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Abstract
Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies
(GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the
phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow
obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent
GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second
GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological
modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We
found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent
association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We
identified several biologic modules that functionally overlapped with those associated with pulmonary function. However,
differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction
study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative
disease target. We used a knockout mouse model to functionally validate MMP10’s role in influencing lung’s susceptibility to
cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic
processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.
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Introduction
Spirometric measurement of pulmonary function is the most
commonly used method to assess the lung’s physiologic and
pathophysiologic state. Forced expiratory volume in the first se-
cond (FEV1) and its ratio to forced vital capacity (FEV1/FVC) are her-
itable traits that reproducibly measure airflow obstruction and
predictmorbidityandmortality in thegeneral population (1,2). Im-
pairment of FEV1 and FEV1/FVC are key criteria for the diagnosis
of chronic obstructive lung disease (COPD)—a highly morbid con-
dition predicted to become the third leading cause of death
worldwide by 2030 (3). We have previously reported on two inde-
pendent, large genome-wide association studies (GWASs) of pul-
monary function, each comprising over 20 000 individuals of
European ancestry (4,5). These studies, in combination with our
recent results based on larger joint meta-analyses, have identified
multiple loci associatedwith pulmonary function (6,7) and airflow
obstruction (8). However, genetic variants at these regions explain
<5% of the observed variance in spirometric traits (6), strongly im-
plying that a substantial portion of the available genetic contribu-
tion to variability in lung function is not identified using standard
GWAS statistical thresholds.

One promising approach to uncover the genetic underpinnings
of complex phenotypes is to reach beyond genome-wide signifi-
cant hits to extract information from the entire association dataset
and discover sets of pathways linked to a given clinical trait (9).
Genes do not exert their effects in isolation, but rather cooperate
within pathways and larger biologic modules to influence disease
susceptibility and progression (10,11). Pathway-based analysis is
built on the premise that complex, polygenic phenotypes arise
fromdistinctmolecularpathways, and that small genetic perturba-
tions (i.e. single-nucleotide polymorphisms or SNPs) at multiple
siteswithin these gene sets can lead to the observed traits anddis-
eases. This paradigm allows implementation of statistical tests
that substantially relax cutoffs for statistical significance, such
that a pathway can be enriched in a phenotype even though the
individual SNPs do not achieve genome-wide significance. Several
publications have applied pathway-based approaches to previously
generated GWAS data and demonstrated the power of this method
in identifying previously undetected mechanisms (12–14).

This studywas designed to test the hypothesis that the genetic
basis of pulmonary function and airflow obstruction is orche-
strated by identifiable sets of functionally coherent pathways.
Initially, we implemented a robust methodology based on gene
set enrichment analysis (GSEA) (15,16) to identify and validate
pathways linked to lung function by step-wise leveraging of two
independent pulmonary function GWAS datasets. We then
applied this procedure to the largest available GWAS of airflow
obstruction (8). Our integrative approach systematically mapped
pathways associated with lung function and airflow obstruction
to functionally distinct modules, and lead to the identification of
a putative COPD candidate.

Results
Staged analysis of lung function GWAS identifies
and confirms a large repertoire of enriched gene sets

We performed two separate GWASs of pulmonary function (FEV1

and FEV1/FVC) using two large consortia—CHARGE and SpiroMe-
ta. Cohort details are provided in Supplementary Material,
Table S1. Quantile–quantile (QQ) plots of observed versus ex-
pected association P-values showed significant deviations from

the null hypothesis for each lung function measure, indicating
that many SNPs were strongly linked to these traits (Supplemen-
tary Material, Fig. S1). As outlined in Figure 1, after completing
standard GWAS for each consortium, we initially applied GSEA
to the CHARGE pulmonary function GWAS and identified 444
overrepresented gene sets associated with FEV1 or FEV1/FVC
(FDR < 0.05). We validated these findings by implementing the
same procedure for the SpiroMeta GWAS. Of the 444 pathways
identified in CHARGE, 131 were also enriched in SpiroMeta (FDR
< 0.05). Further analysis was restricted to these 131 gene sets that
were significantly enriched in both independent studies. A com-
plete list of consortium-specific gene sets is available in Supple-
mentary Material, Table S2. To assess robustness of our findings,
we performed an identical two-step pathway enrichment meth-
od using a different program known as GSA-SNP (17) and found
broad overlap between processes enriched in both approaches
(see Supplementary Material, Table S4).

