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The number of people with chronic illnesses con-
tinues to increase dramatically around the world.
The key to understanding many such ilinesses
lies in the interaction of genetics, environmental
factors and lifestyle. Innovations in biotechnology
and the continual development of analytical
methods permit us to obtain increasingly accu-
rate measurements at the molecular, cellular and
organismal level. This is associated with a rapid
increase in the volume of data, which enables us
to analyse a biological system from many differ-
ent viewpoints. Today, for example, cells may be
analysed using their genome, transcriptome, pro-
teome or metabolome.

As a result, modern biological research requires
mathematical and statistical methods to allow for
efficient analyses of large amounts of data and
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the integration of various viewpoints. In addition,
there is a growing need for statistical and mechanis-
tic models to properly interpret the data obtained. In
close collaboration with our experimental partners,
our institute aims to establish analytical tools to en-
hance our understanding of diseases and their
treatment options.

The Institute of Computational Biology (ICB) resulted from the
amalgamation of the Institute for Biometry and Biomathemat-
ics and the Research Group for Computational Modelling in
Biology. The expertise of both groups was pooled in order to
create new possibilities for the data-driven analyses of bio-
logical systems. Founded in 2013, the ICB is staffed by around
50 scientists and postgraduates. In addition to scientific

work, our employees also lecture at Technische Universitit
Miinchen and supervise Master’s and Bachelor’s dissertations
in the fields of mathematics, statistics, information systems
and bioinformatics. The ICB works together with theoretical,
experimental and clinical research groups at a national and
international level. In addition, it is also part of several na-

tional industrial partnerships.

Science at the ICB

The ICB develops models and methods for analysing data in
systems biology and systems medicine. We analyse informa-
tion on a variety of scales - from time series of individual
cells to Omics data from large patient cohorts. In our ten
research groups, we are developing new methods for bio-
statistics, bioinformatics, image processing and mechanistic
modelling, as well as integrative Omics analyses and data
science. We apply these to the modelling of cellular decisions
and the quantification of gene-environment interactions in
disease pathologies. This article describes three of these re-

search projects in greater detail.
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Analysing cell-to-cell variability using statistical
methods

Biological systems are highly adaptive and therefore very
variable. Individual cells of the same type may react in very
different ways to the same stimulus. Thanks to technological
advances in imaging and the miniaturisation of reaction vol-
umes with microfluidics, the description and analysis of this
cell-to-cell variability is a new and exciting field of research.
The ICB works to describe heterogeneity in the cellular con-
text, e. g. gene expression variations in a mixture of differ-
entiated and undifferentiated cells, using both statistical and

mechanistic models.

Cellular heterogeneity is an essential factor in a range of
projects in developmental and stem cell biology, but also in
oncology. For example, we are working on acquiring a bet-
ter understanding of the initial stages of murine embryonic
development. After three divisions, a mouse embryo consists
of eight cells, which start to differentiate into different types
of cells. Experiments provided data on gene expression in in-
dividual cells after each cell division, which in turn provided
us with expression analyses for different cell types. In order
to detect differences between the cell types, we projected the
48-dimensional space of the gene expressions from single-cell
qPCR onto a two-dimensional subspace. Each cell profiled
thus corresponds to a point in the plane. With the aid of this
projection, we were able to analyse which cells are very close
together and which genes are responsible for transitions be-
tween cell types. Previously, it was only possible to differen-
tiate cells after six divisions using standard projections. How-
ever, using the non-linear expansion developed and adapted
by us, which also allows for group affiliations in the projec-
tion, it is possible to see that the cells can be categorised as
one of two sub-groups already after four divisions (Buettner

et al., 2012). In practice, we ascertained that the resolution of
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transcriptomic data at the single-cell level resulted in new
artefacts that were “averaged out” in the relevant data at the
population level. For example, similar cells in different phas-
es of the cell cycle could have significantly different levels

of expression. In partnership with our colleagues at EBI, we
recently recommended a method based on variance analysis
in order to compensate for relevant confounders, such as the
cell cycle (Buettner et al., 2015). Thanks to the combination
of single-cell analyses with statistical models, cells could be
grouped into sub-populations that would otherwise have re-

mained undiscovered.

From the cell to the patient

Interestingly, the methods developed for single-cell data can
also be used for completely different types of data, such as in-
dividual measurements in large patient collectives. One such
example comes from the field of diabetes research, in part-

nership with experts at Helmholtz Zentrum Miinchen.

Diabetes mellitus has been classified as an international threat
and epidemic by the United Nations and is thus one of the
biggest challenges faced by western industrialised nations.
The mechanisms causing the disease are largely unknown.
Until now, the best way of predicting the risk of type 1 diabe-
tes was by examining family medical history and HLA geno-
types. As part of a collaborative project, we were recently
able to identify weighted gene combinations using statistical
analyses that enable us to better predict the risk of type 1
diabetes (Winkler et al., 2014). Our risk model with ten se-
lected genetic positions enables improved risk prediction and
therefore better screening of children in observational and

intervention studies.

In addition to lists of known genetic risk markers, the in-

stitute also works with large Omics data sets. For example,
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we recently created metabolomics networks that are able to

depict the interactions between metabolic molecules specific
to a type of tissue or organism. These networks were then
expanded using genome-wide associations with genetic poly-
morphisms in order to create large, integrated metabolic
maps showing metabolic and genetic correlations (Shin et al.,
2014). We then used these for a variety of purposes, such as
analysing phenotype associations of the metabolome in or-
der to simplify the biological interpretation of large results

lists.

From measuring heterogeneities to understanding
mechanisms

In order to better understand cause-and-effect chain, we use
mechanistic dynamic models to analyse the in vivo charac-
teristics of, for example, leukaemia, thereby promoting the
mechanism-based stratification of carcinomas, or investi-
gating cellular signal transduction. The development of de-
terministic and stochastic models is complemented here by
tailored statistical evaluation methods. Together with other
groups, we have developed algorithms that can be used to op-
timise models with several hundred parameters within hours.
This allows the analysis of more complex data sets from a

number of experiments.

We recently used such methods to identify various subgroups
of neurones involved in transmitting and modulating pain
(Hasenauer et al., 2014). Through the combination of statisti-
cal and mechanistic models, we were able to determine the
cause of differences between the subgroups, despite the fact
that the cause had not been directly observed (Fig. 1). In simi-
lar projects, we worked with others to determine a potential
target for the treatment of chronic pain, which is a major

socio-economic issue.

Outlook

Innovative statistical methods and mechanistic modelling ap-
proaches are required in order to push ahead with establish-
ing systems biology and systems medicine in the long term,
both at our facilities and within Germany. Complex, high-
dimensional, potentially longitudinal data sets are more and
more available - partly within the specific project and partly
via public databases - although clarification is still required
on the questions of how to work with them and their integra-
tive analysis in a wide range of projects. As a result, we want
to develop tailored methods for complete analysis - from the
cell to the patient - one step at a time, and push ahead with
the development of multi-stage data-integration processes

and genome-scale mechanistic models.
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Figure 1:

lllustration of ODE-MM (Hasenauer et al., 2014), a new modelling approach that draws on the advantages of synergies between mechanistic and
statistical models. The intracellular dynamics of individual sub-populations can be described using mechanistic, ordinary differential equations.
Cell-to-cell variability is depicted using mixture models. Using parameter estimation and model selection, these models (A) were adapted to

experimental data (B), e.g. microscopy data. The resultant models (C) are reliable, with predictions of differences between cellular sub-populations,

for example, having already been validated in a pain context (D).
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