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Abstract

Molecular imaging involves extracting information about biological activ-
ities at cellular and molecular levels within tissue by relying on extrinsic
or intrinsic probes or tracers to target processes. Optical imaging often
enhanced using contrast induced by fluorescent probes, is in particular
an attractive approach for non-invasive, non-ionizing imaging of physio-
logical as well as molecular functions in tissue in vivo.

The purpose of this work was the development of robust algorithms, meth-
ods and processing frameworks for novel applications of fluorescence pla-
nar and tomographic imaging in preclinical and clinical environments.
Opportunities afforded as well as challenges posed by the wealth of infor-
mation made available by the hybrid modalities as well as the prospects of
emerging preclinical and clinical applications have motivated this work.
We focused on development of accurate, fast and robust methods and
algorithmic approaches and processing framework for modeling and pro-
cessing of data extracted using various planar and tomographic systems.
We developed a framework for modeling and processing of the hybrid
fluorescence molecular tomography-X-ray computed tomography (FMT-
XCT) system, relying on a finite element method (FEM)-based model
for light propagation in tissue, as an efficient and optimized tool for accu-
rately processing FMT-XCT datasets with a versatile graphical interface.
The system was geometrically calibrated using a two-step process for
accurate mapping between CT and optical domains.

A new algorithm for compression of large amounts of information gath-
ered by the FMT-XCT was developed. This method takes advantage
of inter-source data redundancy to compress the Born data in optimally
grouped spatial detector clusters. Besides the novelty of the algorithm it-
self, the compression results constitute the first demonstration of any com-
pression method for in vivo imaging using fluorescence tomography.

Robust FMT-XCT inversion, driven by data and anatomical priors, was
achieved using a novel method based on weighted least squares. The
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residual weights were optimized using a fuzzy inference system, where
the rules were designed based on an information-theoretic analysis of sys-
tem behavior. The developed algorithmic framework was verified using
several preclinical applications and the results are presented - some of
which for the first time. The flexibility and accuracy of the code also af-
forded synergy of FMT and phase-contrast X-ray CT, called FMT-PCCT,
which has been demonstrated in this work for the first time for small an-
imal imaging.

The algorithmic and processing frameworks proposed in this work were
further expanded and applied to clinical applications. We develop a
method for processing fluorescence images supplied by a real-time planar
system, designed for imaging rheumatoid arthritis in human hands. The
proposed spatiotemporal analysis decouples signal components of differ-
ent spatial and temporal characteristics emanating from local concentra-
tion of intravenously injected Indocyanine Green (ICG). We furthermore
proposed and demonstrated for the first time tomographic imaging of syn-
ovitis in human finger joints, post injection of ICG. Several acquisition
and algorithmic modifications and developments were carried out toward
quantitative three-dimensional imaging of ICG accumulation in inflamed
synovial tissue in finger joints (many of the clinical results herein were
validated and co-registered with MRI findings).

The methods developed in this work made robust and efficient process-
ing and inversion of FMT-XCT measurements using anatomical priors
possible. The developed processing framework also enabled clinical ap-
plications toward more accurate diagnosis of joint inflammation using
planar and tomographic techniques. The methods and results presented
in this work are expected to enhance the roll of fluorescence imaging and
tomography in preclinical and clinical environments as well as initiate
avenues for further theoretical development.



Zusammenfassung

Molekulare bildgebende Methoden für biologische und medizinische An-
wendungen umfassen präklinische und klinische Messverfahren, wodurch
gewisse biologische Aktivitäten des tiefliegenden Gewebes sich auf
molekularen Ebenen messen lassen. Solche Informationen über die
molekulare Funktion des Gewebes, wie beispielsweise Enzymaktivitäten,
sind ansonsten durch konventionelle anatomische Modalitäten nicht zu
charakterisieren. Molekulare Bildgebung mithilfe optischer Methoden ist
aufgrund ihres niedrigen Kostens, Abwesenheit der schädlichen Strahlun-
gen und der Fähigkeit molekulare Aktivitäten tief im Gewebe quanti-
tativ zu erfassen insbesondere interessant. Optische molekulare Bildge-
bung ist in Zusammenhang mit Kontrastmitteln besonders effektiv. Flu-
oreszente Kontrastmittel und Proben ermöglichen nichtinvasive Darstel-
lung molekularer Aktivitäten durch bildgebende optische Verfahren in
vivo. Durch Fluoreszenzmittel verstärkte optische Bildgebung existiert in
planaren und tomografischen Geometries und Varianten, die einer Reihe
präklinischenr und klinischer Anwendungen entgegenkommen. Bezeich-
nende Anwendungsgebiete sind unter anderem Arzneimittelforschung-
und Entwicklung, Krebstherapie und Therapieüberwachung.

Der Zweck dieser Arbeit war Entwicklung von Algorithmen, numerischen
Verarbeitungsmethoden und Rahmenwerken für neue und aufkommende
präklinische und klinische Anwendungen anhand planarer und tomo-
grafischer Fluoreszenzbildgebung. Numerische und algorithmische Her-
ausforderungen die durch große Menge von Informationen hervorgerufen
sind, zusammen mit neu entstehenden präklinischen sowie klinischen An-
wendungen, haben diesen Forschungsaufwand motiviert. Wir zielten die
Entwicklung von präzisen und schnellen numerischen und algorithmis-
chen Ansätzen an, um verschiedene planare und tomografische Modal-
itäten zu modellieren und verarbeiten. Ein umfassendes Rahmenwerk zur
Modellierung und Verarbeitung der hybriden molekularen Fluoreszenzto-
mografie/Röntgen Computertomografie, FMT-XCT genannt, wurde en-
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twickelt, das auf Finite-Elemente-Methode (FEM) setzt, um die Lichtaus-
breitung in biologischem Gewebe zu modellieren. Das FMT-XCT System
ist zusätzlich durch ein Zweistufenverfahren geometrisch kalibriert. Wir
präsentieren weiter einen neuen Algorithmus um die durch FMT-XCT
aufgenommen Datensätze zu komprimieren und dadurch die rechnerische
Belastung zu mildern. Die vorgeschlagene Methode nutzt die Datenredun-
danz zwischen benachbarten Gantry-winkeln aus. Die Detektor sind in
räumliche Cluster gruppiert und jedes Cluster ist durch Hauptkomponen-
tenanalyse komprimiert. Eine neue Methode wurde zusätzlich zu robuster
Inversion der FMT-XCT Daten durch ein gewichtetes Kleinste-Quadrate-
Modell entwickelt. Das Modell setzt auf ein Fuzzy-Inferenzsystem um die
Gewichte zu optimieren und ist von Messungen sowie anatomischen Infor-
mationen getrieben. Das Fuzzy-Inferenzsystem wurde mithilfe einer In-
formationstheoritischen Analyse entworfen. Aufgrund ihrer Genauigkeit
und Flexibilität, die hierin entwickelten Methoden haben mehrere präklin-
ische Anwendung ermöglicht - manche zum ersten Mal. Wir präsentieren
zum ersten Mal hybride Bildgebung von Kleintieren durch eine Kombina-
tion von der FMT und Phasenkontrast-Röntgentomografie; FMT-PCCT
genannt.

Die numerischen und algorithmischen Rahmenwerke wurden weiteren-
twickelt um aufkommenden klinischen Interessen entgegenzukommen.
Wir entwarfen einen Algorithmus zur verbesserten Lokalisierung von
gezielten Signals in einem durch Indocyaningrün (ICG) verstärkten
planaren Messverfahren zur verbesserten Charakterisierung und Diag-
nose von Rheumatoidarthritis in menschlichen Handgelenken. Außerdem
präsentieren wir einen neuen Ansatz zur quantitativen und tomografis-
chen Erfassung der ICG-Anlagerung in Synovialgewebe der menschlichen
Fingergelenke. Die klinischen Ergebnisse wurden mithilfe kontrastver-
särkter Kernspintomografie ausgewertet.

Die hierin entwickelten Methoden und Algorithmen ermöglichten robuste
und effiziente Verarbeitung und Inversion der FMT-XCT Messungen
anhand der anatomischen Informationen sowie klinische Anwendungen
mithilfe planarer und tomografischer Verfahren. Es wird erwartet, dass
die Methoden und Ergebnisse dieser Arbeit den Stellenwert der Fluo-
reszenztomografie in präklinischen sowie klinischen Umfeldern fördern
und Entwickelung weiterer theoretischen Ansätze motivieren.
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1 Introduction

1.1 Fluorescence-based optical imaging

Medical and biological imaging is a vast and highly interdisciplinary field
with several imaging modalities existing with applications in preclinical
and clinical scenarios ranging from diagnosis to drug development and
therapy monitoring. Imaging methods often rely on the physical descrip-
tions of wave-tissue or photon-tissue interactions to extract information
about tissue anatomy or molecular and physiological function, while op-
erating in vivo or ex vivo and with or without invasion of the underlying
tissue. Each of current the medical imaging modalities have their spe-
cific applications, advantages and disadvantages. Examples of common
metrics for characterization of imaging systems include their spatial and
temporal resolution, penetration depth, signal to noise ratio, sensitivity
to underlying physical quantity or contrast, hardware cost, operator de-
pendency and diagnostic sensitivity and specificity. Different segments
of almost the entire electromagnetic spectrum are employed to probe bi-
ological tissues of various sizes and compositions to deliver one or multi-
dimensional images of one or more physical quantities of the underlying
tissue.

Application of optical techniques to medical and biological imaging,
called optical imaging, has been an actively researched field of medi-
cal imaging [1–9]. Recent technological advances in optical components
and sensors and computing power as well as the expansion of biologi-
cal marker and probe technology have in particular have been conducive
to rapid expansion of optical technologies for biomedical imaging in re-
cent decades [2, 6, 7, 10–13]. While optical microscopy offers powerful
techniques for characterization of surface structures, the application of
optical techniques for imaging tissue several millimeters deep under the
skin is hindered by the presence of various chromophores and scatterers

1



2 1.1. Fluorescence-based optical imaging

Figure 1.1: Near-infrared (NIR) optical window in tissue; (a) absorption
spectra of oxygenated hemoglobin (HbO2, red curve) and deoxygenated
hemoglobin (Hb, blue curve) in tissue, (b) absorption spectrum of water vs.
wavelength (plots in (a) and (b) were generated using data compiled by Scatt
Prahl from Oregon Medical Laser Center, presented in http://omlc.ogi.
edu/spectra/, from sources [14–16]).

in tissue. In particular water, deoxyhemoglobin and oxyhemoglobin are
known to significantly absorb optical photons in tissue. Furthermore, sev-
eral molecules and in particular lipids tend to randomly change the course
of photons traveling throughout the tissue; hence, causing diffusive light
propagation due to scattering effects. While hemoglobin and water cause
severe absorption of photons in most of the visible and infrared spectra as
shown in Figure 1.1, there exists a window of opportunity in the optical
spectrum, called the near-infrared (NIR) region, where the tissue has a
relatively low optical absorption [8]. The biological tissue has the least
optical absorption in NIR, as shown in Figure 1.1(a), where it is observed
that hemoglobin and deoxyhemoglobin dominate the absorption for wave-
lengths shorter than 650 nm and water has higher absorption beyond 900
nm. The tissue scattering is roughly uniform over the NIR bandwidth,
but is much stronger than the absorption. The propagation of NIR light
in tissue is mainly characterized with absorption and elastic scattering.
The NIR window, often considered to range from 650 nm to 850 nm [8],
offers a unique opportunity to optically probe biological tissue up to tens
of millimeters under the skin non-invasively.

Local contrast in optical properties and characteristics of underlying tis-
sue make imaging possible. As an example, high optical absorption of
tissue can be indicative of higher local blood concentration in tissue. As

http://omlc.ogi.edu/spectra/
http://omlc.ogi.edu/spectra/


Chapter 1. Introduction 3

many other imaging modalities, the performance of optical imaging tech-
niques can be significantly improved via application of contrast agents.
The contrast agents are often administered prior to imaging and create a
higher level of contrast between the optical characteristics of the target
tissue with respect to surrounding tissue [8].