Enrichment of pathways is driven by SNPs moderately
associated with pulmonary function

To assess the relative contribution of SNPs to gene set enrichment,
we performed sensitivity analyses to verify that our findings
were not due to a disproportionate contribution by a few, highly
significant SNPs. First,we repeatedGSEAafterexcludingall GWAS-
significant SNPs (i.e. those with association P < 5 × 10–8). No differ-
ences were found in the list of enriched pathways. Next, we
expanded our analysis by additionally excluding all SNPs (regard-
less of P-value) within 100 Kb in either direction from all GWAS-
significant loci. Again, we did not observe any appreciable change
in the enrichment profile of gene sets. While genes in enriched
pathways included several GWAS-significant loci, most genes
weremapped to SNPswithmoderate association P-values ranging
from 10–2 to 10–6 (SupplementaryMaterial, Fig. S2). These observa-
tions imply that a rich repository of genomic information rests
within a stratum of association P-values that is ignored in stand-
ard GWAS procedures.

Figure 1.Outline of the staged approach for pathwayanalysis of lung function.We

performed standard GWAS of pulmonary function measures in two large,

independent consortia: CHARGE and SpiroMeta. Gene set enrichment analysis

was initially applied to the CHARGE consortium’s pulmonary function GWAS

(Step 1), and subsequently performed on SpiroMeta’s GWAS (Step 2). Only

pathways that were significantly enriched in Step 1 and replicated in Step 2

were used for further analysis.
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Pathway-associated SNPs are enriched in DNase I
hypersensitive sites

We investigated whether sentinel SNPs associated with lung
function in enriched pathways were overrepresented in regula-
tory regions as represented by DHSs. We found highly significant
enrichment of DHSs among pathway-associated SNPs in relative
to all lung function GWAS SNPs [odds ratio 1.86, 95% confidence
interval (1.73–2.00), P-value 1.75 × 10–68]. A similar analysis of
SNPs linked to enriched pathways associated with airflow ob-
struction revealed significant overrepresentation of DHSs relative
to all airflow obstruction GWAS SNPs [odds ratio 1.65, 95% confi-
dence interval (1.51–1.80), P-value 3.39 × 10–15].

Lung function-associated pathways aggregate within
distinct biologic modules

We applied unsupervised cluster analysis to the enriched path-
ways and their associated genes to determine segregation pat-
terns based on membership profiles and association P-values.
We defined a module as a group of two or more gene sets (path-
ways) that clustered together based on sharing common gene
members. We found that a majority of enriched gene sets
mapped to biologically distinct functional modules (Fig. 2)—in-
cluding processes involved in Development, Cell Adhesion, Cell
Proliferation/Migration, Cell Signaling, Immunity, Ion Channel/
Transport and Arachidonic Acid/Prostaglandin. However, most
of the identified modules also shared member genes between
them, with particularly large overlaps among Development, Im-
munity, Adhesion, Cell Signaling and Proliferation/Migration
(Fig. 3).

Published literature strongly links enriched gene sets
derived from pulmonary function GWAS to lung biology

To assess whether the identified pulmonary function-associated
pathways and genes were implicated in lung biology, we system-
atically searched each pathway and gene via a PubMed mining
tool (PubMatrix) using the modifier term ‘pulmonary function’.
As summarized in SupplementaryMaterial, Figure S3, everyover-
represented gene set had published reports for a role in pulmon-
ary biology, with immune system having the largest supporting
evidence (n = 57 847 citations) and several other pathways with
significant publication records such as free radical pathway (n =
14 888), morphogenesis (n = 7324), epidermal growth factor sig-
naling (n = 1388) and Wnt signaling (n = 487). Many of the path-
way-associated genes were also highly cited, including tumor
necrosis factor (n = 8961), interleukin 8 (IL8, n = 4376), epidermal
growth factor receptor (n = 3549), transforming growth factor β1
(n = 1758) and cystic fibrosis transmembrane conductance regula-
tor (n = 1630). Several genetic loci identified in our previous lung
function GWASs were members of enriched pathways and cited
in PubMed including advanced glycosylation end product-specif-
ic receptor (n = 196), hedgehog-interacting protein (n = 19) and
patched 1 (n = 15).

Pathway analysis of airflow obstruction GWAS reveals
many enriched gene sets including those involved in
tissue remodeling

The promising results from gene set analysis of pulmonary func-
tionmotivated us to expand this approach to airflow obstruction—
a clinically relevant spirometric phenotype characteristic of
obstructive lung disorders such as COPD. Applying the same
computational procedures to the airflow obstruction GWAS, we

identified 156 enriched gene sets at FDR < 0.001 (Supplementary
Material, Table S3). Unlike the two distinct lung function
GWASs, the airflow obstruction GWAS was a combined analysis
of CHARGE and SpiroMeta cohorts and therefore a two-step
validation strategy was impractical. Instead, we minimized
false-positive findings by applying a highly stringent FDR cutoff
to designate significance.

