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Abstract

Background: Obesity, defined as pathologically increased body mass index (BMI), is strongly related to an
increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with
insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor
for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still
not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene
expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed.

Methods: Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with
BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total
of 1977 individuals.

Results: Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500
transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression
signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from
mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the
transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved
in the defence against reactive oxygen species (ROS).
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* Correspondence: georg.homuth@uni-greifswald.de
†Equal contributors
1Interfaculty Institute for Genetics and Functional Genomics, University
Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
Full list of author information is available at the end of the article

© 2015 Homuth et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Homuth et al. BMC Medical Genomics  (2015) 8:65 
DOI 10.1186/s12920-015-0141-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-015-0141-x&domain=pdf
mailto:georg.homuth@uni-greifswald.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Whereas the first signature confirms published results, the other two provide possible mechanistic
explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin
signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of
numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of
insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome
and T2D.

Keywords: Transcriptomics, Transcriptome-wide association study (TWAS), BMI, Obesity, Insulin resistance, Type 2
diabetes, Oxidative stress, Insulin signaling

Background
The past two decades saw obesity surpass malnutrition
and infectious diseases as the greatest contributors to
morbidity and mortality. This obesity epidemic is also
driving the world-wide endemic development of type 2
diabetes (T2D) [1]. Body mass index, the most com-
monly used anthropometric measure in the context of
health risks related to obesity, is correlated with metabolic
disorders, cardiovascular and all-cause mortality [2].
Regulation of body weight is complex and affected by

genetic as well as environmental factors. Heritability of
anthropometric measures such as BMI is as high as 40
to 70 % [3]. This prompted intense research for under-
lying genetic factors to unravel the metabolic networks
controlling body mass [4]. Monogenic mutations such as
those described for LEP, LEPR, POMC, and MC4R cause
only a minority of obesity cases whereas in most individ-
uals obesity is based on a polygenic predisposition amp-
lified by an obesogenic Western lifestyle [4].
Genome-wide association studies (GWAS) have de-

tected a large number of genes modulating levels of and
susceptibility to adiposity. However, the effect sizes of
these common variants are small, with a limited predict-
ive value for obesity risk [5]. Gene expression studies
have emerged as a promising approach for the analysis
of gene regulatory networks and might allow the identi-
fication of pathways linked to body mass regulation [6].
Previous studies on obese subjects demonstrated that
blood cells represent a robust model to study the main-
tenance of energy homeostasis and its interaction with
body weight [7].
In order to identify potentially disease-relevant

BMI-related gene expression signatures, we deter-
mined whole-blood mRNA levels of 1977 individuals from
two large independent population-based cohort studies
(Kooperative Gesundheitsforschung in der Region
Augsburg (KORA) and Study of Health in Pomerania
(SHIP-TREND)) within the frame of the DZHK
MetaXpress consortium by array-based transcriptional
profiling and subsequently correlated mRNA abun-
dances and BMI in the current study. In addition to
the demonstration of extensive BMI-associated alterations

of the whole-blood transcriptome, three distinct gene ex-
pression signatures associated with increased BMI were
detected. The observation of BMI-associated decreased
expression of genes involved in insulin signaling and pro-
tection against oxidative stress provides new insight into
the pathomechanisms underlying obesity-mediated insulin
resistance and systemic oxidative stress contributing to
the development of type 2 diabetes (T2D).

Methods
Study populations
All subjects were of European ancestry. Written, in-
formed consent has been obtained from participants and
the studies were approved by the Ethics Committees of
the University of Greifswald and the Bavarian Medical
Association for SHIP and KORA, respectively.

KORA F4
The KORA (Cooperative Health Research in the Region
of Augsburg) F4 survey has been described before [8].
Briefly, 1653 individuals aged 55 to 74 years from the
city Augsburg in the southeast of Germany and two
adjacent counties participated in the population-based
KORA survey S4 that was conducted between 1999 and
2001 [8]. This cohort was reinvestigated in the KORA
survey F4 in 2006–2008. Study design, sampling method
and data collection have been described in detail elsewhere
[9, 10]. The study presented here is based on a KORA F4
subsample of 988 individuals aged 62 to 81 years.

SHIP-TREND
The Study of Health in Pomerania (SHIP) is a longitu-
dinal population-based cohort study in West Pomerania,
a region in the northeast of Germany, assessing the
prevalence and incidence of common population-
relevant diseases and their risk factors. Baseline exami-
nations for SHIP-TREND were carried out between
2008 and 2012, comprising 4,420 participants. Study de-
sign and sampling methods were previously described
[11]. The present project is based on a subset of 989 in-
dividuals aged 20 to 81 years of the SHIP-TREND study
population.
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Anthropometric measurements
Weight and height were measured using standard proto-
cols as described elsewhere [8]. For the anthropometric
measurements, calibrated, digital scales (Seca 862, Seca
Germany) and a measuring stick (Seca 220, Seca,
Germany) were used. The body mass index (BMI) was
calculated as weight in kilograms divided by height in
square meters.

