism are essential for sus-

taining life and can be divided into energy producing (catabolic) and energy requiring

(anabolic) pathways. For instance, in the catabolic pathway glycolysis the cell yields en-

ergy by converting glucose into pyruvate in a sequence of interconnected reaction steps.

Anabolic reactions then use this energy from catabolic breakdown of fuel compounds for
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synthesizing complex molecules or macromolecules. A metabolic network then represents

the collection of all biochemical pathways and their individual interactions [90].

Metabolomics: measuring the molecular fingerprint of metabolism

Recent advantages in analytical chemistry now allow for measuring the molecular fin-

gerprint of metabolism, also referred to as metabolomics [180, 245]. In this large-scale

and system-wide approach one tries to analyze ideally the entire metabolite pool in bi-

ological samples such as cells, tissues or body fluids. The term metabolite is used to

describe small molecules which are intermediates or products of metabolic reactions,

with usually molecular weights of 2000 Da or below [267]. The collection of all endoge-

nous metabolites as a whole, also referred to as the metabolome, consists for instance of

amino acids, lipids, carbohydrates, but also of hormones, vitamins, nutritional organic

compounds and drugs [22, 176]. Yet a clear definition of the human metabolome is not

straightforward. Human metabolomics measurements will be a mixture of endobiotic and

xenobiotic metabolites, for instance due to exogenous metabolite sources like nutrition

or bacteria which metabolize food compounds. Also commonly used biofluid samples like

blood or urine will not cover all metabolic compounds from the individual metabolism of

organs and body compartments. Up to now, the Human Metabolome Database (HMDB)

[267] lists more than 5,000 detected metabolites and 20,000 endogenous and exogenous

compounds, which are expected to be found in human biological samples. This number

will increase within the next years due to better analytical techniques and specific ex-

perimental setups, but also by considering metabolites derived from exogenous sources

like nutrition, drug treatment and microbiome [82, 111].

The set of measured small molecules for a specific condition in individual samples is

often termed metabolic profile [186]. This metabolite composition is assumed to be char-

acteristic for a specific biological state, as it results from biochemical reactions which

are closely linked to distinct physiological states [173]. Metabolite levels in bio fluids,

tissues and cells display endpoints of characteristic biological processes. Metabolic inter-

mediates resemble the final entities of the biochemical information flow from genes to

transcripts to proteins to metabolic reaction compounds (see Figure 1.1). Metabolom-

ics thus reveals a detectable link between the observed phenotype and the determining



4 CHAPTER 1. INTRODUCTION

mRNA protein metabolitesgene

Genomics Proteomics MetabolomicsTranscriptomics

A B C

environmental factors

Figure 1.1: The flow of biochemical information. Genes are transcribed to messenger RNA
(mRNA) molecules (A), which are then translated to proteins (B). Transporter molecules and
enzymes in metabolic pathways influence in turn the levels of metabolites (C). Dashed arrows
represent possible feedback mechanism. For instance, metabolites function as inhibitors of met-
abolic enzymes, alter gene functions by directly interacting with transcription factors or induce
epigenetic changes. Gray arrows denote the effect of environmental factors like nutrition, life style,
health state or environmental exposure. Blue boxes display large-scale approaches for measuring
the respective biomolecules (Figure adapted from [184]).

genotype [69]. For instance, nowadays metabolic profiling is a standard procedure in

newborn screenings for the diagnosis of inherited diseases [145]. Metabolomics measure-

ments summarize the impact of endogenous influences like genetic variation, epigenetic

and regulatory effects, transporter protein and enzyme concentrations, but also of ex-

trinsic or environmental factors such as nutrition, exposure to harmful substances or

drug treatments [87]. Therefore, metabolite profiles display an integrated response to

environmental and genetic factors [174]. Compared to other large-scale approaches like

proteomics and transcriptomics, metabolomics can reveal more direct information about

the investigated biologic state and function in a system-wide fashion [5, 83]. Thus the

concept of metabolic phenotypes or metabotypes has been defined as a “probabilistic mul-

tiparametric description of an organism in a given physiological state based on analysis

of its cell types, biofluids or tissues” [75].

In addition, the substantial knowledge about biochemical pathways facilitates the inter-

pretation of metabolomics results. As experimental techniques now allow for large-scale

quantification of metabolites as intermediate phenotypes, the upcoming challenge will



1.1. METABOLISM, METABOLOMICS AND NUTRITION 5

be how to integrate existing fundamental knowledge about biochemical reactions and

metabolic networks in order to better understand the involved biological functions and

their contribution to observed phenotypes.

There are two methodologically distinct approaches for the system-level analysis of me-

tabolite profiles, namely targeted and untargeted metabolomics [58]. The first approach

quantifies a defined set of metabolites, for instance in a specific biochemical pathway, with

high accuracy and degree of resolution. We used this approach for measuring selected

fatty acid compounds in two studies about nutritional, physiological and genetic effects

on the mitochondrial breakdown of fatty acids (see Chapter 3 and Chapter 4). A more

global view on metabolism offers untargeted metabolomics. The aim of this approach is

to measure “as many metabolites as possible from biological samples without bias” [184].

This global metabolomics data acquisition method was applied for example to measure

human plasma metabolite levels in a population study on genotype-dependent metabolic

variation (see Chapter 2). Often metabolite abundances for untargeted approaches can

only be given as relative numbers, whereas targeted profiling yields metabolite concentra-

tions. For both approaches data measurement is performed using either nuclear magnetic

resonance spectroscopy (NMR) or mass spectrometry (MS), often coupled with a pre-

ceding separation step using liquid or gas chromatography [147, 212]. The application of

both modern high-throughput bioanalytical techniques allows now for the investigation

of system-wide metabolite panels for a large number of samples.

Nutrition and metabolism

The human metabolism is influenced by the complex interplay of various endogenous

and exogenous factors [79]. For each individual there is a substantial variation from the

average metabolome [282]. Age, gender and genotype for instance contribute intrinsically

to individual differences in metabolic profiles [104, 279]. Inherited molecular defects in

catalyzing enzymes can cause metabolism-related disorders. Besides, bacterial gut mi-

croflora composition, physical activity or drug treatment factors influence the human

metabolism extrinsically [38, 244, 264]. During the entire course of life, environmen-

tal exposures and lifestyle shape individual-specific and condition-dependent metabolic

phenotypes or metabotypes [206, 266]. A major determining factor is nutrition. Malnu-
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trition can have severe effects on metabolic functions. For instance, the lack of vitamin C

leads to impaired collagen synthesis in scurvy disease [63]. Unbalanced diet and excessive

consumption of nutrients can cause metabolic disorders [207]. The easy access to energy-

dense food has led to an increased incidence and prevalence of obesity and diabetes in

developed countries. In order to study the effects of diet and food compounds, nutri-

tional challenging studies have been conducted to assess the inter-individual variation

in metabolic phenotypes of healthy and diseased subjects [52, 189, 228, 284].

Food compounds and metabolites directly interact with biochemical processes (see Fig-

ure 1.1); by sensing the amount of glucose, the body regulates the production of insulin.

This hormone of the endocrine system plays a crucial role in the regulation of anabolic

reactions for maintaining balanced blood sugar levels. Moreover, nutrients can alter

gene functions by directly interacting with transcription factors or by causing epigenetic

changes of DNA structure [282]. Studies using animal models showed nutritional and

tissue-dependent regulation of obesity risk genes under fat feeding and fasting condi-

tions [277]. As modern bioanalytic methods allow for taking a snapshot of the individual

metabolic state, metabolomics is a key tool to understand influencing factors of metab-

olism. Recent studies have analyzed nutrient-gene interactions in humans by combining

metabolomics with genotyping and epigenetic profiling [191, 237]. The complex inter-

play between genetics, aging, pathophysiology, microbiome, environmental exposure and

nutrition contributes to metabolic intra- and interindividual differences. Understanding

the underlying mechanisms will allow for elucidating genetic and environmental effects

contributing to metabolic disorders and might lead to improved personalized treatment

suggestions [111].

Fatty acid metabolism

Fat is an efficient energy source and the major fuel reserve in the human body [59]. Fat

molecules belong to the group of lipids which also include for instance sterols, phospho-

lipids, monoglycerides, diglycerides, triglycerides and fatty acids. Lipids have different

biochemical functions. First, they are used in the form of triglycerides to build up a long-

term energy reservoir in fat cells and adipose tissue, providing an efficient and highly

concentrated way of storing metabolic energy. Triglycerides consist of a single glycerol
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C16:0
H3C

O

O-

H3C

O

O
C20:4

-

α

α

β

β

Figure 1.2: Palmitic acid (C16:0) and arachidonic acid (C20:4) as an example for the structure
of saturated and unsaturated fatty acids. Fatty acid carbon atoms are numbered starting at the
carboxyl terminus (red). Carbon atoms next to the carboxyl terminus are denoted by α and β.
During fatty acid beta-oxidation, the acyl chain is shortened between the α and β carbon atom.

molecule which is esterified with three fatty acids. Besides being fuel molecules for pro-

viding energy to anabolic processes, lipids are building blocks of biological membranes

[19], serve as tagging or modification factors of proteins or as hormones and intracellular

messengers in biological signal transduction [30, 204, 247].

During fasting and sustained exercise the catabolic breakdown of fatty acids (FA) in the

mitochondrial beta-oxidation pathway is a major energy source for cellular organisms. In

Chapter 3 and 4 we describe mathematical representations for this degradation pathway

and how we used these models to analyze metabolomics data from nutritional challenging

studies. As a primer we will therefore introduce briefly the biochemical properties of this

major physiological process.

Fatty acids are hydrophobic lipid molecules consisting of long hydrocarbon or alkyl

chains with terminal carboxylate groups (see Figure 1.2). Alkyl chains differ in the

number of carbon atoms and degree of saturation. Saturated fatty acids contain no

double bonds, while unsaturated fatty acids have one or more double bonds. A short

notation for fatty acids with n carbon atoms and d double bonds is Cn:d. For instance,

palmitic acid (C16:0) is an abundant fatty acid in the human body with 16 carbon chain

atoms. It is also quite common to omit the number of double bonds for saturated fatty

acids in the notation, i.e. C16 instead of C16:0.

Dietary fatty acid molecules are mostly ingested in the form of triglycerides. When

not degraded immediately, these molecules are packed into lipid transport particles and

located to adipose tissue for storage [94]. During physiological conditions like fasting,
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TCA  cycle
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fatty acid beta-oxidation in mitochondrium

Figure 1.3: Schematic representation of fatty acid beta-oxidation. Mobilized fatty acids from
adipose tissue are subsequently degraded in a linear pathway. During each reaction step the
carbon chain is shortened by two carbon atoms. Resulting acetyl-CoA (C-2) is further used in
the tricarboxylic acid (TCA) cycle for energy production or consumed during formation of ketone
bodies.

catabolic stress and sustained exercise when sugar-based fuel molecules have been ex-

hausted already, the lipid energy reserves are mobilized. Free fatty acids are transported

to peripheral tissues like muscle or liver. The energy producing breakdown of the fatty

acid carbon chains mainly occurs within the mitochondria of cells, for which a carni-

tine shuttle system is needed. First enzymes called carnitine acyltransferases catalyze

the conversion of activated fatty acids (acyl-CoAs) to acylcarnitines. These transport

molecules are then translocated to the inner mitochondrial matrix [116], where acylcar-

nitines are converted back to acyl-CoAs. This active channeling allows for the modulation

and regulation of general beta-oxidation activity [59].

Within the mitochondria the fatty acids are degraded in a recurring sequence of four

enzymatic steps: oxidation, hydration, a second oxidation and thiolysis. In each reaction

cycle the alkyl chain is shortened by two carbon atoms, leading to the production of

acetyl-CoA, molecules with high energy potential (see Figure 1.3). The first oxidation

step is catalyzed by four acyl-CoA dehydrogenase enzymes with different specificities for

short (C4 and C6, ACADS), medium (C4 to C12, ACADM), long (C8 to C20, ACADL)

and very long carbon chain lengths (C12 to C24, ACADVL) [16]. The sequential shorten-

ing by two carbon atoms generates acetyl-CoA, which enters the tricarboxylic acid (TCA)

cycle for the production of energy transfer molecules adenosine triphosphate (ATP). ATP

provides energy for physiological and cellular processes such as growth, cell division or
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anabolic production of biomolecules. Fatty acid synthesis is essentially the reverse pro-

cess to oxidation in basic chemical reactions, but regulated in an antagonistic fashion.

The production of fatty acids is for instance used to store nutritional energy, but also

for synthesizing cell signaling molecules [85].

Inherited molecular defects in fatty acid catalyzing enzymes can cause beta-oxidation re-

lated disorders. The resulting impaired breakdown of fatty acids and disruption of energy

homeostasis can lead to symptoms muscle weakness, hypotonia or heart failure [260]. For

instance short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), a rare fatty

acid oxidation disorder, can result from alterations in the ACADS gene [108, 169]. The

impaired fatty acid beta-oxidation activity due to SCADD leads to an accumulation

of byproducts of fatty acid metabolites. Increased levels of butyrylcarnitine and ethyl-

malonic acid in plasma and urine are therefore biomarkers for the diagnosis of SCADD

[8, 20]. In Chapter 4 we will investigate impaired ACADS function in an in vitro knock-

down using a mathematical model of the beta-oxidation pathway. Other inherited disor-

ders of fatty acid metabolism are related to impaired transport of long-chain fatty acid

into mitochondria due to defects in enzymes of the carnitine shuttle [214].

Imbalanced lipid metabolism in general is a risk factor for the pathogenesis of systemic

metabolic disorders. The accumulation of fat contributes, for instance, to the devel-

opment of insulin resistance and cardiovascular diseases in obese patients [131, 207].

Though detailed knowledge about molecular malfunctions has been established recently,

the complex interactions between genetics, life-style and clinical phenotypes have not

been fully explained yet [100]. Within the last years genome-wide association studies

with metabolic traits have been carried out to address especially the genetic part of this

question.

1.2 Genome-wide association studies with metabolic traits

Genome-wide association studies (GWAS) analyze the genetic contribution to an ob-

served phenotype on a population scale [54]. GWAS have been applied initially to identify

genetic factors which influence the susceptibility and etiology of common diseases [262].
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On a population level, associations between variants of genes and specific phenotypes or

quantitative traits are studied. Single nucleotide changes within the DNA sequence of a

gene (single nucleotide polymorphism, SNP), differences in gene copy numbers, but also

structural changes in the DNA sequence lead to genetic variation between individuals.

Traits for GWAS can be for instance blood pressure, weight, frequency of diseases, but

also molecular data about levels of protein, metabolites or transcripts [1]. In contrast to

gene candidate-driven studies, GWAS aim at a hypothesis-free investigation of the en-

tire genome [239]. To this end, the genetic variation in a population of many individuals

(usually a few thousands) is characterized using SNP arrays. For case-control settings,

participants are divided into two groups (for instance healthy and disease). A genetic

variant which is more frequent in one group than expected then is considered to be as-

sociated with the phenotype of interest. Also quantitative traits as continuous variables

(for instance weight or blood pressure) can be correlated with genetic polymorphism [93].

In recent years GWAS have provided new discoveries regarding genes and pathways which

play a critical role in common diseases [258]. Despite the overall success of GWAS, there

are several limitations which need to be kept in mind. The initial assignment of sequence

positions for SNP-genotyping can introduce a bias to specific genetic regions, as for

instance the causal variants cannot be measured [42]. Yet with declining DNA sequencing

costs, exome sequencing [36, 171] or even whole genome sequencing [41] will provide

detailed genetic information, but also imposing new statistical challenges for association

tests [12]. Population structure or stratification due to the presence of subgroups from

different ancestries within the study group can also introduce substantial bias [93] and

several methods have been developed to correct for these effects [196]. Besides, many

identified genetic risk loci only explain a small proportion of the observed phenotypic

variation [151]. Especially for diseases such as cancer or diabetes, the complex interplay

of many genetic, but also non-hereditary factors leads to the onset and progression of

the disease [273]. A clinical classification of multifactorial diseases with heterogeneous

symptoms and conditions is also not straightforward, for instance in the case of mental

disorders [154]. When performing a GWAS analysis for a specific disease one might in

reality investigate several unrelated diseases with similar symptoms.

Moreover, it is still under debate whether rare alleles, common alleles or a combination

of both contribute to the phenotypes of common diseases [258]. Several rare alleles with



1.2. GENOME-WIDE ASSOCIATION STUDIES WITH METABOLIC TRAITS 11

SNP

genes proteins
enzymes

metabolites phenotypes

Figure 1.4: Genetic variation (single nucleotide polymorphism, SNP) in genes coding for meta-
bolic enzymes and transporter molecules lead to differences in metabolite levels (metabotypes).
Metabolic profiles as endophenotypes are often more related to the observed (exo-)phenotypes,
allowing for a better understanding of the influence of genetic factors on biological mechanism.

high effects could increase the susceptibility to diseases, but on the other hand also

the combination of many common alleles with only minor effects [224]. In addition,

risk markers which are located in intergenic or intronic regions pose a challenge for the

mechanistic interpretation of the findings [92]. Often these markers are not the causal

genes or variants, but will be credited in a GWAS setting with common alleles to the

signal of rare, but unmeasured variants, which in reality cause the phenotype. Such

synthetic associations [55] will then complicate the functional interpretation of risk-

associated SNPs. Until the detection of these rare variants by whole-genome sequencing

is affordable for population studies, subgroups with medium to high effect sizes could

resemble potential sequencing candidates, for instance members of families with many

affected individuals [209]. Similarly, only extreme cases of a specific phenotype (e.g. very

high and very low blood pressure) may be selected for sequencing, also refereed to as

extreme-trait sequencing [15].

GWAS have identified risk associated SNPs for specific diseases. A functional interpreta-

tion of the results remains challenging and only few associations have been functionally

validated [80]. Effects which cause a specific phenotype are often a mixture of many

underlying processes. For a better understanding of disease mechanisms, further insights

into the underlying biological processes and the role of altered functions in disease related

genes is required [7]. For this reason, recent GWAS approaches linked genetic variation

with quantitative molecular phenotypes. These quantitative trait loci (QTL) analyses
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included gene expression profiles (eQTL) or metabolite concentrations (mQTL). Studies

in plants or fungi for instance linked gene expression and metabolic traits in order to

explain the molecular basis of physiologic phenotypes [118, 126, 263, 285]. The eQTL

analysis of human transcription profiles revealed genetic factors which underpin individ-

ual differences in gene expression levels [43].

For the investigation of biochemical processes, metabolite levels can be used as quan-

titative GWAS traits. As described in Section 1.1, metabolic profiles can be seen as

readouts of intermediate processes which are related to the underlying biological mech-

anism (see Figure 1.4). Inborn variation of metabolism often leads to altered individual

levels of metabolites as reaction-related enzymes are not functional or missing [166].

Human GWAS studies with metabolic traits (mGWAS) analyzed genetic variants which

explain variation in metabolite concentrations also referred to as genetically-influenced

metabotypes (GIM) [236]. Several mGWAS studies [81, 98, 104, 106, 117, 172, 230] re-

vealed direct associations between metabolic traits and genetic variants located near

to genes encoding metabolite-specific enzymes or transporters. For example, a single-

nucleotide polymorphism in the N-acetyltransferase 8 (NAT8) locus was reported to

associate with N-acetylornithine [237]. Variants in the short chain acyl-coenzyme A de-

hydrogenase (ACADS) gene locus were found to be associated to levels of butyrylcar-

nitine, the transport form of the fatty acid beta-oxidation product butyryl-CoA [104].

ACADS, which catalyzes the first and committing reaction step in the degradation cycle

of fatty acids, is a key enzyme in the beta-oxidation pathway (see Section 1.1) with

high substrate specificity for short carbon chain acyl-CoA molecules like butyryl-CoA

[77]. Interestingly, butyrylcarnitine is also an established biomarker for short-chain acyl-

CoA dehydrogenase deficiency in newborn screenings [169]. Linking mQTL information

with established genetic risk loci can therefore allow for a better understanding of the

pathophysiology of diseases [1, 2].

Using metabolite concentration ratios as quantitative traits in addition to single metab-

olite concentrations further improved the results and interpretation of SNP-metabolite

associations. It was shown that ratios between metabolite concentrations pairs reduced

the overall biological variability in population data and resulted in robust statistical

associations [190, 263]. For instance, the level of a nutritional metabolite, but also the

respective breakdown products, might be elevated in specific subjects. The ratio of the
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two metabolites accounts for this interindividual variation. In a biochemical interpre-

tation, the ratio between product-substrate metabolite pairs can be interpreted as a

proxy of the corresponding enzymatic reaction rate [236]. For example, Suhre et al. [237]

reported that the association of a genetic variant in the FADS1 locus and the ratio be-

tween fatty acids 20:3 and 20:4 is much stronger compared to the association with the

respective single metabolite levels. The FADS1 locus encodes for a fatty acid delta-5

desaturase with fatty acids 20:3 and 20:4 as substrate and product, respectively. The in-

crease in association strength due to the ratio between reaction substrate-product pairs

thus matches the biological function of the enzyme [139].

1.3 Metabolic networks

Individual reactions have been studied and characterized in great detail in the field of

biochemistry. This large knowledge is now collected in reaction databases, which also

connect the intermediate steps trying to give an overall picture of metabolism. In the

following we will give a short overview about different metabolic pathway resources. We

will also address methods for data-driven reconstruction of biochemical networks based

on large-scale metabolomics measurements, which yields knowledge about metabolite

dependencies without the need for database information.

Databases for biochemical pathways and metabolic networks

A variety of databases exists for the description of metabolic reactions. They differ

with respect to data assembly, pathway definition and coverage of genes, enzymes and

metabolites. Databases such as KEGG [114], MetaCyc [31] or Reactome [47] combine

the knowledge about individual reactions in order to reveal the connectivity of meta-

bolic pathways. In addition, resources such as BRENDA [223] or SABIO-RK [268] offer

detailed information about reaction-specific kinetic parameters found in primary liter-

ature. Often these parameters have been determined for in vitro settings or are highly

dependent on the experimental setup.
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Instead of collecting all known reactions, recent approaches try to reconstruct metabolic

networks based on genetic information [241]. These networks are based on metabolism-

related genome annotations such as presence of metabolic enzymes and transporter pro-

teins. Often several iterations of manual curation using primary literature, textbooks,

review articles and validation experiments are needed to assure the reconstruction qual-

ity. Databases for manually reconstructed human metabolic networks are for instance

EHMN [149], BiGG [219] or Recon 1 [57] and 2 [243].

Comparing several databases revealed that only parts of them are consistent with respect

to content overlap. The general level of agreement is quite low due to different ways of

generating, curating and interpreting specific reaction entries [234, 235]. Therefore efforts

have been made to combine the heterogeneous information in order to construct con-

sensus models of organism-specific metabolism aiming for a complete characterization

of all metabolic processes [242, 243]. Here the description of organism-, tissue- and cell

type-specific reactions is critical for understanding physiological effects in a multicellular

organism. While the amount and quality of annotations for biochemical processes have

increased substantially within the last years, all databases still contain many potential

wrong or missing annotations. The collected knowledge also shows a bias towards com-

mon pathways [234]. As the major biochemical reactions have been studied for a long

time, they are also represented in more detail. These issues need to be kept in mind when

using metabolic pathway database information for the analysis of experimental data and

the interpretation of knowledge-based results.