We grouped enriched gene sets into biologic modules based
onmembership and functional overlap. The results are summar-
ized in Figure 4 and provide an overview of key pathways and pro-
cesses associated with airflow limitation. Since most of the
airflow obstruction cohorts had also participated in the lung
function GWASs and airflow obstruction is defined based on spir-
ometry, it was not surprising that many of these enriched mod-
ules were also identified in the pulmonary function analysis,
including Development, Cell Signaling, Ion Channel, Cell Adhe-
sion and Proliferation. However, we also identified pathways
thatwere not enriched in the lung function analysis (Supplemen-
tary Material, Table S3). Prominent among these airflow obstruc-
tion-associated gene sets were processes involved in remodeling
of the extracellularmatrix (ECM), such as collagen, proteinaceous
ECM and integrin pathway. Since airway remodeling is a key
pathophysiologic characteristic of COPD, we further explored
the ECM module by mapping relationships among its members
using a comprehensive gene product interaction knowledgebase
(Ingenuity) (18). This analysis identified several distinct networks
within the ECM module, with the highest scoring network being
comprised of 21 interconnected focus genes as depicted in Fig-
ure 4 (see Supplementary Material, Table S6). Since nodal con-
nectivity in disease networks is a topologic property that can
indicate biologic importance (19,20), we selected the most
connected node in the ECM network, MMP10, as a candidate for
further functional validation.

MMP10 is a COPD candidate gene

We assessed the role of MMP10 in obstructive lung disease by
genetically targeting this gene in an established animal model
of emphysema. After chronic exposure to cigarette smoke,
wild-typemice developed extensive airwayand airspace destruc-
tion characteristic of emphysema, whereas Mmp10–/– animals
displayed only modest injury (Fig. 5A). Morphometric analysis
of acinar airspaces using the mean linear intercept method con-
firmed the protective phenotype observed in Mmp10-null mice
(Fig. 5B). To complement the morphometric assessment of lung
injury in our model, we measured the expression of interleu-
kin-1 beta (Il1b) and Mmp10. Il1b is a pro-inflammatory cytokine
upregulated in the lungs patient with COPD and a robust bio-
marker for frequent exacerbations (21). Overexpression of Il1b
causes abnormal airway remodeling and emphysema in mice
(22). We found that Il1b was significantly increased in the lung
of wild-type animals after chronic cigarette smoke injury but
not in the emphysema-resistant Mmp10-null mice (Fig. 5C).
Mmp10 expression was similarly upregulated in wild-type mice
with emphysema, but remained undetectable in the knockouts
as expected (Fig. 5C). Collectively, these observations implicate
a pathophysiologic role for MMP10 in the development of cigar-
ette smoke-induced lung disease.

Discussion
Understanding the genetic basis of normal and impaired lung
function can provide new insights into the pathophysiology of
pulmonary disorders. Chronic respiratory conditions are a

4 | Human Molecular Genetics

 at G
SF-Forschungszentrum

 fuer U
m

w
elt und G

esundheit G
m

bH
 - Z

entralbibliothek on O
ctober 2, 2015

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv378/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv378/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv378/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv378/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv378/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv378/-/DC1
http://hmg.oxfordjournals.org/


leading cause of death worldwide (3) and there is a recognized
need for new therapeutic targets (23). In this work, we initially le-
veraged two large, independent GWAS datasets totaling almost
50 000 subjects to systematically identify pathways associated
with lung function.We found a diverse set of interconnected bio-
logic modules linked to this trait. We extended this approach to
airflow obstruction—a clinically relevant phenotype defined by
spirometry—and identified additional pathways associated
with obstructive lung disease. We functionally validated our

approach by demonstrating that MMP10, a member of an en-
riched airflow obstruction module (i.e. ECM), influences the se-
verity of cigarette smoke-induced emphysema using a genetic
mouse model.

To date, over 2000 GWASs encompassing hundreds of com-
plex traits and diseases have been published (24), with several
pertaining to pulmonary phenotypes including asthma (25–27),
idiopathic pulmonary fibrosis (28), COPD (29,30), sarcoidosis (31)
and lung function (4,5,32). All of these studies have applied

Figure 2.Unsupervised hierarchical clustering of enriched pathways (gene sets) associated with pulmonary function. Rows representing enriched gene sets (n = 131) were

grouped based on overlapping gene membership (columns). Gene sets with many shared genes clustered together and define functional modules (e.g. cell signaling,

immunity and development). Columns represent gene membership profiles of enriched pathways and are colored according to association P-values of member genes.

Note that for any given gene set, the majority of pathway-associated genes are not members and are displayed as black bars. For each clustered group (module), only

representative pathways have been labeled. Complete list is available in Supplementary Material, Table S2.