Preparation and quality control of whole-blood RNA and
transcriptome analysis
Blood sample collection as well as RNA preparation
were described in detail elsewhere [12]. Briefly, whole-
blood samples were collected from participants of both
studies between 8:00 a.m. and noon after overnight fast-
ing and stored in PAXgene Blood RNA Tubes (BD). Sub-
sequently, RNA was prepared using the PAXgene™
Blood miRNA Kit (QIAGEN, Hilden, Germany). Purity
and concentration of RNA were determined using a
NanoDrop ND-1000 UV–vis Spectrophotometer (Thermo
Scientific). To ensure a constantly high quality of the RNA
preparations, all samples were analyzed using RNA 6000
Nano LabChips (Agilent Technologies, Germany) on a
2100 Bioanalyzer (Agilent Technologies, Germany) accord-
ing to the manufacturer’s instructions. Samples exhibiting
an RNA integrity number (RIN) less than seven were ex-
cluded from further analysis. The Illumina TotalPrep-96
RNA Amplification Kit (Ambion, Darmstadt, Germany)
was used for reverse transcription of 500 ng RNA into
double-stranded (ds) cDNA and subsequent synthesis of
biotin-UTP-labeled antisense-cRNA using this cDNA as
the template. Finally, in total 3,000 ng of cRNA were hy-
bridized with a single array on the Illumina HumanHT-12
v3 BeadChips, followed by washing and detection steps in
accordance with the Illumina protocol. BeadChips were
scanned using the Illumina Bead Array Reader.
The Illumina software GenomeStudio V 2010.1 was

used to read the generated raw data, for imputation of
missing values and sample quality control. Subsequently,
raw gene expression data were exported to the statistical
environment R, version 2.14.2 (R Development Core
Team 2011). Data were normalized using quantile
normalization and log2-transformation using the lumi
2.8.0 package from the Bioconductor open source soft-
ware (http://www.bioconductor.org/).

Gene expression data analysis
Individuals with missing BMI values or at least one of
the covariates values (KORA F4: n = 5, SHIP-TREND:
n = 0) were excluded from the analysis. In linear re-
gression models, gene expression levels were regressed on
BMI with adjustment for age, sex, red blood cell count
(RBC), white blood cell count (WBC), hematocrit, platelet
count, RNA quality (RIN), plate layout after RNA

amplification (96 well plates), and sample storage time
(time between blood donation and RNA preparation) [12].
It has been demonstrated earlier that KORA F4 and
SHIP-TREND are comparable and can be meta-analyzed,
even if the two cohorts differ in some minor aspects [12].
A sample size-weighted z-score based meta-analysis was
used to combine the gene expression data from both co-
horts (n = 1977) using the metafor meta-analysis package
for R, version 1.4-0 (http://www.jstatsoft.org/v36/i03/). In
order to test if any detected associations between BMI
and whole-blood mRNA levels were mediated by BMI-
dependent shifts in the proportions of different blood cell
sub-types, an additional analysis with adjustment for rela-
tive lymphocyte, neutrophil, basophil, eosinophil and
monocyte count was performed in SHIP-TREND, where
these parameters were available for all individuals. Adjust-
ing for these parameters did not substantially change the
obtained results. The corresponding R2-values for effect
size (beta), standard error, and -log10 p-value of the
meta-analysis were 94, 99, and 91 %, respectively. The
effect of an additional adjustment for homeostasis model
assessment – insulin resistance (HOMA-IR) on the results
was negligible. The corresponding R2-values for effect size
(beta), standard error, and -log10 p-value of the meta-
analysis were 99.56, 99.98, and 99.39 %, respectively. Only
the 12,778 transcripts with a detection rate (defined as the
proportion of observations with detection p-value < 0.05)
above 50 % in both cohorts were considered. The
Benjamini and Hochberg false discovery rate (FDR)
was used to correct for multiple testing. Associations
with an FDR < 0.01 were considered statistically sig-
nificant. Pathway analyses were performed based on
all significant gene-specific probes using the Ingenuity
Pathway Analysis (IPA) software tool (IPA build ver-
sion: 338830 M, content version: 23814503, release
date: 2015-03-22; analysis Date: 2015-06-19; http://
www.ingenuity.com/). The database underlying IPA is
referred to as the Ingenuity Knowledge Base. Based
on the Illumina ProbeIDs, the IPA software allocates
probes to annotated genes and to corresponding ob-
jects in the Ingenuity Knowledge Base. The reference
set was restricted to genes represented on the Illumi-
naHT-12 v3 BeadChip, and only human annotations were
considered. In case multiple probes mapped to one gene,
the probe exhibiting the smallest p-value was considered
for downstream analyses. Pathway analyses were per-
formed with IPA’s Core Analysis module. Overrepresenta-
tions of BMI-associated genes in functional categories
and canonical pathways were calculated using a right-
tailed Fisher’s exact test with a significance level of
0.05 after Benjamini and Hochberg correction. The
resulting p-value identifies over-representation of in-
put genes in a given process. Gene enrichment in ca-
nonical pathways is described by the ratio of the
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number of input genes that map to the pathway di-
vided by the total number of genes in this pathway.
Permutation analysis, which is described in detail in
Additional file 1: Supplemental Materials, was per-
formed for evaluating robustness of Ingenuity Pathway
Analysis (IPA) and identifying potentially false positive
over-representations.
For an overview of the number of significant and an-

notated probes as well as genes, see Additional file 2:
Figure S1–S34. The detailed workflow for the analysis of
Illumina gene expression microarray data was described
recently within the MetaXpress consortium [12].