Data-driven reconstruction of metabolic networks

Many measured metabolites have not been annotated in the above-mentioned pathway

databases. In addition, untargeted metabolomics approaches allow for the reliable detec-

tion and quantification of compounds that have not been characterized chemically [135].

Here, data-driven reconstruction methods can complement the knowledge-based analy-

sis and interpretation of large-scale metabolomics data. Various inference approaches on

genome-scale have been developed in order to reconstruct gene regulatory networks based

on high-throughput expression data [152]. Similarly - based on large-scale metabolomics

data - the wiring of the underlying metabolic network can be predicted [261]. Repeated
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metabolomics measurements show a considerable amount of biological variation due to

stochastic fluctuations of metabolite concentrations and individual variability in reaction

properties such as kinetic rates or enzyme and transporter concentrations [29, 233]. This

can be observed for various biological scales ranging from samples of cellular experiments

to data from cross-sectional human population studies such as blood plasma metabolite

profiles. Especially for the latter case also external sources like current metabolic state,

nutrition supply and environmental factors contribute to the observed variability.

Correlation-based methods provide a straightforward way to obtain pairwise associations

between metabolites given substantial variation in the biological samples [232]. Especially

partial correlations based on Gaussian graphical models (GGM) have been shown to be

a valuable tool for the unbiased reconstruction of metabolic reactions from large-scale

human blood serum metabolomics data [136]. Metabolites within metabolic pathways

show high correlations, even if they are not part of the same biochemical reactions. For

example in the fatty acid beta-oxidation cascade (see Section 1.1), the import of new

fatty acids into the mitochondrium will lead to an increase of all intermediate metabolite

concentrations as well. This results in indirect associations between metabolites which

are not directly connected (see Figure 1.5). The GGM approach tries to remove such

indirect effects. For calculating the partial pairwise correlation between two metabolites

in GGMs, indirect effects are removed by conditioning against the associations with

all remaining variables [218]. GGMs are based on full-order partial correlation coeffi-

cients. To remove indirect associations each pairwise correlation is corrected against all

remaining variables. GGMs for data with more samples than variables can be calculated

directly by a matrix inversion operation of the covariance matrix and a normalization

step [50, 140]. For data with less samples than variables regularized versions of partial

correlation coefficients can be estimated, for instance using the R-package GeneNet [181].

This method yields also for cases with more samples than variables robust estimates of

partial correlation coefficients.

Removing indirect connections in the reconstructed metabolic networks facilitates the

interpretation in terms of the underlying biochemical reactions. It needs to be noted that

any correlation-based association between two factors does not imply direct causation.

Moreover, only a subset of all confounders in biochemical systems will be measured.

If the confounding variables have not been quantified, also partial correlation methods
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Figure 1.5: Example of indirect effects for correlation-based reconstruction of metabolic net-
works. A: Compound X affects both Y and Z. Therefore also Y and Z are highly correlated.
B: Data-driven reconstruction of the network structure using Pearson correlation (orange) and
partial correlation (Gaussian graphical model, GGM, blue). Pearson correlation fails to detect
the indirect association between Y and Z (dashed line). In GGMs, indirect effects between Y
and Z are removed by conditioning against the association with X. ρ and ξ: Pearson and partial
correlation coefficients between the respective compounds.

cannot correct for indirect effects. For confounders with non-gaussian properties other

methods than GGM can be applied [229].

1.4 Model-based analysis of biochemical systems

Knowing the interrelation of compounds within metabolic pathways, as described in Sec-

tion 1.3, provides the basis for modeling the underlying biochemical reaction networks.

In computational and systems biology, mathematical models are used as an abstract rep-

resentation of complex processes. In a mathematical framework, these models summarize

established knowledge about biological systems and describe the relationship between

molecular compounds that are involved. This systems biology framework allows to ex-

amine the structure and dynamics of biological function by considering not only the

characteristics of isolated parts of the system, but the system as a whole. The systemic



1.4. MODEL-BASED ANALYSIS OF BIOCHEMICAL SYSTEMS 17

view helps to unravel the internal nature and dynamics of biochemical reactions and to

predict the behavior for simulated conditions [122, 123].

The following sections give a short introduction to modeling methods for biochemical

systems. First we will give an overview about methods which analyze the structural

properties of metabolic networks without having knowledge about kinetic details. We

will then explain how ordinary differential equations (ODEs) can be used as a tool for

the description of biochemical reaction dynamics.

Constraint-based structural analysis of metabolic networks

Often only limited kinetic parameters or metabolite and enzyme concentrations are avail-

able for biochemical pathways, but the general structure (e.g. stoichiometry and connec-

tion between compounds) is known. In a metabolic network consisting of n compounds

and m reactions, the stoichiometric coefficients are summarized in the stoichiometry

matrix

S := {sij} for i = 1, ..., n and j = 1, ...,m. (1.1)

Each column of S represents one reaction and each row one compound. Negative stoi-

chiometric coefficients in one column denote educts and positive coefficients products of

one specific reaction. Compounds which do not take part in the specific reactions have

zero entries in this column. The time evolution in the network is described by S and a

reaction flux vector v(x), with x being the concentration state vector for all compounds

x1, ..., xn.

Based on the structure of the metabolic network a steady-state analysis can be per-

formed [123]. Here a constant equilibrium of metabolites is assumed (Sv = 0), i.e. the

change of compound concentrations over time remains zero [142]. While the actual con-

centrations do not change, there is still a metabolic flux through the system. Flux here

denotes the number of molecules flowing through each reaction per unit of time. This

assumption generally holds for metabolite levels, as biochemical reactions reach equi-

librium much faster compared to the time scales of upstream regulatory processes or

external reactions which are connected to the system [143]. The stoichiometry of each
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reaction, i.e. how many quantities of each compound take part in the reaction, already

impose constraints on the flow of metabolites through the system [182]. For instance,

due to mass conservation, the total number of any metabolite being consumed must be

equal the total amount being produced under steady-state conditions. Additional con-

straints such as maximal biomass production or enzyme capacity using lower and upper

bounds for specific reaction fluxes can be incorporated in the model as well [197]. Points

in the flux solution space, which satisfy all constraints, are obtained from the topology

of the metabolic network using extreme pathway [220] or elementary flux mode analysis

[225]. Constraint-based analysis of metabolic networks has been applied successfully for

microorganism in metabolic engineering and drug discovery studies [24, 115]. Several

methods have been developed to combine metabolomics data and large-scale reaction

networks for refining the constraint-based solution space. These approaches focus on

fundamental properties of structure and dynamics in metabolic networks to fill the gap

between system-wide, constraint-based models and detailed kinetic description of specific

metabolic pathways [64, 107, 203].

Dynamic modeling using ordinary differential equations

The rate of a biochemical reaction, i.e. the change of its substrate and product concentra-

tions per time, is determined by different factors, e.g. the amount of catalyzing enzymes,

concentration of substrates or the presence of activating or inhibiting modifiers. Also

biophysical properties, like the number of chemical steps required to convert substrate

to product molecules or the molecular substructures of the catalytic center, may alter

the reaction speed. The relationship between all mentioned factors and their respective

impact on the reaction rate is described by kinetic rate laws.

A common way of describing biochemical reactions is the law of mass action, formulated

by Guldberg and Waage in the nineteenth century [88]. The law states that the reaction

rate is proportional to the collision probability of the reactants. This probability in turn

is proportional to the concentration of the reaction compounds to the power of the

stoichiometric coefficients, i.e. how many molecules of one compound are part of the

reaction.
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For the most general reaction Rj

ν1,jX1 + ν2,jX2 + ...+ νn,jXn

k+j−−⇀↽−−
k−j

η1,jX1 + η2,jX2 + ...+ ηn,jXi (1.2)

or
n∑
i=1

νi,jXi

k+j−−⇀↽−−
k−j

n∑
i=1

ηn,jXi (1.3)

with νi,j and ηn,j being the stoichiometric coefficients and k = k+1, k−1, ..., k+m, k−m

reaction parameters or rate constants, the reaction flux assuming mass action kinetics

reads

vj(x) = k+j

n∏
i=1

x
νi,j
i − k−j

n∏
i=1

x
ηi,j
i , (1.4)

in which xi is the concentration of Xi. Using the stoichiometric matrix (see Equation

(1.1))

Sij = νi,j − ηi,j (1.5)

the reaction rate equation or ordinary differential equation (ODEs) model reads

dx

dt
= ẋ = Sv(x). (1.6)

For the irreversible reaction

2A+B
k−→ C (1.7)

as an example with compound concentrations xA, xB, xC the change of compound C

over time then reads according to the law of mass action

vC = kx2
AxB, (1.8)

with rate constant k as a proportionality factor. The stoichiometric coefficients of xA

and xB are 2 and 1, respectively.
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The dynamics of metabolic reactions can be modeled in general by a set of ordinary

differential equations (ODEs)

dxi
dt

(t) = ẋi(t) = fi(x1(t), ..., xn(t), θ, t), i = 1, ..., n. (1.9)

An ODE describes the change of compound xi(t) over time t [270]. In a metabolic set-

ting, xi(t) represents the concentration of a molecule that is metabolized by a specific

enzyme, and θ the reaction parameters, e.g. kinetic rate constants or amount of en-

zymes. The functions fi are often determined by the contribution of production and

degradation reactions in a biochemical system. For simplicity, a spatial homogeneity,

meaning a “well-stirred” molecular environment, and no time dependencies for rate pa-

rameters are usually assumed [127]. In many cases, solutions for ODE systems cannot be

found analytically. Hence numerical methods are applied in order to obtain approximate

solutions [49].

Dynamic models of metabolic reactions can be used to generate in silico metabolite

data. Krumsiek et al. for instance used metabolic reaction systems to simulate large-scale

metabolomics data for an evaluation of data-driven network reconstruction methods (see

Section 1.3). In Chapter 2 we will also apply a forward simulation approach to generate

genotype-dependent metabolite levels for the evaluation of our network-based metabolite

ratio approach.

Parameter estimation

For metabolic systems the model structure (e.g. stoichiometry and the rate laws) can

be retrieved from biochemical knowledge about compounds and catalyzing enzymes in

metabolic pathways. Yet the model parameters θ (e.g. kinetic constants) are mostly un-

known as they cannot be measured experimentally. For this reason, the unknown model

parameters need to be estimated from experimental data. For the parameter estima-

tion, also called parameter inference, model observables yi(tk) (for instance predicted

metabolite concentration time courses) are compared to measured data ȳi(tk) for all n

compounds (i = 1, ..., n) and N time points tk (k = 1, ..., N). Note that in our experi-
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mental setting we can compare the observables directly with the measured data and do

not need a link function (yi(tk) = xi(tk)).

The quality of how well the model predictions for a given parameter set θ match the

experimental data can be assessed using a likelihood function L(θ). Experimental data

often include measurement noise denoted by εik. For additive normally distributed mea-

surement noise (ȳi,k = yi(tk) + εik with εik ∼ N (0, σ2
ik)) the likelihood function reads

L(θ) =

N∏
k=1

m∏
i=1

1√
2πσik

exp

(
−1

2

(
ȳi(tk)− yi(tk)

σik

)2
)
. (1.10)

In case of multiplicative log-normally distributed measurement noise (ȳi,k = yi(tk) · νik)
with νik ∼ logN (0, σ2

ik)) the likelihood is computed by

L(θ) =

N∏
k=1

m∏
i=1

1√
2πσik

exp

(
−1

2

(
log ȳi(tk)− log yi(tk, θ)

σik

)2
)
. (1.11)

During the model calibration or fitting process, the parameters are adjusted in itera-

tive steps for maximizing the likelihood, i.e. for an improved agreement between model

predictions and experimental data (maximum-likelihood estimation [141]). If parameters

have different orders of magnitude, parameter values can be fitted on log scale for an

efficient search in the parameter space. For parameter estimation of biochemical pathway

models, deterministic and stochastic optimization strategies can be applied [165, 253].

Software tools for the simulation of biochemical systems and for parameter estimation are

for instance Gepasi [157] and its successor COPASI [99], CellDesigner [71], SBtoolbox2

for Matlab [222] or Data2Dynamics [202].

Parameter identifiability

For parameter estimation it is important to consider the uncertainties in the model pa-

rameters with respect to incomplete data and experimental measurement noise [35]. The
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uncertainty analysis can be performed for instance by calculating parameter confidence

intervals [156] or evaluating the identifiability of parameters [201]. A parameter is identi-

fiable if the confidence intervals are finite. Parameters can be structurally and practically

non-identifiable. Structural non-identifiability may occur for example if two parameters

θ1 and θ2 appear only as a product in the model. Increasing θ1 while decreasing θ2 or

vice versa will result in the same likelihood value. Thus only the product of the two

parameters, but not the individual values can be determined. One might resolve this

structural non-identifiability by replacing the product θ1θ2 with a new parameter θ3.

Yet often it is not straightforward to detect and resolve structurally non-identifiable pa-

rameters. In contrast to structural non-identifiability, which solely depends on the model

structure and is independent of the data, parameters can be practically non-identifiable

if the wrong observables have been measured or too few data is available. This issue can

be resolved by adapting the experimental setup. Profile likelihood approaches [201] can

be applied to assess if parameter confidence intervals are finite, meaning the parameters

are identifiable. Here the likelihood landscape space is explored for each parameter in-

dividually. Non-identifiable parameters are characterized by flat profile likelihoods. The

Data2Dynamics software package [202] can be used to calculate profile likelihoods for

assessing the parameter identifiability in metabolic models.

Model selection

Often for the description of biochemical pathways there are several alternative models

possible, depending for instance on the number of model compounds or the detailed

description of enzymatic reactions. During the modeling process it is often required to

strike a balance between model complexity and simplicity. Complex models might in-

clude many biological details and explain the experimental data better compared to

more simple models. Adding additional parameters to the model will often increase the

likelihood but might result in overfitting [121]. On the other hand, simple models facili-

tate the interpretation of the model prediction with respect to the underlying biological

processes. Therefore it is important to identify too complicated or biologically incorrect

models. This can be achieved by selecting - based on statistical criteria - those models

which are best supported by the experimental data [78]. Often these criteria account
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for both the model complexity (e.g. the number of free parameters) and the agreement

between model output and data. A likelihood ratio test can be performed when choosing

between two nested models [259]. Further selection criteria are the Akaike information

criterion (AIC, [3]) and the Bayesian information criterion (BIC, [226]). Both criteria

include a penalty term for the number of free parameters. By minimizing the AIC or

BIC score one tries to find a model which describes the data best with a minimal set of

parameters, as a lower AIC or BIC value results either from fewer parameters, better fit

to the data or both. A sophisticated Bayesian model selection method is the Bayes factor

which includes prior information about for instance the distribution of the parameters

[221].
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1.5 Research question

The main goal of this thesis is to evaluate how fundamental knowledge about biochemical

pathways can be combined with experimental measurements on different biological scales

for a model-based analysis of genetic and nutritional effects on metabolism. Impaired

enzymatic function or unbalanced nutrition can lead to pathophysiological metabolic

conditions, reflected by altered metabolite levels. For this reason, metabolic profiling

is for instance used in newborn screenings for the diagnosis of inherited diseases. For

a better understanding of the relationship between metabolic processes and genetic,

physiological and nutritional factors, research has been performed for a broad spec-

trum of experimental setups on different biological scales, ranging from cross-sectional

population data over time-resolved in vivo physiological challenging results to in vitro

experiments using genetically modified cell lines. Metabolomics profiling was applied

to measure metabolite levels as readouts for metabolic functions. Although metabolic

systems are complex, biochemical research has provided fundamental knowledge about

the underlying pathways and their interrelations. In this thesis, I will demonstrate how

information about metabolic networks and biochemical pathways can be utilized for an

improved analysis of large-scale and multivariate experimental data. In particular, I will

discuss how network-based analysis approaches for steady-state and dynamic data can

be tailored to the specific experimental setups and biological questions related to genetic

and nutritional effects on metabolism.
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Figure 1.6: Overview of the thesis. Intrinsic factors like gene products and environmental factors
like nutrition influence metabolism and define the individual phenotype (black arrow). In this
thesis we analyzed the genetic and nutritional effects on metabolism for specific experimental
setups on different biological scales. In Chapter 2 we investigated the relationship between genetic
variation and metabolite levels as intermediate phenotypes (blue arrow). Chapter 3 presents
our analysis of interindividual variation in metabolic profiles that was induced by nutritional
challenges (orange arrows). In Chapter 4 we experimentally changed the expression of an enzyme
gene to evaluate the impact of enzyme levels on a specific metabolic pathway (blue arrow).

1.6 Overview of this thesis

In the following we will give a short outline of the content of this thesis. For three bio-

logical scenarios, we will discuss how we developed network-based methods and compu-

tational models of metabolic pathways for the analysis of genetic and nutritional effects

on metabolism (see Figure 1.6).

In Chapter 2, we present a system-wide analysis of the interplay between genetics and

metabolism based on results from genome-wide association studies (GWAS). We describe

a network-based method that we developed for the selection of biologically meaningful

metabolite ratios as GWAS traits in order to overcome statistical and computational

challenges. We evaluate this network-based approach both on in silico data derived from

simulated reaction networks and published results from genome-wide association studies.

Our findings demonstrate that combining biochemical networks with large-scale genetic
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and metabolic phenotyping data provides a valuable approach for studying the general

effects of genetic variation on metabolism at population level.

Chapter 3 introduces a model-based analysis of time-resolved metabolomics profiles

from a human challenging study. For a better understanding of metabolic response un-

der specific nutritional and physiological challenges, we study metabolite profiles of 15

healthy volunteers under fasting conditions. In order to analyze the challenge-induced

interindividual variation of metabolite levels, we developed a model of the fatty acid

beta-oxidation (FAO) pathway to derive conversion rate parameters which describe the

individual metabolic capacity. We further show how model readouts can be related to

anthropometric and biochemical parameters for a better explanation of the observed

interindividual variation in metabolic profiles.

In Chapter 4 we analyze GWAS-derived associations between butyrylcarnitine, the

transport form of a short-chain fatty acid, and genetic variants in the locus of the mi-

tochondrial fatty acid beta-oxidation enzyme ACADS. We extend the FAO pathway

model presented in Chapter 3 to describe the knockdown-specific, time-resolved mea-

surements of fatty acid intermediate metabolites. Based on the reaction rates inferred

from our model and experimental data, we compare the dynamical changes between wild-

type and ACADS knockdown conditions statistically and discuss possible compensation

mechanisms in the FAO pathway which are predicted by the model.

The final Chapter 5 summarizes the methods and results presented in this thesis and

discusses possible extensions as well further biological scenarios for a network-based

analysis of metabolomics data.
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Scientific publications

The results presented in this thesis have led to the following contributions that have been

published or are currently within the publication process (sorted by the corresponding

Chapter):

Chapter 2:

Stückler F, Krumsiek J, Suhre K, Gieger C, Kastenmüller G, Theis FJ (2014): Network-

based metabolite ratios for an improved functional characterization of genome-wide as-

sociation study results. Submitted.

This publication describes a network-based metabolite ratio selection method that I

developed for an improved analysis of genome-wide association studies with metabolic

traits.

Chapter 3:

Krug S*, Kastenmüller G*, Stückler F*, Rist MJ*, Skurk T*, Sailer M, Raffler J,

Römisch-Margl W, Adamski J, Prehn C, Frank T, Engel KH, Hofmann T, Luy B,

Zimmermann R, Moritz F, Schmitt-Kopplin P, Krumsiek J, Kremer W, Huber F, Oeh U,

Theis FJ, Szymczak W, Hauner H, Suhre K, Daniel H (2012): The dynamic range of the

human metabolome revealed by challenges. FASEB J. 26: 260719.

This publication is a joint first author work and the content of this paper is also part

of another thesis by Susanne Krug [132]. My contribution to the publication is the

development of a model to analyze the metabolomics data, as well the statistical analysis

of model readouts and their interpretation.

Krumsiek J, Stückler F, Kastenmüller G, Theis FJ (2012): Systems Biology Meets

Metabolism. In: Suhre K, editor. Genetics Meets Metabolomics: from Experiment to

Systems Biology. New York, NY: Springer New York. pp. 281-313.

Chapter 4:

Ehlers K*, Stückler F*, Hastreiter M, Pfeiffer L, Reischl E, Kastenmüller G, Daniel H,

Ensenauer R, Krumsiek J, Hauner H, Theis FJ, Laumen H (2014): In vitro modeling
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and dynamic analysis of a metabolic quantitative trait locus implies novel features of

ACADS function in fatty acid oxidation. in submission.

This publication is a joint first author work and the content of this paper is also part

of another thesis by Kerstin Ehlers, who also performed the experiments [62]. My con-

tribution to this work is the development of a dynamic pathway model, the statistical

analysis of the in vitro metabolomics data, as well the biological interpretation of the

model prediction.
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Further scientific projects

Besides the contributions presented in this thesis, I was involved in further projects,

which resulted in the following publications:

Ried JS, Baurecht H, Stückler F, Krumsiek J, Gieger C, Heinrich J, Kabesch M,

Prehn C, Peters A, Rodriguez E, Schulz H, Strauch K, Suhre K, Wang-Sattler R,

Wichmann HE, Theis FJ, Illig T, Adamski J, Weidinger S (2013): Integrative genetic

and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in

asthma. Allergy. 68: 62936.

Brand T*, Kondofersky I*, Ehlers K, Römisch-Margl W, Stückler F, Krumsiek J,

Bangert A, Artati A, Prehn C, Adamski J, Kastenmüller G, Fuchs C, Theis FJ, Laumen

H, Hauner H (2014): Effect of dietary standardization on the metabolomic response to

a defined meal challenge in healthy individuals. Submitted.

* = equal contributions
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Chapter 2

Network-based metabolite ratios

for an improved functional

characterization of genome-wide

association study results

In this chapter, we present an approach which utilizes metabolic network information

for the selection of biologically meaningful metabolite ratios as quantitative traits in

genome-wide associations studies (GWAS, see Section 1.2). Recent genome-wide asso-

ciation studies with population-based metabolomics datasets (mGWAS) reported high

associations between genetic variants in regions of metabolic enzymes and transporters

and the respective substrate and product metabolite levels [81, 104, 117, 172, 230, 237].

Using metabolite concentration ratios as quantitative traits in addition to single me-

tabolite concentrations further improved the statistical significance of the associations.

For example, Suhre et al. [237] reported that the association of a genetic variant in the

FADS1 locus and the ratio between fatty acids 20:3 and 20:4 is much stronger compared

to the association with the respective single metabolite levels (see Figure 2.1). FADS1

(fatty acid delta-5 desaturase) is an enzyme which catalyzes the desaturase reaction of

fatty acids 20:3 to 20:4. The increase in association strength due to the ratio between

31
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Figure 2.1: Association between the ratio of arachidonate (20:4) and dihomolinolenate (20:3)
metabolite plasma levels with SNP rs174547 in the FADS1 locus as reported in [237]. A: Box plots
show ratio levels grouped by genotype: major allele homozygotes (TT), heterozygotes (TC) and
minor allele homozygotes (CC). The number of samples per group is denoted by n. Metabolite
ratio data is shown on a lognormal scale. The association p-value of the ratio arachidonate /
dihomolinolenate (3.6 · 10−101) is much stronger compared to the association with the single
metabolite levels arachidonate (1.7 · 10−30) and dihomolinolenate (3.3 · 10−9). B: The FADS1
locus encodes for the enzyme fatty acid delta-5 desaturase with fatty acids 20:3 and 20:4 as
substrate and product, respectively.

reaction substrate-product pairs points to the biological function of the enzyme [139].

