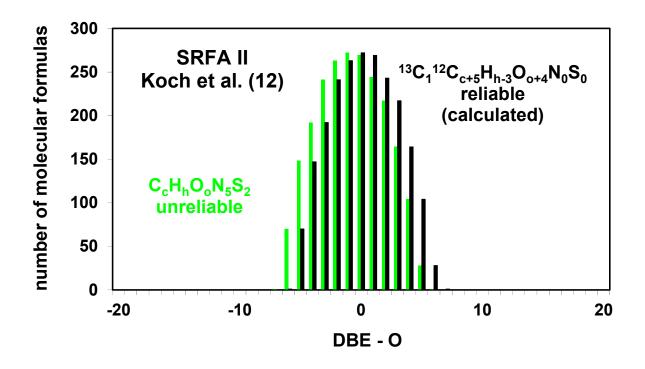
Supporting Information – Analytical Chemistry

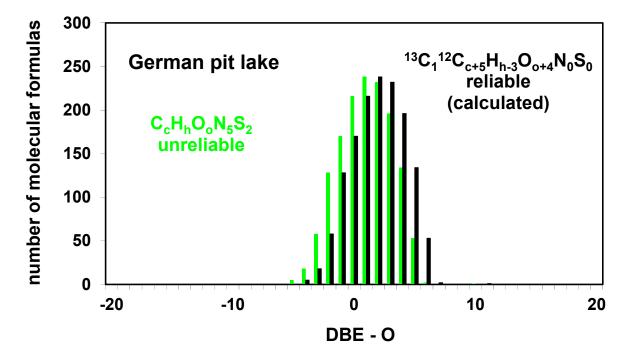
High-field FT-ICR-MS data evaluation of natural organic matter – are $CHON_5S_2$ molecular class formulas assigned to ^{13}C isotopic m/z and in reality CHO components?

Peter Herzsprung*,¹, Wolf v. Tümpling¹, Norbert Hertkorn², Mourad Harir², Kurt Friese¹, Philippe Schmitt-Kopplin²

*Corresponding author

peter.herzsprung@ufz.de; phone: +493918109330; fax: +493918109150

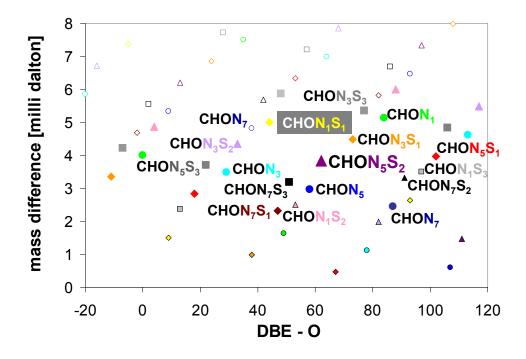

Number of pages: 7 Number of figures: 4 Number of tables: 2

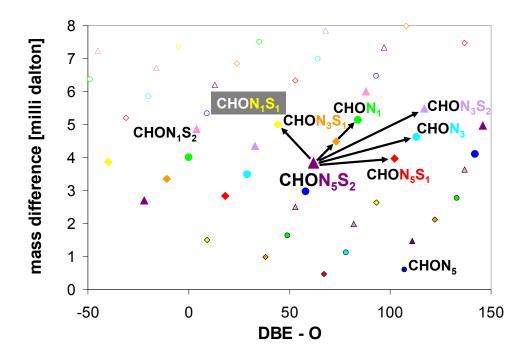

Contents

Title	Page
Figure S-1 DBE – O values of the N_5S_2 components which are suspected to be unreliable and their potential correct counterpart components (13 CHO as calculated). Top: SRFA II sample; bottom: German pit lake sample	S2
Can molecular classes be found as replacement for the CHON₅S₂ class?	S3
Figure S-2 Δ m versus Δ (DBE $-$ O) diagram for components with odd mass (even mass for M $-$ 1 molecular ions). Chemical constraints: N \leq 7; S \leq 3	S3
Figure S-3 Allocation of equivocal components derived from a septet (connection by arrows) as found in the data set from Koch et al. (4) in a Δ m versus. Δ (DBE – O) diagram	S4
Table S-1 Formulas, corresponding masses, DBE, DBE – O, Δ m, and Δ (DBE – O) values specific to each formula pair	S4
Table S-2 List of Δm , $\Delta (DBE - O)$ and their corresponding fragments	S5
Evaluation procedure: Search for pairs of CHO and their potential corresponding "CHON₅S₂" isotopic peaks	S6
Figure S-4 Illustration of the doublet CHON ₃ / CHON ₅ S ₂ in a frequency versus DBE – O diagram, sample from a German pit lake	S7

¹ UFZ Helmholtz Centre for Environmental Research, Brückstrasse 3a, 39114 Magdeburg, Germany

²HelmholtzZentrum München, German Research Center for Environmental Health, Reasearch Unit AnalyticalBioGeoChemistry (BGC), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany




Figure S-1 DBE – O values of the N_5S_2 components which are suspected to be unreliable and their potential correct counterpart components (13 CHO as calculated). Top: SRFA II sample; bottom: German pit lake sample

Can molecular classes be found as replacement for the CHON₅S₂ class?