Results and discussion
General results
Within the MetaXpress Consortium of the German
Center for Cardiovascular Research (DZHK), whole-
blood mRNA levels of 1977 participants of the two inde-
pendent population-based studies SHIP-TREND and
KORA F4 (Table 1) were determined by array-based
transcriptional profiling. Subsequently, whole-blood
mRNA levels were associated with the phenotype BMI.
Meta-analysis of the whole-blood gene expression data
resulted in the identification of 3762 annotated genes

whose transcript levels were significantly associated with
BMI after adjusting for multiple testing [Benjamini and
Hochberg false discovery rate (FDR) < 0.01] (Additional
file 2: Table S1). Recently, the Data-driven Expression
Prioritized Integration for Complex Traits (DEPICT)
method was used to prioritize BMI-related genes [5]. Of
the 989 genes prioritized by DEPICT as BMI-related,
388 exhibited significant mRNA levels in our analysis.
For 151 of these transcripts, we could confirm associ-
ation of the their expression levels with BMI (Additional
file 2: Table S33). Of the 3762 genes described above,
the correlation between mRNA abundance and BMI was
positive for 1269 genes (33.7 %) and negative for 2411
genes (64.1 %), while 82 genes (2.2 %) exhibited incon-
sistent effect directions on the probe level. In the latter
case, the different probes target different exons of the
corresponding genes, indicating that individual mRNA
isoforms specified by the same genes were inversely as-
sociated with BMI. Adjustment for HOMA-IR resulted
in the detection of 1836 and 2602 transcripts exhibiting
positive and negative BMI-correlations, respectively,
with an overlap of 90.2 % and 94.1 % to the non-
HOMA-IR-adjusted analysis, demonstrating that associ-
ations of BMI with transcript levels were largely
independent of HOMA-IR (Additional file 2: Table S34).
Using Ingenuity Pathways Analysis (IPA) software, we
identified 128 and 63 canonical pathways exhibiting
significant association with BMI after controlling the
FDR at 0.05 and 0.01, respectively (Additional file 2:
Table S5). In order to validate robustness across
platforms, the pathway over-representation analysis
was repeated using the web-based toolkit WebGestalt
(bioinfo.vanderbilt.edu/webgestalt/) and the online
database resources KEGG (genome.jp/kegg/) and
WikiPathways (wikipathways.org). The significantly
enriched pathways were essentially concordant with
those detected using IPA (Additional files 3 and 4).
Subsequent closer inspection of the assigned gene-
specific transcripts revealed a strong overlap between
the gene/protein content of numerous of the canon-
ical IPA-pathways. The extensive connectivity of the
nodes displayed in Fig. 1 represents this strong over-
lap among the pathways, particularly for the attenu-
ated insulin signaling. We therefore restricted the
interpretation of the pathway analysis to the top 25
IPA-pathways exhibiting the most significant associa-
tions and defined three prominent whole-blood gene
expression signatures (see below) as the major out-
come of the analysis.
The 25 pathways included EIF2 Signaling, Mitochon-

drial Dysfunction, Regulation of eIF4 and p70S6K Signal-
ing, PI3K/AKT Signaling, Insulin Receptor Signaling,
Hypoxia Signaling in the Cardiovascular System, Chronic
Myeloid Leukemia Signaling, Production of Nitric Oxide

Table 1 Cohort characteristics

Variables SHIP-TREND KORA F4

Mean age [years] 50.1 ± 13.7 70.4 ± 5.4

Females 555 (56.0 %) 493 (49.6 %)

Active smokers 214 (21.2 %) 66 (6.7 %)

Mean body height [cm] 169.8 ± 9.0 165.3 ± 8.8

Body weight [kg] 79.0 ± 15.1 78.9 ± 13.7

Body mass index (BMI) [kg/m2] 27.3 ± 4.6 28.9 ± 4.5

Waist circumference [cm] 88.0 ± 12.9 98.6 ± 12.1

Waist-to-height ratio (WHtR) 0.87 ± 0.09 0.91 ± 0.08

Fasting glucose [mg/dL] 97.9 ± 11.2 104.8 ± 22.8

2-hour glucose OGTT [mg/dL] 117.3 ± 36.7 128.7 ± 42.4

Fasting insulin [mU/L] 6.7 ± 8.3 10.4 ± 33.5

Homeostasis model assessment insulin
resistance (HOMA-IR)