For this analysis, the authors considered all possible ratios for all measured metabo-

lites. This “all ratios” approach revealed new insights into the genetic basis for human

metabolic individuality.

However, taking all possible metabolite ratio combinations into account can be challeng-

ing from a statistical, computational and interpretational point-of-view, since inevitably

many biochemically unrelated metabolite pairs are tested. In addition, the effect of a spe-

cific genetic variant on metabolites that are within a pathway might often be quite simi-

lar. Thus, conventional multiple testing approaches (like Bonferroni correction) might be

too stringent for GWAS and possibly reduce the statistical power. The increasing number

of measured variables will lead to a quadratic increase in the number of tests when deal-

ing with ratios (see also Figure 2.14 for an estimation of the number of ratio candidates).

Current methods allow for the detection of a few hundred metabolites, but this number

will increase rapidly [179]. Also modern sequencing techniques will provide more data

about genetic variants [158]. On a practical level it will be becoming computationally
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and statistically demanding to conduct association tests for millions of SNPs or other

genetic variants from several thousand individual genomes in multiple cohorts across mil-

lions of metabolite ratio combinations. For instance, in a study measuring all expected

20,000 human metabolites [267], testing 1 million SNPs for all ratio combinations (e.g.

20, 0002 cases) would result in a significance threshold after Bonferroni correction of

p < 2.5 · 10−15. While for large GWAS cohorts the limited power problem might be only

an issue for small effect sizes, it can be crucial for the design of case-control studies

with small sample numbers [188]. The functional interpretation of the high-dimensional

and complex data is also challenging for such study designs due to the vast amount of

results produced. Preselecting meaningful ratio candidates based on biological network

information thus is crucial to address the above-mentioned limitations.

In order to overcome these challenges, we developed a network-based method which in-

cludes metabolic pathway information for an improved selection of ratio candidates in

mGWAS (network-based metabolite ratios, NBR, see Figure 2.2). Incorporating network

information into the analysis of biological data has shown to be successful for example

in proteomics and genomics applications [14, 28, 102, 109]. For the analysis of mGWAS

studies, the metabolite dependencies can be obtained, for example, from metabolic path-

ways (see Section 1.3), which are available from various sources such as KEGG, BiGG,

EHMN and MetaCyc [31, 113, 149, 219]. However, many measured metabolites are not

annotated and the derived pathway information might be incomplete [119]. Statistical

approaches like correlation-based methods, which purely rely on measured metabolom-

ics data, can provide network information for all detected metabolites [9, 29, 233]. As

metabolites in population data are highly correlated, we used a previously reported

network reconstruction method based on partial correlations from Gaussian Graphical

models (GGM, [136], see also Section 1.3). Here indirect interactions between metabolites

are removed before using the data-driven network for selecting ratio candidates.

In the following, we will show how metabolic networks can be used to analyze the

mGWAS data and facilitate the functional characterization of the respective results. The

chapter is organized as follows: First we test the NBR approach on simulated population

data. We then evaluate whether ratio-SNP association hits reflect metabolic pathway

reactions based on mGWAS results of a human population cohort. To this end, we test

if metabolites that have a significant ratio-SNP association are more closely connected in
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Figure 2.2: Network-based metabolite ratios (NBR) for an improved analysis and interpretation
of genome-wide association studies with metabolic traits (mGWAS). Considering all possible
metabolite ratios (red dots) as traits in mGWAS (A) has proven valuable in finding new functional
insights about underlying biological processes [237]. Selecting network-based metabolite ratios
instead of all possible ratios reduces the number of association tests and therefore results in a less
stringent significance threshold after correction for multiple testing (B). Testing only for selected
NBR (C) reveals new significant associations (blue dots). Due to incomplete metabolic network
information or unknown complex regulatory effects some hits might not be found (grey circles).
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metabolic networks reconstructed using Gaussian Graphical modeling (see Section 1.3).

In addition, we compare mGWAS results that were obtained using the all-ratio approach

with our NBR method. For this comparison we first consider NBRs that were selected

based on metabolic networks from databases (pathway-based NBRs, PW-NBRs). Since

such derived networks are incomplete due to missing annotations, we also use networks

reconstructed in a purely data-driven fashion from metabolomics measurements using

Gaussian graphical modeling (GGM-NBRs). Furthermore we discuss newly predicted

associations and analyze associations which are not found using NBR in the context of

pathway-related metabolites that are all affected by the same genetic locus. In addition

we show that our NBR approach based on data-driven networks can also be applied for

the analysis of further mGWAS results from different study cohorts.

The work presented in this chapter has been performed in collaboration with the group

of Gabi Kastenmüller and Karsten Suhre. The results are summarized in:

• Stückler F, Krumsiek J, Suhre K, Gieger C, Kastenmüller G, Theis FJ (2014):

Network-based metabolite ratios for an improved functional characterization of

genome-wide association study results. Submitted.
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2.1 Methods

In silico simulation of SNP effects on metabolic reaction networks

Metabolic reaction networks were simulated using mass-action kinetics (see Section 1.4).

The change of all metabolites x in the reaction network can be described by

dx

dt
= ẋ = Sv(x)

The topology of the reaction network is represented by the stoichiometric matrix S,

while the dynamical properties are determined by the reaction flux vector v(x) with

reaction-specific rate parameters. Steady state metabolite concentrations are obtained

either by solving the system of linear equations (i.e. setting all equations to zero) for

linear systems or by simulating the dynamical system until it has reached its equilibrium.

Using this framework, synthetic data for different reaction networks topologies, altered

reaction rates due to SNP effects, allele frequencies and population size were created.

The allele frequencies were calculated following Hardy-Weinberg equilibrium model with

chosen minor allele frequency between 0.05 and 0.5. To account for variability in the

simulated population, the reaction rates for each individual were randomly and inde-

pendently drawn from log-normal distributions with mean 3 and standard deviation 1.

The effect of a specific SNP was modeled by adding the effect size once (heterozygote

case) or twice (homozygote minor allele case) to the mean log-normal parameter of the

affected reaction rate. For example ΔES = 0.4 indicates that the rates for the major

allele homozygote, heterozygote and minor allele homozygote case are drawn from log-

normal distributions with mean 3.0, 3.4 and 3.8, respectively. The population size was

chosen to be between 50 and 10,000. We used a multiplicative error model in order to

take technical noise into account, which arises during the measurement of metabolomics

samples. To this end, calculated metabolite steady state concentrations were multiplied

with random factors drawn from a log-normal distribution with mean 1 and standard

deviation 0.05. As a result, we obtained all metabolite concentrations for each individual

in the population depending on its genetic background.
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Reconstruction of metabolic networks using Gaussian Graphical mod-

eling

Gaussian graphical models (GGM) are calculated using full-order partial correlation co-

efficients, i.e. each pairwise correlation is corrected against all remaining (n-2) variables

to remove indirect effects. For data with more samples than variables, full-order partial

correlations can be calculated by a matrix inversion operation [140]. A more detailed de-

scription of partial correlations can be found in Section 1.3. See also [135, 136] for GGM

calculation based on metabolomics data. Since in our simulated data there are for some

cases less samples than variables (metabolites), we used the R-package GeneNet [181]

which calculates a regularized version of partial correlation coefficients. This method

yields also for cases with more samples than variables robust estimates of partial cor-

relation coefficients. All computations were performed on log-transformed metabolite

concentrations, as testing for normality revealed that for most cases the log-transformed

concentrations were closer to a normal distribution than the untransformed values [237].

Association between metabolite ratios and SNP effects for simulated

reactions networks

For all association tests, metabolite ratio candidates were selected by three methods (see

Figure 2.3): 1) all possible ratio combinations between each metabolite in the underlying

reaction network (all ratios), 2) only ratios between neighboring metabolites in the reac-

tion network (PW-NBR) and 3) only ratios between neighboring metabolites in the net-

work structure reconstructed from metabolomics data using GGMs (GGM-NBR). The

third approach represents a purely data-driven approach that does not require known

pathway interactions as input and is thus independent of functional annotations of the

measured molecules (see description above and Section 1.3). To test for the association

between metabolite ratios and genetic background in the simulated concentrations we

used a linear additive regression model, as previously reported in several GWAS stud-

ies [6, 104, 237], with genotype as independent variable and the respective metabolite

ratio as response. Simulated metabolite concentrations were log-transformed for statis-

tical analysis. Regression coefficients were tested for significant deviation from zero. To
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Figure 2.3: Selection of metabolite ratio candidates for association tests. Usually all possible
ratio combinations are selected (red). Using our network-based metabolite ratio approach, only
ratios between neighboring metabolites in a known network (green, pathway-based NBR, PW-
NBR) or in a network which was reconstructed from metabolomics data using Gaussian graphical
modeling (blue, GGM-NBR).

account for the number of tests for each ratio candidate set, Bonferroni correction was

applied. If the best SNP-ratio association (lowest p-value) matched the underlying re-

action networks, the test was counted as true positive. In this case the simulated SNP

was affecting the direct reaction between the two ratio metabolites. The fraction of truly

predicted associations (%TP, number true positive cases divided by all cases) was used

to assess the quality of each ratio candidate selection method.

NBR on genome-wide association data

We evaluated our network-based ratio approach on reported data from the two popula-

tion cohorts, KORA and TwinsUK. Details about the sample acquisition, metabolomics

measurements and genotyping can be found in [237]. Briefly, we used metabolomics mea-

surements of 295 metabolites and genotyping data for 655,658 SNPs from 1,768 fasting

serum samples of the KORA study and from 1,052 individuals of the TwinsUK cohort.

For the estimation of GGMs a full metabolite concentration data matrix without missing
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values is required. We therefore excluded first metabolites with more than 20% missing

values and after that samples with more than 10% missing values, resulting in a filtered

data matrix of 1764 samples with 218 metabolites [135]. Remaining missing values were

imputed with the R package “mice” [248]. Note that we only analyzed the reported

ratio-SNP associations [237] for these 218 metabolites.

Since all metabolomics data were transformed to log-scale for further statistical tests,

we calculated metabolite ratios by taking the difference between the log-transformed

concentrations, yielding 23,653 metabolite ratios for the all ratios case. As we wanted

to focus our analysis on association hits at genetic locus level, we combined ratio-SNP

associations that were within linkage disequilibrium of 0.8 or higher, based on LD data

from HapMap derived from the SNAP server [110]. For cases where several SNPs within

one locus were associated to the same metabolite ratio we only used the most significant

association. No evidence of population stratification could be found in the population

cohorts. Lambda values [53] ranged from 0.965 to 1.024 (median 1.006) in KORA, and

from 0.940 to 1.013 (median 0.985) in TwinsUK [104, 237].

For the selection of ratio candidates based on network information we used two metabolic

network sources (see Figure 2.3): a pathway-based network (PW-NBR) and a GGM-

based network (GGM-NBR). The first network was constructed by combining metabolite

reaction information from three independent databases: 1) Homo sapiens Recon 1 from

the BiGG databases (confidence score of at least 4) [219], 2) the Edinburgh Human

Metabolic Network reconstruction [149] and 3) the KEGG PATHWAY database [113].

Due to missing annotations, only 122 out of 218 measured metabolites were found in the

combined pathway-based network and further used for the PW-NBR analysis. The GGM-

NBRs were selected based on the GGM for all 218 metabolites. In the GGM network

only metabolite pairs were chosen that showed an absolute partial correlation score of

0.1 or higher, corresponding to an partial correlation p-value cutoff of p < 8.1 · 10−5 (see

Figure 2.10 for an evaluation of GGM-NBR parameter settings). In order to account for

missing metabolic connections in the networks, we chose metabolites that were connected

via one or two steps as ratio candidates for GGM-NBR and PW-NBR, resulting in 3,786

and 879 metabolite ratios, respectively.
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As described above, a linear additive regression model was used to test for the association

between metabolite ratios and genetic background using log10-scaled metabolic traits.

Genotype is coded as 0-1-2 for major-hetero-minor genotype. The model was adjusted

for age and gender as covariates. Beta (the slope of the linear model) and p-value have

been reported in [237]. We applied Bonferroni correction to account for the large number

of association tests. The p-value threshold was calculated by 0.05/(number of selected

ratios · number of SNPs). Thus the adjusted threshold for genome-wide significance for

the all ratios, GGM-NBR and PW-NBR analysis was p < 3.2241·10−12, p < 2.0142·10−11

and p < 8.6757 ·10−11, respectively. For SNP-ratio associations that were not discovered

using the GGM-NBR approach we checked whether these effects could be explained

by related metabolites. Based on the edge weights of the underlying GGM network we

calculated shortest paths between the two metabolites of the ratio pair [276]. On these

paths we checked if there are other ratio pairs which are associated to any SNP in close

genetic distance to the original SNP, that was not found using GGM-NBR.

Analysis of metabolic distances in Gaussian Graphical models

The pairwise distance di,j between metabolites Mi and Mj in the GGM was calcu-

lated based on the respective partial correlation coefficient ζi,j , which was transformed

by di,j = exp(−ζi,j). Closely connected metabolites with high partial correlation co-

efficients have small distances. Based on this distance measure we calculated shortest

paths between all metabolite pairs. We compared the distribution of all pairwise me-

tabolite shortest path lengths with the distribution of shortest path lengths between

metabolite pairs whose ratio was significantly associated to at least one SNP (adjusted

Bonferroni threshold p < 3.2241 ·10−12). ROC analysis [67] was used to quantify the sep-

aration of the two distributions. To assess the significance of this observed AUC score, we

performed graph randomization by edge rewiring on the distance-weighted graph as de-

scribed in [89]. During each randomization step the target nodes of two randomly chosen

edges are exchanged. In order to achieve sufficient graph randomization, the exchange

step is repeated five times the number of edges in the graph, as suggested in [271]. For

the empirical p-value calculation we performed the distance-based ROC analysis for 107

randomized graphs.
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Estimating the number of ratio candidates for the all ratios and GGM-

NBR approach

The number of ratio candidates that are tested for association using the all ratios (Nall)

or GGM-NBR (NNBR) approach depends on the number of measured metabolites n.

The amount of all ratios candidates was calculated by Nall =
(
n
2

)
, since in the mGWAS

setting all metabolomics data were transformed to log-scale for further statistical tests.

Therefore, the metabolite ratios are derived by taking the difference between the log-

transformed concentrations. For estimating the number of GGM-NBR ratio candidates

(NNBR), we randomly choose n metabolites out of the KORA dataset and calculated all

partial correlations between the metabolites, resulting in a Gaussian Graphical model.

We filtered out partial correlations of 0.1 and below. Metabolites that were still connected

via one or two steps in this filtered network are GGM-NBR ratio candidates for further

association tests. For each metabolite number n we repeated this procedure 1000 times

to obtain an estimation of mean and standard deviation for NNBR.

2.2 Network-based metabolite ratios improve GWAS anal-

ysis of simulated reaction networks

Simulated reaction networks are useful tools to investigate the properties of biological

systems and to examine new approaches in a well-defined setup [124, 136]. We used such

a framework to address whether selecting network-based metabolite ratios improves the

SNP-ratio associations results, compared to taking all possible ratios. To this end, we

computationally generated metabolomics measurements resembling features of a real

population. Figure 2.4 depicts an example of genotype-specific metabolic traits in a

simulated reaction network. Our model incorporates genetic variation that has an effect

on the respective enzyme activities. Such variation has been reported for example in a

GWAS study that found an association between several SNPs in the ACE structural gene

and ACE activity [40]. The reactions that we studied followed mass-action kinetic rate

laws and were implemented as ordinary differential equations (see Section 1.4). In order

to account for variation between individuals, each reaction rate was drawn from a log-
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Figure 2.4: Genotype-specific metabolic traits in simulated reaction networks. The ratio on
log-scale of metabolites M1 and M2 which are involved in the SNP-affected reaction A in the
reaction network shows a genotype-specific association with linear dependency. For the in silico
simulation, minor allele frequency was set to 0.2, effect size change to 0.4 and population size to
2000 (see the methods section 2.1 for a detailed description of the model parameters).

normal distribution [146] and then used to calculate individual steady state metabolite

concentrations. Metabolites involved in SNP-affected reactions and their corresponding

ratios showed genotype-specific levels with linear dependency (see Figure 2.4), which is

in accordance with previous studies on real data [6, 81, 104, 237, 238].

Based on the simulated metabolic traits, we evaluated the NBR approach for mGWAS

settings (see Figure 2.5A for a schematic representation of the evaluation workflow).

For all association tests, metabolite ratio candidates were selected by three different

approaches: 1) all possible ratio combinations between all metabolites (all ratios), 2) only

ratios between connected metabolites in the network assuming that we know all true

pathway reactions (network-based metabolite ratios from pathway information, PW-

NBR) and 3) only ratios between neighboring metabolites in the network reconstructed

from simulated metabolomics data using Gaussian Graphical modeling (network-based

metabolite ratios from GGM information, GGM-NBR) [136]. Results of the evaluation

of approach 2 for different network topologies can be found in Figure 2.5 and Figure 2.6,

results for approach 3 are depicted in Figure 2.7.

We tested for SNP-ratio associations using a linear model with genotype as independent

variable and the respective metabolite ratio as response. All SNP-ratio associations were
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Figure 2.5: Network-based metabolite ratios (NBR) on simulated reaction networks. The NBR
approach improves the analysis of ratio-SNP associations. A: Scheme of in silico simulation
of SNP effects in metabolic reaction networks. For specific population sizes (N), minor allele
frequencies (MAF), SNP effect sizes (ES) and reaction network topologies with different SNPs,
steady state metabolite concentrations were simulated. Based on selected metabolite ratio sets (all
ratios or PW-NBR) SNP-ratio associations were calculated. For true positive prediction, the best
association hit matches the underlying reaction in the network. The fraction of truly predicted
associations (%TP) was evaluated from 500 iterations. Since less association tests are needed
using NBR, this approach is more sensitive, reflected by higher %TP values. B: Differences
in %TP between PW-NBR and all ratios analysis (ΔTP). The simulation was based on the
reaction network depicted in A with one SNP-affected reaction (SNP A) between M1 and M2.
A more detailed view of specific scenarios is given in subfigures C, D and E. Especially for
small sample numbers in combination with small effect sizes the NBR approach improves the
association analysis. C, D, E: Simulation results for selected scenarios as marked in B, with
varying population size (C), effect size differences (D) or minor allele frequencies (E).
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Figure 2.6: Comparing the prediction accuracy between the all ratios approach and the network-
based metabolite ratio approach (ratios are selected on the basis of the known network topology,
PW-NBR).
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adjusted for multiple testing using Bonferroni correction based on the approach-specific

number of ratio candidates. A ratio was counted as true positive if the best SNP-ratio

association hit (lowest p-value) matched the underlying network, meaning that the sim-

ulated SNP was affecting the direct reaction between the two ratio metabolites. For

instance, if the ratio M1/M2 in the metabolic network as depicted in Figure 2.4 shows

the best association to SNP A, this SNP-ratio association is true positive, since SNP A

directly affects the reaction between M1 and M2. As a quality measure the fraction of

truly predicted associations (%TP) compared to all predictions was calculated.

Using this simulation framework, we tested several network topologies with different

SNP-affected reactions and varying population sizes (N), minor allele frequencies (MAF)

and SNP effect sizes (ΔES). The schematic workflow is depicted in Figure 2.5A for a

linear reaction network consisting of three metabolites connected by reversible reactions.

For each species we introduced exchange reactions, reflecting interactions with other

metabolic pathways. The overview of all integrated scenario results in Figure 2.5B reveals

that the network-based metabolite ratio approach performs equally well or even better

compared to the all ratios approach. NBR improves the prediction of SNP-reaction

associations especially for scenarios with small effect sizes (ΔES = 0.4) in combinations

with sample numbers of 500 and 1000. In order to detect small effects usually one has

to increase the sample size, which is often a limiting factor. The improvement of the

results is based on the different choice of ratio candidate sets. By only taking ratios

of connected metabolites into account for the linear association model, we reduce the

number of tests and increase the power of our analysis. Further examples for which the

results of approach 1 and approach 2 are compared for different network topologies can

be found in Figure 2.6.

Figure 2.5 shows the results for the NBR analysis with the given network structure from

the simulated model (PW-NBR, see approach 2 above). As we are using a simulation

framework, we know the underlying metabolic network and can easily determine neigh-

boring metabolites for ratio selection. Since in reality most metabolic networks are not

fully annotated and the PW-NBR approach may not be applicable, we also tested the

third method (GGM-NBR) using reconstructed networks on the basis of the simulated

steady state metabolite concentrations. The results for different network topologies are

shown in Figure 2.7. For linear cascades, PW-NBR and GGM-NBR show similar perfor-



46 CHAPTER 2. NETWORK-BASED METABOLITE RATIOS (NBRS)

mance results. For more complex, branched reaction networks the prediction accuracy of

PW-NBR (Figure 2.6) is slightly better compared to GGM-NBR (Figure 2.7). Estimating

the network-based on the metabolomics data as done in the GGM-NBR approach here

still performs better than the all ratio approach. For some cases with negative effect size

changes (ΔES = -1) and small to medium sample sizes (N = 50, 500 and 1000), Gaussian

Graphical models were not able to reconstruct the right underlying reaction network.

Therefore the affected metabolite ratio was not part of the candidate set, resulting in a

weaker prediction accuracy.

The simulation study shows that preselecting ratio candidates based on metabolic net-

work information in most of the cases only improves the ratio-SNP predictions. The

overview of in silico results in Figures 2.6 and 2.7 reveals that using network-based

metabolite ratios improves the prediction of SNP-reaction associations especially for

scenarios with small effect sizes (ΔES = 0.1 and 0.4). The NBR improvements can es-

pecially facilitate the detection of small effects in studies with small sample numbers,

when increasing the sample size is a limiting factor.

2.3 Metabolite ratios significantly associated to specific

SNPs are also closely connected in metabolic networks

We have shown on simulated metabolomics data that using network information about

metabolite dependencies improves the analysis of genetically-influenced metabotypes.

Next we tested the NBR approach on metabolomics and genotyping data from the

German population study KORA [95] (Kooperative Gesundheitsforschung in der Region

Augsburg), previously published in a genome-wide association study [237]. After quality

control and stringent filtering the dataset contained measurements of 218 metabolites

and 655,658 genetic variants.

As discussed above, metabolite pairs whose ratio is significantly associated to a SNP

should be closely connected in metabolic networks. In order to test this, we decided not

to use networks based on pathways from databases due to missing or incomplete pathway

annotations of many metabolites (122 out of the 218 metabolites could be mapped to
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Figure 2.7: Comparing the prediction accuracy between the all ratios approach and the network-
based metabolite ratio approach (ratios are selected on the basis of reconstructed metabolic
networks using Gaussian Graphical modeling, GGM-NBR).
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KEGG, BIGG and EHMN [113, 149, 219]). Instead we used Gaussian Graphical model-

ing (GGM) which allows to infer a metabolite network for all 218 measured compounds.