The application of fluorescence to create contrast between target and
background tissue is in particular a very powerful technique [10]. The
technology of fluorescent probe design has vastly advanced in recent years
and has provided a myriad of probes with the ability to bind to specific
macromolecules in tissue, hence biologically marking specific molecular
processes [2,12]. For instance, fluorescent probes have been designed with
the ability to specifically target integrin αvβ3 receptors which are often
expressed in tumor cells and during angiogenesis [9, 17]. Such probes
especially afford imaging potential by creating highly fluorescent lesions
in otherwise non-fluorescent tissue. The fluorescence phenomenon can be
briefly, mathematically described as follows. An electron can be excited
to a higher energy state upon absorbing an “excitation” photon. The
excited electron subsequently relaxes to its initial energy state, thereby
releasing heat as well as energy as a photon with a lower frequency level
(than the excitation photon) - which is called the fluorescence photon.
Materials capable of fluorescence often absorb photons within a specific
excitation bandwidth and release photons in a group of wavelengths. The
development of activatable and targeted fluorescent molecular probes has
facilitated in vivo study and monitoring of certain molecular processes
several millimeters under the skin [2,12,18]. The capability of fluorescent
probes to target or be activated by specific molecules has been conducive
to their wide deployment in cancer and drug development research [19,
20].

Fluorescence-based optical imaging exist in different measurement ge-
ometries and imaging domains. Planar or photographic approach ob-
tain two-dimensional (2-D) fluorescence images of the sample under pla-
nar illumination. These images carry information regarding fluorophore
concentration within the tissue. The illumination is often performed in
trans-illumination geometry, where the excitation and measurements are
carried out on the two sides of the sample or in epi-illumination form
where both excitation and measurement are carried on the same side.
While potentially a powerful technique with many preclinical and clin-
ical applications [21–24], planar imaging lacks depth resolution as the
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Figure 1.2: Principles of fluorescence molecular tomography (FMT); the ex-
citation light (blue color) from the source excites the fluorophores in the tissue
to generate the emission photons (red color), which are sensed by the optical
probes located on the surface.

final image is a weighted sum of components at different depths [7]. In-
stead, optical tomography has been developed as a non-invasive modality
for quantitative and three-dimensional (3-D) molecular imaging of tissue
deep (> 1-2 mm) under the skin [1, 6, 8, 25]. Different variations of op-
tical tomography aim at quantification of chromophore and fluorophore
molecule concentrations. Optical tomography generally involves excita-
tion of tissue at several source locations using collimated or diffusive light
sources and measurement of light which reaches the skin at one or more
wavelengths using several detection technologies. Optical tomography is
usually conducted within near infra-red (NIR) regime covering 650-850
nm. The light propagation models in diffusive tissue can be used to im-
age various quantities of biological interest inside the tissue up to several
millimeters. Diffuse optical tomography (DOT) techniques seek quantifi-
cation of chromophores such a hemoglobin and deoxyhemoglobin, which
disclose information about blood concentration and oxygenation using
their characteristic absorption spectra as shown in Figure 1.1, by solving
for scattering and absorption coefficients given light measurements on the
skin. Other molecules of imaging interest, in addition to chromophores,
are the fluorophores. These molecules fluoresce upon excitation at the
proper wavelength and exist either in endogenous form in the tissue or are
administered exogenously. The concentration and lifetime of fluorophores
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carry plenty of information regarding the local biological processes and
activities of specific enzymes. It is possible to non-invasively quantify
the concentration and lifetime of fluorophores at a given location in tis-
sue drawing upon the diffusive light propagation model in tissue, using
a method called fluorescence molecular tomography (FMT) [2].

The methodology of FMT is schematically described in Figure 1.2. The
oval shape in this figure depicts a hypothetical tissue containing a packet
of fluorophores in the location pointed to with the arrow. The tissue
is excited at a given source location at the excitation wavelength of the
targeted fluorophores. The excitation light photons propagate diffusively
throughout the tissue; as shown by the blue color in Figure 1.2. The fluo-
rophores emit photons at the emission wavelength upon interaction with
the excitation photons that reach them. The emission light originating
at the fluorophore inclusion is depicted by the red color in Figure 1.2.
The amount of the light that reaches the skin is detected by some sort of
optical detection on the surface. The optical detector is used to measure
light fluence at both excitation and emission wavelengths on the skin.
These measurements are then used to trace back the source of the emis-
sions and, thus, yielding a 3-D image of the fluorophore distribution in
tissue.

Fluorescence tomography has applications in both preclinical and clinical
stages. In the preclinical stage FMT is extensively used in small animal
studies for imaging biological processes by quantification of exogenous
or indigenous fluorophores targeting specific marcomolecules associated
with these biological processes with applications in drug discovery and
development processes and subsequent therapy monitoring [7,11]. In the
clinical stage the application of fluorescence imaging is limited due to the
toxicity concerns about the fluorescent probes. However, the FDA (U.S.
food and drug administration) approved Indocyanine Green (ICG) has
been used as a fluorescent agent for imaging applications such as breast
tumors detection in humans [26] or inflammation detection in human
hands [27].

The resolution and accuracy of FMT is limited by several factors such
as imperfect knowledge about the optical properties of the tissue sample
and the inherent ill-posed nature of the linear model. Hybrid modalities
aim to improve the quality of the molecular imaging component by in-
corporating anatomical information [28–31]. In particular, combination
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of FMT and X-ray CT, called FMT-XCT, has been proposed to miti-
gate the effect of the aforementioned problems on image quality by using
anatomical information as a priori knowledge in the forward and inverse
problems [25,32].

Full realization of the potential of fluorescence-enhanced molecular imag-
ing in planar or tomographic variations, for biomedical applications
poses several numerical and algorithmic challenges. Efficient process-
ing and extraction of desirable biological information from the measure-
ment requires accurate system and light propagation modeling. The large
amount of information and data gathered by these imaging systems does
not just create processing and numerical challenges - it also affords novel
and interesting diagnostic and imaging applications for both preclinical
and clinical scenarios.

1.2 Objectives and outline

The goal of this work was the development of algorithmic and pro-
cessing frameworks and methods to accommodate recent applications
of fluorescence-enhanced planar and tomographic imaging of tissue in
preclinical and clinical environments. Numerical and algorithmic chal-
lenges posed by the large quantity of information afforded by the hybrid
molecular and anatomical modalities as well as the prospects of emerg-
ing preclinical and clinical applications motivated this work. We focus
on development of accurate, fast and memory-efficient numerical meth-
ods and algorithmic approaches and processing frameworks for modeling,
processing, compression and inversion of information extracted using pla-
nar and tomographic systems. Optimization of hardware calibration and
acquisition protocols were also carried out as indispensable steps toward
improvement of imaging performance.

This thesis is structured as follows. In Chapter 2 we present the mathe-
matical modeling of the FMT system based on finite element modeling
(FEM) of light propagation in tissue. An efficient implementation of
FEM is presented and optimizations are discussed using analytical and
phantom measurements. Chapter 3 discusses and presents geometrical
calibration of the FMT-XCT system using a two-step approach as well as
the acquisition protocol. The optimized processing framework developed
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in this work is presented in Chapter 4. In Chapter 5 we present a new
method for compression of the Born data by exploiting the inter-source
correlation between adjacent projections based on principal component
analysis. A novel weighted least squares approach for inversion of FMT-
XCT is presented in Chapter 6. The method uses a fuzzy-inference sys-
tem for residual weight optimization and is driven by data and anatomical
priors. The developed methods and algorithms are verified and demon-
strated using in vivo animal studies in Chapter 7, where we demonstrate
hybrid FMT—phase contrast X-ray CT, FMT-PCCT for the first time.
Chapter 8 presents a novel method for spatiotemporal treatment and
FEM-based analysis of fluorescence-aided imaging of rheumatoid arthri-
tis in hand joints in epi-illumination planar geometry. The results are
presented for several patients and compared and verified with MR find-
ings. In Chapter 9 we present the first tomographic imaging of synovitis
in human finger joints using the FMT system and the XFMT code ex-
panded with several acquisition as well as algorithmic modifications and
developments. The results are presented for 5 patients and 4 healthy vol-
unteers and compared and coregistered with magnetic resonance imaging
(MRI) results. Chapter 10 concludes the work and presents ideas for fu-
ture development and research. Supporting materials are provided in
Appendices A-D.
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2 FEM-based modeling of
fluorescence tomography

2.1 Introduction

Imaging the underlying physical parameters of tissue using an imaging
system often consists of two steps; the forward modeling and the in-
version. Simply put, the forward modeling seeks to construct a mathe-
matical model which predicts measurements given knowledge about the
(otherwise unknown) underlying physical quantities. For instance, in
conventional X-ray computed tomography, the forward problem consists
of predicting the measured X-ray photon counts given the complete X-
ray absorption map of the sample. This is achieved using the well-known
Radon transform which models the total attenuation of the X-ray beam as
a line integral of the absorption caused by infinitesimal volume elements.
The forward modeling is a vast field which overlaps applied mathematics
and physics. The physical description of the system is often achieved
using partial differential equations, which dictate local tissue-wave or
tissue-particles interactions. Once a forward model of the system is es-
tablished, it is used in the inversion process to reconstruct the underlying
image using the acquired measurements. The inversion can be envisioned
as the process of finding the image that would predict (using the forward
model) the acquired measurements, as accurately as possible. Forward
modeling and inversion can be briefly described as follows. Suppose x
and y are vectors representing the input and output of a system which
want to model. The system is parameterized using a set of variables θ.
The forward modeling can be expressed as finding a forward operator
F such that y = F(x, θ). Given the forward operator F, the inversion
then consists of estimating θ such that a measure of the prediction error
(defined as the measurements minus F(x, θ)) is minimized.

9
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The forward modeling necessitates understanding and modeling the light
propagation in biological tissue. The biological tissue can have a diverse
range of optical properties; from highly absorptive to highly scattering
or ballistic propagation in air-filled body cavities [11]. The interaction
of various types of tissue with near-infrared (NIR) photons are subject
to various differential equations, such the diffusion equation or the more
general radiative transfer equation (RTE) and result in several physical
phenomena such as absorption, scattering or reflection and diffraction
of photons. While a thorough analysis of light propagation in tissue and
photon-tissue interaction is an extensive topic and not the purpose of this
work, we aim to develop a numerical model for propagation of light pho-
tons in tissue in diffusive regime for our imaging purposes. The diffusive
light propagation, shortly explained, occurs when a photon undergoes a
significantly larger number of scattering events than absorption events in
a given length. Such a modeling is a critical tool in optical imaging ap-
plications where a large (several millimeters in diameter) tissue sample is
optically probed, such as in several variations of optical tomography. In
many types of biological tissue the diffusive regime holds, as NIR photons
experience on average several tens of scattering and an order of magni-
tude less number of absorption events in a centimeter of propagation.

The main objective of this chapter is to derive a mathematical model of
fluorescence molecular tomography (FMT) describing a relationship be-
tween the fluorescence measurements and the unknown fluorophore dis-
tribution in tissue. FMT can be described using a linear system, where
the system matrix is derived in terms of the tissue optical properties and
the measurement geometry. Toward this goal, we develop a finite element
method (FEM) based numerical framework of light propagation in diffu-
sive medium. The FEM model is optimized for our tomographic imaging
purposes and verified using numerical and physical phantom studies. The
developed FEM-based framework is not only helpful in modeling tomo-
graphic imaging systems, but it also helps with understanding the planar
imaging tools, as discussed later in this work.