Human Molecular Genetics | 5
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Bonferroni-type statistical cutoffs to minimize false-positive
SNP-to-phenotype associations. For example, our previous pul-
monary function GWASs identified numerous loci associated
with FEV1, FEV1/FVC, FVC and airflow obstruction (4,6,8,32). We
believe that those findings, while novel, did not comprehensively
capture the complex biological processes underlying these traits
because the standard GWAS approach is overly conservative and
discards biologically informative yet statisticallymodest associa-
tions. Enrolling larger cohorts can increase the number of loci (6),
but retains the individual SNP-focused structure of standard
GWAS. To overcome this limitation, pathway-focused ap-
proaches can complement standard GWAS and allow deeper
mining of genomic data (9). A key advantage of pathway enrich-
ment methodologies is their ability to place trait-associated can-
didates within the context of biologically meaningful pathways
andmodules. However pathway approaches have important lim-
itations, including the risk of false-positive findings and chal-
lenges in confirming results, especially at a phenotypic level (33).

In this work, we aimed to circumvent some of these short-
comings by implementing a step-wise gene set enrichment ap-
proach, whereby findings from one pulmonary function GWAS
were confirmed using an independent and similarly powered
GWAS (Fig. 1). We interrogated ∼2000 gene sets, but our two-
step validation substantially narrowed down these pathways to
a limited subset of 131 enriched pathways associated with pul-
monary function. Since pathway selection was filtered by FDR
cutoffs (<0.05) at each stage, false-positive findings were strin-
gently controlled. Our approach of leveraging two independent
analyses addresses instabilities reported during attempts to rep-
licate gene set enrichment findings (34). The airflow obstruction
GWAS was a combined study using cohorts from both CHARGE
and SpiroMeta, precluding implementation of the step-wise
GSEA strategy. Therefore, we applied amuch stricter FDR thresh-
old (<0.001) to identify significantly enriched gene sets and min-
imize false-positive associations. In both the lung function and
airflow obstruction GSEA, the number of pathways identified as
being enriched was <8% of the total gene sets surveyed, implying

that the vast majority of the curated pathways were not signifi-
cantly associated with these traits.

Our comprehensive, pathway-focused analysis of pulmonary
function GWAS yielded several important results. First, we ob-
served that SNPs driving gene sets linked to lung function were
primarily those with moderate associations and not the GWAS-
significant variants. These modestly significant SNPs did not
reach genome-wide threshold, implying that standard GWAS
analysis fails to capitalize on a substantial segment of the avail-
able genomic information (9) (Supplementary Material, Fig. S2).
Secondly, enriched pathways clustered to a limited set of distinct
modules with specific functional roles, including development,
cell signaling and immunity (Fig. 2). The concept of a modular
network built from specialized yet interconnected pathways is
a fundamental property of complex biological systems (10,19).
Our findings were consistent with this paradigm and show that
each lung function-associated module—while comprised of
functionally similar gene sets—also sharedmany genemembers
with other modules (Fig. 3). We corroborated the biologic rele-
vance of the enriched gene sets by systematically literature-min-
ing each term and observed that all pathways and many of their
gene members had published links to ‘pulmonary function’, in
some cases numbering in the thousands (Supplementary Mater-
ial, Fig. S3). Furthermore, many SNPs linked to gene members of
enriched pathways were within regulatory DHSs, implying that
our approach captured functionally relevant genetic variants.

Pathway-based analysis of airflowobstruction GWAS revealed
multiple processes potentially involved in the pathogenesis of
COPD.Whilemany of the airflow obstructionmodules were simi-
lar to those associated with lung function, therewere substantial
differences between their respective gene sets (Supplementary
Material, Tables S2 and S3). Several of these pathways such as
transforming growth factor-β and phosphatidylinositol signaling
have been linked to the development of obstructive lung disease
(35–37). Another striking difference was selective enrichment of
gene sets involved in ECM. This finding is biologicallymeaningful
because COPD is characterized by structural destruction of

Figure 3. Wiring diagram of key biologic modules associated with lung function. These modules were derived from membership cluster analysis of enriched gene sets

(Fig. 2). Intermodular connectivity indicates overlapping genes between modules with the thickness of connections drawn proportional to the number of shared

genes—for example, development and immunity have 150 gene members in common.
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respiratory acini and ECM remodeling of small airways (38). The
network analysis of this module suggested that MMP10, a dense-
ly connected node, is a potential driver of ECM remodeling in air-
flow obstruction, and hence we chose to study its role further
(Fig. 4).

MMPs are a family of ECM-associated proteins involved in di-
verse processes, including response to injury and inflammation,
tumor metastasis and remodeling (39–41). Our finding that
MMP10 may be associated with development of airflow obstruc-
tion is consistent with other reports implicating MMPs in COPD

(30). For example, a functional variant in MMP12 has been asso-
ciated with reduced risk of airflow obstruction in smokers (42),
and mice lacking this gene are protected from cigarette smoke-
induced emphysema (43). Furthermore, MMP10 was reported to
be differentially expressed in airway and surrounding lung par-
enchyma of COPD patients (44).