Briefly, each edge in the network corresponds to a partial correlation coefficient above a

certain threshold. Partial correlations represent pairwise correlations between metabo-

lites after the confounding effects of all other metabolites and covariables have been

removed. This approach has previously been shown to reconstruct pathways from blood

serum metabolomics data in the same cohort [134, 136]. Further information about the

procedure, the metabolomics dataset and the obtained GGM can be found in [134].

Figure 2.8A shows the network representation of partial correlations in the GGM. Here

metabolites which belong to a significant ratio pair are marked red. We observe a clear

grouping of pairs of red nodes in the network. For instance, the amino acids leucine,

valine and glutamine are closely connected within the GGM, and are also part of ratios

which are significantly associated to a SNP. We further asked whether metabolite pairs,

which are both affected by the same genetic variant, are also closely connected in the

metabolic network. To address this question, we compared the distribution of all pairwise

metabolite shortest path lengths with the distribution of shortest path lengths between

metabolite pairs whose ratio was significantly associated to a SNP (Figure 2.8B). To

calculate the shortest paths, partial correlation coefficients were transformed to distance

measures such that high partial correlation values then have low distances, meaning

they are closely connected, and low partial correlation values are far apart (see methods

section 2.1).

Significantly associated metabolite pairs tend to have smaller shortest path distances,

i.e. higher partial correlation coefficients, compared to all shortest path distances in the

GGM. The mean distance between all metabolite pairs is 1, reflecting in our distance

measure that most metabolites are not interconnected and have partial correlation co-

efficients close to 0. On the other hand, the average distance for metabolite pairs with

significant ratio-SNP associations is 0.9 and thus more closely connected. ROC anal-

ysis [67] was used to quantify this separation, resulting in an AUC score of 0.84. In

order to test whether this finding was only observed by chance or does indeed depend

on the metabolite network structure, we compared our results to results obtained from

randomized networks yielding AUC scores of 0.55 ± 0.04 (empirical p-value < 10−7).

The ROC-analysis results for the original and randomized GGM network are shown in
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Figure 2.8: Analysis of GWAS with metabolite traits in the context of metabolic networks.
Metabolite ratios that are significantly associated with specific SNPs are also closely con-
nected in reconstructed metabolic networks. A: Network representation of a Gaussian Graphical
model (GGM) reconstructed from large-scale metabolomics data as shown in [134, 136]. Nodes
represent metabolites and edges represent partial correlation values higher than 0.15. Zooming
into the network reveals that the reconstruction puts metabolically related metabolites in a net-
work context. Metabolites which belong to a ratio pair that is significantly associated to a SNP
as reported in [237] are colored red. Line widths represent partial correlation strengths. B: Me-
tabolite pairs, which are both affected by the same genetic variant, are also closely connected in
the metabolic network. This can be seen using partial-correlation based shortest path distances
between metabolites in the GGM. Compared to all distances in the GGM, significantly associ-
ated metabolite pairs tend to have smaller distances, i.e. higher partial correlation coefficients.
C: ROC analysis of the distance separation seen in B with an area under the curve (AUC) of
0.84 (orange line). Compared to random networks (grey lines), the distance separation is highly
significant (empirical p-value < 10−7, see also the small histogram) and thus depends on the
underlying GGM network used for the distance analysis.
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Figure 2.8C. This highly significant non-random AUC shows that most of the signifi-

cantly associated metabolite pairs are in close distance. Our findings further suggest that

we can use metabolic network information to preselect metabolite pairs for association

studies of genetically-influenced metabotypes.

2.4 Network-based metabolite ratios facilitate the analysis

of GWAS results by integrating genomic and metabol-

omics network information

The results from the toy simulation (see Section 2.2) and the overall analysis of reported

metabolite ratio-SNP associations (see Section 2.3) demonstrated that network informa-

tion can be used to select biologically meaningful ratio candidates for genetic association

studies. In the following, we will address the question how to use this information in order

to improve the analysis and interpretation of genetically-influenced metabotypes from

mGWAS data. Since we want to focus our analysis on association hits at genetic locus

level, we combined ratio-SNP associations that are within linkage disequilibrium of 0.8

or higher and only report the strongest hit (see methods section 2.1). Analogously to

our simulation study, we used three approaches to select metabolite ratios for further

association tests (see Figure 2.3): all ratios, PW-NBR and GGM-NBR (see Figure 2.9A

for a comparison of the results).

For the selection of meaningful network-based metabolite ratios we first used a pathway-

based network (PW-NBR) that was built by combining information from KEGG, BIGG

and EHMN [113, 149, 219]. Since not all metabolites are annotated in these databases,

the network contains only 122 out of the 218 originally measured metabolites. Contrary

to the in silico simulation study shown in Figure 2.5, we do not have the full information

about the true underlying reaction network to apply the PW-NBR approach for the

mGWAS data set. We accounted for possible missing network connections by considering

not only directly connected metabolites as ratio candidates, but also those with a network

distance of one or two steps. The PW-NBR approach reveals only few significant SNP-
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Figure 2.9: Comparison between results for different ratio candidate sets. A: Network-based
ratio analysis yields similar associations compared to the all ratios approach. Using reconstructed
networks (GGM-NBR) performs much better compared to pathway-based networks (PW-NBR)
due to the incomplete annotation of many metabolites. [A]: The overlap between the all-ratio
and GGM-NBR approach associations is remarkably high. [B]: 20 out of 39 hits not identified by
the network approach can be explained by pathway analysis of the underlying GGM network (see
also Figure 2.11 for two examples). [C]: Due to the reduced number of association tests and the
resulting less stringent Bonferroni significance level, GGM-NBR reveals additional associations
(see also Figure 2.12). B: Manhattan plot of the results revealed by all ratios and GGM-NBR
approach. The strength of association for metabolite ratios is indicated as the negative logarithm
of the p-value of the linear model. Only ratio-SNP associations with p-values below 10−7 are
plotted. Triangles represent ratio-SNP associations with p-values below 10−13. Same ratio-SNP
associations that are within linkage disequilibrium of 0.8 or higher are combined and only the
strongest hit is shown. Significant mGWAS hits that were found by the all ratios and GGM-NBR
approach are marked in red (threshold after Bonferroni correction α = 3.22 ·10−12). Associations
which are not found by GGM-NBR are colored in grey, while additional GGM-NBR results are
marked as blue dots (threshold α = 2.01 · 10−11).
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ratio associations (13) and the overlap with the all ratios approach is rather small (9 out

of 113).

The GGM network on the other hand is purely data-driven and has the advantage of

obtaining network dependencies for all 218 measured metabolites. The network was built

by taking only metabolite pairs into account that showed an absolute partial correlation

score of 0.1 or higher, corresponding to a cutoff of p < 8.1 · 10−5 for the p-value of

the partial correlation. Similar to the PW-NBR analysis, we also accounted for missing

connections by selecting metabolites as ratio candidates that were connected in the

network via one or two steps. The GGM-NBR approach reveals 81 significant SNP-

ratio associations, which highly overlap with the results from the approach of taking all

possible ratios. We also tested other partial correlation cutoffs (see Figure 2.10) to assess

the impact of the GGM-NBR parameters. Other parameter settings either revealed less

overlap between the associations found by all ratios and GGM-NBR or this overlap

was not significant when compared to a distribution of overlaps derived from random

networks.

The comparison between all ratios, PW-NBR and GGM-NBR is shown in Figure 2.9A.

The GGM-NBR approach yields considerably more significant ratio-SNP associations

compared to the PW-NBR (81 vs. 13). This results from incomplete or missing anno-

tations in pathway databases for almost 100 metabolites. In contrast, the full network

information can be obtained for all measured metabolites using Gaussian Graphical mod-

eling. Though the overlap between all ratios and GGM-NBR results is remarkably high

(71 cases, set [A] in Figure 2.9A), there are some associations which are not observed

using GGM-NBR (set [B], 39 cases). We inspected these cases in more detail by asking

whether we could explain these effects by other effects of related metabolites. We hy-

pothesized that in many cases the same underlying factor (e.g. genetic variation in one

enzyme) influences metabolites in subsequent or neighboring reaction paths. To test this

hypothesis, we calculated the shortest paths within the GGM network between the two

metabolites of a not observed ratio-SNP association. On these paths we checked if there

are other ratio pairs associated to SNPs in close genetic distance to the original ratio-SNP

association. Two examples are shown in Figure 2.11, one related to fatty acid metabolism

and one related to sugar metabolism. Two SNP variants in the locus of ACADM, an en-

zyme of mitochondrial fatty acid beta-oxidation, for example are associated to different
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Figure 2.10: Evaluation of GGM-NBR parameter settings. Different parameter values for the
partial correlation cutoff (c) and neighbor degree (d) are evaluated for the selection of ratio
candidates from GGM reconstructed metabolic networks based on KORA metabolomics data.
A neighbor degree d of 2 implies that metabolites, which are connected via one or two steps
in the network, are chosen as ratio candidates. Depending on parameter values for c and d,
different metabolite ratio candidates are selected from the GGM network. The overlap between
these selected GGM-NBR candidates and all possible ratios is denoted by the top number in
each box (X). The statistical significance of this overlap was assessed by comparing it to the
distribution of overlaps derived from random networks. The bottom number in each box (Y)
displays the fraction of GGM-NBR candidates compared to all ratios. The red box marks the
parameter set (partial correlation cutoff 0.1, neighbor degree 2) which was used for all presented
GGM-NBR results in Section 2.4. For this setting, the overlap between all ratios and GGM-NBR
associations of 63% was highly significant (p < 0.0001), while the GGM-NBR candidate set
contained only 16% of all possible metabolite ratios. Other parameter settings either revealed
less overlap between the associations found by all ratios and GGM-NBR or this overlap was not
significant.
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Figure 2.11: Metabolic network information reveals similar effects for associations within path-
ways. Analyzing ratio-SNP associations within GGM-based metabolic paths helps to group re-
sults with respect to their biological mechanism. Two examples are shown for fatty acid metabo-
lism (A) and sugar metabolism (B). Genetic variants often affect related metabolite pairs. Two
SNP variants in the ACADM locus for example are associated with different metabolite ratios.
The respective metabolites are closely connected in the GGM network. Genetic effects within the
ACADM locus thus have an impact on several metabolite concentrations within certain metabolic
pathways. Line widths represent strength of partial correlations in GGM networks.

metabolite ratios (hexanoylcarnitine/acetylcarnitine and hexanoylcarnitine/oleate). On

the basis of the data-driven reconstructed network, we can see that these metabolites

are closely related. The effect of a genetic variant might affect specific metabolites, but

also alter other metabolite concentrations within a pathway, both detected in mGWAS

results. Using the GGM network context thus helps to group and interpret these path-

way effects, especially if no pathway dependencies for the metabolites of interest can be

obtained from databases. In total we found 20 associations that could be grouped with

other associations within the same metabolic pathway, reducing the number of all ratios

only associations from 39 to 19. Hence by taking the network connections of metabolites

into account we do not miss hits, but rather find the more direct associations, which

point to the underlying biological mechanism. The network-based analysis thus allows

for a systematic evaluation of association results within metabolic pathways.
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GGM-NBR also reveals 10 new ratio-SNP associations that were not found using the all

ratios approach (set [C] in Figure 2.9A and Manhattan plot in Figure 2.9B, see also Table

2.1). This results from a higher Bonferroni significance level (3.22 · 10−12 for all ratios

compared to 2.01 · 10−11 for GGM-NBR), since fewer association tests are performed

in the NBR-GGM case. One example for a genetically-influenced metabotype in the

leucine metabolism is shown in Figure 2.12. Using both the all ratios and GGM-NBR

approach, the ratio isovalerylcarnitine/isovalerate was found to be associated to the

OCTN2/SLC22A5 locus, which codes for an organic cation transporter with short-chain

acyl esters of carnitine as substrates [128]. GGM-NBR analysis additionally revealed an

association between isovalerylcarnitine/leucine and a SNP in the ACSL6 locus. ACSL6

catalyzes the formation of acyl-CoA species, possibly also isovaleryl-CoA, which is a

degradation product of leucine but was not measured in the mGWAS study. While these

associations might be based on indirect effects as isovalerylcarnitine is the transport form

of isovaleryl-CoA, the network context in the GGM-NBR analysis helps to understand

the interplay between different association loci and metabolite ratios. Table 2.1 displays

further associations that were only found using GGM-NBR.

Evaluation of the NBR approach on independent GWAS results

As described above, the metabolomics data from the KORA study was used for the

mGWAS analysis and also for the reconstruction of metabolic networks in the process of

the GGM-NBR analysis. We asked whether we could use study-specific NBR candidates

also for the analysis of mGWAS results from a different study cohort. We addressed

this question by evaluating our NBR approach on independent mGWAS results from

1,052 participants in the British TwinsUK study, published in [237]. Here the published

GGM-network information was based on the metabolomics measurements in the KORA

study [134], that we used for previous NBR analyses, while the mGWAS ratio-genotype

associations were derived from the TwinsUK data. A comparison of the analysis based

on different ratio sets is shown in Figure 2.13. PW-NBR only reveals three association

hits, while both the all ratios and GGM-NBR approach find 41 and 27, respectively.

Again the GGM-NBR matches the initial all ratios results as it was also shown for the

KORA mGWAS data (see Figure 2.9A) and the overlap between all ratios and GGM-
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Locus
SNP id

Metabolite ratio p-value beta
Functional
interpretation

ZNF655
rs1581492

androsterone sulfate/
dehydroisoandrosterone sulfate

1.35·10−11 -0.119

gene encodes for a zinc finger pro-
tein; potential link to regulatory
elements; ratio also associated to
AKR1C isoforms (involved in an-
drogen metabolism)

HEATR7B1
rs10203853

bilirubin (E;E)/oleoylcarnitine 1.01·10−11 -0.047

potential link to regulatory el-
ements; ratio also associated to
UGT1A, which has bilirubin as a
substrate

COX6A1
rs2076022

butyrylcarnitine/propionylcarnitine 1.40·10−11 -0.046

COX6A1 is a terminal oxidase in
mitochondrial electron transport;
fatty acids are transported into
mitochondria as acylcarnitines;
ratio also associated to ACADS
locus (observed by both all ratio
and GGM-NBR)

ELOVL2*
rs9393903
and
rs3734398

docosahexaenoate (DHA; 22:6n3)/
eicosapentaenoate (EPA; 20:5n3)

1.23·10−11

and
5.76·10−12

-0.030
and
-0.026

EPA is substrate of ELOVL2,
DHA biochemically related by
desaturase reactions

SLC7A6
rs6499172

acetylcarnitine/glutaroyl carnitine 1.30·10−11 -0.04

SLC7A6 is involved in the trans-
port of amino acids and also
associated to glutaroyl carni-
tine/lysine ratio; possible path-
way interaction

PRMT7
rs2863978

acetylcarnitine/glutaroyl carnitine 1.99·10−11 -0.034

PRMT7 is a arginine methyl-
transferase for protein modifica-
tion; potential link to regulatory
elements

SLC22A1
rs456598

gamma-glutamylvaline/
isobutyrylcarnitine

4.65·10−12 0.064

SLC22A1 is a transporter for
many organic cations; SNP asso-
ciated to serum concentrations of
total cholesterol and low-density
lipoprotein cholesterol [240]

ACSL6
rs10040809

isovalerylcarnitine/leucine 1.70·10−11 -0.033

ACSL6 catalyzes the formation of
acyl-CoA species; isovaleryl-CoA
is involved in leucine metabolism
(see also Figure 2.12)

PDXDC1
rs7200543

1-eicosatrienoylglycerophosphocholine/
1-linoleoylglycerophosphocholine

1.22·10−11 -0.035

Association suggests that
PDXDC1 is involved in the
glycero-phosphocholine metabo-
lism

Table 2.1: List of all additional SNP-ratio associations found using the GGM-NBR approach.
The associations between SNP rs9393903 and DHA/EPA ratio, as well between rs7200543 and
1 eicosatrienoylglycerophosphocholine/1-linoleoylglycerophosphocholine have been reported pre-
viously. However, this result was only obtained after increasing the sample size by combining
two cohorts in a meta-analysis of two GWAS studies. Beta and p-value as reported in [237] from
a linear regression model based on additive genetic effects (using log10-scaled metabolic traits,
genotype is coded as 0-1-2, major-hetero-minor genotype with beta being the slope of the linear
model). *: The two reported SNPs are both in the ELOVL2 locus, but with linkage disequilib-
rium smaller than 0.8 (0.398) and therefore not combined. See also Figure 2.12 for an example
of a newly predicted association.
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isovaleryl-
carnitine

isovaleryl-
CoA isovalerate

...

leucine

ACSL6

OCTN2

observed ratio-SNP
association using NBR

observed ratio-SNP associ-
ation using all ratios and NBR

metabolite

gene locus

Figure 2.12: Example of an additional association found by the NBR approach. Both the all
ratios and NBR approach find an association between isovalerylcarnitine/isovalerate and the
OCTN2/SLC22A5 locus (rs274570), which codes for an organic cation transporter. Additionally,
NBR-GGM analysis revealed an association between isovalerylcarnitine/leucine and a SNP in the
ACSL6 locus (rs10040809). ACSL6 catalyzes the formation of acyl-CoA species like isovaleryl-
CoA, which is a degradation product of leucine but was not measured in the mGWAS study
(dashed circle). Metabolite relationships, which are obtained from known biochemical pathways
or GGM networks, allow for a better understanding and interpretation of indirect effects and
observed ratio-SNP associations. See Table 2.1 for a full list of all additional associations found
by the NBR approach.
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Figure 2.13: Comparison of results for different ratio sets based on Twins UK association data.
The KORA GGM network was used to analyze mGWAS results of the Twins UK study, published
in [237]. Similar to the results of KORA association data presented in Figure 2.9A, the overlap
between all ratios and GGM-NBR results is rather high and GGM-NBR reveals two additional
hits. Pathway analysis on the underlying GGM network revealed that 5 out of 14 hits, which are
not identified by the GGM-NBR approach, can be explained by other associations within the
same metabolic pathway.

NBR results is rather high. Due to the reduced number of association tests GGM-NBR

additionally reveals two significant ratio-SNP associations. Using the pathway analysis

of the underlying GGM network showed that 5 out of the 14 hits, which were not

identified by the GGM-NBR approach, can be explained by other associations within

the same metabolic pathway. The GGM network context points to the more direct

biological mechanism and facilitates the interpretation of mGWAS results. It is important

to note at this point that for our evaluation on TwinsUK association data we did not use

TwinsUK raw metabolite concentration data for the network reconstruction but relied

on the published KORA GGM. Our findings suggest that these data-driven networks

might be used in a general context for the analysis of further metabolomics studies about

genetically-influenced metabotypes.

2.5 Discussion

Genome-wide association studies with metabolite ratios as quantitative traits have deep-

ened our understanding of the complex relationship between genetic variants and ob-

served phenotypes. It has been shown that ratios between metabolite concentrations pairs

reduce the overall biological variability in population data resulting in robust statistical
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mQTL associations [190]. In previous studies, metabolite ratios were either manually

selected with respect to specific enzymatic reactions [117] or all possible ratio combina-

tions were used [81, 104, 237]. Especially due to the large number of all possible ratios for

studies with many metabolites it is important to narrow down the number of association

tests. We argue that the proper selection of ratio candidates based on metabolic network

information will improve the analysis of association studies with metabolic traits from

a statistical, computational and interpretational point-of-view.

In this thesis we propose to choose biologically meaningful metabolite ratios based on

metabolic networks for further association tests. Before applying network-based me-

tabolite ratios (NBRs) on human population GWAS data, we used simulated reaction

networks. Our model simulates differences in metabolite levels, which result from genetic

variation affecting enzyme activities. Such effects have been reported for several SNPs

in the ACE structural gene and the ACE activity [40]. It is important to acknowledge at

this point that the in silico model is obviously an oversimplified model of gene-metabolite

interactions. The primary goal of the presented analysis was to test our hypothesis in a

well-defined and comprehensible environment before going to noisy experimental data.

Our in silico results show that the NBR approach is applicable for small sample size

studies and, even more important for practical applications, for genetic variants with

small effect sizes.

We further analyzed mGWAS results from two different study cohorts as an additional

evaluation of the NBR approach. The main focus of this validation was not to strictly

replicate observed genotypic effects, but rather to show that the NBR method is not

restricted to a specific data set. Initially the mGWAS results were obtained by using all

possible metabolite ratio combinations as traits. We compared the associations detected

using all ratios with associations observed after testing only ratio candidates derived

from metabolic networks. Data-driven metabolic networks (GGM-NBR) gave similar re-

sults as the all ratios approach, while networks obtained from pathway annotations in

the literature (PW-NBR) could not reveal many associations. The limited results from

PW-NBR are certainly based on the sparseness of metabolite annotations and network

information in databases like KEGG, BiGG and EHMN. Data-driven reconstruction

methods provide the opportunity to measure relations between all measured metabo-

lites. It is important to acknowledge that results from statistical inference methods like
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Gaussian Graphical models should not be confused with a perfect reconstruction of

metabolic pathways [21]. For instance, if intermediate metabolites cannot be detected,

connections in reconstructed networks do not necessarily represent direct biochemical

pathway reactions. With advanced metabolite detection techniques and network recon-

struction methods, both the annotation and the data-driven pathway information will

further improve. Since our NBR approach relies on the informative content of metabolic

networks, the two network sources can be combined to enhance our understanding of

metabolism by finding more genetically-influenced metabotypes.

Narrowing down the size of ratio candidate sets is also important for small, phenotype-

specific studies. For example, studies investigating rare variants or small effect sizes

often have to deal with small case numbers. For such studies it is essential to reduce

the number of tests in order to improve the statistical power and lower computational

demands. Moreover, advanced metabolomics methods will soon allow for the detection

of several thousand metabolites. At this point it will not be feasible anymore to test all

possible ratio combinations against genetic variants in order to find genetically-influenced

metabotypes. Figure 2.14 displays the relationship between the number of measured

metabolites and the number of ratios that have to be tested using the all ratios and the

NBR approach. The number of ratios for association tests increases much faster for the all

ratios case compared to the GGM-NBR approach. For upcoming mGWAS studies with

larger metabolomics panels, the significance cutoff for multiple testing correction will be

more stringent, allowing only the detection of rather strong signals. Selecting ratios based

on metabolic networks (GGM-NBR) substantially reduces the number of tests to be

made. In addition, we could show that genetic effects in one locus have an impact on the

concentration levels of biochemically related metabolites. It is important to understand

at this point that measuring the distance between metabolites is not straightforward,

both in reconstructed and literature-based metabolic networks [65, 192]. Nevertheless,

the network context helps to group associations which are related to the same underlying

biological mechanism. For instance markers, which have different distributions within the

population but which are associated to the same causal, yet unknown variant, will show

associations to various metabolic traits. With the network context these associations

can be grouped together on pathway levels which allows for a systematic evaluation and

interpretation of association results.
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Figure 2.14: Estimating the number of ratio candidates for the all ratios and GGM-NBR
approach. The amount of ratio candidates that are tested for association depends on the number
of measured metabolites (n). The number of all ratios (red crosses) is calculated from n, NBR
ratio candidate numbers (blue dots) were estimated based on KORA metabolomics data (mean
values out of 1000 repeated estimations, see Methods section 2.1).