1.15 ± 1.72 2.82 ± 8.95

HbA1c [%] 5.19 ± 0.57 5.77 ± 0.69

Leptin [ng/mL] 15.6 ± 14.5 22.4 ± 24.3

Red blood cell count [Tpt/L] 4.63 ± 0.39 4.50 ± 0.40

White blood cell count [pt/nl] 5.72 ± 1.48 6.00 ± 1.81

Platelet count [pt/nl] 225.7 ± 50.3 244.7 ± 65.1

Hematocrit [l/l] 0.42 ± 0.03 0.41 ± 0.03

Systolic blood pressure (SBP) [mmHg] 124.4 ± 16.9 128.7 ± 20.0

Diastolic blood pressure (DBP) [mmHg] 76.6 ± 9.8 74.0 ± 10.1

Data are given as mean ± standard deviation or as number and percent
(in parentheses). OGTT oral glucose tolerance test, Tpt/L 1012 cells/L
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and Reactive Oxygen Species in Macrophages, Pancreatic
Adenocarcinoma Signaling, ILK Signaling, AMPK Signal-
ing, JAK/Stat Signaling, Renal Cell Carcinoma Signaling,
NRF2-mediated Oxidative Stress Response, Ceramide Sig-
naling, mTOR Signaling, CTLA4 Signaling in Cytotoxic T
Lymphocytes, B Cell Receptor Signaling, Prostate Cancer
Signaling, Glioma Signaling, Oxidative Phosphorylation,
Non-Small Cell Lung Cancer Signaling, Heme Biosyn-
thesis II, Cyclins and Cell Cycle Regulation, and PDGF
Signaling (Fig. 2 and Table 2). These 25 pathways
comprised 396 genes whose transcript abundance in
whole-blood was significantly associated with BMI
(Additional file 2: Tables S4–S30). Overall, the corre-
lations were positive for 171 genes (43.2 %) and nega-
tive for 225 genes (56.8 %). Permutation analysis
confirmed over-representation of genes in all path-
ways but PDGF Signaling (for details see Additional
file 1: Supplementary Materials).

A gene expression signature indicating a ratio shift from
mature erythrocytes towards reticulocytes
A large part of the 171 positively correlated gene-
specific transcripts in the top 25 IPA-pathways specified

components of the cellular protein synthesis apparatus
(ribosomal proteins and translation factors) and mito-
chondrial proteins, in particular of the respiratory chain
and the F0/F1 ATP synthase complex. This was mainly
the case for the pathways EIF2 signaling, Mitochondrial
dysfunction, Oxidative phosphorylation, Regulation of
eIF4 and p70S6K signaling, and mTOR signaling (Fig. 2
and Table 2). Expression of these genes is strongly in-
duced by pro-proliferative signals and mainly driven by
the transcription factor MYC [13, 14]. The BMI-
associated increase in the abundance of these transcripts
most probably reflected a ratio shift from mature eryth-
rocytes that contain only mRNA remnants [15] towards
reticulocytes with substantial mRNA content. The
number of bone marrow-residing adipocytes increases
with BMI and adipocyte-secreted leptin promotes
hematopoiesis and lymphopoiesis [16–18]. Thus, posi-
tive correlations were described between both red and
white blood cell counts on the one hand and BMI/
obesity as well as pre-diabetes/T2D [19, 20] on the
other hand. In line with these findings, we observed
significant positive correlations of serum leptin, fast-
ing glucose, and 2 h-OGTT glucose with BMI in our

Attenuated Insulin Signaling

Erythrocyte – Reticulocyte Ratio Shift 

Reduced Defence against Oxidative Stress 

Fig. 1 Overlap graph of the top 25 enriched IPA-pathways. Each node represents one pathway significantly enriched with BMI-associated
gene-specific transcripts. The node size is proportional to the number of BMI-associated transcripts within each respective pathway. Edge
shade and width refer to the overlap between pathways in terms of shared transcripts and were calculated based on the Jaccard similarity
coefficient, which is defined as the size of the intersection divided by the size of the union of two sample sets. Edges between nodes are
shown if transcripts are shared between pathways and if the Jaccard coefficient≥ 90th percentile. Nodes, i.e., pathways are colored according to the
three defined gene expression signatures. The extensive connectivity, particularly for the attenuated insulin signaling, represents the strong overlap
among the pathways. Pathways are numbered according to their enrichment p-values. 1: EIF2 Signaling, 2: Mitochondrial Dysfunction, 3: Regulation of
eIF4 and p70S6K Signaling, 4: PI3K/AKT Signaling, 5: Insulin Receptor Signaling, 6: Hypoxia Signaling in the Cardiovascular System, 7: Chronic Myeloid
Leukemia Signaling, 8: Production of Nitric Oxide and Reactive Oxygen Species in Macrophages, 9: Pancreatic Adenocarcinoma Signaling, 10:
ILK Signaling, 11: AMPK Signaling, 12: JAK/Stat Signaling, 13: Renal Cell Carcinoma Signaling, 14: NRF2-mediated Oxidative Stress Response, 15:
Ceramide Signaling, 16: mTOR Signaling, 17: CTLA4 Signaling in Cytotoxic T Lymphocytes, 18: B Cell Receptor Signaling, 19: Prostate Cancer Signaling,
20: Glioma Signaling, 21: Oxidative Phosphorylation, 22: Non-Small Cell Lung Cancer Signaling, 23: Heme Biosynthesis II, 24: Cyclins and
Cell Cycle Regulation, 25: PDGF Signaling
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study (p = 4.27 × 10−245, 1.23 × 10−27, and 3.25 × 10−27,
respectively). Concurrently, erythrocyte survival de-
creases with increasing BMI and higher blood glucose
concentration [21, 22], most probably due to pro-
nounced oxidative stress [23]. Thus, the positive cor-
relations between BMI and mRNA abundances of
MYC-regulated genes of the EIF2 signaling, Mitochondrial
dysfunction, Oxidative phosphorylation, Regulation of eIF4
and p70S6K signaling, and mTOR signaling are rather at-
tributable to a shift in the erythrocyte/reticulocyte ratio
than being a consequence of altered gene regulation,
which might also be the case for many other posi-
tively correlated transcripts. This interpretation is
strengthened by our observation that mRNA abun-
dances of all seven genes of the Heme biosynthesis II

pathway, which are highly expressed in reticulocytes,
were also positively correlated with BMI (Additional
file 2: Table S28).