2.2 Diffusive propagation of light in tissue

Imaging the concentration of different molecules at depth inside the tissue
requires a realistic model describing the propagation of photons inside
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tissue. A comprehensive description of light propagation in tissue can be
achieved using the radiative transfer equation (RTE), which essentially
states that the number of photons in a point in time and space is given
by the addition of all factors increasing it minus those which reduce it
and is in this way a conservation equation. The RTE in the time-domain
is given as [33]

(
δ

δt
+ ŝ.∇+ µs(r) + µa(r)

)
φ(r, ŝ, t) =

µs(r)
∫

4π
Θ(ŝ, ŝ′)φ(r, ŝ, t) d2ŝ′ + q(r, ŝ, t),

(2.1)

where φ(r, ŝ, t), called photon density or radiance and expressed in m-3

st-1, is the number of photons traveling in the direction ŝ from the point
r in time t and is the quantity we are eventually interested in to find.
The source photons are shown by q(r, ŝ, t) and are defined in the same
manner. The term Θ(ŝ, ŝ′), called the scattering phase function, char-
acterizes anisotropic scattering and equals (when multiplied by dŝ′) the
probability of a photon scattering from “the direction ŝ into the direction
ŝ′” [33](the notations follow those used in [33]). The optical scattering
and absorption coefficients are recognized as, respectively, µs(r) and µa(r)
in Equation 2.1. These quantities have both units of m-1 and denote the
probability of a photon being scattered or absorbed at the point r in unit
length. The RTE can be used to describe light propagation for arbitrary
values of the absorption and scattering coefficients and can, therefore, be
used to model light propagation in diffusive and non-diffusive regions of
tissue. However, RTE is usually solved using Monte Carlo methods and
is relative computationally complex to solve for large tissue volumes [33].
Therefore, simpler approximations ro RTE are sought and employed in
different variations of optical tomography including FMT, whereby angle
dependent radiance is expanded by spherical harmonics or other approx-
imations [34–36].
The most commonly used approximation in optical tomography is the P1

approximation, also called the diffusion equation (DE) obtained from the
diffusion approximation (DA), and is given in the time domain as [33]

−∇.D(r)∇φ(r, t) + µaφ(r, t) + 1
c

δφ(r, t)
δt

= q0(r, t), (2.2)

where c is the speed of light in the medium and D(r) is the diffusion
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coefficient given by

D(r) = 1
3(µa(r) + µ′s(r))

, (2.3)

and
φ(r, t) =

∫
4π
φ(ŝ, ŝ′, t) dŝ′. (2.4)

The µ′s in Equation 2.3 is called the reduced scattering coefficient and
defined as µ′s = (1− g)µs, where g is the anisotropy coefficient (≈ 0.9 in
biological tissue) and is a function of Θ(ŝ, ŝ′). For convenience, through-
out the rest of this work reduced scattering coefficient is simply referred to
as scattering coefficient and is denoted by µs instead of µ′s. Equation 2.2
in the frequency-domain is given by

−∇.D(r)∇φ(r, ω) + µaφ(r, ω) + iω

c
φ(r, ω) = q0(r, ω), (2.5)

where ω is the source modulation frequency. For ω = 0 the DE in the
continuous wave (CW) domain as

−∇.D(r)∇φ(r) + µaφ(r) = q0(r). (2.6)

The quantity measured on the skin is some function of the photon flux
given by

Γ(r) = −D(r) n̂.∇φ(r). (2.7)

An extensive study for modeling different boundary conditions and also
optical sources is presented in [37]. There are two commonly used bound-
ary conditions; tissue adjacent to air and tissue adjacent to perfectly
absorbing medium. In the tissue-air situation, the Robin boundary con-
dition is used to model the boundary while in the tissue-dark medium
situation the fluence on the surface is forced to zero. Robin condition
places the fluence in immediate vicinity of the surface in a specific pro-
portionality to the surface optical flux [37] and can be implemented by
taking the fluence-flux relationship into accounting during the modeling
using extrapolated boundary condition, where the fluence is forced to
zero instead on a imaginary boundary one scattering length above the
tissue-air surface. The Robin boundary condition can be expressed as

φ(r) + 2DAn̂.∇φ(r) = 0, (2.8)
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where A is a real number (≈ 2.74) which accounts for mismatch between
refractive indices of tissue and air [37].

For our applications in this work, the excitation source is modeled as
a diffusive source inducing a diffusive photon current into the sample
in the illumination area. The diffusive source is modeled by assigning
different weights to the mesh boundary nodes illuminated by the source.
The weights are determined by the illumination pattern as well as the
location of the surface nodes with respect to the source, as shown later
in Equation 2.13.

2.3 Propagation modeling using FEM

The forward problem consists of solving for φ(r) in Equation 2.6, given
the measurement geometry and tissue optical properties. Approaches for
solving this problem can be divided into analytical, statistical and nu-
merical techniques [8]. The analytical solutions involve applications of
Green’s function to simple geometries with homogeneous optical proper-
ties [38]. Extensions to arbitrary geometries have been proposed based
on Kirchhoff approximation [39]. Statistical techniques and Monte Carlo
methods in particular, trace the trajectories of individual photons from a
large pool and are especially helpful in modeling light transport in arbi-
trary regions of tissue and are often applicable for solving the RTE [33,40].
Numerical methods are best suited for efficiently modeling complex ge-
ometries with arbitrarily heterogeneous optical properties. A common
numerical approach to the forward problem in diffusive tomography is
based on the finite element method (FEM) [33].

The first step in deriving the mathematical model of FEM involves solv-
ing for the propagation of the excitation photons. In other words, we
are interested in calculating the photon fluence that reaches any given
location in tissue from a given source placed at a given location in tissue.
The same formulation is applied to solving for the spatial distribution of
photons emanating from a hypothetical packet of fluorophores inside the
tissue.

A tetrahedral mesh is used discretizing the volume of tissue into T tetra-
hedral elements consisting of a total of N nodes. By discretizing the
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DE over this mesh using the Galerkin formulation [33], a linear equa-
tion for the unknown fluence vector is achieved as (using notations and
formulations from [33])

[K + C] Φ = Q+ β, (2.9)

where

Kij =
∫

Ω
D(r)∇ψi(r).∇ψj(r)dΩ (2.10)

Cij =
∫

Ω
µa(r)ψi(r)ψj(r)dΩ (2.11)

βj =
∫
δΩ
ψj(r)Γ(r)dδΩ (2.12)

Qj =
∫

Ω
ψj(r)q0(r)dΩ. (2.13)

The matrices K and C are symmetric sparse matrices of size N ×N and
Ω and δΩ denote tissue volume and surface, respectively. Equation 2.9
can be rearranged as

H Φ = Q, (2.14)

where
H = K + C + B, (2.15)

and
B(i, j) = 1

2 cA

∫
δΩ
D(r)ψi(r)ψj(r) dδΩ. (2.16)

We assume the diffusion coefficient is constant within each voxel (but can
change between different voxels). The matrix H is also referred to in the
literature as the stiffness matrix. The term K + C is a positive-definite1,
symmetric matrix [33]. The matrix B is also symmetric and positive-
definite. The positive-definiteness of B can be shown by decomposing it
as a summation of matrices, where each matrix has 9 non-zero elements
for a given surface triangle. In other words,

B =
∑
σ∈δΩ

Bσ, (2.17)

where Bσ is calculated for only the 3 vertices of the triangle σ. There-

1 Matrix A is called positive-definite if and only if for every non-zero vector x,
x>Ax > 0.
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fore,
x>Bx =

∑
σ∈δΩ

x>σBσxσ, (2.18)

where xσ is non-zero only on the 3 vertices of the surface triangle σ,
denoted by vσ, uσ and wσ. The notation > denotes throughout this work
the transpose operator. It is shown in Appendix A that for a given
triangle

∫
δΩ ψi(r)ψi(r) d δΩ = S/6 and

∫
δΩ ψi(r)ψj(r) d δΩ = S/12, if

i 6= j (with S being the area of the respective triangle). Hence,

x>Bx =
∑
σ∈δΩ

DσSσ

(
(vσ + uσ + wσ)2 + v2

σ + u2
σ + w2

σ

12

)
. (2.19)

Therefore, x>Bx ≥ 0 and the FEM matrix H is positive-definite.

We briefly review the method of conjugate gradient (CG) for solving
the FEM linear system of Equation 2.9.2 CG is an iterative method for
solving large linear systems, where the model matrix is symmetric and
positive-definite [41] - as is the case in the FEM problem shown above.
The method is in particular effective when the matrix is large and sparse;
a situation where direct inversion and Cholesky decomposition become
computationally prohibitive. The method of CG is based on the idea of
conjugate vectors (different from concept of complex conjugate). Specif-
ically, for a K × K matrix W , two vector x and y are called conjugate
(with respect to W ) if and only if x>W y = 0. CG uses an iterative al-
gorithm to find K mutually conjugate vectors to span the solution space.
CG seeks to minimize the following cost function

f(x) = 1
2‖W x−M‖2

2 = 1
2x
>W x− x>M + 1

2M
>M. (2.20)

Minimization of f(x) is achieved in the first step by moving in the direc-
tion of steepest descent, that is −5 f(x). Therefore, the first conjugate
direction (or vector) p0 is given as

p0 = −5 f(x) = M −W x0︸ ︷︷ ︸
r0

, (2.21)

where x0 is the initial guess for the solution and r0 is the residual vector.
The kth direction is found similarly using the kth residual, after project-

2 Treatment here follows the one used by D. N. Arnold “A concise introduction to
numerical analysis” Lecture Notes, Penn State, MATH 597I Num. Anal. (2001).
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ing the kth residual vector over all previous conjugate directions. This
projection is made to ensure the kth direction is conjugate to the previous
k − 1 directions. Specifically,

pk = rk −
k−1∑
j=1

λjpj, (2.22)

where λj is the normalized projection of rk over pj given as p>j Wrk

p>j Wpj
[42].

The kth direction is then used to update the solution from xk to xk+1 by
optimally moving along pk. That is, xk+1 = xk + αk pk such that

αk = arg min
α
{f(xk + α pk)} . (2.23)

Through derivation it is found

αk = p>k M

p>k Wpk
. (2.24)

The review presented here, briefly touches upon the guiding principles of
CG; full details and specific implementations can be found in literature,
including [41,42].

2.4 Efficient implementation of FEM

An efficient implementation of Equations 2.10-2.13 is performed in this
work in MATLAB (MathWorks, Natick, MA, USA). A description of the
MATLAB code is presented here and integral calculations are presented
in Appendix A. The code assumes optical scattering and absorptions
assigned to each individual tetrahedral voxel. The final stiffness matrix
H is a sparse Nn×Nn matrix, Nn being the number of mesh nodes, where
non-zero values are determined by voxel-node associations. First, a for
loop runs over all voxels, and for each voxel the integrals of Equation
2.10 and Equation 2.11 are calculated. As shown in Appendix A, these
integrals turn out to have a simple closed-form solution up to a scaling
factor of the voxel volume. A second for is used to solve for the integral
of Equation 2.12 and is executed for all surface elements. Likewise, the
integrals have a simple form scaled by the surface triangle areas. Efficient
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implementation of this code is also made by possible by proper indexing
and assignment of the final sparse matrix H. Normally within each for
loop iteration, an addition would be necessary, as the value of H(i, j)
between the ith and jth nodes is determined by all the voxels which have
the (i−j) segment as an edge. However, such addition if repeated in each
loop operation would significantly hinder the execution and slow down the
operation. Instead, we stack all the values and the corresponding indices
of the matrix where the local additions would be performed in two pre-
allocated arrays Value and Index. Filling these arrays does not entail
addition within each loop and is very fast. We exploit MATLAB spare-
matrix handling functionality to add all the values stacked in the array
Value in to the locations pointed by the array Index without iterations.
Note that an arbitrarily number of entries in Value with different values
might be added to the same index designated by the array Index. The
calculation of the stiffness matrix for a typical animal study consisting of
around 40000 nodes and 230000 elements takes approximately 8 seconds
on a computer with an Intel CoreTM i7 CPU @ 3.4 GHz and 16 GB
RAM.

2.5 Numerical aspects of FEM modeling

In Section 2.3 we reviewed the formal framework for modeling the light
propagation in turbid media using the finite element method for dis-
cretization of the diffusion equation. It was shown that the forward
problem can be represented by a linear equation in the discretized do-
main, where the optical fluence is represented by a vector, whose each
entry represents the fluence on a given mesh node. In this section we
analyze several numerical aspects of the FEM modeling using numerical
phantom studies and draw conclusions with applications in processing of
FMT data. The meshing is performing in this work using a module
from the CGAL library, as employed in the ISO2Mesh framework [43, 44].
The code is capable of generating tetrahedral meshes for multi-region
spatial volumes, where each pixel in space is assigned an integer number
representing the region it belongs to. The method further is capable of
efficiently modeling irregular geometries. An important issue to address
when solving the forward problem is the mesh design. Several issues such
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Figure 2.1: Modeling light propagation in infinite medium with a uniform
mesh; (a) the tetrahedral mesh with uniform resolution, where the source at
origin and detectors points are shown by red and cyan markers, (b) FEM
simulations (blue) and analytical Green’s function solution (red) vs. source-
detector distance. All distances are in millimeters.

as the relative node density as well as spatial resolution need to be re-
solved toward an adequately accurate modeling performance. We address
these issues in this section using numerical phantoms.