The NBR approach may also be combined with methods accounting for the inherent

correlation between SNPs due to linkage disequilibrium [73, 178], thus reducing the

number of both ratios and SNPs for multiple testing correction. The presented approach

is not restricted to association studies with metabolic traits and can be extended to

other quantitative omics data, also in case-control studies. For such studies the sample

size is usually much smaller and our preselection of ratios could improve the statistical

power. Moreover, NBRs can be used for other quantitative biomolecular data such as gene

expression measurements or epigenetic modifications [191]. Here the interactions between

gene products can be both inferred from data or obtained from biological pathways, well-

established protein-protein or gene-regulatory networks [14, 28, 34].

GWAS with metabolic traits have deepened our understanding of genetic effects on

metabolic functions. For such large-scale data, taking metabolic network information

into account can be of great benefit for the analysis and interpretation of association

results. Our NBR approach reveals nearly the same associations compared to the “all

ratios” approach, while lowering computational demands. Using NBR additionally al-

lows for the detection of weaker effects, since considering only biologically meaningful

ratio candidates increases the statistical power. For upcoming studies with large-scale

metabolomics data and small sample numbers, our NBR approach provides a valuable
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tool to increase the statistical power, lower computational demands and facilitate the

interpretation of the results. Network-based analysis will then help to better understand

the complex interplay between individual phenotypes, genetics and metabolic profiles.

The network-based metabolite ratio approach is not restricted to genetic association

data. For instance, in Chapter 3 we will present a study on the dynamics of human

metabolism, where we analyzed subject-specific, time-resolved metabolomics data from

a fasting period of 36 hours. For this analysis we apply the ratio approach on the level

of a single pathway and use a fatty acid beta-oxidation model to infer metabolite ra-

tios reflecting enzymatic activity. We show that, compared to single metabolite levels,

model-driven metabolite ratios are better markers for the individual’s metabolic capacity

and facilitate the explanation of the observed interindividual variation in metabolomics

profiles.



Chapter 3

Modeling metabolic pathways

under steady state conditions in a

human challenging study

In the previous chapter, we discussed the interplay between genetic variants and individ-

ual metabolic profiles. Based on population data from genome-wide association studies,

we analyzed the link between genes coding for enzymes and the levels of corresponding

substrate or product metabolites. Besides genetics, a variety of intrinsic and extrinsic

factors defines metabolic phenotypes (see Chapter 1.1). For instance, age [279], gender

[163], physical exercise [37, 193, 275] and diet [96] influence human metabolic profiles.

Metabolite data can also be used as biomarkers for diseases like cancer or diabetes

[84, 97, 112, 138]. Selecting markers for distinct pathophysiological states can be com-

plex, but it is even more difficult to determine the biological boundaries between health

and disease [282].

Challenging protocols like oral glucose tolerance tests (OGTT) can unmask alterations

in metabolism related to early states of chronic diseases. In such a test, the individual

flexibility and response capacity to perturbations from environmental and physiologi-

cal stimuli like diet and exercise is assessed. To date, most metabolomics research has

63
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been done for samples representing fasting conditions and only few studies report time-

resolved measurements of individual reactions to external and internal challenges. For

instance, a study with prolonged fasting conditions revealed new markers in human

plasma and urine samples for this catabolic state [213]. Shaham et al. used mass spec-

trometry methods to analyze plasma samples of healthy and pre-diabetic volunteers

undergoing an OGTT [228]. In this challenging setup, metabolites like bile acids and

urea cycle intermediates were found to be significantly altered, indicating a role in the

context of glucose homeostasis which has not been described before. In a study on the

intervention effects of a mild anti-inflammatory drug in overweight human participants,

OGTT challenging increased the statistical power and allowed for the detection of subtle

metabolic changes [272].

For a better understanding of the human metabolome dynamics in response to envi-

ronmental stresses and perturbations, a four-day human challenging study (HuMet) has

been conducted, in which 15 healthy male volunteers were submitted to six different

physiological and nutritional challenges. For analyzing the relationship between pheno-

typic and metabolite profiles under specific physiological conditions, samples from blood,

urine, exhaled air and breath condensate were collected for each volunteer on up to 56

time-points. Metabolic traits like lipids, amino acids and acylcarnitines were measured

using mass spectrometry and nuclear magnetic resonance methods. The HuMet study

thus provides metabolomics data for more than 2100 individual samples under vary-

ing physiological conditions, measured in different body fluids on different analytical

platforms.

In collaboration with the groups of Hannelore Daniel, Hans Hauner, Karsten Suhre

and Gabi Kastenmüller I contributed to the analysis of the interindividual variation

in healthy and phenotypically similar volunteers. In the following, we will give a brief

overview about the HuMet study design and discuss volunteer specific metabolite changes

induced by physiological and nutritional challenges, which could not be observed on

baseline metabolite concentrations. Due to the broad coverage of lipid compounds in

the metabolite panel, the focus of our analysis lied on the fasting challenge. Under

such conditions mitochondrial beta-oxidation, the catabolic breakdown of fatty acids,

is the main physiological process which provides energy to the cell (see Section 1.1

for a detailed description of the pathway). We investigated the individual response to
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the fasting challenge by combining time-resolved metabolomics data with knowledge

about metabolite connections in the fatty acid oxidation (FAO) pathway. To this end,

we developed a mathematical model which approximates the beta-oxidation pathway as

a linear cascade of subsequent, irreversible first-order reactions. Furthermore, we will

discuss how model-derived parameters resembling the individual metabolic capacity can

be used to investigate the relationship between interindividual variation in metabolic

profiles and phenotypic characteristics of the study volunteers.

The results reported in this chapter have been published in collaboration with the groups

of Hannelore Daniel, Hans Hauner, Karsten Suhre and Gabi Kastenmüller in the follow-

ing publications:

• Krug S*, Kastenmüller G*, Stückler F*, Rist MJ*, Skurk T*, Sailer M, Raffler J,

Römisch-Margl W, Adamski J, Prehn C, Frank T, Engel KH, Hofmann T, Luy B,

Zimmermann R, Moritz F, Schmitt-Kopplin P, Krumsiek J, Kremer W, Huber F,

Oeh U, Theis FJ, Szymczak W, Hauner H, Suhre K, Daniel H (2012): The dynamic

range of the human metabolome revealed by challenges. FASEB J. 26: 260719

This publication is a joint first author work and the content of this paper is also

part of another thesis [132]. My contribution to the publication is the development

of a model to analyze the metabolomics data, as well the statistical analysis of

model readouts and their interpretation.

• Krumsiek J, Stückler F, Kastenmüller G, Theis FJ (2012): Systems Biology Meets

Metabolism. In: Suhre K, editor. Genetics Meets Metabolomics: from Experiment

to Systems Biology. New York, NY: Springer New York. pp. 281-313.

* = equal contributions
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3.1 Methods

HuMet study design

The HuMet study was designed to assess on metabolome level individual responses to

physiological and nutritional challenges. The 15 male study participants were metabol-

ically healthy, with an age ranging between 22 and 33 years (27.8 ± 2.9) and a body

mass index (BMI) between 20 and 25 kg/m2 (23.1 ± 1.8). The study consisted of two

test periods, each lasting two days and two nights (see Figure 3.1), with a break in-

terval of several weeks between study day 2 and 3. A highly-controlled experimental

design minimized environmental influences by admitting volunteers to the study unit

on the evening before each test block. Participants received standardized meals before

and during the test periods. The energy content of each individual meal was adjusted

to 1/3 of the volunteer’s resting metabolic rate (RMR), which was measured by indirect

calorimetry (DeltatracTM Metabolic Monitor, DatexOhmeda, Helsinki, Finland). The

four study days included a sequence of six different challenges: a prolonged fasting pe-

riod of 36 hours (FASTING), a standard liquid diet (SLD), an oral glucose tolerance

test (OGTT), an oral lipid tolerance test (OLTT), a physical activity test (PAT), and

a cold pressure stress test (STRESS). Samples from plasma, urine, breath gas and ex-

haled breath condensate (EBC) were collected for each volunteer between every one and

four hours. For short-time challenges such as physical exercise, stress and OGTT the

sampling intervals were between 15 and 30 minutes.

As the main analysis presented in this thesis covers the fasting period on day 1, we

will briefly provide details about this catabolic challenge and the acquired metabolite

data. Further information about the overall study design, challenging protocols, data

acquisition and quality control can be found in the original publication [133]. Volunteers

received a standardized evening meal at 7 a.m. on the day before day 1. Afterwards sub-

jects fasted until 8 a.m. of day 2. During the total fasting period of 36 hours, participants

received 2.7 liters of mineral water according to a predefined drinking schedule. For each

volunteer, plasma samples were collected every 2 hours between 8 a.m. and midnight.

As the main energy source during sustained fasting is the degradation of fatty acids,

we focused our analysis on the metabolite profiles of acylcarnitines, which are transport
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Figure 3.1: Study design of the HuMet study. Within four days, volunteers underwent six
physiological and nutritional challenges: fasting, standard liquid diet (SLD), oral glucose tolerance
test (OGTT), physical activity test (PAT), oral lipid tolerance (OLTT), and a cold pressure stress
test. Solid bars indicate duration of each challenge test. Symbols indicate time points of biofluid
collection.
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forms of fatty acids intermediates. Plasma acylcarnitine concentrations were used as a

surrogate for acyl-CoA concentrations in the beta-oxidation pathway [160, 177, 250].

Data acquisition

Metabolites were quantified using targeted tandem mass spectrometry (MS/MS), nu-

clear magnetic resonance (NRM) and proton transfer reaction mass spectrometry (PTR-

MS). MS/MS targeted profiling of metabolites in plasma was performed using the Ab-

soluteIDQ kit (Biocrates life sciences AG, Innsbruck, Austria) as described previously

[6, 104, 210]. The kit allows for the quantification of mainly amino acids and lipid

derivatives. The panel contains 14 amino acids; hexose (H1); free carnitine (C0); 40 ac-

ylcarnitines, hydroxylacylcarnitines and dicarboxylacylcarnitines; 15 sphingomyelins; 77

phosphatidylcholines and 15 lyso-phosphatidylcholines. Further details about the quan-

tification of metabolites in plasma, urine and breath air using NMR and PTR-MS, as well

the measurement of standard clinical chemistry parameters like venous plasma glucose,

lactate, insulin and non-esterified fatty acids (NEFA) can be found in the original pub-

lication [133]. Quality of the data was evaluated by repeated measurements on different

run days. Metabolites which showed a coefficient of variation (CV) > 25% and com-

pounds with a CV greater than 20% and a significant association (Kendall correlation)

to the run day of the measurement were excluded.

Principal component analysis

The metabolite panel of each plasma sample for further analysis consisted of 163 metabo-

lites (132 traits measured by MS/MS, 28 by NMR and 3 clinical chemistry parameters).

For evaluating challenge-induced effects, principal component analysis (PCA) was per-

formed on all 163 plasma metabolic traits. Each metabolite variable was scaled to mean 0

and standard deviation 1 for comparing different concentration levels. PCA analysis was

performed for two data subsets. To assess the general challenge effects on metabolic

traits at each of the 56 sampling time points the metabolite data was averaged over the
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15 volunteers (data matrix 56×163). To assess the interindividual variation, all samples

for each volunteer and each time point (840× 163) were included in the PCA analysis.

Mathematical model for the beta-oxidation cascade

The degradation of fatty acid chains in the mitochondrial beta-oxidation pathway can

be seen as a linear cascade model of irreversible first-order reactions, as illustrated in

Figure 3.2. This description is based on the linearity of subsequent, central steps in the

degradation cascade [16] (see also Section 1.1 for a more detailed description of this bio-

chemical pathway). The four sequentially coupled reactions of each beta-oxidation cycle

(oxidation, hydration, a second oxidation and thiolysis) are combined into one central

reaction assumed to be irreversible under the given fasting condition. No simultaneous

production of fatty acids is assumed due to the antagonistic regulation of catabolic and

anabolic pathways [200].

C2
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C14
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C12
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Figure 3.2: Schematic model of the beta-oxidation cascade. Mobilized fatty acids are subse-
quently degraded in a linear pathway. During each reaction step the carbon chain is shortened
by two carbon atoms and C2 is produced.

The fatty acid C18 with 18 carbon atoms is supplied to the beta-oxidation pathway. Dur-

ing each reaction step the carbon chain is shortened by two carbon atoms. This results

also in the production of C2. According to the law of mass action (see Section 1.4), we

can describe each reaction with differential equations. The change of the first metabolite

in the chain (C18) over time depends on the supply rate k0 and the conversion of C18 to

C16 with rate parameter k18:

Ċ18(t) = k0 − k18 · C18(t)
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where Ċ18 represents the time derivative dC18
dt . C18(t) is the concentration of C18 at

time t. Equations for intermediate metabolites C16 to C4 read

Ċ16(t) = k18 · C18(t) − k16 · C16(t)

Ċ14(t) = k16 · C16(t) − k14 · C14(t)

Ċ12(t) = k14 · C14(t) − k12 · C12(t)

Ċ10(t) = k12 · C12(t) − k10 · C10(t)

Ċ8(t) = k10 · C10(t) − k8 · C8(t)

Ċ6(t) = k8 · C8(t) − k6 · C6(t)

Ċ4(t) = k6 · C6(t) − k4 · C4(t)

(3.1)

The change of each intermediate metabolite C16, C14, ..., C4 in the beta-oxidation cascade

(for instance Ċ14) thus depends on the production term by shortening the preceding

metabolite (first part on the right hand side of the equation, e.g. +k16 · C16) and the

conversion to the subsequent metabolite in the chain (second part, e.g. −k14 · C14).

The last metabolite in the chain, C2, is produced during each shortening reaction of

C18, C16, ..., C6, but also after splitting up C4. The change of C2 can be described by the

following differential equation:

Ċ2(t) = k18 · C18(t) + k16 · C16(t) + · · ·+ 2k4 · C4(t)− k2 · C2(t) (3.2)

Biochemical reactions are on timescales between milliseconds and minutes, while up-

stream physiological processes can be much slower. For systems with two separated

time-scales the dynamics of the faster part may run into a steady-state, also referred

to as quasi steady-state of the overall system [227]. The quasi steady-state assumption

has been applied for instance to approximate the solution of Michaelis-Menten kinetics

[19, 127]. Metabolite levels are supposed to be in a quasi-steady state compared to the

timescales of upstream regulatory processes due to perturbation events [143]. As the

sampling interval in the fasting period was two hours, we assume that for each sampling

time point the system has attained a stationary state measured by equilibrium plasma

metabolite concentrations.
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Under steady state conditions each equation above is set to 0, i.e. metabolite concen-

trations do not change over time. Due to the coupling in the cascade all single equa-

tions in Equation (3.1) can then reformulated (e.g. k16 · C16(t) = k14 · C14(t) and

k14 · C14(t) = k12 · C12(t)). Substituting the corresponding reformulated equations in

Equation (3.2) yields for a specific measurement time point τ

ki(τ) =
C2(τ)

Ci(τ)
· k2(τ)

9
, i = 4, 6, 8, ..., 18. (3.3)

For instance, the rate k16 of the conversion C16 → C14 can be deduced from the concen-

tration ratio C2/C16, multiplied by the factor k2/9, representing the removal rate of C2

from the system. Note that we obtain for each measurement time point τ an estimation

of the reaction rate. The system of differential equations is underdetermined, as it in-

cludes 10 reactions with unknown reaction rates k0, k18, k16, ..., k2 and 9 equations for the

measured compounds C18, C16, ..., C2. For this reason, we cannot derive a unique solution

for each reaction rate, but the ratios of metabolites are proportional to reaction-specific

rates, normalized with respect to the removal rate of C2.

Correlation analysis between model readouts and phenotypic parameters

The relationship between metabolic traits (both single metabolite levels and metabo-

lite ratios) and anthropometric or biochemical parameters (ABP) was evaluated using

Spearman’s rank correlation statistics. The correlations between biochemical parame-

ters like blood sugar and insulin concentrations were calculated using metabolite levels

of the fasting period. For anthropometric parameters, rank correlation was obtained us-

ing the mean metabolite concentrations of the fasting period. The association p-values

were corrected for multiple testing by controlling the false discovery rate (FDR) at a

global significance level of 0.05 [18]. In order to identify model-driven ratios that pro-

vide stronger statistical associations than single metabolites, p-gain statistics [190] were

calculated as

p-gain

(
M1

M2
, X

)
=

min (p(M1, X),p(M2, X))

p
(
M1
M2
, X
)

with metabolites M1 and M2 and their respective model-driven ratio M1/M2, param-

eter X (e.g. BMI) and p(A,B) being the FDR-corrected p-value of Spearman’s rank
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Figure 3.3: Concentration changes of the catabolic parameters non-esterified fatty acids
(NEFAs, A), measured in plasma, and β-aminoisobutyrate (B), measured in urine, represent
metabolic alterations caused by strict fasting.

correlation between variable A and B. Cases where the model-based analysis improves

statistical correlations yield p-gains greater than 1. All analysis steps were performed

using Matlab Version 7.11 (MathWorks, Natick, MA).

3.2 Challenge-induced metabolite changes and interindi-

vidual variation

Nutritional and physiological challenges induce changes in time-resolved

metabolic profiles

The different challenges in this study induced catabolic and anabolic responses, also re-

flected in timecourse metabolite profiles. As expected, prolonged fasting for instance led

to the mobilization of fatty acids from adipose tissue, reflected by elevated plasma con-

centrations of non-esterified fatty acids (NEFAs) and an increase of catabolic compounds

like β-aminoisobutyrate measured in urine (see Figure 3.3). Plasma concentrations of in-

sulin and glucose were low during fasting and increased during food intake and OGTT
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Figure 3.4: Metabolic response to challenges of plasma acylcarnitine levels. Mean plasma con-
centrations of the 15 subjects at each sampling time point of free carnitine (C0, red) and the
sum of all acylcarnitines including acetylcarnitine (green) are significantly anticorrelated (Pearson
correlation, ρ = −0.66, p-value = 2.4 · 10−8), reflecting switching between anabolic and catabolic
metabolic states induced by specific challenges. For a better visualization, metabolite levels were
scaled to mean 0 and standard deviation 1. Red and green shaded areas denote standard devi-
ations for the timecourses of 15 subjects. Yellow and blue shaded areas define the fasting and
exercise period which is analyzed in more detail in Figure 3.5

.

(see Figure 3.6). The switching between catabolic and anabolic states is also illustrated

by the mirror-like dynamics of free carnitine (C0) and the sum of all acylcarnitines in-

cluding acetylcarnitine, illustrated in Figure 3.4. During extended exercise and fasting

conditions, fatty acids from adipose tissue are mobilized by lipolysis and transported to

organs like muscle and liver for the production of metabolic energy [175]. C0 is required

for this transport of lipid species across cellular membranes into the mitochondrium.

Free fatty acids and free carnitine are converted to acylcarnitines and then translocated

to the inner mitochondrial matrix [116]. Thus, C0 levels decrease during fasting and

physical exercise, while acylcarnitines concentrations are elevated. This observation is

also consistent with a previously reported hypothesis about the role of acylcarnitines as

a buffer for beta-oxidation intermediates [177]. Due to increased fatty acid degradation,

the spill-over of intracellular acetyl- and acyl-CoA compounds is buffered by the release

of respective acylcarnitines into the blood plasma. During anabolic conditions, for in-

stance SLD and OGTT, the opposite dynamics for C0 and acylcarnitines are observed,

while markers for anabolism like plasma insulin levels are elevated.
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Figure 3.5: Challenge-induced changes in the entire plasma metabolite profile. Principal com-
ponent analysis (PCA) was performed on the mean plasma concentrations of all 15 volunteers
at each of the 56 time points. Physical activity test (PAT) time points (blue) started at 4 p.m.
with sampling at 0, 15, and 30 min during cycling and in the recovery phase at 15, 30, 60, and
90 min after cycling. Time points of the fasting challenge (orange) started with a sample taken
at 8 a.m. (after an overnight fast), followed by samples taken after further 2, 4, 6, 8, 10, 12, 14,
16, and 24 hours (see also color-shaded areas in Figure 3.4). Specific for the different challenges,
the samples are located in a time-dependent trajectory in the metabolic space spanned by the
first two principal components (PC1 and PC2).

The different metabolic changes induced by challenges were also studied using multi-

variate analysis of all plasma metabolites. Principal component analysis (PCA) on the

mean plasma concentrations of all 15 volunteers at each of the 56 time points showed

challenge-specific trajectories in the time-dependent metabolomics fingerprints. As de-

picted in Figure 3.5, time-dependent challenge effect were especially apparent for the

fasting and exercise (PAT) challenge. The PAT trajectory also illustrates the recovery

phase, after which metabolite profiles almost returned to the starting state before the

challenge.

Interindividual variation in metabolomics profiles

The individual metabolic responses induced by challenges were highly diverse within the

study group. Despite the fact that the volunteers were all male, metabolically healthy

Caucasians within a narrow range of age and BMI, especially catabolic challenges like
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acetylcarnitine levels are increased during catabolic conditions like fasting.

fasting and physical exercise induced highly different physiological responses observ-

able in plasma metabolomics levels. For instance, while differences in insulin plasma

levels were low during fasting or exercise, nutritional conditions (e.g. OGTT, OLTT

and SLD) showed large intersubject variation in concentrations during the postprandial

state (Figure 3.6). Interestingly, principal component analysis based on the plasma me-

tabolite profiles of all volunteers at all timepoints showed that subject specific samples

are grouped together despite large intraindividual variation over the various challenges

(see Figure 3.7A and B). Especially the 36 hours fasting period revealed a broad range

of plasma acetylcarnitine concentrations between minimal and maximal concentration

levels. For instance volunteer 14 (V14) and volunteer 13 (V13) mark the low and high ex-

tremes of the study group for acetylcarnitine concentrations in plasma (see Figure 3.7C).

At the end of the fasting period, C2 levels of V13 were more than three-fold higher

compared to the levels of V14 (25.8 μM vs. 8.1 μM). This increased between-subject

variation was also prominent for related metabolites and other sample types like urine

and breath air. For instance, metabolic signatures of V13 (e.g. plasma concentrations

of non-esterified free fatty acids and β-aminoisbobutyrate or acetone levels in urine, see

Figure 3.3) indicated also a strong response to fasting (see Figure 3.7C).
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Figure 3.7: Interindividual variation of metabolite concentrations in the context of challenges
and sample types. A: PCA scores based on the plasma metabolic profiles of all volunteers at
all timepoints. B: Only samples of the fasting challenge are depicted in the PCA plot. Despite
intraindividual variations induced by diverse challenges and sampling times, the samples of each
subject are grouped together. C: For day 1 and 2, the individual acetylcarnitine (C2) dynamics in
plasma are shown for each subject (top). The quantities of acetone in breath air (determined by
PTR-MS; middle panel) and urine (determined by NMR; bottom panel) match the observations
seen for C2 (determined by MS/MS) in plasma. The large differences in the concentrations
between subject 13 (red squares) and subject 14 (dark blue triangles) are consistent across the
different sample types.