A gene expression signature indicating decreased
expression of genes essentially involved in transmission
and amplification of the insulin signal
The majority of gene-specific transcripts of the other 20
pathways which share a large number of genes (Fig. 1)
were negatively correlated with BMI. Strikingly, five
genes (IRS2, PIK3CD, PIK3R4, PDPK1, AKT1) encoding
key proteins involved in AKT-dependent transduction of
the insulin signal exhibited decreased mRNA abun-
dances with increasing BMI (Fig. 3; for details see
Additional file 1: Supplementary Materials S1). Besides

Percentage

0 20 40 60 80 100

NRF2−mediated oxidative stress response

PDGF signalling

Cyclins and cell cycle regulation

Non−small cell lung cancer signalling

Glioma signalling

Prostate cancer signalling

B cell receptor signalling

CTLA4 signalling in cytotoxic T lymphocytes

mTOR signalling

Ceramide signalling

Renal cell carcinoma signalling

JAK−STAT signalling

AMPK signalling

ILK signalling

Pancreatic adenocarcinoma signalling

Production of NO and ROS in macrophages

Chronic myeloid leukemia signalling

Hypoxia signalling in the cardiovascular system

Insulin receptor signalling

PI3K/AKT signalling

Heme biosynthesis II

Oxidative phosphorylation

mTOR signalling

Regulation of eIF4 and p70S6K signalling

Mitochondrial dysfunction

EIF2 signalling

0 1 2 3 4 5 6 7 8 9 10

Fig. 2 Ingenuity pathway analysis (IPA) results. The results are shown for the 25 most significantly enriched BMI-associated canonical IPA pathways.
The percentage of transcripts that are positively, negatively or not significantly associated with BMI in the meta-analysis is provided as red, green and
grey bars, respectively. Black squares display the –log10 p-value
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the AKT-linked signal transduction cascade, the insulin
signal is also transmitted by the SOS1::GRB2-RAS-RAF-
MEK axis. This pathway primarily mediates the initiation
of mRNA translation as well as of transcriptional re-
sponses (Fig. 3; for details see see Additional file 1:
Supplementary Materials S1). Five genes (GRB2,
RAF1, MAP2K1, MAPK3, MAPK1) encoding key pro-
teins of this latter signaling axis showed decreased
mRNA levels with increasing BMI. Regulation of the
genes of these two main insulin signaling pathways is
particularly important as strong amplification of the
primary insulin signal occurs during these initial

transmission steps. Furthermore, 26 additional genes
involved in insulin signaling downstream of the main
axes exhibited reduced mRNA abundances with in-
creasing BMI. These expression changes could also
contribute to or at least indicate attenuated signaling.
In contrast, BMI-transcript correlations indicating im-
proved signaling could only be detected for five add-
itional genes (for details see Fig. 4 and Additional file 1:
Supplementary Materials S1).
We further observed positive correlations between

FOXO3 or FOXO4 mRNA abundances and BMI. Both
genes encode prominent transcription factors involved

Table 2 The 25 IPA-pathways most significantly enriched for BMI-associated gene-specific transcripts in the SHIP-TREND/KORA F4
meta-analysis

Defined gene expression signatures with assigned
canonical IPA-pathways

FDR for genes with BMI-associated
mRNA levels (all genes/ positively
associated/ negatively associated)

Number of genes with BMI-associated
mRNA levels (all genes/ positively
associated/ negatively associated)

FDR from permutation
analysis

Erythrocyte-Reticulocyte Ratio Shift

EIF2 signaling 6.8 × 10-8/ 6.3 × 10-14/ 5.8 × 10-1 70/ 46/ 24 0.0002

Mitochondrial dysfunction 1.0 × 10-5/ 3.6 × 10-8/ 3.2 × 10-1 58/ 34/ 24 0.0002

Regulation of eIF4 and p70S6K signaling 1.7 × 10-5/ 4.5 × 10-6/ 1.3 × 10-1 55/ 29/ 26 0.0002

mTOR signaling 5.4 × 10-4/ 1.1 × 10-2/ 6.9 × 10-2 60/ 26/ 34 0.0059

Oxidative phosphorylation 7.9 × 10-4/ 4.9 × 10-8/ N. A. 34/ 25/ 9 0.0002

Heme biosynthesis II 1.9 × 10-3/ 4.5 × 10-6/ N. A. 7/ 7/ 0 0.0002

Attenuated Insulin Signaling

PI3K/AKT signaling 1.7 × 10-5/ 3.6 × 10-1/ 6.9 × 10-4 49/ 15/ 34 0.0002

Insulin receptor signaling 6.5 × 10-5/ 8.6 × 10-1/ 5.8 × 10-4 49/ 13/ 36 0.0002

Hypoxia signaling in the cardiovascular system 6.5 × 10-5/ 4.5 × 10-1/ 6.9 × 10-4 30/ 9/ 21 0.0002