In the first step, we investigate modeling light propagation in an infinite
homogenous medium. The Green’s function for the diffusion equation for
the infinite medium is given as:

φ(r) = S0

4πD r
e−
√

µa
D
r, (2.25)

where D denotes the diffusion coefficient and S0 is the point source in-
tensity [45].

For modeling the infinite medium, a sphere with a radius of 20 mm with
µa = 0.03 mm-1 and µs = 1 mm-1 was used, as shown in Figure 2.1(a). A
tetrahedral mesh of uniform resolution was used to discretize the phan-
tom volume.3 The fluence was calculated on a row of detectors placed
inside on the phantom along the red line in Figure 2.1(a), for an isotropic
point source located at the center. The simulated fluence versus source-
detector distance is shown in Figure 2.1(b). The blue and red curves in

3 The spherical meshes were generated using the MATLAB-based toolbox DistMesh
by P.-O. Persson available from http://persson.berkeley.edu/distmesh/ [46].
The mesh renderings were performed using the function simpplot.m from the same
toolbox.

http://persson.berkeley.edu/distmesh/
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Figure 2.2: Modeling photon propagation in infinite medium with non-
uniform meshing; (a) the mesh with finer resolution around the source located
at the origin and (b) conformance between the simulated FEM fluence (blue)
and the Green’s function (red). The FEM results very accurately predict the
GF values at a large distance span - there is divergence close to boundaries of
the sphere, where the infinite medium condition does not hold.

the logarithmic plot of Figure 2.1(b) represent the simulated fluence and
the analytical solution of Equation 2.25, respectively.

Three regions can be recognized in Figure 2.1(b); the area is vicinity of
the source, the area in vicinity of the boundary and the area in between
these two regions. The first two regions are delineated using double-
headed arrows in Figure 2.1(b). The mismatch in the first region is
large as the FEM model fails in close vicinity of the source (distance
< 1 mm) to closely model the DE. This is due to the relatively large
gradient of the fluence in this region (as gradient grows with 1

r2 ). Also,
the FEM-modeling error (in comparison with the analytical solution) is
relatively large in the third region as well. This is clearly due to the fact
that the sphere fails to mimic the infinite medium condition close to the
boundary. However, the FEM-based solution very closely matches the
analytical solution in between these two extremities, where the sphere
fairly well mimics the infinite-medium.

It is expected that the error can be reduced in source vicinity using
a finer mesh resolution which can capture the larger fluence change in
that region. To test this hypothesis, the spherical phantom was meshed
using a tetrahedral mesh with higher resolution at the origin, as shown in
Figure 2.2(a). The simulated fluence vs. the analytical solution are shown
in Figure 2.2(b) using blue and red curves, respectively. As seen, using
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the higher resolution the FEM-based solution does match the analytical
solution with a higher accuracy close to the source than the uniform
mesh. It should be noted that in this discussion we are mainly interested
in FEM-based modeling of DE, rather than the accuracy of DA itself
in modeling the physical fluence. The results presented in Figure 2.2(b)
substantiate the accuracy of the FEM code in modeling the DE.
So far we have demonstrated accurate modeling of light propagation in
infinite medium using the FEM code. It was observed that high degree
of modeling accuracy in very close vicinity of the source can be achieved
with a non-uniform mesh with higher resolution around the source. A
uniform mesh results in accurate modeling in distances larger than around
1 mm from the source. It should be further noted that in the practice of
tomographic imaging (and in particular for transillumination geometries,
such as in FMT-XCT), we are not necessarily interested in the exact
fluence value in immediate vicinity of the source, as long as the forward
model is capable of accurately predicting the fluence in other parts of the
tissue.
An adequately fine mesh will result in desirably accurate matching be-
tween the fluence predicted by the FEM model and the actual fluence
(either obtained from the Green’s function or from a physical phantom
or tissue). For a typical animal study, an average edge length of 0.5
mm for the tetrahedral edge lengths could possibly result in over 200,000
mesh nodes and around 1 million voxels. Such sizes are numerically and
memory-wise prohibitive for conventional computing power. Therefore,
it is critical to investigate different mesh sizes and determine the average
size adequate for our purposes. To this end, we use an optically homo-
geneous cylindrical numerical phantom. The geometry is illustrated in
Figure 2.3(a), where the source and detectors positions are shown on the
cylinder boundary. As we are not necessarily interested in immediate
vicinity of the source, uniform meshes of various resolution were used to
assess model accuracy of FEM, as compared with Green’s function solu-
tion for a cylindrical mesh. The Green’s function for a finite cylinder of
radius a and length l is given as

g(r) = 1
π
√

2πa l

+∞∑
m=1, odd

+∞∑
n=−∞

cos(n θ) In(αm r′)
In(αm a)

αm =
√

3µa(µa + µs) + m2 π2

l2
,

(2.26)
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Figure 2.3: Modeling light propagation in a homogenous cylinder; (a) uniform
cylindrical mesh with source and detectors denoted by orange and red markers,
(b) accuracy of forward model vs. average edge sizes. The labels show the
corresponding number of nodes for each given average edge size.

where In’s are modified Bessel functions of the first kind [38]. This ana-
lytical solution holds for the dark boundary condition, where the fluence
on the boundary is 0. This condition was taken into account in the FEM
modeling for this specific phantom.

Figure 2.3(b) shows the accuracy of FEM modeling as relative error with
respect to the Green’s function solution for different mesh resolutions,
represented by the average edge size of the mesh. The average error
was calculate in percentage between normalized numeric and analytical
solutions. It can be seen that meshes with average edge size of ∼1.3
mm or less result in adequately small modeling error (less than 5%).
This level of accuracy attainable using a uniform mesh in modeling the
light propagation is well suited for our purposes, as the other sources
of modeling error due to, for instance, incomplete knowledge of tissue
optical properties, cause a much larger (a few hundred percents) modeling
error.

It was observed that meshing with average edge length of 2 mm or more
results in unacceptable error in the modeling and degradation of the
performance of the FEM-based forward solver. These observations were
further confirmed using a physical agar-based phantom in the next sec-
tion.
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Figure 2.4: Verification of FEM code using phantom measurements; (a) the
FEM mesh for the slab phantom, where the red, blue and green markers
show the location of the 1st, 2nd and 3rd sources respectively. (b, c), (d, e)
and (f, g) Binned measured intrinsic images for the 1st, 2nd and 3rd source
positions, respectively. The measured (solid) and simulated (marked with x)
signal profiles are shown in (h), where 1st, 2nd and 3rd source positions are
designated using blue, red and black curves, respectively.

2.6 Physical validation

The FEM-based forward modeling code developed above was verified us-
ing phantom measurements. A slab phantom was made for this purpose.4
The phantoms were positioned in front of a 750 nm laser and imaged with
a cooled CCD camera, using the BBQ system (a planar, photographic
trans-illumination imaging system) at IBMI. The positions of the laser
and the phantom with respect to each other and the camera were care-
fully calibrated using a checkerboard. The FEM verification process was
as follows. For a given source location, the optical parameters were op-
timized to achieve maximum similarity between the simulated and the
measured signals (both normalized to their respective maxima). The
same set of optical parameters and measurement were used across other

4 Xiaopeng Ma at IBMI made this phantom and assisted with the data acquisition
and measurement setup using the BBQ system.
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source locations. The results for are shown in Figure 2.4 for three source
positions, as depicted on Figure 2.4(a) using different makers on a mesh
with 69984 nodes and 357255 elements and an average edge length of 1
mm. The signal profiles shown in Figure 2.4(h) are normalized to their
maxima. The normalization factors, defined as the maximum of the mea-
sured signal to the maximum of the respective simulated signal for three
source positions were 2.6367, 2.5694 and 2.6249. The slight differences
between the normalization factors is likely due to the variability of the
laser power between the measurement sets and other physical factors,
such as calibration error or imperfect positioning of the phantoms. Oth-
erwise, as seen in Figure 2.4(h), the FEM predictions almost perfectly
match the measured signal and the normalization factors are almost the
same across the 3 source positions.

Experimental phantom results were also employed to confirm conclusions
of Section 2.5 regarding the required mesh resolution. The above physical
phantom measurements were examined against FEM-based simulations
for various edge sizes. The optical properties of the phantom were found
using a trial and error based approach to minimize fluence prediction
error. Then FEM modeling was performed for various mesh resolutions
(quantified by average edge size) and for each resolution the modeling
error was calculated. The results are demonstrated in Figure 2.5, where
edge sizes of around 1.3 mm or less were observed to provide an acceptable
modeling error, as also predicted by numerical simulations above.

2.7 System model of FMT

The goal of this section is to derive the relationship between the X and
the optical measurements collected on the tissue surface. It is known that
the relationship is described by a linear model [47,48]. The discretization
of the tissue volume using a tetrahedral mesh of N nodes also presents
a framework for representation the fluorophore distribution as a repre-
sented by a N × 1 vector X. Each entry of X represents the fluorophore
concentration on a given mesh node. The concentration is defined as the
product of the absorption cross-section of fluorophores and their quantum
yield. The process of modeling FMT is schematically shown in Figure 2.6.
We make use of the FEM formulation describing the propagation of the
excitation and emission photons in tissue, as described in Section 2.3.
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Figure 2.5: FEM modeling error versus edge size for experimental data. The
labels show the corresponding number of nodes for each given average edge
size.

The stiffness matrices obtained from the FEM formulation at the emis-
sion and excitation wavelengths are denoted by N ×N real matrices Hm

and He, respectively (note that for the CW case the matrices are real
while in the frequency domain, they are complex [48]). For the excitation
and emission wavelengths, denoted by subscripts e and m, assuming the
ith source is illuminated we have (using author’s methodology in [47])

HmΦi
m = Sim (2.27)

Sim = diag
(
Φi
e

)
X (2.28)

HeΦi
e = Sie, (2.29)

where Sie (Sim) and Φi
e (Φi

m) are column vectors denoting source intensity
and light fluence for respectively the excitation (emission) wavelength.
The excitation source vector Sie is non-zero only on the mesh nodes that
are in the illumination spot of the ith diffusive source. For the emis-
sion wavelength, each mesh node can be regarded as an optical source
whose intensity is determined by the local fluorophore concentration on
that node and the local excitation fluence. As a result, Equation 2.28
holds, where the operation “diag” converts a vector to a diagonal matrix.
Furthermore, assuming the measurements are obtained at the emission
wavelength, denoted for the ith source by a column vector M i consisting
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Figure 2.6: Diagrammatic description of FMT modeling steps.

of Q (number of detectors) entries, we have

M i = T
(
Φi
m

)
, (2.30)

where T is an operator relating the fluences to the measurements, such
as a Q×N real matrix describing measurement obtained on each detec-
tor as a linear combination of the fluences of its neighboring nodes. By
combining Equation 2.27- 2.30, we can establish a linear relationship be-
tween measurements and the solution vector X. The entire measurement
vector is given by a P Q× 1 column vector M defined as

M =
[
M1> . . . MP>

]>
. (2.31)

The linear FMT system model is then given as

M =


T (H−1

m diag (H−1
e S1

e ))
...

T
(
H−1
m diag

(
H−1
e SPe

))


︸ ︷︷ ︸
W

X + υ, (2.32)

where υ denotes the measurement noise. The inverse problem of FMT
consists of solving Equation 2.32 for X given M and W. In derivation of
the system model, it was assumed that the optical properties of the tissue
are known. In practice, same sets of homogenous or organ-specific opti-
cal scattering and absorption are used for the forward modeling at both
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excitation and emission wavelengths [25, 49]. The fluorescence measure-
ments are oftentimes normalized using the measurements obtained at the
intrinsic (or excitation) wavelength. The so-called normalized Born ratio
consists of dividing the fluorescence measurement by the intrinsic [50].
This normalization removes the uncertainty associated with such phys-
ical factors as the laser or detector coupling. Moreover, the impact of
modeling error introduced by incomplete knowledge about tissue optical
properties is largely mitigated by Born normalization [51].

The linear system model of FMT with regard to the Born normalization
can be alternatively derived using the following equation

bs,d := fsd
isd

=
∫

Ω

g(s, r) g(r, d)
g(s, d) X(r)dΩ, (2.33)

where is,d, fs,d and bs,d denote the intrinsic and fluorescence measurements
and the Born ratio for source s and detector d, respectively. g(p, q) de-
notes the Green’s function between points p and q and the integral is
taken over the tissue volume Ω and X(r) denotes the fluorophore concen-
tration on point r. Using volumetric discretization, Equation 2.33 can
be written as

bs,d =
∑
i

g(s, vi)g(vi, d)
g(s, d) X(vi), (2.34)

where the summation is taken over all the voxels. The GF values g are
found using the FEM formulation presented above.