3.3. MODELING MITOCHONDRIAL BETA-OXIDATION 77

3.3 Modeling mitochondrial beta-oxidation

The highest intersubject range was observed for the fasting challenge. As the study

protocol included the best possible standardization methods for volunteer treatment,

sample collection and data acquisition, we hypothesized that the marked variation in

challenge response could be caused by differences in physiological characteristics such

as muscle or fat mass composition. Yet a correlation analysis between anthropometric

measures and plasma metabolite concentrations quantified during the fasting period

showed only weak associations (see Table 3.1). Since metabolite concentrations could

not explain the differences between subjects, we asked if the individual’s capacity for

fatty acid metabolization might explain the varying responses to the fasting challenge.

We therefore developed a simplified mathematical model for the degradation of fatty

acids in the beta-oxidation cascade (see Section 3.1).

We used the plasma concentrations of acylcarnitines with fatty acid chain lengths rang-

ing from 2 to 18, which were measured during the fasting period, as input variables

for the model, assuming that these fatty acid derivatives reflect beta-oxidation in-

termediates. This assumption is based on replicated statistical associations between

gene variants in mitochondrial acyl-CoA dehydrogenase beta-oxidation enzymes and

plasma acylcarnitine concentrations, reported in several genome wide association stud-

ies [81, 98, 104, 172, 237]. Findings from studies on inborn errors in beta-oxidation also

show genetically associated changes of plasma acylcarnitine levels [150, 199]. Therefore

we based our model-based analysis on plasma acylcarnitines as surrogate markers being

in equilibrium with mitochondrial beta-oxidation intermediates, similar to recent models

of fatty acid metabolism [164, 250]. Under steady state conditions parameter readouts

of the linear model can be estimated by using ratios of condition-specific acylcarnitine

concentrations. These parameters or model-driven ratios are then proportional to reac-

tion rates in the beta-oxidation cascade and provide a surrogate marker of metabolic

capacities. For instance, the rate k16 of the conversion C16 → C14 is proportional to

the concentration ratio C2/C16. The model-driven ratios thus allow us to estimate the

individual metabolic capacity of each subject for each time point during the fasting

challenge (see Figure 3.8).
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Figure 3.8: Interindividual variation in metabolic profiles and model-driven metabolite ratios.
Boxplots display subject-specific metabolite levels of C2, C16 and the model-driven ratio C2/C16
for all 10 time points during the fasting challenge.

3.4 Association between model readouts and phenotypic

parameters

Based on metabolite ratios as model readouts for metabolic capacities, we compared

the individual response to fasting conditions with volunteer-specific phenotypes. The

relationship between both metabolite concentrations and model-driven metabolite ratios

and anthropometric or biochemical parameters (ABP) was evaluated using Spearman’s

rank correlation statistics (see Section 3.1). Using p-gain statistics [190] model-driven

ratios that provide stronger statistical associations than single metabolites were identified

(p-gains greater than 1).

We correlated all levels of even-numbered, saturated plasma acylcarnitines (C2 - C18)

measured during the fasting period with anthropometric and biochemical parameters.

In addition, we performed all statistical analyses using model-driven ratios instead of

single acylcarnitine concentrations (see Table 3.1). Metabolite ratios as readouts from

the beta-oxidation model provided stronger associations with the individual’s pheno-

type than absolute metabolite levels. For instance, the ratio between acetylcarnitine

and palmitoylcarnitine (C2/C16, corresponding to the reaction rate k16, see Figure 3.2)

revealed stronger rank correlation to anthropometric measures (for instance muscle-fat-

ratio, fat mass and BMI) than absolute C2 and C16 plasma levels. The model-driven ra-

tio approach improved statistical correlations, expressed as p-gain values greater than 1,

yielding for instance 7.3 for correlation with muscle-fat-ratio, 8.8 with BMI and up to
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Rank correlation

Ratio C2/Cx vs. ABP C2 vs. ABP Cx vs. ABP

p-gain Cx ABP p-value ρ p-value ρ p-value ρ

7.5 · 106 C16 Sum of hexoses (p) 1.9 · 10−15 -0.61 1.4 · 10−8 -0.48 0.632 0.07
3.5 · 105 C16 β-Aminoiso-butyrate (u) 1.6 · 10−16 0.77 5.7 · 10−11 0.67 0.901 0.03
2.9 · 103 C6a Free carnitine (p) 5.1 · 10−7 -0.41 0.001 -0.29 0.918 0.02
221.5 C18 Glucose (p) 1.4 · 10−5 -0.46 0.003 -0.35 0.520 0.11
87.1 C4 Free carnitine (p) 2.5 · 10−6 -0.39 0.001 -0.29 2.1 · 10−4 0.33
51.4 C18 Hydroxyliso-butyrate (u) 4.1 · 10−9 0.59 2.1 · 10−7 0.55 0.914 0.03
18.1 C16 Fat mass 0.015 -0.68 0.731 -0.19 0.267 0.44
10.9 C18 Creatinine (p) 0.028 -0.62 0.405 -0.35 0.301 0.42
8.8 C16 BMI 0.002 -0.77 0.944 -0.04 0.014 0.70
8.5 C16 Body fat percentage 0.042 -0.58 0.798 -0.14 0.354 0.39
7.3 C16 Muscle-fat-ratio 0.037 0.60 0.850 0.11 0.271 -0.43
5.3 C4 Insulin (p) 0.018 -0.28 0.093 -0.23 0.200 0.19

Table 3.1: Correlations between anthropometric and biochemical parameters (ABPs) with me-
tabolite concentrations (C4, C6, C16, C18 and C2) and model-driven ratios derived from the
beta-oxidation model. Biochemical parameters and acylcarnitine concentrations were measured
during the fasting period of study day 1. Rank correlation p-values were corrected for multiple
testing using FDR. Bold values indicate cases for which only model-driven ratios, but not single
metabolite levels, were significantly correlated with ABPs. Model-driven ratios reflecting biolog-
ical processes improve statistical correlations with ABPs of energy metabolism when compared
to the correlations with single metabolite concentrations, resulting in values of p-gain > 1. Ab-
breviations: Cx, acylcarnitine with chain length x; ρ, Spearmans rank correlation coefficient; p,
parameter concentration determined in blood plasma; u, parameter concentration determined in
urine.

18 for total fat mass. For fat mass, muscle-fat-ratio and other ABPs (bold values in

Table 3.1) only metabolite ratios, but not single metabolite levels, provided significant

associations with phenotypic parameters. As depicted in Figure 3.9 the fasting challenge

leads to different responses in metabolic profiles. Some volunteers showed a strong in-

crease in metabolite levels compared to others, but no clear relationship between the

anthropometric parameters fat mass and body mass index (BMI) and absolute C2 and

C16 plasma levels is observed. Considering metabolite ratios as a surrogate of the ind-

vidual’s metabolic capacity in contrast revealed significant correlations. Volunteers with

high body fat mass and BMI showed decreased levels of acylcarnitine ratios, while ratios

for subjects with low fat mass and BMI were increased.

Besides anthropometric measures, also time-resolved biochemical parameters (e.g. fast-

ing insulin, glucose or creatinine plasma levels) showed higher correlation coefficients

with model-driven ratios than absolute plasma levels. Figure 3.10 compares the analy-

sis of baseline metabolite samples with a model-based analysis of the fasting challenge.
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Figure 3.9: Fasting metabolite profiles correlate with anthropometric measures. Timecourses
of acetylcarnitine (C2), palmitoylcarnitine (C16) and the model-driven ratio C2/C16 during the
fasting challenge are shown. Coloring indicates subject-specific fat mass (panel A) and body mass
index (BMI, panel B). For comparing metabolite levels Spearmans rank correlation statistics (ρ,
p-value) was calculated between anthropometric measures and mean metabolite or ratio levels.
Compared to single metabolite levels, model-driven ratios improved statistical correlations for
fatt mass and BMI, resulting in p-gain values of 18.1 and 8.8, respectively (see Table 3.1 for
additional results).



3.5. DISCUSSION 81

Baseline samples were obtained from three resting states at 8 a.m. of day 1, day 3 and

day 4, and resemble snap-shot sampling conditions without challenges which are typi-

cal for cross-sectional study designs. Correlation analysis between baseline hexose and

acylcarnitine plasma concentrations showed weak signals. Note that the hexose concen-

tration is the sum of all monosaccharides with six carbon atoms, mainly made up by

glucose in blood plasma samples. Compared to the baseline measurements, the fasting

challenge revealed stronger association between glucose and acylcarnitine plasma levels.

Considering the individual’s metabolic capacity using model-driven ratios increased the

signal even further (p-gain of 7.5 · 106). Modeling the beta-oxidation in order to obtain

parameters for the individual metabolic capacities thus improved the analysis of the

challenge-induced interindividual variation.

3.5 Discussion

Studying the individual response to different nutritional and physiological challenges,

metabolite profiling revealed high variation between subjects. Searching for the origin

of the inter-subject variability, which was especially pronounced during the fasting chal-

lenge, we asked if model-driven metabolite ratios as readouts for metabolic capacity

could explain the inter-subject variability better than absolute metabolite levels. Several

models for lipid metabolism and fatty acid oxidation have been reported [129, 164, 250],

which differ in terms of complexity and detailed description of biochemical reactions.

Parameter values of models, which were developed on cellular data or in vitro settings,

are not readily applicable for the description of plasma metabolite dynamics. In order to

obtain a beta-oxidation cascade model which is suitable for the analysis of blood metab-

olite profiles, we reduced the model complexity by combining subsequent reactions. This

was motivated by the fact that few intermediate compounds were quantified, as they

are often immediately converted to other metabolites [60, 125, 168]. We excluded fatty

acid synthesis reactions due to the antagonistic regulation of production and degradation

pathways [200]. The import of fatty acids into the cells and efflux of acylcarnitines are

supposed to be not rate-limiting. This facilitated the calibration of the model, as less

parameters needed to be identified. Since our main objective was to describe metabolic



82 CHAPTER 3. HUMET: A HUMAN CHALLENGING STUDY

3 4 5 6
3
4
5
6
7
8
9

10

hexose [mM]

C
2 

[μ
M

]

3 4 5 6
0.05

0.1

0.15

0.2

hexose [mM]

baseline metabolites

3 4 5 6
5

10

15

20

25

hexose [mM]
3 4 5 6

0.05

0.1

0.15

0.2

0.25

0.3

hexose [mM]

challenge metabolites

ρ: 0.11  p-value: 0.49 ρ: 0.35  p-value: 0.02

ρ: -0.48  p-value: 1.4·10-8 ρ: 0.07  p-value: 0.63

3 4 5 6

50

100

150

200

250

hexose [mM]

ra
tio

 C
2 

/ C
16

challenge metabolite ratio
ρ: -0.61  p-value: 1.9·10-15

C
16

 [μ
M

]

C
2 

[μ
M

]

C
16

 [μ
M

]

3 4 5 6

40
50
60
70
80
90

100

hexose [mM]
ra

tio
 C

2 
/ C

16

baseline metabolite ratio
ρ: -0.22  p-value: 0.15

Figure 3.10: Comparison of baseline metabolite, challenge metabolite and metabolite ratio
levels with hexose concentration. Under non-challenging conditions (baseline) metabolites show
no (acetylcarnitine, C2) or only weak (palmitoylcarnitine, C16) correlation with hexose levels
(top panels). Under challenge (fasting) conditions, C2 is significantly correlated with hexose
(bottom panels). Taking the metabolite ratio C2/C16 instead, greatly increases this association
for the challenge metabolites (p-gain of 7.5 · 106). For comparing metabolite levels Spearmans
rank correlation statistics (ρ, p-value) was calculated. Volunteer baseline measurements were
derived from the three resting state samples at 8 a.m. of day 1, day 3 and day 4.
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capacity rather than exact kinetics, the simplified modeling approach was well suited for

our analysis of interindividual variation.

Ratios of metabolites were obtained as read-outs from the model under steady state

conditions. These parameters are proportional to reaction rates in the fatty acid degra-

dation cascade and provide surrogate markers of metabolic capacities. The advantage

of metabolite ratios is that they inherently account for subject-specific variations in

metabolite plasma concentrations [190]. The concept of metabolite ratios as proxies

for the description of enzyme reaction rates has been applied successfully in a couple

of genome-wide associations studies in order to link metabolic reactions with genetic

variants [81, 104, 172, 236, 237]. For our model-based analysis, we assumed that acylcar-

nitines levels in plasma resemble intracellular beta-oxidation intermediates [150, 199].

The role of extracellular acylcarnitines as surrogates for intracellular fatty acid oxida-

tion intermediates has also been addressed in previous studies [131, 144, 159, 269, 284].

In Chapter 4 we additionally present metabolomics results from a liver cell model to

examine the connection between measured intra- and extracellular acylcarnitines after

fatty acid loading.

Though subjects were matched by age and BMI, the experimental setup did not ac-

count for genetic effects and long-term environmental factors such as dietary habits and

life style. As we have discussed in Chapter 2, metabolite ratios are associated to ge-

netic variation on a population level. Future studies could be improved by considering

further experimental data to account also for genetic effects. Measuring the epigenetic

markup of subjects might reveal effects resulting from environmental conditioning (e.g.

from lifestyle or dietary habits), which contribute to the observed variation in meta-

bolic response [191]. During exercise and fasting conditions when beta-oxidation flux

is higher than respiratory chain and tricarboxylic acid cycle capacities, ketone bod-

ies are produced [155], which are also detected in our metabolomics panel. Accounting

for ketogenic reactions in the model might improve our results, especially for catabolic

challenges. Extending the correlation analysis to a functional evaluation of metabolite

timecourses using methods from functional data analysis could additionally enhance our

understanding of the observed dynamics in metabolism [231].
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Taken together, we suggest in this work to use metabolite ratios, which are derived from

models of biochemical pathways, for characterizing distinct metabolic phenotypes. We

showed that this model-driven analysis of metabolic systems under perturbations (e.g.

fatty acid beta-oxidation under fasting conditions) allows for a better investigation of

the relationship between individual physiological phenotypes and biological pathways.

The coherence between model read-outs and specific parameters influencing biochemical

reactions during fasting has proven the feasibility of this approach. Future study designs

should consider the challenging approach and a model-based analysis in order to detect

metabolic differences which are not observable under baseline conditions, for instance for

an improved characterization of human metabotypes in genotype-phenotype association

studies (see Chapter 2).



Chapter 4

Quantitative modeling of an in

vitro enzyme knockdown in the

fatty acid beta-oxidation pathway

In Chapter 2 we have assessed genetic effects on metabolism at a system level using

population data from genome-wide association studies (GWAS) with metabolic traits.

The mechanistic interpretation of these results is challenging, as the observed pheno-

types often result from a mixture of related, yet unknown processes, or identified loci

are located in non-coding regions [92, 170]. In most cases GWAS can only give an over-

all picture about the biological processes that link either the associated variant or the

affected gene to the observed phenotype [28]. In this chapter we will evaluate how quan-

titative modeling of in vitro experimental data can be used to translate GWAS results

into the functional characterization of the underlying biochemical processes.

In order to determine the molecular function of GWAS results, there is a strong need

for cellular models representing the observed genetic background. Using specific models

such as Xenopus laevis oocytes or mammalian cell lines allowed for translating associ-

ations of genetic loci with serum metabolite levels into the functional characterization

of transporter proteins [32, 237]. We therefore asked if quantitative modeling of in vitro

85
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enzyme knockdown experiments, which reflect the observed impaired biomolecular func-

tions, could also be used as a tool for molecular and functional studies in order to assess

the genotype-dependent impact on metabolic pathways.

To this end, we focused on a previously reported association between levels of butyryl-

carnitine (C4:0-acylcarnitine), the transport form of C4:0-acyl-CoA, and the single nu-

cleotide polymorphism (SNP) rs2014355, which is located in close proximity to the short

chain acyl-coenzyme A dehydrogenase (ACADS) gene locus [81, 98, 104, 172, 237]. This

association was also found using the network-based ratio approach presented in Chap-

ter 2. The ACADS locus encodes for an enzyme that catalyzes the initial step of the

mitochondrial fatty acid beta-oxidation (FAO) pathway with the major substrate C4:0-

acyl-CoA [77]. Of note, rs2014355 tags a larger region of correlated variants including

the non-synonymous-coding SNP rs1799958 which encodes for an ACADS protein vari-

ant with reduced catalytic activity and thermostability [44, 45, 86, 187]. Short-chain

acyl-coenzyme A dehydrogenase deficiency (SCADD), which is a rare autosomal re-

cessive FAO disorder, can result from alterations in the ACADS gene [108, 169]. The

symptoms of SCADD, which generally appear early in life, are heterogeneous including

developmental delay, epilepsy, hyper- and hypotonia or ketotic hypoglycemia [251, 252].

SCADD-related impaired FAO activity leads to an accumulation of byproducts of fatty

acid metabolites. For this reason, increased levels of butyrylcarnitine and ethylmalonic

acid in plasma and urine are biochemical markers for the diagnosis of SCADD [8, 20].

In order to investigate the effects of altered ACADS protein levels on FAO metabolite

concentrations during beta-oxidation at cellular level, an in vitro model for the gradual

knockdown of endogenous ACADS was generated in the Huh7 human liver cell line. Us-

ing this in vitro model of liver cells which are known to show high FAO activity, intra-

and extracellular time-resolved acylcarnitine concentrations were measured after incu-

bating the cells with palmitic acid to induce FAO. This allowed for the quantification of

the effect of ACADS gene expression alterations on levels of FAO intermediate metabo-

lites. As an extension of the in vivo modeling of fatty acid oxidation in Chapter 3, the

knockdown setup allows to analyze the change of specific enzymatic rates in a controlled

environment.
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We analyzed the observed metabolite dynamics using a model of the FAO pathway to

capture the dynamics and interactions of individual metabolites at a system level. Quan-

titative dynamical modeling has been applied successfully to many biological questions,

ranging from cellular signaling to metabolic pathways [122, 123], thus helping to under-

stand complex biological data. As we were interested in the overall differences of the

metabolite dynamics, we developed a mathematical model of the FAO pathway which

describes the fundamental reactions during the breakdown of fatty acids. Based on the

in silico reaction rates inferred from our model and experimental data from human liver

cells, we compared the dynamical changes between wild-type and ACADS knockdown

conditions statistically.

The chapter is organized as follows: First we describe a regulated knockdown of ACADS

in a liver cell line with high FAO activity for evaluating the influence of expression levels

on intra- and extracellular acylcarnitine levels, that may contribute to the observed

GWAS signals. The experimental work has been performed by Kerstin Ehlers and Helmut

Laumen at the Chair of Nutritional Medicine from Technische Universität München.

Next we describe the development of a FAO pathway model that we used to analyze

the knockdown-specific, time-resolved metabolite measurements. We further discuss the

interpretation of baseline GWAS results with respect to the observed dynamics for the

in vitro ACADS knockdown and the in silico model readouts.

The work presented in this chapter has been performed in collaboration with Kerstin

Ehlers, Helmut Laumen and the group Hans Hauner. The results are summarized in:

• Ehlers K*, Stückler F*, Hastreiter M, Pfeiffer L, Reischl E, Kastenmüller, Daniel

H, Ensenauer R, Krumsiek J, Hauner H, Theis FJ, Laumen H (2014): In vitro

modeling and dynamic analysis of a metabolic quantitative trait locus implies

novel features of ACADS function in fatty acid oxidation. in submission.

This publication is a joint first author work and the content of this paper is also

part of another thesis by Kerstin Ehlers, who also performed the experiments [62].

My contribution to this work is the development of a dynamic pathway model,

the statistical analysis of the in vitro metabolomics data, as well the biological

interpretation of the model prediction.



88 CHAPTER 4. MODELING AN IN VITRO ACADS KNOCKDOWN

4.1 Methods

In this section we will briefly describe the main experimental methods for generating

the experimental data and introduce the mathematical model of the fatty acid oxidation

pathway. The experimental work has been performed by Kerstin Ehlers in the group

of Helmut Laumen at the Chair of Nutritional Medicine from Technische Universität

München. Further details about the experimental setup and biochemical characteriza-

tion methods (for instance western blot, qRT-PCR, metabolite extraction) have been

described previously by Kerstin Ehlers [62].

ACADS knockdown in Huh7 cells

The human hepatoma cell line Huh7 was cultivated in DMEM medium (Gibco, Karls-

ruhe, Germany) containing 10% FBS and 1% penicillin-streptomycin (PAA Laborato-

ries GmbH, Pasching, Germany) at 37◦C in a humidified atmosphere at 5% CO2. Cells

were passaged twice a week. The optimal shRNA sequence for the ACADS knockdown

system was identified using the pVal shRNA Validation Platform RNAiONE (Sirion

Biotech, Martinsried, Germany). shRNA revealing the best knockdown efficiency and

a non-target shRNA were cloned into the One-Vector inducible shmir platform (Sirion

Biotech). Stable Huh7 cell pools (shACADS Huh7 for an inducible shRNA ACADS

knockdown and shNTC Huh7 with a non-targeting control shRNA) were generated by

packaging, transduction and stable integration of the tet-on expression vector and sub-

sequent antibiotic selection by Sirion Biotech. Stable Huh7 cells transduced with the tet-

inducible shRNA for down-regulation of ACADS or control shRNA were incubated with

0 and 10 ng/ml doxycycline (Sigma-Aldrich, Steinheim, Germany) for 5 days and with 5

ng/ml for 3 days. Medium was changed after 3 days. Knockdown efficiency was examined

on RNA and protein level using qRT-PCR and western blot, respectively. The gradual

ACADS knockdown was established for three doxycycline (dox) concentrations: 0 ng/ml

(shACADSnull), 5 ng/ml (shACADSmed) and 10 ng/ml doxycycline (shACADSmax).
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Loading of Huh7 cells with palmitic acid

Cells treated with doxycycline were seeded in 6-well plates at 250,000 cells/well and

grown in 37◦C, 5% CO2 incubator. After two days, growth medium (DMEM medium

containing 10% FBS, 1% penicillin-streptomycin and 0 ng/ml, 5 ng/ml or 10 ng/ml

doxycycline) was changed to assay medium (111 mM NaCl, 4.7 mM KCl, 2 mM MgSO4,

1.2 mM Na2HPO4, 0.5 mM carnitine; all components from Sigma-Aldrich, Steinheim,

Germany) at a final volume of 1.8 ml. 60 min later, 0.2 ml 2 mM palmitic acid-BSA

was added. At baseline and after 7, 14, 21 and 28 min 20 μl supernatant was given on

a 6 mm filter paper punch for preparing metabolite extraction. Cells were washed with

PBS and harvested by scraping in 300 μl ice-cold 100% methanol. Both, supernatant

and cells were shock frozen in liquid nitrogen. The validity of the cell system as a model

for FAO was confirmed by assessing the oxygen consumption rate in Huh7 cells after

palmitic acid loading [62].