It is important to note that in our discovery lung function
GWAS the sentinel SNP in MMP10 (rs11225413) was far from
being genome-wide significant (P = 0.03) andwould have been ex-
cluded if standard, Bonferroni-type adjustments had been

Figure 4. Graphical overview of enriched biological modules associated with airflow obstruction. Since the airflow obstruction GWAS was primarily based on the

pulmonary function GWASs, several of these modules overlap with those identified in the lung function analysis (Fig. 3). However, some modules such as apoptosis

and ECM were enriched only in airflow obstruction. Furthermore, even within common biologic modules, substantial differences in enriched gene sets were observed

between the two phenotypes with several representative pathways associated with airflow obstruction being highlighted. Deeper exploration of the ECM module

using gene product interaction network analysis identified MMP10 as the most interconnected node and a putative driver of ECM processes influencing airflow

obstruction. NOS, nitric oxide synthase; IGF1, insulin-like growth factor 1; TGF-β, transforming growth factor beta; EGF, epidermal growth factor; PDGF, platelet-

derived growth factor. Complete list is available in Supplementary Material, Table S3.
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applied. A joint SNP and SNP-by-smoking meta-analysis of this
SNP and other MMP10-associated variants did not reveal signifi-
cant gene–environment interactions (7,45). Interestingly, inte-
grating network analysis with pathway-based data mining of
GWAS placed MMP10 within the context of other putative candi-
dates. For example, another member of the ECM network (Fig. 4),
Fibrillin 1, has been linked to development of early emphysema
in humans (46), andmicewith targeted knockout of this gene de-
velop spontaneous emphysema (47). Finally, our functional val-
idation of MMP10’s role using an animal model of emphysema
serves as a proof-of-concept that pathway-based approaches
have the potential to reveal disease-associated processes and
identify novel targets in complex disorders.

Our study has several limitations. We assumed that a given
SNP affects the function of its proximally located gene. This is
likely an over-simplification of the biologic effects of genetic var-
iants since distal regulation can also occur (48). However, there is
no accepted method to comprehensively assess the global influ-
ence of SNPs on gene function in humans. Analysis of expression
quantitative trait loci (eQTL) can be useful for functional
validation (49,50), but is based solely on the transcriptional
effects of genetic variants, ignoring any post-transcriptional

consequences. Furthermore, eQTLs exhibit significant tissue
and even cell-type specificity (51,52) and require large sample
sizes to achieve adequate power. Not surprisingly, many signifi-
cant trait-associated SNPs do not have strong eQTLs. Thus, for
our GSEA, we opted to not filter candidate SNPs based on limited
eQTL information. However, we observed highly significant en-
richment of DHSs among pathway-associated SNPs, implying
overrepresentation of functional variants in our approach. An-
other inherent shortcoming of pathway-based methods is their
reliance on known biologic processes and gene functions, im-
pairing their ability to discover novel mechanisms or relation-
ships. Nevertheless, previously unrecognized processes can be
implicated in a given trait since enriched biologic modules are
placed within a phenotype-specific context without bias. Our lit-
erature-mining effort was, by definition, based on available
knowledge. In future studies, it will be of particular interest to in-
vestigate members of enriched gene sets that did not have pub-
lished evidence of involvement in lung biology. Finally, since
irreversible airflow obstruction is a required criterion for diagno-
sis of COPD andwe did not assess bronchodilator response in our
spirometricmeasurements,we have refrained from labeling indi-
viduals with airflow obstruction as having COPD.

Figure 5. Mmp10–/– mice are resistant to cigarette smoke-induced emphysema. (A) Representative H&E lung sections of Mmp10–/– and wild-type animals exposed to 6

months of chronic cigarette smoke demonstrated extensive injury in wild types with significant loss of acinar and small airway structures (top row). In contrast,

Mmp10-null mice were substantially less susceptible to smoke-induced emphysema (bottom row). Slides are ordered according to severity of lung injury in each

genotype. (B) Morphometric analysis of airspaces using the mean linear intercept method confirmed the protective phenotype observed in Mmp10–/– mice (n = 10 for

smoke exposed Mmp10–/– mice, n = 9 for all other groups). (C) Wild-type mice exposed to chronic cigarette smoke have significantly increased expression of the pro-

inflammatory cytokine Il1b as well as Mmp10 in their lungs, whereas emphysema-resistant Mmp10–/– animals do not (n = 8 per group). All P-values based on two-tailed

Student’s t-test; NS, not significant.
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In conclusion, by integrating pathway analysis with multiple
GWASs, we have comprehensively mapped processes influen-
cing lung function and airflow obstruction. While many of the
identified gene sets have been previously linked to pulmonary
biology in animal models or limited human tissue samples, our
approach derived its genomic information from large human co-
horts, making its findings broadly relevant to the general popula-
tion. The proposed framework, therefore, may have particular
applicability in dissecting disease mechanisms in complex lung
diseases with available GWAS.