2.8 Conclusion

In this chapter a modeling approach for FMT based on finite-element
based discretization of the diffusion equation was developed. The pro-
posed method was efficiently implemented in MATLAB and is capable
of handling large tissue samples several centimeters in diameter. It was
shown that the developed FEM code is capable of accurately modeling
light propagation in numerical as well as physical phantoms. The effect
of the mesh resolution was examined on the modeling accuracy and it was
concluded that a uniform tetrahedral mesh with an average edge size of
1.3 mm or less is capable of modeling light propagation with an accuracy
adequate for practical purposes. We further presented the derivation of
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the mathematical model of the FMT as a linear system based on the
FEM formulation. The practical problems encountered in development
of the MATLAB-based FEM code were discussed. Efficient utilization of
the developed light propagation framework toward processing FMT-XCT
measurements requires an accurate geometrical description of the various
optical and CT components - an issue addressed in the next chapter.
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3 FMT-XCT calibration and
acquisition methodology

3.1 Introduction

Hybrid modalities and in particular the combination of FMT and XCT,
called FMT-XCT and recently developed at the Institute for Biological
and Medical Imaging (IBMI) in Helmholtz Zentrum München (HMGU)
[32], provide a wealth of information across time and space regarding
molecular function as well as anatomy of tissue. FMT-XCT is a hybrid
modality, where three-dimensional (3-D) entities of two separate origins
are combined toward improved performance. The anatomical informa-
tion from the CT component is rendered as a 3-D image, where every
element represents the local absorption of X-ray photons in a given vol-
umetric voxel. The raw FMT data is acquired on the other hand as
two-dimensional (2-D) fluorescence and intrinsic images. The FMT-XCT
system and its components are shown in Figure 3.1. The system is com-
prised of a cooled-CCD and two laser sources, in an axis perpendicular
to the X-ray tube and the X-ray camera axis [32]. There is also the
provision of obtaining front-illumination images using electroluminescent
foils. The animal is placed on a bed (comprised of two parallel carbon
rods, often connected through threads in a zigzag formation) and slid
into the imaging chamber. The animal is kept under anesthesia during
the whole imaging period. The optical images are obtained using a set
of optical filters in 360 degree rotation geometry. The imaging system
is controlled using LabView (National Instruments, Austin, TX, USA).
The FMT also supplies metadata; specifically, the location of the transla-
tion stage which moves the fiber tip as well as respective laser powers and
exposure times for both wavelengths and gantry angles are saved as meta-
data by the system. Imaging using FMT-XCT involves the solution to

29
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Figure 3.1: The FMT-XCT hybrid imaging system; (a) photograph of the
system with front lead cover removed, (b) the optical and X-ray components
shown on perpendicular axes, mounted on a rotating gantry.1

the forward and the inverse problems. Furthermore, the end result of the
FMT-XCT is a 3-D matrix, representing the volumetric reconstruction
of the fluorophore concentration. This solution matrix is often rendered
two or three-dimensionally along with the underlying CT data. Exam-
ples include isosurfaces or transparency maps imposed over the CT slices.
All the steps during the process of imaging, including solving the forward
and inverse problems as well as final coregistration and demonstration,
require an accurate geometrical mapping between various volumetric and
planar entities arising in optical and CT domains. The issue of finding
this spatial mapping is referred to herein as geometrical calibration or
simply calibration. In this chapter we analyze the different components
of the FMT-XCT that require geometrical calibration and the challenges
involved and present a calibration framework. The proposed framework
consists mainly of two intertwined steps; the camera calibration and the
source calibration. The former involves a mathematical description be-
tween the CT domain and the optical domain using a pinhole model at
several equispaced gantry angles and the later addresses laser beam posi-
tion in space. The calibration is performed using a resin-based cylindrical
calibration phantom with a diameter of 19 mm. Although inherently a

1 Xiaopeng Ma at IBMI contributed to the graphic design.
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tedious task, the entire procedure has been mostly automatized, so that
minimal user interference is required. The FMT-XCT systems located at
the HMGU and the Klinikum rechts der Isar have been both accurately
calibrated using this framework.

3.2 Camera calibration

A calibration phantom is needed to find the geometrical mapping between
the CT domain and the optical domain. Camera calibration, defined as
derivation of a mathematical model describing the geometrical relation-
ship between the image plane and the real world, is conventionally ac-
complished using a checkerboard [52]. The checkerboard is imaged using
the camera at several positions and the square corners are then extracted.
Such an approach is difficult to use for our calibration purposes. The rea-
son is that the limited field and depth of view of the camera necessitate
imaging the checkerboard using the CT and the camera at many orien-
tations and positions. The fact that the camera should be calibrated at
many gantry angles due to imperfect circular motion of the gantry and
unaccounted-for mechanical movements between different gantry angles,
made this process very cumbersome from a practical point of view.

Instead, we developed a cylindrical silicon phantom with a diameter of
19 mm, as depicted in Figure 3.2.2 The phantom has special fiducial
surface features that make the calibration feasible. The surface of the
cylinder was covered with white paper and then marked with stripes of
black electric tape. The tapes are clearly visible in the optical images
and also have pronounced absorption of X-ray photons; therefore clearly
seen in the CT. To be able to correctly index the corners of the stripe
intersections (to be used later during the calibration), four squares were
marked with 1, 2, 3 or 4 pieces of black electric tape; also visible in both
CT and optical domains. Due its surface curvature the cylindrical object
covers a relatively large depth of view, hence yielding a proper estimate
of the camera calibration matrix using few object positions.

Let (x, y) designate a pixel in the image domain for a given gantry angle
θ. Using the concept of homogenous coordinates and the pinhole camera

2 Maximilian Koch at IBMI contributed to the idea of using this calibration phantom.
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a b 

Figure 3.2: FMT-XCT calibration phantom; (a) the photograph of the silicon
cylinder marked with stripes of black electric tape (b) isosurface of the CT.
The features are designed so as to be visible in both optical and CT domains.
Small black dots in (a) made automatic indexing of the stripes possible.

model,3 the set of points (X, Y, Z) in the 3-D coordinate system which
are projected onto this pixel through the camera satisfy the following
equation 

xw

yw

w

 = Kθ
(
X, Y, Z, 1

)>
, (3.1)

where w > 0 and Kθ is a 3 × 4 matrix, called the camera matrix [52].
The variation over w allows for a set of 3-D points projected onto (x, y)
which all fall on a 3-D line in space. Let θ1 through θN designate the set
of gantry angles for which the camera matrices Kθ have been calculated.
For any other angle, θ then matrix Kθ is then estimated as a linear
combination of the camera matrices of the adjacent 2 angles. That is

Kθ ' θi+1 − θ
θi+1 − θi

Kθi + θ − θi
θi+1 − θi

Kθi+1 , (3.2)

where θi ≤ θ ≤ θi+1.

To find the camera matrix at several projection angles simultaneously, the
calibration cylinder of Figure 3.2 was placed on the animal bed and front-
illumination images were obtained at several gantry locations, followed

3 The previous processing framework described in [32] used parallel projection model
which was found to be not as accurate as the pinhole model. A methodologically
different calibration approach has been described in [53] - however, the method
proposed in here was developed independently.
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Figure 3.3: Automatic corner detection and indexing of the calibration phan-
tom; (a) the rolled out surface of the CT scan with the automatically detected
white stripes (black tape) marked by vertical and horizontal green and red
lines and four corners around each black square (white paper) marked with
red, yellow, cyan and green dots, (b) the indexing of the white squares on the
photograph of the cylinder. The numbers within each square show vertical
and horizontal distances from the marked rectangle (here the rectangle with 3
spots).

by acquisition of the CT scan. The process is repeated for the cylindrical
phantom with different geometrical orientations (nominally 4-5 orienta-
tions deliver a satisfactory level of calibration accuracy). For a given
orientation and gantry angle, the cylinder surface from reconstructed CT
volume is automatically extracted and “rolled out” in a rectangle, as
shown in Figure 3.3(a).

The corners of the black rectangles in the rolled-out image, correspond-
ing to the areas covered with white paper, are detected using a corner
detection approach for accurately locating the actual corner in the vicin-
ity of line intersections. The corners are then indexed according to the
vertical and horizontal distance from the nearest of the 4 larger rectan-
gles (marked with 1 to 4 small black tape spots). The corresponding
locations of the extracted corners are then found in the CT coordinate
system. The corners of the front-illumination image are found and in-
dexed accordingly, as shown in Figure 3.3(b). These corners are found
based on segmentation of the thresholded binary image where the curved-
quadrilaterals are recognized according to the object properties (such as
area, orientation and convex hull). The sets of corresponding 2-D corners
(extracted from the optical images) and 3-D corners (extracted from the
CT volume) extracted at several phantom orientations for a given gantry
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Figure 3.4: Calibration accuracy between CT and optical domains; the red
curve shows the outline of the projection of the CT volume over the mouse
photograph. The non-matching locations on the top right corner are due to
objects in the back side, visible in CT but in the photograph. The left-most
part of the photograph falls outside of the FOV of the X-ray detector.

angle are processed using CVX, a MATLAB-based toolbox package for
specifying and solving convex programs [54, 55]. The result of the op-
timization is the 3 × 4 camera matrix for that particular gantry angle.
The FMT-XCT systems were calibration for 68-72 such gantry angles.
The performance of the camera calibration is shown in Figure 3.4 for an
animal study, demonstrating a very accurate matching between the pro-
jected volume and the boundary of the animal in the front-illumination
photograph.

3.3 Laser calibration

The laser calibration consists of finding the 3-D line corresponding to the
laser beam, given a gantry angle and 2-D laser stage position (available
from the FMT-XCT metadata as a pair of numbers in millimeters). The
laser stage is mounted on a 2-D translation stage. For a given (r, s)
location of this stage, let L(r, s) denote the 3-D laser beam line. The
laser beam illuminates the calibration plate (consisting of a glass slab
cover with a white plate for optical marking) at the first and second
positions at locations P1 and P2. These points are seen on the camera at
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n 

Figure 3.5: Geometrical laser calibration; the location of the laser beam in
the 3-D coordinate system is found using a glass plate at two different locations,
where the incidence points, P1 and P2 are found using the camera calibration
results.

pixels p1 and p2. We use this information to find L(r, s) and the normal
vector n.

Given the gantry angle, we have the camera matrix from the previous
calibration stage. Also using the CT reconstructions of the plates, we
have the 3-D planar description of the calibration plate at positions 1
and 2. Let A1 = (a1, b1, c1, d1) and A2 = (a2, b2, c2, d2) denote these 3-D
planes, where ai x+ bi y + ci z + di = 0.

For say the first plate position we have
x1w

y1w

w

 = Kθ

P1

1

 (3.3)

A1

P1

1

 = 0. (3.4)

This system of equations contains 4 unknowns (P1 and ω) and 4 equations.
The solution yields the 3-D location of the intersection of the laser beam
and the calibration plate, i.e. P1. The same approach yields P2 for
the second position. These two points yield the 3-D laser line for the
translation stage location (r, s). The set of the line equations for at
least 3 translation stage positions (forming a triangle with a non-zero
area), give the normal vector n and the laser beam location for any stage
position.
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For a given gantry angle θ, a subset of 3-D points on the imaging sample
surface, are seen on the camera. Here we also analyse the mapping be-
tween these 3-D points and the corresponding pixels. Let us assume that
the points P = (X, Y, Z) is located on the surface of the sample and is
visible by the camera for the angle θ, at pixel (x, y). Then (x, y) is found
using Equation 3.1. That is, the mapping from 3-D to 2-D is straight-
forward, given the correct camera matrix Kθ. The inverse mapping, i.e.
from image to volume is computationally more involved. This problem
arises in mapping detector points from the images to the sample sur-
face. The mapping from pixel to volume is achieved using a ray-tracing
approach by finding the intersecting the 3-D line (representing all 3-D
points mapped to the given pixel) and the volume. The ray tracing
operation makes use of the geometrical description of the CCD camera,
as modeled in Section 3.2. To reduce the numerical complexity of the
ray tracing operation, an initial estimate of the 3-D intersection point
of the volume surface and the spatial ray associated with the 2-D pixel
is found using a parallel projection simplification of the camera model
matrix. This initial estimation is then refined in its neighborhood using
the accurate camera matrix.