Acylcarnitine measurement in supernatant and Huh7 cell extracts

Harvested cells were lysed in an ultrasonic bath. Cell debris was spun down by full

speed (10 min, 4◦C) centrifugation (Eppendorf 5417 R, Hamburg, Germany) and super-

natant was collected. Filter paper punches soaked with 20 μl supernatant were vacuum

dried in a speed vac (Savant SPD 111V SpeedVac Concentrator, Thermo Scientific,

Dreieich, Germany) for approximately 45 min. 100 μl 5 mM NH4Ac containing inter-

nal standard was added to the dried filter paper punches with supernatant which were

shaken for 30 min at full speed and room temperature (Thermomixer comfort, Ep-

pendorf, Hamburg, Germany). Supernatant was transferred into a Millipore filter plate

and filtered by centrifugation at 1,500 g for 20 min. Flow-through was collected in

glass vials and stored at -80C until measurement. Dried cell pellets were resuspended

in 100 μl 5 mM NH4Ac containing internal standards (Chromsystems, Gräfelfing, Ger-

many) and filtered through a Millipore filter plate (Billerica, MA, USA) by centrifu-

gation at 1,500 g for 20 min. Flow-through was collected in glass vials (Chromacol,

Herts, UK) and stored at −80◦C until measurement. Quantitative levels of acylcarnitine

metabolites (C16,C14,C12,C10,C8,C6,C4,C2,C16:1,C14:1,C12:1) in supernatant and cell
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extracts of Huh7 cells were measured using chromatographic separation on a ZIC-HILIC

column (Merck, Darmstadt, Germany) and triple-quadrupole tandem mass spectrom-

etry (QTRAP 5500, AB Sciex, Framingham, MA, USA) with Turbo V spray electron

spray interface in positive ion mode for detection. Acylcarnitines measurements were

normalized to the protein amount/well.

Statistical analysis

All data are expressed as mean ± standard deviation, if not stated otherwise. Differences

of gene expression and metabolite levels in Huh7 cells were assessed by two-tailed, one

sample t-tests. All statistical analysis was performed using MATLAB (R2012a, The

Mathworks Inc., Natick, MA).
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Figure 4.1: Schematic representation of the fatty acid oxidation model. The general model
includes influx and outflux reactions for each compound.

Description of the fatty acid oxidation model

The degradation of palmitic acid (P16) in the fatty acid oxidation (FAO) model was

described as a linear cascade of subsequent, irreversible first-order reactions using ordi-

nary differential equations (ODEs) with mass action kinetics (see Figure 4.1). Measured

intracellular acylcarnitine concentrations were used as a reflection for acyl-CoA con-

centrations [159, 177, 250], described as observables C16, C16:1, C14, ..., C2 in the model.

Since only few intermediate products of a FAO cycle were measured, we combined the

four FAO cycle reaction steps (i.e. dehydrogenation, hydration, oxidation, thiolysis, see

Section 1.1) into one fundamental reaction step (e.g. C6
k6−→ C4 + C2), with the reac-

tion rate k6). During each cascade step the carbon chain is shortened by two carbon

atoms, resulting in the production of C2. Only if respective acylcarnitine species with

one double bond were measured, the dehydrogenation step was added to the model (e.g.

C16
k16−−→ C16:1

k16:1−−−→ C14 + C2). We took also into account exchange reactions between

the FAO pathway and other active biochemical pathways by adding acylcarnitine-specific

influx (e.g.
k4in−−→ C4) and outflux reactions (e.g. C4

k4out−−−→). The concentration change

of each observable over time was modeled by systems of ODEs (e.g. dC4
dt (t) = Ċ4(t) =

k4in− k4outC4(t) + k6C6(t)− k4C4(t)). The change of C4 thus depends on the concentra-

tions of C4 and C6, the reaction rates of the influx and outflux reactions (k4in, k4out), and

the rates (k6, k4) of conversion reactions C6
k6−→ C4 +C2 and C4

k4−→ C2 +C2. The uptake

of palmitic acid (P16) into the beta-oxidation cascade (P16
kinput−−−−→ C16) was modeled

by a first order reaction. The general FAO model with intermediate compounds C16 to
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C2 and reaction rates kinput, k16, k16:1, ..., k2 (see Figure 4.1) includes influx and outflux

reactions for each compound k16in, k16out, ..., k4in, k4out, k2in.

The ODE system of the general fatty acid oxidation model reads

˙P16(t) = P16loading(t)− kinput · P16(t)

Ċ16(t) = k16in − k16out · C16(t) + kinput · P16(t)− k16 · C16(t)

Ċ16:1(t) = k16:1in − k16:1out · C16:1(t) + k16 · C16(t)− k16:1 · C16:1(t)

Ċ14(t) = k14in − k14out · C14(t) + k16:1 · C16:1(t)− k14 · C14(t)

Ċ14:1(t) = k14:1in − k14:1out · C14:1(t) + k14 · C14(t)− k14:1 · C14:1(t)

Ċ12(t) = k12in − k12out · C12(t) + k14:1 · C14:1(t)− k12 · C12(t)

Ċ12:1(t) = k12:1in − k12:1out · C12:1(t) + k12 · C12(t)− k12:1 · C12:1(t)

Ċ10(t) = k10in − k10out · C10(t) + k12:1 · C12:1(t)− k10 · C10(t)

Ċ8(t) = k8in − k8out · C8(t) + k10 · C10(t)− k8 · C8(t)

Ċ6dt(t) = k6in − k6out · C6(t) + k8 · C8(t)− k6 · C6(t)

Ċ4(t) = k4in − k4out · C4(t) + k6 · C6(t)− k4 · C4(t)

Ċ2(t) = k2in + 2k4 · C4(t) + k6 · C6(t) + k8 · C8(t) + k10 · C10(t)+

+k12:1 · C12:1(t) + k14:1 · C14:1(t) + k16:1 · C16:1(t)− k2 · C2(t)

(4.1)

The initial conditions for each compound are described by additional parameters (P16init,

C16init, ..., C2init). An input function for palmitic acid (P16) was used to describe the

loading of Huh7 cells with palmitic acid during the experiment. Adding palmitic acid to

the cells is described using a scaled normal distribution curve as input function for P16.

This means that the state variable of P16 changes its value by a certain amount at a

specific timepoint t during the simulation. We chose as input function:

P16loading(t) = P16total · 1√
2πd2

exp

{
−(t− tp)2

2d2

}
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with P16total being the total palmitic acid amount (i.e. area under the curve), tp the

timepoint of palmitic acid loading (at timepoint 1 [min] of the experiment) and d being

the duration of palmitic acid loading (set to 0.5 [min]). The initial amount of palmitic

acid which was taken up by the cell and channeled to the FAO cascade cannot be

determined. Yet it can be reasoned that the palmitic acid concentration is rather high

in comparison to the measured acylcarnitine species. For this reason, we set the total

amount of palmitic acid (P16total) to 10000 [nmol/g protein], being about 100 times

higher than the maximal intracellular concentration of palmitoyl-carnitine (C16).

Model-based comparison between experimental conditions

In order to assess the differences in FAO dynamics between two experimental condi-

tions (e.g. between shACADSnull and shACADSmax), we used two different FAO mod-

els M1 and M2. The ODE system of the first model (M1) is represented as in Equa-

tion (4.1). For the second model (M2) we introduced for all cascade reactions rates

(kinput, k16, k16:1, ..., k2) condition-specific prefactors (αinput, α16, α16:1, ..., α2). As an ex-

ample, the change of C4 over time is described in the first model (e.g. shACADSnull)

by

ĊM1
4 (t) = k4in − k4out · C4(t) + k6 · C6(t)− k4 · C4(t)

and in the second model (e.g. shACADSmax) by

ĊM2
4 (t) = k4in − k4out · C4(t) + α6 · k6 · C6(t)− α4 · k4 · C4(t)

with initial conditions CM1
4init and CM2

4init. An α4-value of 1 then denotes that the reaction

rate between the two models is not different. Note that the influx and outflux rates

k4in and k4out are the same for both models. In order to reduce the model complexity

we assumed that influx and outflux reactions should be independent of the knockdown.

The respective reaction rates (e.g. k4in and k4out) are therefore the same for M1 and

M2. The model simulations were compared to the time course acylcarnitine data on

log10-scale obtained from the knockdown experiments. This comparison was performed

on log10-scale to account for log-normally distributed measurement noise [72]. We used

maximum likelihood estimation to obtain model parameters which describe the measured
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data best (see Section 1.4). The parameter fitting was carried out on log10-scale to

ensure efficient estimates for values being potentially different by orders of magnitude. A

profile likelihood approach was used to check for parameter identifiability and to compute

confidence intervals for parameter values (see [201] and 1.4). All quantitative dynamical

modeling was performed using MATLAB (R2012a, The Mathworks Inc., Natick, MA)

and the Data 2 Dynamics software package [202].

Model selection for influx and outflux reactions

We considered not all intermediate species of FAO to be in an exchange with other

biochemical pathways. To test this we performed a model selection for the influx and

outflux reactions (see also Section 1.4). To this end all models with all possible influx

and outflux combinations were fitted individually to the control (shACADSnull) and

knockdown (shACADSmax) data using model M1 and M2. During the model selection

we set rates of excluded influx and outflux reactions to 0. The ODE system in Equation

(4.1) reduces accordingly. As adding additional parameters to the model will increase

the likelihood and might result in overfitting [121], we used for model comparison the

Bayesian information criterion (BIC, [226]), which includes a penalty term for the number

of model parameters:

BIC = −2 · log(L̂) + k · log(n)

Here L̂ is the maximized likelihood of the model, k the number of model parameters

and n the amount of measured data points. A lower BIC value results either from fewer

parameters, better data fitting or both.
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4.2 In vitro modeling of reduced ACADS expression in

Huh7 hepatocytes reflects the genotype-dependent

metabolic C4:0-acylcarnitine phenotype

For a better understanding of the influence of reduced ACADS expression levels on

intra- and extracellular acylcarnitine concentrations in a cell type [217] with fatty acid

oxidation activity we established a regulated ACADS knockdown in Huh7 hepatocytes

[281] as an in vitro model system. The validity of the cell system as a model for FAO

was confirmed by assessing the oxygen consumption rate in Huh7 cells after palmitic

acid loading [62]. Huh7 cells were stably infected using a lentiviral expression system to

generate a doxycycline-(dox)-inducible shRNA ACADS knockdown (shACADS). Eval-

uating the efficiency of the dox-inducible ACADS knockdown by RT-qPCR we found a

significant reduction of ACADS mRNA levels in the intermediate (shACADSmed, dox 5

ng/ml) and maximal (shACADSmax, dox 10 ng/ml) shACADS Huh7 cells (82% and 84%,

respectively, p < 0.001, Figure 4.2B) as compared to the null knockdown (shACADSnull,

dox 0 ng/ml). In western blot analyses we measured a gradual 70% and 93% reduction

of ACADS protein levels for shACADSmed and shACADSmax Huh7 cells, respectively

(Figure 4.2A). Dox-treatment of Huh7 cells stably transduced with a non-targeting con-

trol shRNA (shNTC) revealed no effect on both, protein and mRNA levels (Figure 4.2A

and B). Proving that the lentiviral shRNA construct is solely active upon dox treatment

without any leakiness, we found no differences when comparing mRNA expression levels

in shACADS versus shNTC cells without dox treatment (p = 0.96).

Analysis of baseline intracellular acylcarnitine levels in the shACADS Huh7 cell model re-

vealed a knockdown-dependent accumulation of C4:0-acylcarnitine (Figure 4.2C). Maxi-

mal knockdown in the shACADSmax cells revealed a significant 2.6-fold increase of base-

line C4:0-acylcarnitine (p < 0.05) as compared to shACADSnull. Thus, the shACADS

Huh7 hepatocyte knockdown model reflects the rs2014355 genotype-associated C4:0-

acylcarnitine phenotype reported in GWAS [81, 98, 104, 172]. No significant differences

were observed in shNTC cells with a non-targeting control shRNA upon dox-treatment,

proving ACADS-specificity of the observed effect (Figure 4.2C). We found no ACADS-

dependent differences in baseline levels of any other measured acylcarnitine in both
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Figure 4.2: Phenotypes of the shACADS and shNTC Huh7 knockdown cells. Doxycycline-
induced knockdown of ACADS resulted in a long-term decrease of mRNA expression and protein
abundance, and an intracellular accumulation of C4:0-acylcarnitine, which reflects the ACADS
substrate C4:0-CoA. A: Western blot analysis of ACADS protein in shACADS and shNTC knock-
down Huh7 cell lysates, one of four experiments is depicted exemplarily. B: RT-qPCR analysed
mRNA expression of four independent experiments. Protein (A) and mRNA (B) were harvested
after 3 or 5 days of treatment with 0, 5, and 10 ng/ml doxycycline, respectively. C: Intracellular
C4:0-acylcarnitine measurement in stably transduced Huh7 cells after 1h. Values of four indepen-
dent experiments are expressed as mean ± SD. ACADS = short chain acyl-CoA dehydrogenase;
NTC = non-target control; GAPDH = glyceraldehyde-3-phosphate dehydrogenase (control). *:
p < 0.05, **: p < 0.01, ***: p < 0.001.
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cellular models (time point t=0, Figure 4.3 and 4.4). Moreover, reflecting the results

from GWAS with metabolite ratios (see Chapter 2), we found a significant decrease

of the intracellular C3:0-/C4:0-acylcarnitine ratio (p < 0.05) in shACADSmax cells as

compared to shACADSnull cells.

To assess the effect of reduced ACADS enzyme expression levels on FAO kinetics, we

leveraged the shACADS model and measured short-term time courses of both intra- and

extracellular acylcarnitine levels after incubation of cells with palmitic acid, a major

substrate of the FAO pathway. As palmitic acid is an even-numbered, saturated fatty

acid, we focused our analysis on even-numbered intermediate metabolites of the FAO

cascade. In all cell models intracellular acylcarnitine concentrations increased after load-

ing with palmitic acid, indicating an increase in FAO (Figures 4.3 and 4.4). Comparing

time courses of metabolite levels in shACADSnull, shACADSmed and shACADSmax cells

suggest a gradual inhibition of ACADS expression, i.e. with increasing ACADS knock-

down efficiency, metabolite levels are either decreasing (e.g. C16:0-, C12:0-, and C10:0-

acylcarnitines) or increasing (e.g. C4:0-acylcarnitine). For intermediate knockdown cells

(shACADSmed) we find intermediate metabolite levels, most obvious for C10:0-, C8:0-,

and C6:0-acylcarnitines (Figure 4.3). Pairwise comparison of metabolite levels at each

time point between shACADSnull and shACADSmax cells revealed for few compounds at

late time points (C6, C8, C10, C12) significant differences, while C4 showed significant

differences at the beginning of the FAO assay (see Figure 4.3).
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Figure 4.3: Intracellular acylcarnitines after palmitic acid loading in ACADS knockdown cells.
Palmitic acid was added to induce fatty acid oxidation in shACADS Huh7 cells (shACADSnull,
shACADSmed and shACADSmax: cells treated with 0, 5 and 10 ng/ml doxycycline, respectively).
Intracellular acylcarnitines were extracted and measured before palmitic acid loading and after 7,
14, 21 and 28 minutes. Measurements are shifted slightly on the x-axis for a better visualization.
Values of four independent experiments are expressed as mean ± SD. ##: p < 0.01, #: p < 0.05;
time point specific comparison between shACADSnull and shACADSmax.
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Figure 4.4: Intracellular acylcarnitines after palmitic acid loading in Huh7 cells with non-
target shRNA. Palmitic acid was added to induce fatty acid oxidation in cells transduced with
a non-target shRNA (shNTCnull, shNTCmed, shNTCmax; expression induced by 0, 5 and 10
ng/ml doxycycline, respectively). Intracellular acylcarnitines were extracted and measured before
palmitic acid loading and after 7, 14, 21 and 28 minutes. Measurements are shifted slightly on
the x-axis for a better visualization. Values of four independent experiments are expressed as
mean ± SD. #: p < 0.05; time point specific comparison between shNTCnull and shNTCmax.
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Figure 4.5: Schematic representation of the fatty acid oxidation model. The general model
includes influx and outflux reactions for each compound. After data-driven model selection the
selected model contains only influx reactions for C16:1-, C12:1- and C4:0-acylcarnitines.

4.3 Model-based analysis of time-dependent intracellular

acylcarnitine levels in palmitic acid loaded shACADS

Next, we used a linear model of the FAO pathway to analyze the intracellular metabolite

profiles in the Huh7 cell model. Similarly to the analysis of interindividual variation in

plasma levels of metabolites which we discussed in Chapter 3, quantitative modeling

allows to assess the dynamics of the here measured time-dependent metabolite profiles in

the context of the FAO pathway (Figure 4.5). Intracellular acylcarnitine concentrations

were used as proxies for FAO intermediate metabolite concentrations [159, 177, 250]. By

including acylcarnitine-specific influx and outflux reactions into the model, we were able

to account for a possible exchange of FAO metabolites with other biochemical pathways.

As we considered not all intermediate species of FAO to undergo exchange and in order to

reduce the model complexity, we performed a model selection for the influx and outflux
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Figure 4.6: Comparison of the 10 best models according to Bayesian information criterion (BIC)
score. Each row correspond to a single model. Influx reactions present in the respective model
are denoted by ticks. Outflux reactions are not shown as none were present in the best 10 models.
The model in the first row (blue shaded area) with the lowest BIC score was chosen for further
analysis.

reactions based on the combined shACADSnull and shACADSmax data. To this end all

models with all possible influx and outflux combinations were fitted individually to the

experimental data (see methods section 4.1). Figure 4.6 shows the result for the best 10

models. The selected model only contains influx reactions for C16:1, C12:1 and C4 and

no outflux out of the system except for the reaction C2
k2−→ with reaction rate k2 (see

Figure 4.5).

Model-based comparison of knockdown conditions

To identify ACADS knockdown-dependent kinetic changes we fitted the selected model

to the time course data from shACADSnull and shACADSmax experiments (see Fig-

ure 4.7A). The reaction rates k16, ..., k4 in the null and maximal knockdown were com-

pared using the reaction specific prefactor α (α16, ..., α2). α-values of 1 denote equal,
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Figure 4.7: Model-based analysis of intracellular acylcarnitine time course data in ACADS
knockdown cells. A: Results from fitting the selected model as shown in Figure 4.5 to the null
(KDnull, shACADSnull) and maximal ACADS knockdown (KDmax, shACADSmax) data (values
of four independent experiments are expressed as mean ± SD). B: Comparison of reaction rates
in the null and maximal knockdown model. Reaction-specific α-values of 1 denote no difference
between the shACADSnull and shACADSmax experiments. Best solutions for α-values are repre-
sented as dots with corresponding 95% confidence intervals. *: Compared to the null knockdown,
in the maximal knockdown reaction rate k4 is significantly decreased (α4 = 0.6, p < 0.05), while
reaction rates k16, k10, k8 and k6 are significantly increased.
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mediate ACADS knockdown (KDmed, shACADSmed) based on fitting the FAO model to exper-
imental data. Reaction-specific α-values of 1 denote no difference between the shACADSnull and
shACADSmed experiments. Best solutions for α-values are represented as dots with correspond-
ing 95% confidence intervals. *: Compared to the null knockdown, in the intermediate knockdown
reaction rate k4 is significantly decreased (α4 = 0.7, p < 0.05).

α-values greater than 1 predict increased reaction rates in shACADSmax as compared

to shACADSnull. The model-based comparison predicts for the maximal ACADS knock-

down results a significant decrease of the reaction rate k4, i.e. the conversion rate of

C4:0 to C2:0 (p < 0.05, α4 = 0.6, Figure 4.7B), reflecting the predominant role of

the ACADS enzyme for this conversion reaction [16] and the observed increase of C4:0

levels due to the knockdown (Figure 4.3). Moreover, a significant increase of the re-

action rates k16, k10, k8 and k6 upon maximal ACADS knockdown (p < 0.05) is pre-

dicted, Figure 4.7B), reflecting the observed decreased levels of C16:0-, C10:0-, C8:0-

and C6:0-acylcarnitine in shACADSmax cells (Figure 4.3). Notably, also intermediate

ACADS knockdown was sufficient to decrease specifically the k4 reaction rate (p < 0.05,

α4 = 0.7, Figure 4.8), whereas all other reaction rates were not affected, supporting

the specificity of the regulated shACADS cell model. C2:0-acylcarnitine levels were not

altered upon ACADS knockdown (Figure 4.7). We interpret the predicted increased re-

action rates k16, k10, k8 and k6 as a compensation mechanism, which however was not

explained by increased protein levels of acyl-CoA dehydrogenases ACADM, ACADL and

ACADVL, measured by western blot (see Figure 4.9).
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Figure 4.9: Western blot analysis of shACADS Huh7 cell lysates reveals no effect of ACADS
knockdown on the protein concentrations of acyl-CoA dehydrogenases ACADM, ACADL and
ACADVL. Error bars denote standard deviation from four experiments. **: p < 0.01.

4.4 Extracellular acylcarnitine profiles of shACADS cells

suggest a direct contribution to the plasma mQTL phe-

notype

Metabolites related to fatty acid oxidation are measured in blood [265] and show strong

GWAS signals for specific enzymatic reactions. As it remains unclear to which extent

plasma metabolites reflect intracellular processes, we assessed extracellular acylcarnitine

levels in the cell culture medium supernatant (we note that only a subset of acylcarni-

tines was detectable in the medium supernatant, see Figure 4.11). At baseline we found

no ACADS-dependent differences in the levels of any measured extracellular acylcarni-

tine in shACADSnull and shACADSmax cells (time point t = 0; Figure 4.11). Moreover,

in both, shACADSnull and shNTC cells (Figure 4.10) we observed no effect of palimitic

acid loading on C4:0-acylcarnitine levels, despite the observed intracellular increase (Fig-

ure 4.3). Strikingly, in shACADSmax cells we found a significant increase of extracellular

C4:0-acylcarnitine levels as compared to shACADSnull cells at each of the four measured

time points after palmitic acid loading (p < 0.05 or p < 0.01; Figure 4.10). We found

no increase of extracellular C6:0- and C16:0-acylcarnitines and solely a not significant

trend for C2:0- and C14:0-acylcarnitines in the shACADSmax cells (Figure 4.11). The

ACADS dependent, specific increase of extracellular C4:0-acylcarnitine (Figure 4.10)

reflects the increase of intracellular (Figure 4.3) C4:0-acylcarnitine levels. Notably, in-
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Figure 4.10: Time courses of extracellular C4:0-acylcarnitine (C4:0) after palmitic acid load-
ing. Palmitic acid was added to induce FAO in shACADS and shNTC Huh7 cells. C4:0, which
accumulates within the cell due to the ACADS knockdown (shACADS), also accumulates in
the supernatant. Gradual expression of shRNA was induced using 0, 5 and 10 ng/ml doxycy-
cline. C4:0 was measured in supernatants before palmitic acid loading and after 7, 14, 21 and
28 minutes. Values of four independent experiments are expressed as mean ± SD. Further time
courses of extracellular acylcarnitines can be found in Figure 4.11. ##: p < 0.01, #: p < 0.05;
comparison between shACADSnull (dox 0 ng/ml) and shACADSmax (dox 10 ng/ml) knockdown.

tracellular C4:0-acylcarnitine level in shACADSmax decreased during the time course

as compared to the first measured time point, whereas extracellular C4:0-acylcarnitine

levels increased throughout the entire time course.

4.5 Discussion

Numerous GWAS identified disease- and quantitative trait-associated, non-coding ge-

netic variants, but in most cases the affected molecular mechanisms remain elusive.