Materials and Methods
GWAS of lung function traits

CHARGE and SpiroMeta cohorts were independently meta-ana-
lyzed for GWAS of pulmonary function. All subjects were of Euro-
pean ancestry and underwent spirometry to assess lung function
based on forced expiratory volume in 1 s (FEV1) and its ratio to
forced vital capacity (FEV1/FVC). In the first phase, we analyzed
data from seven cohorts totaling 25 366 subjects within the
CHARGE consortium. For the validation step, we meta-analyzed
data from 17 cohorts with 24 583 individuals within the SpiroMeta
consortium.

The analysis of airflow obstruction was based on a combined
GWAS meta-analysis of 14 CHARGE and SpiroMeta cohorts total-
ing 31 567 participants of European ancestry (3056 affected,
28 511 unaffected) (8). These participants constituted a subset
of the total subjects analyzed in the CHARGE and SpiroMeta
lung function GWASs described above.We used standardized de-
finitions of airflowobstruction based on the lower limit of normal
for FEV1 and FEV1/FVC fromNHANES III prediction equations (53)
across all cohorts. The presence of airflow obstruction was de-
fined as an FEV1 and FEV1/FVC both less than the lower limit of
normal (54), which is calculated from gender-specific equations
for age, age2 and height2. Unaffected participants were defined
by FEV1, FVC and FEV1/FVC all above the lower limit of normal. In-
dividuals below the lower limit of normal for either FEV1 or FEV1/
FVC but not both were excluded from these analyses. Therefore,
unlike lung function, the presence of airflow obstruction was de-
fined dichotomously.

GWAS procedures

Genotyping, imputation, genotype-phenotype association and
meta-analysis procedures for lung function and airflow obstruc-
tion in CHARGE and SpiroMeta consortia have been previously
described (4,5,8). Non-genotyped SNPs were imputed using
MACH, IMPUTE or BIMBAM. Linear regression for age, age2, sex,
height and ancestry principal components as covariates was per-
formed on FEV1 (mm) and FEV1/FVC (%). Residuals were ranked
and then transformed to z-scores andused for association testing
under an additive genetic model stratified by ever-smoking and
never-smoking status. Effect estimates were meta-analyzed
using inverse-variance weighting across the cohorts in each con-
sortiumusing R (version 2.9.2) orMETAL (55) and genomic control
correction (56) was applied. In the airflow obstruction GWAS, for
each cohort logistic regression models were adjusted for current
and former smoking dummy variables, pack-years of smoking,
age, sex, standing height, center/cohort as needed, and principal
components for genetic ancestry as needed.While heterogeneity
was observed across cohorts, implementation of a fixed effects
model was effective in extracting homogeneous findings. Gen-
ome-wide meta-analyses were performed using METAL with in-
verse-variance weighting to combine effect size estimates after

applying a genomic control correction. QQ plots of expected
and observed association P-values on a –log10 scale for CHARGE
and SpiroMeta FEV1 and FEV1/FVC GWASs was created using
local scripts in R (http://www.R-project.org/).

Gene set enrichment analysis of GWAS

We applied a methodology called improved GSEA for GWAS (i-
GSEA4GWAS) to place variants associated with pulmonary func-
tion or airflow obstruction within curated pathways (16). Geno-
typed and imputed SNPs from lung function GWAS (n≈ 2.5 × 106)
were mapped to genes within a 100 kb distance (upstream or
downstream). No filtering of SNPs based on LD structure or associ-
ation P-valuewas performed prior to the enrichment analysis. For
a given SNP, if multiple genes were located within this range, the
closest gene was selected and assigned the association P-value.
The SNP with the strongest association P-value was used to re-
present a gene. Since multiple SNPs can map to the same gene,
an SNP label permutation was used to reduce potential biases
caused by larger loci having disproportionately higher number of
SNPs. Log-transformed association P-values (–log10P) were used to
rank order the resulting gene list (∼18 000 genes) and calculate
gene set enrichment scores. The i-GSEA4GWAS procedure calcu-
lates a significance proportional enrichment score that is based
on the proportion of significant genes mapped to a given gene set
relative to the proportion of significant genes across total genes in
the GWAS. Approximately 2000 gene sets were obtained from
the Molecular Signatures Database (http://www.broadinstitute.
org/gsea/msigdb) (15,57). To maximize biologic relevance, gene
sets were defined and limited to well-curated pathways derived
from multiple resources such as KEGG, BioCarta, REACTOME
and functional annotations extracted from the Gene Ontology
database. Therefore, the terms ‘gene set’ and ‘pathway’ are used
interchangeably.