3.4 Optimizing the acquisition protocol

FMT-XCT imaging comprises optical and CT acquisitions. The CT imag-
ing part lasts around 20 minute for the system at HMGU and less than
3 minutes for the newer system at Klinikum rechts der Isar and can be
performed before or after optical imaging. The quality and length of the
optical imaging heavily depends on the acquisition protocol. The previ-
ously used imaging protocol is presented as a flowchart in Figure 3.6(a).
This method involves moving turning the laser off and on as well as several
filtering flips (as many as source positions) in each gantry location. This
method results in a large mechanical overhead. Furthermore, the output
power of the laser was observed to fluctuate significantly (up to 40%) in a
non-negligible time interval (up to several tens of seconds) every time the
laser is switch from the “off” state to the “on” state; again, carried out
as many times as the number of sources in every gantry location. These
laser power fluctuations cannot be accounted for and result in error. A
typical FMT acquisition using this approach lasts 40-50 minutes.
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Figure 3.6: Previous and improved FMT acquisition methodologies; (a) the
flowchart of the previous protocol, (b) the flowchart of the improved and cur-
rent approach. The rhombi denote conditional units, where the “Y” port is
valid upon completion of the preceding operation. Red ON and OFF labels
denote activity status of the laser.

The improved and currently used method, presented in Figure 3.6(b),
overcomes some of these limitations. The set of all front-illumination
images is obtained before the fluorescence measurements. This set is
stored and later retrieved for automatic source positioning. During the
acquisition of the front-illumination images, the eletrolumiscent panels
are turned on and the laser is turned off. As seen, all the intrinsic and
all the fluorescence images are acquired then in one setting. The laser
is kept on during the entire imaging. While turning the laser on from
the off state was observed to result in large power fluctuations, changing
the laser power in the “on” state resulted in reasonably small fluctua-
tions. This approach results in significantly lower mechanical overhead
and more accurate imaging; a full in vivo mouse measurement set lasts
around 20-25 minutes to acquire, indicating a two-fold improvement in
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the acquisition speed. Several modes with different degrees of adaptation
are available for adjustment of laser power and exposure time. Adaptive
methods start with a given laser power (intrinsic wavelength) or exposure
time (fluorescence wavelength) and increase it until a preset maximum
signal intensity is achieved [32]. We observed in several animal experi-
ments that fixed settings of laser power often result is reasonable dynamic
range of images at both wavelengths; a fact which can be used to lower
the imaging time. The actual optical measurement time is fairly small.
Assuming 20 gantry angles, 300 source positions and exposure times of
100, 100 and 500 ms for front-illumination, intrinsic and fluorescence
images respectively, the physically minimum imaging time is around 3
minutes. The rest of the 20-25 minute acquisition time is owed then
to mechanical movements of the gantry, filter wheel and laser stage as
well as CCD readout time, laser power/exposure time adjustment and
LabView (National Instruments, Austin, TX, USA) overhead. Further
optimization of acquisition protocol and power/exposure time adjustment
methods are possible and potential topic of future work (Section 10.2).
This acquisition approach also enabled us to further expand FMT to clin-
ical applications, as presented in Chapter 9, where a clinical acquisition
was optimized to last around 12 minutes.

3.5 Conclusion

In this chapter we described a two-step procedure for geometrical calibra-
tion of the FMT-XCT system. In the first step, 3 × 4 camera matrices
based on the pinhole camera model were extracted for several gantry
angles using a cylindrical calibration phantom. The phantom was care-
fully marked so that the fiducial features were visible in both optical and
CT domains. The reconstructed CT scan was automatically rolled out
and the corners were picked and indexed. The camera matrix for arbi-
trary angles was then found as a spatial interpolation of the calibrated
angles. The results of the camera calibration were used in a second step
to calibrate the location of the laser beam, as 3-D line, in the camera
coordinate system. The camera calibration was shown to have a high
accuracy in mapping the CT domain to the optical domain. Both FMT
systems located at the IBMI and Klinikum were calibrated using this
approach. We further analyzed the LabView acquisition approach and
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proposed a method with approximately two-fold improvement of the ac-
quisition speed. We build upon the forward modeling presented in the
previous chapter along with the accurate system calibration results of
this chapter, to develop in the next chapter a comprehensive framework
for processing of datasets acquired by the FMT-XCT systems.



40 3.5. Conclusion



4 Optimized processing for
FMT-XCT

4.1 Introduction

Development of hybrid modalities which utilize the sensitivity as well as
molecular and functional information afforded by optical imaging and
the anatomical information of another modality, such as magnetic res-
onance imaging (MRI) or computed tomography (CT), help improve
imaging quality and accuracy [25, 32, 56, 57]. In particular, X-ray CT
has been used to mitigate the low spatial resolution and ill-posed nature
of the FMT through provision of high-resolution anatomical images, as
discussed in Section 3.1. The 3-D CT images are used in conjunction with
FMT toward more accurate molecular imaging. The anatomical data are
employed in the reconstruction as a priori information in the inversion
as well as for geometrical characterization of the tissue and improving
light propagation modeling accuracy.

The efficient synergy of these datasets is only possible through careful
development of data processing, forward modelling and inversion algo-
rithms as well as robust user interface and display frameworks. Further-
more, in processing FMT-XCT measurements one has to deal with huge
datasets which place particular limitations on the memory and computa-
tional units of the computer. The processing code should be optimized
to handle such issues efficiently and also optimally extract the desired bi-
ological information embedded in the datasets. The challenges one faces
during code development for FMT-XCT processing can be divided into
two categories. The first category includes the necessity of accurate for-
ward modeling of light propagation in tissue and the inverse problem.
The second category includes computational and memory issues which
can become quickly prohibitive if not properly handled, due to the sheer
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Figure 4.1: Flowchart of the XFMT code; hardware units are shown with
blue boxes, data preprocessing and conditioning and forward processing units
are shown with green boxes and inversion units are depicted with orange boxes.

size of the datasets involved. In this chapter we present a processing
framework (also called in this work the XFMT code) that was developed
during this research for efficient processing of FMT-XCT datasets and
the code architecture as well as numerical issues involved and addressed
toward optimized processing.1 The development here was performed in
the MATLAB environment. While it is not possible to elaborate all
programming challenges herein, we do describe few important tissues in
detail.

4.2 Code development and structure

The general flow of the different hardware and processing blocks of the
FMT-XCT system are given in Figure 4.1. For conciseness, the hardware
are denoted simply as FMT and CT modules. More details regarding the
hardware can be found in [32].

4.2.1 Data processing and forward problem

The processing blocks in Figure 4.1 which relate to importing data to
the code, preconditioning of the data and setting up and solving the for-

1 Few modules (mainly the LSQR solver and raw data file readers) are shared between
the framework developed and presented here and the code previously used at
IBMI and reported in [32, 57, 58]. The author appreciates Maximilian Koch and
Dr. Angelique Ale at IBMI for the discussions during the evolvement of the code
developed by the author and presented here.
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ward problem are marked with green color. The FMT-XCT hardware
generates optical measurements and metadata, stored in SPE (image sav-
ing format from Princeton Instruments, Trenton, NJ, USA) and FMT files
respectively, as well as CT DICOM (abbreviation of Digital Imaging and
Communications in Medicine) files. The CT data is processed using GE’s
proprietary software, which reconstructs a 3-D uint16 (16-bit unsigned
integer format) matrix. The metadata consist of positions of the laser
translation stage as well as the laser powers and exposure times for each
position and wavelength. The code reads all the FMT files in the corre-
sponding folder and combines files into a single dataset - it is assumed
that the different FMT files corresponding to separate gantry angles, as the
imaging operation might have been interrupted and resumed. The code
automatically determines if the gantry has mechanically jittered during
the imaging, resulting in gantry angles and images in between the preset
equispaced angles. Such outliers are discarded. The front-illumination
images are extracted either from the EPI file (for the new acquisition Lab-
View code) or from the SPE file (for the older versions, see Section 3.4).
The CT dataset is read from the VFF file (SUN™ TAAC file format) and
cropped around non-zero volume. The entire combined dataset is then
normalized for laser power and exposure times. Next, “CT preview” im-
ages are generated, which are defined as maximum intensity projection
(MIP) images of the CT volume seen through the CCD camera. These
images, when viewed with fluorescence, intrinsic or Born images super-
imposed as transparency overlays, help with settings of several regions of
interest (ROIs) (an example of a CT preview can be seen in Figure B.1).

Prior to further processing, several regions of interest (ROIs) should be
adjusted. Specifically, 3 ROIs can be distinguished; the reconstruction,
detector and meshing ROI, corresponding to the regions within which, re-
spectively, the inversion is performed, the optical measurements are used
and the light propagation is modeled. While the code makes automatic
suggestions for these regions, the user is given the possibility to manually
adjust them as well (further explained in Appendix B). The initially sug-
gested reconstruction and detector ROIs are set to the scanning region
of the laser and the meshing ROI is set to a 2-3 mm expansion of the
scanning ROI in the axial direction. We assume air-to-tissue boundary
condition for the entire volume. It was found that the 2-3 mm expansion
results in an adequately accurate modeling of tomography purposes.

As shown in Section 2.5, a uniform mesh with an average edge size of
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a b c 

Figure 4.2: Meshing and ray tracing demonstration; (a) a front-illumination
image along with the 2-D detectors (green dots) and the 2-D source locations
(red starts), (b) the isosurface of the animal volume with the front-illumination
image wrapped on the surface along with the 3-D detector points projected
on the skin via ray tracing and (c) distances between the surface mesh nodes
and the actual skin in mm, representative of meshing accuracy. All numbers
are in millimeters.

1.3 mm or less results in a fairly accurate solution of the forward prob-
lem. Particularly, the meshing is achieved by starting with a coarse mesh
with a given maximum surface element size (denoted by radbound in the
ISO2Mesh framework and set to 10). A tetrahedral mesh is then gen-
erated from the labeled volume tensor (achieved through segmentation
of the CT volume) for the given surface element size and then the av-
erage edge length is calculated. If the average edge size is smaller than
the preset value (typically 1.3mm), the radbound is arithmetically re-
duced and the process is repeated until the desirable average edge size is
achieved. This process typically results in a tetrahedral mesh of ∼ 10000-
15000 nodes and around 50000-75000 elements for a typical animal study.
Further segmentation of the CT volume is possible and accomplished
through semi-automatic and automatic methods [59]. Semi-automatic
tracing-based segmentation, for instance possible using Amira (Visage
Imaging, Richmond, Australia), is an approach which was found to be
especially efficient for segmentation purposes.

4.2.2 Measurement vector generation

The 2-D detector points are determined in the optical image domain,
using the projections of the CT volume through the CCD camera (i.e.
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CT preview images, defined above in Section 4.2.1). The 3-D detector
positions are then found by tracing the 2-D points in space back to volume
surface (e.g. animal skin). The source positions are initially given as
real 2-tuple metadata denoting the corresponding positions of the laser
translation stage. These values are converted 3-D laser beam lines in
space, using the laser calibration results of Section 3.3, and intersected
with the volume surface using the aforementioned ray tracing approach.
An example of a meshed volume along with the 3-D source and detector
positions and their 2-D projections are shown in Figure 4.2.
For every detector point, the corresponding intrinsic and fluorescence
measurements are calculated and the Born ratio is found as the ratio
of the two measurements [50]. The data with saturated fluorescence or
intrinsic values or with intrinsic values smaller than a threshold (typi-
cally 100 counts, which is justified as a typical dark CCD image ranges
between 580-700 counts and all images are thresholded at 620 before the
processing) are excluded. A typical in vivo study can result in up to half
a million measurement points.