Population based metabolite QTL data found the common ACADS locus to be associ-

ated with plasma C4:0-acylcarnitine levels [81, 98, 104, 172], supposing a direct effect on

FAO by affecting the ACADS enzyme with the major substrate C4:0-acyl-CoA [77]. We

chose this obvious candidate gene to go beyond association data. To unveil the physi-

ological relevance of functional metabolic phenotypes assessed in GWAS, experimental

verification in appropriate cell types is needed. However such analysis is often hampered
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Figure 4.11: Time courses of extracellular acylcarnitines after palmitic acid loading in shACADS
Huh7 cells. Palmitic acid was added to induce fatty acid oxidation in shACADS knockdown cells
treated with 0, 5 and 10 ng/ml doxycycline, respectively, for shRNA induction (shACADSnull,
shACADSmed, shACADSmax). Acylcarnitines were measured in supernatants before palmitic acid
loading and after 7, 14, 21 and 28 minutes. Values of four independent experiments are expressed
as mean ± SD. ##: p < 0.01, #: p < 0.05; comparison between shACADSnull and shACADSmax.



4.5. DISCUSSION 107

by limited accessibility of primary human cells. For this reason we generated a lentiviral-

based, gradual knockdown of endogenous ACADS protein levels in the human Huh7 liver

cell line for modeling the genotype-dependent reduction of ACADS expression at cellular

level. Reduced ACADS mRNA and protein levels resulted in a baseline accumulation of

C4:0-acylcarnitine, which resembles the SNP associated phenotype found in population

studies [81, 98, 104, 172].

So far it remains unknown how reduced ACADS expression affects the overall kinetics

of fatty acid oxidation. For this reason we assessed metabolite dynamics during FAO

in a hepatocyte ACADS knockdown model, i.e. measured short-term time courses of

intra- and extracellular acylcarnitine levels after incubation with palmitic acid, a ma-

jor substrate of the FAO pathway [94]. Besides individual analysis of metabolite time

courses, we developed a mathematical model of FAO tailored specifically for our exper-

imental data. Diverse models have been supposed to study the dynamic properties of

FAO [129, 164, 250], largely differing in the level of complexity and the detailed de-

scription of biochemical reactions. Direct transfer of models is limited due to different

metabolite specimen measured. Here, to facilitate model calibration by reducing the

model complexity, we combined subsequent reaction steps. Our model enables captur-

ing the dynamics and interactions of individual metabolites within the FAO pathway at

a system level. To account for possible in- and outflux reactions [144, 255–257] which

are essential for explaining the observed metabolite dynamics, we performed a model

selection using the Bayesian information criterion (BIC) score [121]. The selected model

with the smallest BIC score includes three influx reactions with rates k16:1in, k12:1in and

k4in, i.e. influx at the level of C16:1, C12:1 and C4:0, in addition to the fundamental

FAO cascade reactions. This model is a simplified representation of the FAO pathway,

developed to find knockdown-specific differences in metabolite dynamics, but not exact

kinetic rates. A similar strategy to assess beta-oxidation activity was successfully applied

to metabolomics data of the human challenging study [133] presented in Chapter 3.

In a model-based comparison of the dynamic changes resulting from ACADS knock-

down we find a significant decrease of C4-related reaction rates, reflecting the reported

increased plasma C4:0-acylcarnitine levels in GWAS with metabolic traits [81, 98, 104,

172]. Moreover, the model predicts increased medium- and long-chain fatty acid-related

reactions rates, which we interpret as a compensatory effect of the impaired C4 turnover.



108 CHAPTER 4. MODELING AN IN VITRO ACADS KNOCKDOWN

An effect on medium- and long-chain acyl dehydrogenases (ACADM, ACADL and

ACADVL) expression level based on our predicted increased reaction rates was excluded

by western-blot analysis, suggesting a direct effect on enzyme activity rather than pro-

tein level. However, the molecular basis for such mechanism remains elusive and requires

future studies. Potential short-term effects on FAO metabolites need to be evaluated in

more detail by shorter sampling intervals immediately after the palmitic acid loading.

For an improved description of FAO pathway dynamics, the presented model for the

human liver cell data may be combined with a recently reported model of fatty acid

beta-oxidation that was evaluated on data from isolated mitochondria [250]. This will

allow for the incorporation of further pathway enzymes and respective substrate speci-

ficities. As metabolic pathways are highly connected, the FAO model may also be linked

with published models of glucose metabolism, citric acid cycle and fatty acid biosynthesis

[33, 120, 274] and evaluated on measurements of carbohydrate metabolism.

Of note, we found a concurrent increase of C4:0-acylcarnitine levels in the supernatant

of cells along with the intracellular accumulation of C4:0-acylcarnitine specifically in

ACADS knockdown cells. The extracellular increase was highly specific for C4:0 and not

observed for any other measured acylcarnitine, reflecting the specific GWAS association

of the rs2014355 genotype with C4 and with no medium- and long-chain fatty acid

substrates [104]. The efflux of C4:0-acylcarnitine solely occurs in cells with reduced

ACADS expression levels which represent the genotype-specific effect of the ACADS

locus. This finding suggests a cellular transport mechanism contributing to the high

plasma concentrations of the FAO intermediate acylcarnitine-specimen, which leads to

strong GWAS signals related to enzymatic reactions. In future studies, the here presented

cell model may serve as a versatile tool for the identification of so far unknown transporter

mechanisms responsible for acylcarnitine efflux [51, 256]. Combining this information

with mechanistic models might lead to further insights about the interplay between

intracellular processes and molecular signals measured in blood.

In conclusion, we demonstrated an altered metabolic rate of C4:0-aclycaritine catalyzed

by ACADS in cellular models with an allele-dependent decrease of ACADS gene expres-

sion and resulting lower protein levels. For the first time we present data on the effect of

altered ACADS expression levels on the immediate short-term acylcarnitine concentra-

tions after palmitic acid loading, reflecting the in vivo FAO. Evidence is provided that
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the alteration of one component of the complex interaction system of the FAO leads to

regulation at multiple steps in the pathway cascade. Regarding the limited availability

of relevant cell models, i.e. genotyped primary human cells [185] accessible to functional

assays, the here presented cellular model may further help to assess the functional con-

sequences of moderate effects on gene expression driven by common genetic variants.
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Chapter 5

Summary and outlook

Metabolism differs substantially between individuals, as metabolic phenotypes are influ-

enced by various intrinsic and extrinsic factors. For a better understanding of genetic

and nutritional influences on human metabolism, we have analyzed metabolite profiles

on different biological scales, ranging from cross-sectional population data over time-

resolved in vivo physiological challenging results to in vitro experiments using geneti-

cally modified cell lines. Modern high-throughput methods allow for the simultaneous

quantification of hundreds of metabolite levels as readouts for metabolic functions. Yet

the analysis and interpretation of the multivariate measurements remains challenging.

Although biological systems are complex, there is fundamental knowledge about the un-

derlying biochemical properties and principles of biomolecular organization [90]. For a

better understanding of biological functions at a system level, experimental measure-

ments thus can be combined with network information about the interplay of individual

components in biological systems, in order to improve the analysis of high-dimensional,

large-scale omics data [122, 123].

In a network-based approach, we therefore combined experimental data with established

biological information in terms of biochemical pathways for an improved analysis of ge-

netic and nutritional effects on human metabolism. In this thesis, I have applied and

evaluated this strategy for three specific biological scenarios (Chapter 2 - 4). The analy-

sis was performed on different biological scales for distinct experimental setups, ranging

111
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from human population data (Chapter 2) over challenge-induced in vivo results (Chap-

ter 3) to in vitro experiments using genetically modified human liver cells (Chapter 4).

For each scenario, the key task was to develop appropriate models for the analysis of

metabolomics data as the main readout of biological functions.

Network-based metabolite ratios for an improved functional characterization

of genome-wide association study results

For better understanding of genetic effects on metabolism at a system level, we applied

the network-based approach for the selection of biochemically related metabolite ratios

in genome-wide association studies with metabolic traits (mGWAS) in Chapter 2. It was

shown for mGWAS that metabolite ratios reduced the overall biological variability in

population data and resulted in robust statistical associations. In a biochemical inter-

pretation, the ratio between product-substrate metabolite pairs can be interpreted as

a proxy of the corresponding enzymatic reaction rate. Usually all possible ratio combi-

nations are selected for association tests in mGWAS. However, with more metabolites

being detectable, the increasing number of possible ratios becomes challenging from a

statistical, computational and interpretational point-of-view. We therefore suggested a

network-based approach by selecting only closely connected metabolites in a given met-

abolic network. Input networks for ratio selection were derived from public pathway

databases or reconstructed from metabolomics data. The feasibility of this approach

was first tested on in silico data derived from simulated reaction networks. Especially

for small genetic effect sizes of single-nucleotide polymorphism (SNP), network-based

metabolite ratios (NBRs) improved the ratio-SNP association results compared to the

“all ratios” approach. We further evaluated the NBR approach on published mGWAS

association results and compared reported “all ratio”-SNP hits with results obtained by

selecting only NBRs as candidates for association tests. NBR-candidates accounted for

more than 80% of all significant ratio-SNP associations. Moreover, the NBR analysise

predicted 10 new associations between genetic and metabolic phenotypes.

Taken together, we have shown in Chapter 2 that the network-based ratio approach

increases the statistical power, lowers computational demands, facilitates the functional

characterization of mGWAS results and allows for the identification of new associations.
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Modeling metabolic pathways under steady state conditions in a human chal-

lenging study

In order to assess nutritional and physiological effects on human metabolism, we ana-

lyzed time-resolved metabolomics profiles from a human challenging study in Chapter 3.

For the analysis of individual metabolite levels, we applied the concept of network-based

selection of metabolite ratios to a specific biochemical pathway. A 36h fasting period

induced subject-specific responses in metabolic profiles, which were highly different be-

tween the individuals. In order to analyze the interindividual variation, we developed

a linear model of mitochondrial fatty acid beta-oxidation. Under steady-state condi-

tions, compound conversion rates can be derived from concentration ratios of pathway

metabolites. Investigating the relationship between individual phenotypic parameters

and metabolic profiles revealed that model-driven ratios as readouts for the individual

metabolic capacity facilitate the characterization of distinct metabolic phenotypes. Com-

pared to absolute metabolite concentrations, model-driven ratios substantially improved

statistical correlations with physiological parameters like blood sugar and free carnitine,

but also for anthropometric parameters like body mass index and total fat mass.

To sum up, combining time-resolved metabolomics data with established knowledge

about metabolite connections in biochemical pathways allows for an improved analy-

sis of metabolic systems under challenging perturbations and a better understanding of

individual physiological and metabolic phenotypes.

Quantitative modeling of an in vitro enzyme knockdown in the fatty acid

beta-oxidation pathway

In Chapter 4, we analyzed in vitro metabolomics data to understand the impact of

genetic variation on metabolic phenotypes at cellular level. In particular, we studied

mGWAS-derived associations between butyrylcarnitine (C4), the transport form of a

short-chain fatty acid, and genetic variants in the locus of the mitochondrial fatty acid

beta-oxidation (FAO) enzyme ACADS. Using a human liver cell line as an in vitro model

for the gradual knockdown of endogenous ACADS, we measured time-resolved concen-

trations of FAO intermediate metabolites after fatty acid loading. This allowed us to

quantify the effect of ACADS protein levels on FAO metabolite concentrations during

beta-oxidation activity. In order to simultaneously capture the dynamics and interac-

tions of individual metabolites at a system level, we developed a mathematical model of
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the FAO pathway, which describes the fundamental reactions during the breakdown of

fatty acids. Based on the reaction rates inferred from our model and experimental data,

we compared the dynamical changes between wild-type and ACADS knockdown condi-

tions statistically. A knockdown-specific decrease in C4-related reactions is in accordance

with reported mGWAS results. In addition, the model infers increased medium- and long-

chain fatty acid-related reactions rates, which we interpreted as a compensatory effect

related to the impaired C4 turnover. Such findings have not been reported in association

studies before. A gene regulatory effect on the expression levels of specific beta-oxidation

enzymes which catalyze medium- and long-chain fatty acid conversion reactions could

be ruled out by western-blot analysis, suggesting a direct effect on enzyme activity.

In summary, the quantitative modeling of an in vitro enzyme knockdown allows to trans-

late population-based statistical associations from GWAS into the functional characteri-

zation of the underlying biochemical processes in mitochondrial fatty acid oxidation and

can be applied in general to analyze effects of genotype-metabolite interactions.
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Extensions and future directions for network-based analysis

of metabolomics data

Metabolomics and other high-throughput profiling methods provide large-scale mea-

surements of molecular parameters as readouts of biological functions for various exper-

imental setups in biomedical research. The network-based approaches presented in this

thesis can be applied for a system-wide analysis of these multivariate measurements. In

the following part, we will discuss possible steps for extending the approach to address

upcoming methodological and biological questions.

Metabolite network information. Our analysis of metabolomics data is based on

metabolic networks. The relationship between metabolites is obtained both from path-

way databases and from data-driven reconstructed networks. In addition to the three

databases KEGG [114], BiGG [219] and EHMN [149] that we used, further pathway

resources can be included, for instance Recon 2 [243], Reactome [47] and MetaCyc [31].

Even if the general level of agreement between databases is still quite low [234, 235],

integrating the different resources will lead to a better representation of cellular metab-

olism. Accounting for cell- or tissue-specific reactions will in addition allow for a better

description of metabolic pathways at organ levels [23]. A more involved approach could

be to combine experimentally-driven metabolic connections with established knowledge

from databases. The reconstructed relations between compounds, which have not been

annotated, and compounds, for which pathway information is available, will then lead

to an improved quality of all resources for biochemical networks.

Data-driven reconstruction of metabolic networks. Many measured metabolites

of current metabolomics data are not annotated in the above-mentioned pathway da-

tabases. In addition, untargeted detection methods allow to quantify compounds which

have not been characterized chemically [117, 135, 254]. For these cases, data-driven re-

construction of metabolic networks can complement the knowledge-based information.

In our research we used Gaussian graphical modeling to select metabolite ratios. De-

pending on the specific properties of the measured data and the experimental setup,

other network inference methods from different research fields can be applied to obtain

metabolite networks [17, 153, 205]. Several of these approaches have been evaluated and
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compared on synthetic metabolomics data [27] and could be used for experimental met-

abolomics data.

For the data-driven reconstruction of biochemical pathways, it can be beneficial to in-

clude directional information of edges in order to account for irreversible reaction steps.

Several methods have been proposed to estimate directional edges for graphical mod-

els [70, 181, 280]. The statistically-derived relation between metabolites and the direction

of an network edge needs to be distinguished from causality. For this reason, results have

to be evaluated carefully with respect to the biological implications [21]. The in silico

method for generating population mGWAS data, which we developed in this thesis, pro-

vides a suitable evaluation framework for the suggested methodological extensions, as

we can examine new approaches in a well-defined setup.

Marker for metabolic phenotypes. The ratio between concentrations of product

and substrate metabolites in biochemical reactions can be “viewed as a proxy for the

reaction rate” [236]. In order to account for reactions involving more than two metabo-

lites, the pairwise ratio concept needs to be extended to higher-order interactions, for

instance to ratios of sums of concentrations. Moreover, the use of non-linear relationships

between metabolites besides ratios might be considered. In addition to the selection of

connected metabolite pairs as surrogates for metabolic reactions, we may also choose a

set of metabolites as biochemical markers based on modular subgroups in databases or

reconstructed networks [39, 162] and combine individual signals. These markers could

also be derived from differential biological networks [103, 246]. For instance, using specific

metabolic networks for healthy and diseased condition, single compounds or groups of

metabolites reflecting biochemical pathways could then be used as markers for metabolic

phenotypes.

Identification of causal variants. Even further improvements for GWAS study de-

signs might not solve the problem of finding the underlying causal genetic variant in

all association results. The mechanistic interpretation of detected markers in intergenic

and intronic regions [61, 92] and the detection of possible synthetic associations [55]

will remain challenging. Also potential genotype-environment interactions due to epige-

netics or genotype-genotype interactions mask the underlying biological mechanism of

complex diseases [68, 130]. Especially for common diseases it is under debate whether

common alleles, rare alleles or a combination of both contribute to the observed pheno-
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type [258]. Just increasing the sample size might not allow for the identification of rare

variants [80]. Family-based [209] or extreme-trait [15] exome or whole-genome sequenc-

ing provide strategies to detect rare alleles, but also impose new statistical challenges

for association tests due to multiparametric data for small sample sizes [12].

Multiple testing correction and small sample numbers. For studies with small

sample numbers, low statistical power can be a limiting factor. In this work, we ad-

dressed statistical challenges for mGWAS due to multiple testing correction by selecting

biologically meaningful metabolite ratios. As association tests are performed for each

ratio-SNP pair, the statistical significance also depends on the number of SNPs. Several

approaches have been proposed to correct for multiple testing in GWAS [26, 249], such as

conservative Bonferroni correction, controlling the false discovery rate [18] or permuta-

tion testing [25, 183]. Other methods aim to predict the effective number of independent

statistical tests by considering the linkage disequilibrium among SNPs [73, 178]. The

NBR approach may also be combined with methods accounting for the inherent corre-

lation between SNPs, thus reducing the number of both ratios and SNPs for multiple

testing correction.

In Chapter 2, we evaluated the NBR approach on metabolite-gene associations from

GWAS data, but the concept of network-based metabolite ratios is not necessarily re-

stricted to genetic study designs. For upcoming studies, for instance with case-control

design, large-scale metabolomics data and small sample numbers, the NBR approach

can increase the statistical power, lower computational demands and facilitate the func-

tional interpretation of association results. For instance, we identified metabolites in a

population study that associate with asthma risk loci and asthma disease status [208].

Considering pathway connections between metabolites, we can select specific ratios for

association analyses, which might allow for a better annotation of genetic functions re-

lated to asthma.

Experimental studies and measured data. Results from genome-wide association

studies with metabolic traits showed on a population level strong variation in metabolite

profiles between individuals. Several longitudinal studies have been performed to analyze

this variation with respect to short and long time intervals [10, 48, 216, 278], but also as

a response to diet and environmental factors [66, 91, 96, 133]. As we have presented in

Chapter 3, especially catabolic conditions like fasting or exercise induce strong individual
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metabolic responses. For the analysis of metabolism-related genes, the use of catabolic

or nutritional challenging in the experimental setup will allow for studying the genetic

effects under different physiological conditions [56, 76, 277, 282].

Based on reported GWAS results biological hypotheses about the function of genes can

be generated [4], but for a mechanistic characterization, cellular, tissue or in vivo models

are required. For example, a study using nine genes, which were found in a GWAS to be

associated to serum metabolomic traits, revealed high mRNA expression in liver tissue

from healthy donors [161]. Several of these nine genes are involved in lipid metabolism,

including the gene coding for the short-chain acyl-coenzyme A dehydrogenase ACADS.

The impact of expression levels of these genes and their functional role for hepatic me-

tabolism could be tested in an in vitro liver cell model. Besides, a recent study suggested

a functional role of fatty acid oxidation in acetylation of mitochondrial proteins [194].

These posttranslational modifications are involved in the regulation of mitochondrial

metabolism. The analysis of acyetylation profiles during fatty acid loading in liver cells

will uncover potential regulatory links between protein functions and metabolism, that

could also be used to extend in silico models of mitochondrial metabolism with a regula-

tory layer and feedback control [11]. In addition, data on microRNAs, which are involved

in the regulation of metabolism [137, 148, 195, 198, 211] or metagenomics data about

the role of microbial communities in metabolism [101] could be incorporated.

Fatty acid beta-oxidation model. For an improved description of FAO pathway

dynamics, the presented human liver cell data may be analyzed with a recently re-

ported model of fatty acid beta-oxidation that was evaluated on isolated mitochondrial

data [250]. This will allow for the incorporation of specific pathway enzymes and respec-

tive substrate specificities. As metabolic pathways are highly connected, FAO models

may also be linked with published models of fatty acid biosynthesis, glucose metabolism

or citric acid cycle [33, 120, 274]. Kinetic parameters of enzymes for specific experimen-

tal conditions then need to be compared to published results from primary literature,

which is collected in databases like BRENDA [223] or SABIO-RK [268]. It is important

to acknowledge at this point that any model is merely an approximate description of bio-

logical reality and may be refined to explain the observed data. Experimental results will

allow for extending the model, for instance by elucidating active metabolic pathways in

vitro. For the analysis of time-resolved metabolomics data we relied on well-established
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pathway knowledge, allowing for the development of dynamic models to describe the

time-dependent metabolite changes. Besides mechanistic models, approaches like func-

tional data analysis [231] can be applied to analyze the metabolite timecourses, which

are provided by both in vivo and in vitro study designs.

Fatty acid oxidation footprints are measured in blood [265] and show strong GWAS

signals related to enzymatic reactions. As it remains unclear to which extent metabo-

lites in blood reflect intracellular processes in general, future models need to incorporate

extracellular compartments and also include information about membrane transporters

[215]. Tracer studies using stable isotope-assisted metabolomics can be used to assess

transport reactions between compartments [46]. In addition, upcoming metabolomics

techniques can detect biochemical compounds at single-cell resolution [283], which will

provide further details about metabolite transport and exchange reactions. Combining

this information with mechanistic models might lead to further insights about the inter-

play between intracellular processes and molecular signals measured in blood.

In order to understand the impact of molecular, cellular, physiological and environ-

mental factors on an organism’s phenotype, it is important to investigate the affected

players across all layers of biological function, i.e. genes, transcripts, proteins and met-

abolic reaction compounds. Modern high-throughput techniques now provide genomics,

transcriptomics, proteomics and metabolomics measurements [102]. Future approaches

need to provide tools for selecting the most informative biological readouts out of the

multiparametric data from all layers of biological functions across multiple scales of

sampling (e.g. populations, individuals, organs, cells). Considering also dynamical data

(steady-state, time-resolved) will improve our understanding of biological functions in

the context of dynamic biomolecular organization [105, 106, 206]. It will be challeng-

ing to address the above-mentioned extensions for a network-based analysis of omics

data across different functional layers, but will allow us to better understand metabolic

processes in general.
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Conclusion

Metabolism is highly variable between individuals, even though the underlying key pro-

cesses follow the same physicochemical laws and biological principles. Metabolic reactions

are influenced by genetic and physiological factors, which can be measured on different

biological scales, ranging from population data to cellular models. The combination of es-

tablished knowledge about biochemical pathways with computational models facilitated

the analysis of multivariate data for different study designs. As biochemical processes

with many coupled reactions can be studied at a system level, a model-based analysis is

a promising approach to obtain deeper insights into the interplay between genetic effects,

nutrition and metabolism.
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de Angelis, M., Fritsche, A., Häring, H.U., Schleicher, E.D., Xu, G., Lehmann, R., and
Weigert, C. Production and Release of Acylcarnitines by Primary Myotubes Reflect the
Differences in Fasting Fat Oxidation of the Donors. J Clin Endocrinol Metab, (C):1–6,
2013.

[270] Wolkenhauer, O. Systems biology, volume 45. Portland Pr, 45 edition, 2008.

[271] Wong, P., Althammer, S., Hildebrand, A., Kirschner, A., Pagel, P., Geissler, B., Smialowski,
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