Step-wise validation of functional enrichment analysis
for pulmonary function

A two-step approach was taken to independently validate en-
riched pathways associated with lung function. The i-GSEA4G-
WAS algorithm was initially applied to the CHARGE pulmonary
function GWAS and enriched gene sets were identified if they
met an FDR < 0.05 for either FEV1 or FEV1/FVC. Next, the same
procedure was implemented in the SpiroMeta consortium
GWAS for FEV1 and FEV1/FVC. We restricted further analysis to
those enriched pathways in CHARGE (FDR < 0.05) that were also
significantly enriched in SpiroMeta (FDR < 0.05). Since these two
large cohorts are independent, this requirement ensured strict
control of false-positive findings. For the airflow obstruction path-
way analysis, we used the available combined CHARGE and Spiro-
Meta meta-analyzed GWAS (8) and chose a much more stringent
FDR < 0.001 to designate significant gene set enrichment.

Sensitivity analyses of gene set enrichment

Since several distinct analytical methods exist for pathway en-
richment analysis and applying different algorithms to the
same GWAS data may yield different results, we compared the
performance of i-GSEA4GWAS against another pathway-based
approach known as GSA-SNP (17). There are fundamental differ-
ences between the two methods, including the statistical frame-
work used to assess enrichment aswell as the size and content of
the gene sets. We used the default z-statistic for enrichment and
second-best SNP to randomly associated signals in GSA-SNP. We
queried Gene Ontology and KEGG databases for gene sets. We
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performed an identical, two-stage analysis on CHARGE followed
by SpiroMeta lung function GWASs using GSA-SNP.We identified
over 300 enriched processes (at FDR < 0.05 in CHARGE that were
also significant at FDR < 0.05 in SpiroMeta). While this was a lar-
ger number than identified using iGSEA4GWAS (n = 131), it likely
reflected the fact that GSA-SNP sampled amuch larger number of
gene sets, whereas the proportion of identified significant gene
sets is similar between the two approaches. Approximately
one-quarter of the pathways identified by iGSEA4GWAS (32 of
131) were identical to those identified as significant by GSA-SNP
even though iGSEA4GWAS included several data resources not
sampled in GSA-SNP. Overall, there was substantial overlap be-
tween the two methods when the enriched gene sets were
grouped based on broader functional modules as defined in Fig-
ures 2 and 3. A detailed comparison between the enriched gene
sets identified by each approach is provided in Supplementary
Material, Table S4.

We did not filter SNPs based on LD structure prior to initiating
enrichment analysis in order to retain genome-wide coverage and
prevent loss of information. The statistical structure of iGSEA4G-
WAS is based on associating a single sentinel SNP with its prox-
imal gene locus (100 Kb window) without being influenced by its
association with other potential SNPs in LD. Nevertheless, it was
possible that the selected sentinel SNPs themselves may be in
LD. Therefore, we systematically assessed pairwise LD between
all 3307 pathway-associated SNPs using SNAP (https://www.
broadinstitute.org/mpg/snap/ldsearchpw.php) at r2 thresholds of
0.2, 0.5 and 0.8.We found limited evidence for LD between the sen-
tinel SNPs (Supplementary Material, Table S5).

Next, we repeated the entire iGSEA4GWAS analysis for lung
function using a wider window (1 Mb versus 100 Kb) to associate
proximal SNPs with loci. We observed over 70% identical match-
ing between enriched pathways using the wider window, sug-
gesting that the SNP to gene locus selection approach is robust
to a range of selected windows. This observation is also consist-
ent with our above finding that most pathway-associated SNPs
are not in LD.

Cluster analysis

Two-way unsupervised hierarchical clusteringwas performed on
enriched pathways in lung function based on the membership
profile of gene sets and their associated genes’ log-transformed
P-values (–log10P) using Pearson’s correlation metric (58). In this
approach, gene sets were initially labeled by the presence or ab-
sence of any lung function-associated genes and then clustered
together based on shared genemembers to form larger, function-
ally coherent pathway groupings defined as ‘modules’.

Literature mining

We used PubMatrix (59), an online multiplex comparison tool for
querying ‘search’ and ‘modifier’ terms within PubMed, to index
published literature on the role of enriched gene sets and their
associated gene members in influencing lung function. The
search terms were either pathway-associated gene symbols
(n = 3878) or pathway names (n = 131), and the modifier term
was ‘pulmonary function’.