To search for theoretical possible molecular classes as replacement for CHON₅S₂, a mass versus DBE - O diagram can be used as described by Herzsprung et al. (16). In Fig. S-2 such a diagram is configured for molecular classes with odd mass (like a CHON₅S₂ component) and N \leq 7 and S \leq 3. No other reasonable molecular class can be found in this coordinate system which might explain the large presence of CHON₅S₂ components in DOM. The neighbour classes CHON₅S₁, CHON₅S₃, CHON₃S₂, CHON₃S₀, CHON₁S₃, seem chemically not reasonable due to their considerable DBE - O differences (16) from the CHON₅S₂ molecular class. The other neighbour classes, CHON₃S₁, CHON₇S₃, CHON₄S₁, CHON₇S₀, and CHON₅S₀ have both more or less different Δm and DBE - O values compared to the CHON₅S₂ molecular class. Not to mention that most of these considered possible formula replacements would have similar non-oxygen hetero atom numbers which all seem unusual for DOM. As an example the allocation of a multiple formula assignment (septet) from the SRFA II (equivocal) data set is illustrated in a Δm versus DBE - O diagram (Fig. S-3). For better understanding, the seven formulas of this septet, their corresponding masses, DBE, and DBE - O values are listed in Table S-1. The final answer is: No reasonable replacement for the CHON₅S₂ class can be identified from the pool of monoisotopic component classes.

Figure S-2 Δ m versus DBE - O diagram for components with odd mass (even mass for M – H molecular ions). Chemical constraints: N \leq 7; S \leq 3

Figure S-3 Allocation of equivocal components derived from a septet (connection by arrows) as found in the data set from Koch et al. (4) in a Δm versus. DBE - O diagram

Table S-1 Formulas, corresponding masses, DBE, DBE – O, Δ m, and Δ (DBE – O) values specific to each formula pair

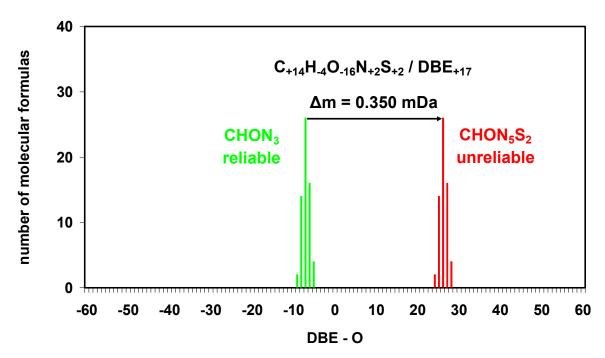
DDL	DDE O	formula/mass	N C	N C	N C	NI C	N C	N C	N C
DRE	DDE - O	formula/mass	N_3S_2	N_1S_0	N_1S_1	N_3S_0	N_3S_1	N_5S_1	N ₅ S ₂
54	+54	$C_{64}H_{25}O_0N_3S_2$	XXX	+33	+73	+4	+44	+15	+55
		899.148989 Da	XXX						
37	+21	$C_{50}H_{29}O_{16}N_1S_0$	+0.350	XXX	+40	-29	+11	-18	+22
		899.148639		XXX					
10	-19	C ₂₉ H ₄₁ O ₂₉ N ₁ S ₁	+0.484	+0.134	XXX	-69	-29	-58	-18
		899.148505			XXX				
55	+50	$C_{63}H_{21}O_5N_3S_0$	+0.867	+0.517	+0.383	XXX	+40	+11	+51
		899.148122				XXX			
28	+10	C ₄₂ H ₃₃ O ₁₈ N ₃ S ₁	+1.001	+0.651	+0.517	+0.134	XXX	-29	+11
		899.147988					XXX		
46	+39	C ₅₅ H ₂₅ O ₇ N ₅ S ₁	+1.518	+1.168	+1.034	+0.651	+0.517	XXX	+40
		899.147471						XXX	
19	-1	C ₃₄ H ₃₇ O ₂₀ N ₅ S ₂	+1.652	+1.302	+1.168	+0.785	+0.651	+0.134	XXX
		899.147337							XXX
24	0	¹³ C ₁ ¹² C ₃₉ H ₃₄ O ₂₄	Isotope	solution	n of the		Δ(DBE	E – O)	+0.027
		899.147364	assignr	nent pro	blem		values		
							Δm		
						V	alues		