4.2.3 Solving the forward problem

Forming the weight matrix requires knowledge about the Green’s function
values between sources and detectors, sources and voxels and voxels and
detectors, as explained in Section 2.7. Each source or detector point is
modeled using the spatial FEM basis functions of the surface element
that encompasses the corresponding 3-D point (estimated using the laser
calibration information and the ray tracing approach, as explained in
Section 3.3. Given a source or detector point, the element containing
that spatial 3-D point if found. The search algorithm first finds a group
of elements with centroids in the vicinity of the given 3-D point. Then,
the surface element containing the point is found from within this group.
The same approach is applied where the source or detector points are
modeled using diffusive patterns (such as using Gaussian-shape filters).
For every source or detector, the forward solution is then found by solving
Equation 2.14. The forward problem is used solved gradient method,
described above, using a preconditioning matrix derived as incomplete
Cholesky factorization of the weight matrix [60].
In a typical animal study with 20 projections and 20-30 source positions
and 200-400 detectors points for each projection, the forward problem
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should be solved on average 20× (25 + 300) = 6500 times. Many of these
individual source or detector locations share the same boundary nodes;
a fact which can be employed to reduce the computation burden of the
forward solution. Specifically, it is computationally favorable to solve the
forward problem for all of the boundary nodes of the tetrahedral mesh,
which fall in the field of view. For an average animal volume, mesh edge
size of ≈ 1.3 mm and axial field of view of ≈ 15 mm, there exist less
than 2500 surface mesh nodes within the axial FOV. Once the forward
problem has been solved for all surface nodes in the field of view, the
desirable Green’s functions can be easily found as linear combinations of
forward solutions of corresponding surface nodes.

4.2.4 Mitigating the effect of non-specific
fluorescence

The impact of the fluorescence emanating from general, non-targeted
tissue due to unspecific uptake or distribution of the fluorescent probe is
further reduced using methods described in [61,62] (the method described
[61] in has been shown to improve imaging performance for FMT-XCT
[63]). These methods consists of modeling the Born ratio associated
with the fairly homogenous background fluorescence of the injected probe
using a 1st degree [61] or 3rd degree [62] polynomial function of the source-
detector Euclidean distance. We have implemented these estimations
in the XFMT code allowing manual or automatic determination of the
approximating linear or cubic functions. The polynomials are fit using
constrained optimization to the following function

f(r) = Pα {ms,d|r − δ < rs,d < r + δ} , (4.1)

where for a given set S, Pα(S) denotes the α-percentile of S defined as
a real value which is larger than α percent of all the elements of S. The
parameter α is typically set to a very small value (e.g. 0.1) and δ is
set to 0.5 mm. The operation and rationale of the background subtrac-
tion method is demonstrated in Figure 4.3 for a mouse-shaped numerical
phantom with uniform and heterogeneous distributions of background
fluorescence. The linear approximation often delivers reasonably good
results; however, depending on the specific study, other methods such as
using cubic polynomials might be more suitable.
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Figure 4.3: Approximation of background fluorescence using polynomials;
linear (red) and cubic (black) approximations of the simulated Born signal
vs. source-detector distances for (a) a mouse-shaped phantom with uniform
background fluorescence and (b) the same phantom, but with heterogeneous,
yet smooth background distribution.

4.3 Regularization and inversion
approaches

Although the number of measurements in the FMT is typically much
higher the number of unknown variables, the FMT linear system model
is highly ill-posed as other optical tomography methods such as DOT
[64, 65]. Hence, unconstrained inversion of the linear system results in
highly irregular solutions, with an unrealistically large dynamic range.
Constrained or regularized optimization can, however, result in fairly
accurate reconstructions of the underlying distribution. Although the
fluorescence distribution is not known in advance, it is assumed to have
certain deterministic and statistical properties. For instance, the un-
known vector X is bounded as non-negativity of the distribution sets a
lower bound of 0 on X and the total injected probe quantity determines
an upper bound. Furthermore, the vector X is often not arbitrary ir-
regular as the distribution is often composed of a specific accumulation
of the probe in the target lesion and a generally smooth background
fluorescence. Depending on the specific application and probe or target
properties, other signal characteristics such as sparseness can be assumed
as well [66, 67].
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Optimization constrains rely on such known deterministic or statistical
descriptions of the unknown vector to reduce the size of the reconstruction
space. A particularly important property is the limited energy of the
solution. The linear FEM problem of Equation 2.32 can be solved using
the least squares (LS) approach as

XLS = arg min ‖WX −M‖2. (4.2)

To constraint the solution, the signal energy can be limited as follow

Xδ = arg min ‖WX −M‖2 subject to ‖X‖2
2 ≤ δ2, (4.3)

where δ2 is the energy bound. Using the method of Lagrangian multipliers
and dropping the constant δ2 term, Equation 4.3 can be written as

Xλ = arg min
(
‖WX −M‖2

2 + λ2 (‖X‖2
2)
)
. (4.4)

It can be shown that under certain conditions, for appropriately chosen
λ the solutions Xλ and Xδ are equivalent [68].

The approach of Equation 4.4 is referred to as Tikhonov regularization
and poses a quadratic problem which has a closed-form solution given
as

X0 =
(
WTW + λ2 IN

)−1
WTM, (4.5)

or equivalently
X0 = WT

(
WWT + λ2 Im

)−1
M, (4.6)

where N is the number of unknowns (voxels in our case), m is number
of measurements and IN is the identity matrix of size N × N . The
inversion in Equation 4.5 is limited by the number of rows or the number
of columns of the weight matrix. Either way, the inversion is likely to take
a large amount of time. Instead, this equation is often minimized using
iterative approaches such a the conjugate gradient methods (discussed in
Section 2.3) or the least squares methods (LSQR), as is the case in this
work as well. LSQR is a method based on conjugate gradient approach for
solving linear or least-square problems involving large sparse matrices [69]
and is used for tomographic inversion [32,70].

It can be readily shown that the solution to the Tikhonov-regularized
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problem is equivalent to

Xsvd =
N∑
i=1

si
s2
i + λ2

(
v>i uiM

)
, (4.7)

where si’s are singular values of W and vi and ui are, respectively, ith
rows of the unitary matrices of the singular value decomposition (SVD)
of the weight matrix W given as

W = U diag(s1 . . . sN)V. (4.8)

In this way, the Tikhonov-solution can be regarded as the SVD-based
direction inversion solution, where singular values are lower-bounded
through addition of a constant λ term.

A more general form of the regularization solution can be written as

X0 = arg min
(
‖WX −M‖2

2 + λ2 ‖Γ(X)‖pp
)

subject to X ≥ 0,
(4.9)

where the regularization term Γ(X) is chosen to enforce a priori known
signal properties. For instance, the sparseness of the distribution can be
enforced for p = 1 by penalizing the L1 or total variation norm of the
solution [47, 67] or for general 1 ≤ p ≤ 2 [71]. Tikhonov-type regulariza-
tion is achieved by for p = 2. In particular, the anatomical information
available from the X-ray CT can be used to enforce different penaliza-
tion for different tissue regions [32,72,73]. For instance, prior knowledge
about absence or presence of fluorophores or uniformity of distribution
in a given organ have been employed to define the regularization term as
Γ(X) = LX, where L is an invertible square matrix determining penal-
ization terms for different regions.

Two main types of structured regularization are particularly employed
in fluorescence tomography. The first method, called weighted-segments,
penalizes the energy of the solution in different anatomical segments dif-
ferently using preset (or data-driven) weights [32,72,73]. For this method
the structured regularization matrix L is a N×N diagonal matrix where
each entry on the main diagonal has a value equivalent to the weight as-
signed to its respective segment. The second category, consists of Laplace-
type methods where the uniformity of solution within each segment is re-
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warded [32,58,73,74]. The matrix L for the basic Laplace-based method
is given as

L(i, j) =
 −

1
Nk

i ,j ∈ kth segment
0 else,

(4.10)

where Nk is the number of solution elements in the kth segment. Given
the regularization matrix, the inverse problem is then solved as

X0 = arg min
(
‖WL−1Y −M‖2

2 + λ2‖Y ‖2
2

)
subject to X = L−1Y ≥ 0.

(4.11)

The regularization parameter λ dictates a balance between minimization
of the two norms in Equation 4.11; very small values result in highly
irregular solutions with high dynamic range which minimize the residue
and large λ’s result in smooth solutions concentrated around tissue center
and almost independent of the measurements. This tradeoff can be well
observed using the L-curve, which shows the relation between solution
norm and residue norm. The corner of the L-curve, offering an optimal
tradeoff between modeling accuracy and solution dynamic range, is often
selected as the point with maximum curvature [75]. A more thorough
analysis of the behavior of structured regularization methods is presented
in Chapter 6 prior to introducing a new inversion approach.

4.4 XFMT graphical user interface (GUI)

The code is equipped with a versatile GUI capable of several function-
alities. A snapshot of the GUI for an ex vivo study is demonstrated in
Figure B.1. This graphical interface is critical for full utilization of the
developed processing framework and it allows efficient customization and
combination of available options and algorithms for different studies or
applications through. Segmentation of the CT volume using automatic
and semi-automatic routines (some of which described in [76]) are incorpo-
rated. The GUI offers several tools for L-curve analysis and background
subtraction, as well as rendering FMT-XCT processing results in 2-D
and 3-D modes. Furthermore, the GUI makes partial processing of the
results possible; that is, upon changing a parameter only the minimum
required processing is performed to update the results. Accuracy of geo-
metrical calibration can be examined to spot possible calibration errors
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Figure 4.4: Processing time analysis showing the computation times in sec-
onds for various functional modules for an ex vivo experiment with 17 mm FOV
in the axial direction and 28 mm in the coronal plane. The tetrahedral mesh
had 14821 nodes and 80499 elements and the total number of measurements
were 216091. Total processing time was around 500 seconds on a computer
with an Intel CoreTM i7 CPU @ 3.4 GHz and 16 GB RAM.

which might arise with time. The processing results for a given study
can be saved and retrieved in various formats at any stage of the process-
ing. Note that, although the actual reconstruction resolution of FMT is
around 1 mm, it is the most commonly used approach to render the re-
sults graphically in a spatially interpolated form, such as through interpo-
lating the reconstructed values on a finer demonstration mesh which can
be twice as fine as the reconstruction mesh. Applications of interpolated-
based rendering approach are abound in literature as in [13,25,32,77–80],
to name a few. This practice is followed for almost all of the demon-
strations presented in this work by interpolating the results twice in the
transverse plane. Among other popular volume rendering approaches for
demonstrating FMT results is the use of isosurfaces (3-D surfaces repre-
senting points of common values).

The processing of a typical animal study using this GUI lasts less than 10
minutes. An analysis of the total processing time is given in Figure 4.4.
The code is capable of processing FMT measurements from both of the
currently available FMT-XCT systems located at HMGU and Klinikum
as well as datasets acquired by single-view geometry FMT 2500 machine
(PerkinElmer, Waltham, MA, USA). The processing of the single-view ge-
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a b c d 

Figure 4.5: XFMT preprocessing and coregistration of single-geometry data
from the FMT 2500 system; (a) and (b) extraction of the animal holder from
the CT images and carving of the mouse volume using line detection, (c) the
red boundary of the extracted mouse volume on the CT projection and (d)
the superimposition of the CT volume boundary over the optical image using
correlation-based mapping between optical and CT domain.

ometry datasets required further preprocessing and coregistrations steps,
explained next. A short operational manual of the XFMT_GUI is presented
in Appendix B.

4.4.1 Single-view geometries

The FMT machine from PerkinElmer (Waltham, MA, USA) (previously
VisEn Medical), called FMT 2500 operates in single-view transillumina-
tion geometry. The animal is placed in an animal holder and imaged
in micro-CT as well. We have adapted our code to processing of these
hybrid datasets as well. In particular, the holder is first automatically
recognized, using line detection-based methods, and the animal volume
is carved out. Then, the animal volume is optimally rotated spatially to
compensate for rotations between FMT and CT acquisitions and is then
optimally coregistered with the FMT front-illumination image using 2-D
correlation. As example of these preprocessing steps is demonstrated in
Figure 4.5.2

4.5 Conclusion

The unique hardware of the FMT-XCT system sets forth unique algo-
rithmic and numerical development challenges and requirements toward

2 The data was provided by Karin Radrich at IBMI and the automatic method
presented here is conceptually similar to a manual method previously used by
her [81].
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optimal exploitation of the hybrid data afforded by this system. We
have herein presented the development of such processing framework in
the MATLAB environment. Special care was given to the problem of
solving the forward problem which accounts for modeling propagation of
the excitation and fluorescence photons in tissue. Various forward and
inverse modules as well as data-condition units were discussed and a flex-
ible graphical interface, critical to successful deployment, was presented.
Complete processing of an animal study using this framework last less
than 10 minutes for conventional computing power. The large size of
measurements acquired by poses numerical problems for the reconstruc-
tion and limit range of applicable inversion methods; an issue addressed
in the next chapter.
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5 Compression of Born data

5.1 Introduction1

The full-rotation geometry and CCD acquisition at several excitation lo-
cations can result in up to millions of measurement points in FMT-XCT.
It has been shown that best results are obtained when 18 or more gantry
angles are used during the acquisition [82]. By scanning an axial view of
2 cm and assuming a width of 2 cm - typical in preclinical applications
- a source scan pitch of 2 mm will result in 2000 source positions for 20
projections. In practice the number is slightly less, due to geometrical
irregularities. Each fluorescence-intrinsic image pair has 512 × 512 pixels.
One way to calculate the total number of measurement is counting all the
pixels across all source positions (around 500 million in our hypothetical
example). However, compression of the acquired images by means of bin-
ning on square or Gaussian shaped virtual detectors has a very minimal
impact on the information content. Nevertheless, assuming a 1 mm × 1
mm virtual detector grid, still results in 1 million data points.