DNAse I hypersensitive site enrichment analysis

The frequency that SNPs selected for pathway analysis fell
within DHS sites was compared with the frequency that all
SNPs analyzed in the GWAS were located in DHSs. All SNPs
were converted to their UCSC hg19 assembly positions using

liftOver (http://genome.ucsc.edu). Sentinel SNPs associated with
enriched pathways (one SNP per gene) and entire GWAS sets
were intersected with the complete set of DHS hotspot regions
(FDR < 0.05) identified in any of the 349 tissue or cell line samples
available from Maurano et al. (48). The intersection was calcu-
lated using the BEDOPS software (60). The enrichment P-values
were calculated using Fisher’s exact test based on the total
probability of two-tailed test. The frequency of lung function
pathway-associated SNPs was compared with the union set of
SNPs analyzed in the CHARGE and SpiroMeta lung function
GWASs. The airflow obstruction pathway-associated SNPs were
compared relative to all SNPs in the airflow obstruction GWAS.

Network analysis

We imported all 89 ECM-associated genes into Ingenuity software
and used its network-generating algorithm to develop interaction
networks built around these ‘focus genes’ using Ingenuity’s
knowledge base. We used only direct gene product interactions
to link nodes, and excluded any non-focus genes added by the al-
gorithm to grow the network. Networks were ranked based on
Fisher’s exact test of enrichment relative to networks generated
from randomly selected genes from Ingenuity’s knowledge base
(Supplementary Material, Table S6). Subsequent analysis was
based on the highest ranked ECM network that included the lar-
gest number of focused genes (n = 23 ECM-associated genes of
which 21 had direct interactions with each other).

Animal experiments

The Institutional Animal Care and Use Committees at the Univer-
sity of Washington and Washington University in St. Louis ap-
proved all animal experiments. We generated Mmp10-null mice
on a C57BL/6 background (61). These mice are healthy with no
overt defects in fertility, litter size, gross appearance, organ struc-
ture or tissuehistology. AdultmaleMmp10–/– (n = 10) andwild-type
(n = 9) mice were exposed to the smoke of four filtered cigarettes
(2R4F, Kentucky Tobacco Research and Development Center, Uni-
versity of Kentucky) per day, 6 days perweek for 6months. An un-
exposed group of age and sex-matched Mmp10–/– (n = 9) and wild
types (n = 9) were used as controls. The exposure experiments
wereperformed in theCigaretteSmokeExposureCore atWashing-
ton University, St. Louis. Upon completion of exposure experi-
ments, all animals were killed by an intraperitoneal injection of
a Tribromoethanol (Avertin) overdose and exsanguinated by cut-
ting the caudal vena cava. Lungs were cannulated and inflated
with neutral buffered formalin at a constant fluid pressure of
25 cm for 5 min. Lungswere removed, immersed in formalin over-
night, washed with graded increasing concentrations of ethyl al-
cohol, and subsequently embedded in paraffin and sectioned.
Structural changes caused by chronic cigarette smoke exposure
between the genotypes were assessed in the Histology and Im-
aging Core at the University of Washington using morphometry
based on a modification of the direct estimation of mean chord
length from a set of random intercepts applied to H&E stained tis-
sue sections (62).Whole slide imageswere acquired using a Nano-
zoomer (Hamamatsu model C9600) to scan entire right lung
sections and were uploaded into Visiopharm image analysis soft-
ware. The software provided 50 random images covering all lobes
of the right lung, created two randomly oriented lines traversing
the image, andprovided the sampling tools necessary tomanually
measure distance along the test lines between airspace walls.
Mean chord lengthwas calculated for eachmouse fromall images
counted.
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Quantitative real-time PCR (qPCR) was performed on total
RNA isolated using Trizol (Invitrogen, Carlsbad, CA, USA) from
whole lung ofwild-type andMmp10–/–mice exposed to the chron-
ic cigarette smoke protocol described above (n = 8 per group). RNA
was quantified using a Nanodrop spectrophotometer (Thermo
Scientific, Waltham, MA, USA) and 3–5 µg of total RNA was re-
verse transcribed using a High-Capacity cDNA Archive kit (Ap-
plied Biosystems, Foster City, CA, USA). qPCR was performed in
duplicates on an ABI HT7900 Fast Real-Time PCR System using
TaqMan Gene Expression assays forMmp10 and Il1b (Applied Bio-
systems) in duplicates. The threshold cycle (Ct) was determined
by instrument software and data expressed as relative quantifi-
cation calculated using 2–ΔΔCt for each gene and using hypoxan-
thine phosphoribosyltransferase (HPRT) as the reference gene.
HPRT Ct levels ranged between 23 and 25 in all assays.

Supplementary Material
Supplementary Material is available at HMG online.
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