Table S-2 List of Δm , $\Delta (DBE - O)$ and their corresponding fragments

Δm (mDa)	Δ(DBE – O)	numbers of elemental and DBE differences
+0.027	+1	¹³ C ₊₁ ¹² C ₊₅ H ₋₃ O ₊₄ N ₋₅ S ₋₂ / DBE ₊₅
+0.134	+40	C+21H-12O-13S-1 / DBE+27
+0.167	-62	C ₋₂₇ H ₊₁₂ O ₊₂₇ N ₋₄ S ₋₂ / DBE ₋₃₅
+0.182	+6	C ₊₈ H ₊₄ O ₋₃ N ₋₆ S ₊₁ / DBE ₊₃
+0.201	-75	C ₋₄₂ H ₊₁₆ O ₊₂₇ N ₊₄ / DBE ₋₄₈
+0.216	-7	C ₋₇ H ₊₈ O ₋₃ N ₊₂ S ₊₃ / DBE ₋₁₀
+0.301	-22	C ₋₆ O ₊₁₄ N ₋₄ S ₋₃ / DBE ₋₈
+0.316	+46	C ₊₂₉ H ₋₈ O ₋₁₆ N ₋₆ / DBE ₊₃₀
+0.335	-35	C ₋₂₁ H ₊₄ O ₊₁₄ N ₊₄ S ₋₁ / DBE ₋₂₁
+0.350	+33	C ₊₁₄ H ₋₄ O ₋₁₆ N ₊₂ S ₊₂ / DBE ₊₁₇
+0.383	-69	C ₋₃₄ H ₊₂₀ O ₊₂₄ N ₋₂ S ₊₁ / DBE ₋₄₅
+0.417	-82	C ₋₄₉ H ₊₂₄ O ₊₂₄ N ₊₆ S ₊₃ / DBE ₋₅₈
+0.469	+5	H ₋₈ O ₊₁ N ₊₄ S ₋₂ / DBE ₊₆
+0.484	+73	C ₊₃₅ H ₋₁₆ O ₋₂₉ N ₊₂ S ₊₁ / DBE ₊₄₄
+0.517	-29	C ₋₁₃ H ₊₈ O ₊₁₁ N ₋₂ / DBE ₋₁₈
+0.532	+39	C ₊₂₂ O ₋₁₉ N ₋₄ S ₊₃ / DBE ₊₂₀
+0.551	-42	C ₋₂₈ H ₊₁₂ O ₊₁₁ N ₊₆ S ₊₂ / DBE ₋₃₁
+0.603	+45	C ₊₂₁ H ₋₂₀ O ₋₁₂ N ₊₄ S ₋₃ / DBE ₊₃₃
+0.651	+11	C ₊₈ H ₋₄ O ₋₂ N ₋₂ S ₋₁ / DBE ₊₉
+0.685	-2	C ₋₇ O ₋₂ N ₊₆ S ₊₁ / DBE ₋₄
+0.785	+51	C ₊₂₉ H ₋₁₆ O ₋₁₅ N ₋₂ S ₋₂ / DBE ₊₃₆
+0.818	-51	C ₋₁₉ H ₊₈ O ₊₂₅ N ₋₆ S ₋₃ / DBE ₋₂₆
+0.819	+38	C ₊₁₄ H ₋₁₂ O ₋₁₅ N ₊₆ / DBE ₊₂₃
+0.852	-64	C ₋₃₄ H ₊₁₂ O ₊₂₅ N ₊₂ S ₋₁ / DBE ₋₃₉
+0.867	+4	C ₊₁ H ₊₄ O ₋₅ S ₊₂ / DBE ₋₁
+0.986	-24	C ₋₁₃ O ₊₁₂ N ₊₂ S ₋₂ / DBE ₋₁₂
+1.001	+44	C ₊₂₂ H ₋₈ O ₋₁₈ S ₊₁ / DBE ₊₂₆
+1.034	-58	C ₋₂₆ H ₊₁₆ O ₊₂₂ N ₋₄ / DBE ₋₃₆
+1.120	+16	C ₊₈ H ₋₁₂ O ₋₁ N ₊₂ S ₋₃ / DBE ₊₁₅
+1.135	+84	C ₊₄₃ H ₋₂₀ O ₋₃₁ / DBE ₊₅₃
+1.168	-18	C ₋₅ H ₊₄ O ₊₉ N ₋₄ S ₋₁ / DBE ₋₉
+1.202	-31	C ₋₂₀ H ₊₈ O ₊₉ N ₊₄ S ₊₁ / DBE ₋₂₂
+1.302	+22	C ₊₁₆ H ₋₈ O ₋₄ N ₋₄ S ₋₂ / DBE ₊₁₈
+1.336	+9	C ₊₁ H ₋₄ O ₋₄ N ₊₄ / DBE ₊₅
+1.470	+49	C ₊₂₂ H ₋₁₆ O ₋₁₇ N ₊₄ S ₋₁ / DBE ₊₃₂
+1.518	+15	C ₊₉ O ₋₇ N ₋₂ S ₊₁ / DBE ₊₈
+1.552	+2	C ₋₆ H ₊₄ O ₋₇ N ₊₆ S ₊₃ / DBE ₋₅
+1.652	+55	C ₊₃₀ H ₋₁₂ O ₋₂₀ N ₋₂ / DBE ₊₃₅
+1.686	+42	C ₊₁₅ H ₋₈ O ₋₂₀ N ₊₆ S ₊₂ / DBE ₊₂₂
+1.719	-60	C ₋₃₃ H ₊₁₆ O ₊₂₀ N ₊₂ S ₊₁ / DBE ₋₄₀
+1.853	-20	C ₋₁₂ H ₊₄ O ₊₇ N ₊₂ / DBE ₋₁₃
+1.953	+33	C ₊₂₄ H ₋₁₂ O ₋₆ N ₋₆ S ₋₃ / DBE ₊₂₇
+2.504	-9	$C_{-4}H_0O_{+5}N_0S_{-1}$ / DBE ₋₄
+3.371	-5	$C_{-3}H_{+4}O_0N_0S_{+1}$ / DBE ₋₅