Chronic myeloid leukemia signaling 1.5 × 10-4/ 4.5 × 10-1/ 1.7 × 10-3 38/ 12/ 26 0.0002

Production of NO and ROS in macrophages 1.5 × 10-4/ N. A./ 4.3 × 10-6 62/ 9/ 53 0.0002

Pancreatic adenocarcinoma signaling 1.5 × 10-4/ 7.6 × 10-1/ 7.4 × 10-4 42/ 12/ 30 0.0134

ILK signaling 1.9 × 10-4/ 8.8 × 10-1/ 5.8 × 10-4 62/ 15/ 47 0.0002

AMPK signaling 3.1 × 10-4/ 7.7 × 10-1/ 1.6 × 10-3 48/ 14/ 34 0.0026

JAK-STAT signaling 3.1 × 10-4/ 8.8 × 10-1/ 6.9 × 10-4 31/ 7/ 24 0.0154

Renal cell carcinoma signaling 3.1 × 10-4/ 6.8 × 10-1/ 2.1 × 10-3 30/ 9/ 21 0.0170

Ceramide signaling 3.8 × 10-4/ 9.2 × 10-1/ 6.9 × 10-4 33/ 7/ 26 0.0026

mTOR signaling 5.4 × 10-4/ 1.1 × 10-2/ 6.9 × 10-2 60/ 26/ 34 0.0059

CTLA4 signaling in cytotoxic T lymphocytes 6.2 × 10-4/ 5.0 × 10-2/ 3.8 × 10-2 33/ 14/ 19 0.0002

B cell receptor signaling 7.4 × 10-4/ 9.2 × 10-1/ 5.8 × 10-4 56/ 12/ 44 0.0002

Prostate cancer signaling 7.9 × 10-4/ 9.2 × 10-1/ 8.5 × 10-4 32/ 7/ 25 0.0002

Glioma signaling 7.9 × 10-4/ 4.5 × 10-1/ 7.6 × 10-3 36/ 12/ 24 0.0085

Non-small cell lung cancer signaling 1.4 × 10-3/ 9.2 × 10-1/ 1.5 × 10-3 27/ 6/ 21 0.0002

Cyclins and cell cycle regulation 2.0 × 10-3/ 1.9 × 10-1/ 4.1 × 10-2 30/ 12/ 18 0.0002

PDGF signaling 2.0 × 10-3/ 9.0 × 10-1/ 1.7 × 10-3 30/ 7/ 23 0.1620

Reduced Protection against Oxidative Stress

NRF2-mediated oxidative stress response 3.5 × 10-5/ 8.7 × 10-1/ 8.5 × 10-4 60/ 17/ 43 0.0489

The pathway “mTOR Signaling” is assigned to two signatures: “Erythrocyte-Reticulocyte Ratio Shift” (positively associated transcripts) and “Attenuated Insulin Signaling”
(negatively associated transcripts). Benjamini-Hochberg-FDR-values < 0.01 are provided in bold. Permutation analysis was performed to evaluate robustness of the
pathway enrichment. The single Benjamini- Hochberg corrected p-value > 0.05 possibly indicating a false positive result (PDGF signaling) is underlined
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in glucose homoeostasis. As a consequence of decreased
AKT-dependent phosphorylation, increased amounts of
FOXO proteins translocate to the nucleus where they
drive the expression of their own genes in a positive
feedback loop. This mechanism may explain the positive
correlation of FOXO3 or FOXO4 transcript levels with
BMI.
The mRNA signature of attenuated insulin signaling

suggests that high BMI may cause lower amounts of key
proteins involved in transduction and amplification of
the insulin signal, pointing to a plausible mechanism
contributing to the well-established association between
obesity and insulin resistance. In line with these findings,
we also found positive correlations between BMI and
fasting glucose (p = 1.23 × 10−27), 2 h-OGTT glucose
(p = 3.25 × 10−27), blood insulin (p = 1.11 × 10−14) as
well as HOMA-IR (p = 3.95 × 10−18), confirming the
link between increased BMI/obesity and insulin resist-
ance or (pre)diabetes, respectively. The demonstration
of attenuated insulin signaling processes in easily ac-
cessible whole-blood samples was surprising as blood
cells do not belong to the classical insulin-sensitive
tissues primarily involved in glucose homoeostasis,
such as liver, skeletal muscle, and adipose tissue.

A gene expression signature indicating reduced
expression of key genes involved in the defence against
reactive oxygen species (ROS)
The pathomechanisms underlying vascular and non-
vascular complications related to insulin resistance,
metabolic syndrome and T2D have not been com-
pletely resolved yet. Recent epidemiological evidence
suggests a central role of oxidative stress [24, 25]. In
our analyses, the transcript levels of multiple promin-
ent target genes of NRF2, the key regulatory tran-
scription factor of the major cellular defense system
against oxidative stress, were negatively correlated
with BMI (Fig. 5; for details see Additional file 1:
Supplementary Materials S3). Consistent with this
finding, mRNA levels of four genes encoding direct
NRF2 dimerization partners and of CREBBP encoding
a nuclear trans-activator of NRF2 were also negatively
correlated with BMI (Fig. 5). Furthermore, full activa-
tion of NRF2 requires insulin signaling via the AKT-
and ERK-mediated phosphorylation cascades, which
are predicted to be attenuated with increasing BMI.
Together these results indicate that the most import-
ant cellular defense system against oxidative stress be-
comes progressively impaired with increasing BMI,

Insulin 
Receptor

IRS2 PI(3)K PDPK1

AKT1

SOS1::
GRB2 

RAS

RAF

MAP2K1

MAPK3 MAPK1

Fig. 3 BMI-associated net down-regulation of the two main signal transduction axes propagating and amplifying the initial insulin signal.
Ligand-activated insulin receptor mediates activating tyrosine phosphorylation of IRS (insulin receptor substrate) proteins. Downstream of IRS, there are
two major signal transduction branches: The PI(3)K→ PDPK1→ AKT (right) and the SOS1::GRB2→ RAS→ RAF→ AP2K1 (MEK family)→MAPK3/MAPK1
(ERK family) kinase cascades (left). Tyrosine-phosphorylated IRS proteins bind PI(3)K and the SOS1::GRB2 complex. The activated SOS1::GRB2 complex
promotes GDP-GTP exchange on p21ras (RAS), thereby activating the RAS→ RAF→MAP2K1 (MEK family)→MAPK3/MAPK1 (ERK family) branch.
Activation of PI(3)K (phosphatidylinositol-4, 5-bisphosphate 3–kinase) by IRS causes the production of PI3,4P2 (phosphatidylinositol-3, 4-bisphosphate)
and PI3,4,5P3 (phosphatidylinositol-3, 4,5-triphosphate) which recruit PDPK1 (3-phosphoinositide-dependent protein kinase 1) and AKT proteins to the
membrane. Subsequently, AKT is activated by PDPK1-mediated tyrosine phosphorylation. Finally, AKT and the ERK family kinases phosphorylate
numerous cellular substrate proteins, resulting in their activation or inactivation (for details see Additional file 1: Supplementary Materials S1). Green
and red coloring indicates signal transduction modules with corresponding mRNA levels that are negatively and positively correlated, respectively,
with BMI in the present study
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which is in agreement with the aforementioned epi-
demiological associations.

Conclusions
Here, we demonstrate extensive BMI-associated alter-
ations of the whole-blood transcriptome with more
than 3,500 transcripts exhibiting positive or negative
BMI-correlation. Of particular interest, we report the
identification of three distinct gene expression signa-
tures associated with increased BMI in a meta-analysis
of array-based whole-blood transcriptome profiling
data of 1977 individuals from two large population-
based cohorts. These signatures reflect (1) a ratio shift
from mature erythrocytes towards reticulocytes, (2) im-
paired insulin signaling, and (3) impaired defense against

oxidative stress. The latter two signatures corroborate and
augment epidemiological findings and emphasize the
value of whole-blood gene expression profiling for the
analysis of molecular mechanisms underlying complex
traits and diseases. Comparing the correlations between
detected transcripts and BMI with the correlations be-
tween transcripts and five further phenotypes of relevance
in the context BMI/ insulin resistance revealed pro-
nounced overlaps in the order of decreasing similarity:
BMI > serum leptin > 2 h-OGTT glucose > fasting
glucose > blood insulin >HOMA-IR. This was consistent
for all three expression signatures found in our analyses
(Additional file 5: Figure S1). As circadian rhythms in
whole-blood gene expression patterns have been described
[26], it has to be emphasized that in SHIP-TREND as well

Fig. 4 Attenuation of insulin signaling under conditions of increased BMI as derived from the mRNA abundances as determined in the present
study. Green and red coloring indicates negative and positive correlation of the gene-specific transcripts specifying the corresponding
proteins/protein complexes shown here with BMI. Labeled are those insulin signaling modules whose decrease or increase on the protein
level is predicted to contribute to or to be indicative of attenuated transduction of the insulin signal. Illustration adopted and modified
by courtesy of Cell Signaling Technology/New England Biolabs
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in KORA F4 all blood samples were collected between
8 a.m. and noon from fasting individuals. Considerable
bias of our results due to circadian blood cell gene expres-
sion variation is thus unlikely.
The mechanisms underlying the extensive BMI-

associated down-regulation of several key genes involved
in insulin signaling and defense against oxidative stress
on the mRNA level are currently unclear. Interestingly,
several micro-RNAs (miRNAs) have been found to be
differentially expressed in tissues relevant for insulin
signaling and resistance (liver, skeletal muscle, adipose
tissue, and pancreatic beta cells) during obesity, hyper-
glycemia, and diabetes (for details see see Additional file 1:
Supplementary Materials S4). It is conceivable that the
BMI-associated down-regulation of many genes may be
mediated by specific miRNAs.
One limitation of this study is the fact that it is exclu-

sively based on gene expression profiles obtained from
whole-blood cell analyses in a cross-sectional design.