Evaluation procedure: Search for pairs of CHO and their potential corresponding "CHON₅S₂" isotopic peaks

The FT-ICR-MS data can be arranged as described in the table below. All CHO components are extracted using autofilter. In an additional column (IUPAC Mass ¹³C) the masses of the corresponding ¹³C-isotopes are calculated.


Sample	IUPAC	Intensity	С	Н	0	Ν		IUPAC	Additional
Nr	Mass	-						Mass ¹³ C	information
21	288.048135	28824364	11	12	9	0	0	289.051489	
21	288.063390	229245760	15	12	6	0	0	289.066744	
21	290.042655	273747100	14	10	7	0	0	291.046009	
	288.120905	28368697	13	20	7	0	0	289.124259	
	290.006270	43563025	13	6	8	0	0	291.009624	
22	290.042655	221018170	14	10	7	0	0	291.046009	

As second step all CHON₅S₂ components are extracted and the masses are simply copied to the additional column.

Sample	IUPAC	Intensity	С	Н	0	N	S	IUPAC	Additional
Nr	Mass							Mass (copy)	information
21	289.066717	36575224	9	15	2	5	2	289.066717	
21	291.045982	41394551	8	13	3	5	2	291.045982	
	291.009597	4649184	7	9	4	5	2	291.009597	
22	291.045982	28974350	8	13	3	5	2	291.045982	

To search for the pairs these two data sheets are merged and sorted to increasing mass (additional IUPAC Mass ^{13}C column). The potential $\delta^{13}C\%$ values can be calculated (using the mass intensities as explained in the letter) for pairs of CHO and CHON $_5S_2$ components if there were any.

Sample	IUPAC	Intensity	С	Н	0	N	S	IUPAC	δ^{13} C‰ value	Additional
Nr	Mass							Mass ¹³ C		information
21	288.048135	28824364	11	12	9	0	0	289.051489		
21	289.066717	36575224	9	15	2	5	2	289.066717		
21	288.063390	229245760	15	12	6	0	0	289.066744	-53.5	
21	291.045982	41394551	8	13	3	5	2	291.045982		
21	290.042655	273747100	14	10	7	0	0	291.046009	-38.8	
22	288.120905	28368697	13	20	7	0	0	289.124259		
22	291.009597	4649184	7	9	4	5	2	291.009597		
22	290.006270	43563025	13	6	8	0	0	291.009624	-269	
22	291.045982	28974350	8	13	3	5	2	291.045982		
22	290.042655	221018170	14	10	7	0	0	291.046009	-167	

Figure S-4 Illustration of the doublet $CHON_3$ / $CHON_5S_2$ in a frequency versus DBE - O diagram, sample from a German pit lake