The data indicating attenuated insulin signaling and de-
creased resistance against oxidative stress might not dir-
ectly translate to other tissues more relevant for insulin
signaling such as liver, skeletal muscle and adipose
tissue. Although our results already have gained some
support by observations in animal models [27, 28], ap-
propriate functional analyses are needed to reveal the
details of the molecular mechanisms involved. A further
limitation consists in the fact that the observed BMI-
associated mRNA level alterations represent two co-
occurring phenomena, specific gene expression changes
on the one hand but also the described erythrocyte-
reticulocyte shift on the other hand. Due to the fact that
reticulocyte counts were determined neither in SHIP
nor in KORA, an appropriate adjustment was not
possible. Therefore, the interference of both BMI-
dependent effects, namely the decreased amounts of
specific mRNAs due to reduced gene expression and the
increased amounts of other mRNAs due to a higher

NRF2CBP BLZP BLZP = JUN, JUNB,
MAFF, MAFG

GSTM2

TXNRD1 SOD2 MGST2

…..…..

GSK3-

AKT

Insulin 
Signaling

MAPK1/K3

NRF2-Regulon

NQO2

NFE2L2

Fig. 5 BMI-associated down-regulation of the NRF2 regulon. The transcription factor NRF2, after translocation from the cytoplasm to the nucleus,
binds to the cis-acting enhancer sequence ARE (Antioxidant Response Element) located in promoters upstream of several genes encoding
proteins necessary for glutathione synthesis and electrophile detoxification (for details see Additional file 1: Supplementary Materials S3).
Transcriptional activation of ARE-mediated genes requires hetero-dimerization of NRF2 with other basic leucine zipper proteins (BLZP),
namely JUN (c-JUN, JUN-D and JUN-B) and the small musculoaponeurotic fibrosarcoma (MAF) proteins (MAFG, MAFK and MAFF). In
addition, the CREBBP encoded CBP protein [cAMP-response element binding protein (CREB) binding protein], a histone acetyl transferase,
represents a nuclear co-activator directly trans-activating NRF2. Among the prominent ARE-mediated NRF2 targets genes are GSTM2 and MGST2
encoding the glutathione S-transferases μ2 and microsomal glutathione S-transferase 2, respectively, the NQO2-encoded NAD(P)H:quinone
acceptor oxidoreductase 2, the SOD2-encoded manganese-containing superoxide dismutase 2 (MnSOD), and the TXNRD1-encoded thioredoxin
reductase 1. In addition, the NRF2 encoding gene NFE2L2 contains two ARE-like sequences in its promoter and is therefore auto-regulated by
NRF2 in a positive feedback-loop. Green coloring indicates that the corresponding mRNA abundances were negatively correlated with BMI in
the present study. Arrows indicate ARE-regulated genes
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reticulocyte number, may explain seemingly contradict-
ory observations, which can be illustrated using NRF2-
regulated genes as an example. Although nearly all genes
encoding NRF2 key regulators (including the structural
gene of the transcription factor itself, NFE2L2) as well as
some of the most prominent NRF2 targets exhibited a
negative mRNA correlation with BMI, some other target
gene transcripts were positively correlated. These latter
genes might be particularly strongly expressed in reticu-
locytes, overriding their down-regulation in leukocytes.
A generalization of this assumption would imply that
the effect strengths of other observed negative correla-
tions between BMI and transcripts, as those observed
for the genes encoding insulin signaling key proteins,
might be even more pronounced in isolated leukocytes,
in particular neutrophil granulocytes, as these represent
the predominant white cell fraction in whole-blood.
Therefore, while a transcriptome analysis of isolated
granulocyte fractions would be most desirable in future
studies addressing associations between BMI and gene
expression, whole-blood expression patterns are also of
value but likely underestimate the true expression
changes occurring in different white blood cell popula-
tions, including granulocytes. It also has to be mentioned
that with a mean age of 50 and 70 years in KORA and
SHIP, respectively, these cohorts are relatively old and
thus, we cannot exclude the possibility that at least par-
tially differing results would be obtained with clearly
younger individuals. As the relationship between obesity
and mortality changes with increasing age, the identified
gene expression signatures, in particular those related to
insulin signaling and oxidative stress defense, might also
be affected in a younger cohort. Finally, we would like to
emphasize the fact that the three extracted signatures are
based on a subset of around 400 from the more than 3700
BMI-associated gene-specific transcripts annotated in IPA.
This demonstrates that for most of the BMI-associated
whole-blood transcriptome, adequate physiological inter-
pretation is still not available. Further hypotheses about
the mechanisms underlying the observed associations
might be generated by using more sophisticated bioinfor-
matical approaches in future analyses.

Availability of supporting data
The KORA F4 whole-blood transcriptome raw data
are deposited in the ArrayExpress Archive of Functional
Genomics Data (https://www.ebi.ac.uk/arrayexpress/)
with the accession number E-MTAB-1708. The SHIP-
TREND whole-blood transcriptome raw data are
deposited in the GEO (Gene Expression Omnibus)
public functional genomics data repository (http://
www.ncbi.nlm.nih.gov/geo/) with the GEO series
accession number GSE36382.
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