The huge size of measurement space poses numerical limitations on the in-
version method and increase complexity. These limitations include large
number of forward problems to be solved, restrictive memory require-
ments and long reconstruction times. Another limitation is from the
algorithmic point of view; such large numbers of source-detector data
points can only be handled with implicit representation of the weight ma-
trix which in turn limits the reconstruction algorithm to methods which
require only matrix-vector multiplications in the inversion process, such

1 Some of the materials of this chapter are also presented (at places with minimal or
no changes) in P. Mohajerani and V. Ntziachristos, “Compression of Born ratio for
fluorescence molecular tomography/x-ray computed tomography hybrid imaging:
methodology and in vivo validation”, Optics Letters vol. 38, issue 13, pp. 2324-
2326 (2013) http://dx.doi.org/10.1364/OL.38.002324. Materials reproduced
with permission from the Optical Society of America (OSA).
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as conjugate gradient (CG) type methods. Other inversion techniques
based on singular value decomposition (SVD), for instance, are not pos-
sible with such matrix sizes in reasonable time (as the complexity grows
with n3 or (mnmin(m,n)), for a m× n matrix [83]).

Measurement compression and compressive sensing are approaches which
are often utilized to reduce the size of the linear problem. These meth-
ods often rely on removing correlation between measurements toward
achieving a smaller set of relatively less correlated data points. It is also
known that FMT measurements contain significant redundancy; a fact
which has been employed to optimize the acquisition protocol [82]. Sev-
eral efforts have been previously made to reduce the size of the optical
tomography problems, both in non-fluorescence DOT methods as well
as FMT systems [84–86]. These methods achieve compression on a per
source basis by taking advantage of the redundancy in the measurement
or image domain for a given source location.

As we will show later in this chapter, there exists a different dimension
across which FMT signal shows significant redundancy. Specifically, the
Born data is found to be highly correlated between sources in a given pro-
jections or across adjacent gantry angles. Here we propose a compression
framework that makes use of inter-source signal dependencies to reduce
the size of the FMT-XCT reconstruction problem. Our approach relies on
the principal component analysis (PCA) [87] to remove the correlation
among optical measurements across Born images obtained at different
sources between adjacent gantry angles. The method has been validated
using phantom experiments as well as ex vivo and in vivo small animal
experiments. Besides the novelty of the proposed compression method it-
self, to our knowledge the results here constitute the first demonstration
of a compression method applied to in vivo FMT data.

5.2 Previous approaches

Several compression approaches have been previously proposed for FMT.
[84, 86, 88–91]. These methods can be generally divided into two cate-
gories. The first category apply a preconditioning matrix to the weight
matrix or to its sub-matrices [88, 91]. Other methods have also based
proposed for removing temporal correlation of the FMT signal across dif-
ferent acquisition time points toward dynamic imaging [92]. The second
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group of compression methods rely on 2-D transformations, such Fourier
or wavelet transforms, applied to the fluorescence or Born-normalized
images [84–86,89,90]. Significant transformation coefficients are then re-
tained which are used later as the detection patterns. Every retained
transformation coefficient corresponds to a 2-D basis function in the
image domain. The weight matrix can be directly calculated for this
spatial function, instead of for all individual pixels. The wavelet-based
approaches are often employed in conjunction with patterned source illu-
mination to achieve a smaller measurement size. The compression rates
reported by these methods usually pertain to the ratio between the num-
ber of retained components and the original number of image pixels; al-
though, binning the original pixels significantly reduces the detectors
number while retaining the information content. It should be noted that
all of the above methods have been demonstrated for simulated or physi-
cal phantoms of regular geometrical shapes or simulated mouse data with
artificial fluorescence distributions (spherical or tubular inclusions).

The transformation-based approach can be expressed as follows. Suppose
Ii and Fi for i = 1 . . . N are square matrices denoting, respectively, in-
trinsic and fluorescence images measured at the ith source position. Also,
T denotes a 2-D transformation in the image domain. The normalized
Born images are defined as Bi = Fi

Ii
. The compression can be achieved by

application of the transformation to the fluorescence images or the Born
images. The transformation can be applied to the fluorescence images
as well; however, due to robust properties of the Born normalization, we
assume here the Born images are transformed. The transformed images
Ci are given as

~Ci = T ~Bi, (5.1)

where for a matrix A, ~A denotes the vectorization operator, consisting of
column-wise stacking of elements of A into a column vector ~A. The trans-
formation T is supposed here to be aK×K matrix whereK is the number
of elements of ~Bi, i.e. the number of all pixels. Equation 5.1 is the general
form of two-dimensional transformation. In practice, such representation
is numerical prohibitive as for a typical image size of 512× 512, the ma-
trix T takes approximately 500 GB in memory (using double-precision
format). Many conventional 2-D transformations are, however, orthogo-
nal separable transforms. The orthogonality and separability make the
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following representation possible

Ci = TBi T>, (5.2)

where T in this case represents the transformation matrix of size L ×
L, with L being the number of rows of squares matrices Bi (typically
512). The transformation of Equation 5.2 can be applied in the forward
modeling of FMT. Specifically, the elements of Bs are given as

Bs(m,n) =
∑
v

g(δS(m,n), v) g(v, s)
g(δS(m,n), s) X(v), (5.3)

where (m,n) are pixel coordinates in the image domain, g(p, q) is the
Green’s function between points p and q (located either on the surface
S or in the tissue volume V), X(v) is concentration on voxel v and s is
the source. Furthermore, δS(m,n) denotes mapping between the pixel
(m,n) and the tissue surface S.

By combining Equations 5.2 and 5.3, the transformed measurement can
be expressed as

Cs(m,n) =
L∑
i=1

L∑
j=1

∑
v∈V

g(δS(j, i), v) g(v, s)
g(δS(j, i), s) X(v) T(m, j) T(n, i). (5.4)

Equation 5.4 can be rewritten as

Cs(m,n) =
∑
v∈V

H g(v, s)X(v) (5.5)

H =
L∑
i=1

L∑
j=1

g(δS(j, i), v)
g(δS(j, i), s) T(m, j) T(n, i). (5.6)

The variable H in Equation 5.5 and defined in Equation 5.6 can be rewrit-
ten as

H =
L∑
i=1

L∑
j=1

g(δS(j, i), v)Q(i, j) (5.7)

Q(i, j) = T(m, j) T(n, i)
g(δS(j, i), s) . (5.8)

It can be shown that quantity H is in fact the Green’s function between
the source s and the detection pattern defined for a given pixel (m,n) by



Chapter 5. Compression of Born data 59

the image Q(i, j). The variable Q(i, j) can be considered as a the 2-D
basis image consisting of multiplication of the mth row and nth column of
T weighted by the reciprocal of the modeled intrinsic image g(δS(j, i), s).
Therefore, the forward problem can be solved in the transformation-based
method by solving for the Green’s functions of all the source as well as
the weighted detection patterns Q(i, j).

Due to spatial regularity of measured Born images, application of con-
ventional transformations, such as the wavelet transform [84] or the
Fourier transform [86], will result in transformed images Ci with fewer
non-negligible entries than the original images Bi. Hence, retention of sig-
nificant transformation coefficients will result in large compression with-
out losing much of the signal energy.

5.3 Principal component analysis

We briefly review the method of principal component analysis (PCA),
which is employed in the next section to develop a method for compres-
sion of Born data in the inter-source domain (as opposed to intra-source,
transformation-based techniques presented in the previous section).

PCA is a transformation for converting a group of random variable real-
izations to set a of numbers, which can be considered as realizations of
uncorrelated random variables [87]. In this sense, PCA is an adaptive
transformation for optimal decorrelation and has wide applications in sig-
nal and image processing for biomedical applications. The operation of
PCA as an orthogonal transformation can be qualitatively expressed as
follows. Consider a group of vectors, where each vector represents a set
of measured variables or parameters. For simplicity, we consider the R2

space where each vector is a 2-tuple. Therefore, the group of vectors can
be considered as a set of points in the Cartesian plane. An orthogonal
transform consists of two orthogonal “basis” vectors where the projection
of each point on these vectors yields the transformed point. The first ba-
sis vector is found then by finding the direction of the “largest span” in
the set of data points. For instance, if all the data points lie on the x = y

line, then the first PCA direction would be naturally this line. The pro-
jection of each data point on the first basis, is the part of that point that
can be predicted by the first basis. The direction along which the unpre-
dictable (using the first basis) data has the largest variance, is then the
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second basis vector. The basis vectors are also called “components” and
since each consecutive estimation is performed only on residual values
from the previous steps, all the estimated components are orthogonal.

Specifically, let us assume V is a N -dimensional random vector, consist-
ing of N random variables vi, i = 1 . . . N . For an orthonormal transfor-
mation matrix T, the transformed random vector is given as U = TV .
Assuming the random vector V has zero mean (E[V ] = 0, with E denot-
ing mathematical expectation), the first basis vector T1 as a 1 × N row
vector, can be found by solving the following optimization problem

T1 = arg max
w

{
E
[
‖wV ‖2

2

]}
subject to ‖w‖2 = 1. (5.9)

The solution to this optimization problem is readily found using the
method of Lagrange multipliers, where the Lagrangian is given as

Λ(w, λ) = w cov(V )w> − λ(ww> − 1), (5.10)

where for a random vector X, its covariance matrix cov(X) is de-
fined as cov(X) = E

[
X X>

]
. Derivation with respect to w results in

w(cov(V ) − λIN) = 0. Since ‖w‖2 = 1, this can be achieved only if
det(cov(V )− λIN) = 0, which is the characteristic polynomial of matrix
V . In other words, λ and w should be then, respectively, a corresponding
eigenvalue and eigenvector pair of the covariance matrix of V . More-
over, the maximized quantity in Equation 5.9 is equal to λ. Hence, op-
timization is achieved when λ is the largest eigenvalue of the covariance
matrix.

The next component T2 is found similarly for the residual random vec-
tor V1 defined as V1 = V − (T1 V )T>1 . It can be easily shown that the
second component T2 is in fact the eigenvector of the covariance matrix
cov(V ) corresponding to the second largest eigenvalue. As a symmetric
and positive-definite matrix, cov(V ) has N positive and real eigenval-
ues and eigenvectors. The N eigenvectors then yield then N principal
directions.

Furthermore, if cov(V ) = ΛS Ω is the singular value decomposition of
cov(V ), then Λ is equal to Ω (due to positive-definiteness and symmetry
of cov(V )) and the rows of the unitary matrix Λ represent the principal
components and then covariance of the transformed vector U is given
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as
cov(U) = Λ cov(V ) Λ> = S. (5.11)

The PCA, as shown, can be applied to a group of vectors vi, i = 1 . . . K as
realizations of the random vector V . In this case, the covariance matrix
is estimated empirically as

cov(V ) := E
[
V V >

]
≈
∑K
i=1 vi v

>
i

K
. (5.12)

Similarly, PCA can be applied in the 2-D domain to a set of images,
as realizations of an underlying 2-D random vector. Specifically, for a
group of L × L images Ai, i = 1 . . . K, the PCA is performed on the
vectorized images ~Ai using a K ×K matrix T is achieved using SVD of
A A> where

A =


~A1
...
~AK

 . (5.13)

This way, the transformed vectorized images are given as B = T A where
every row of B, when reshaped into the original image size gives the trans-
formed image. The transformed images are uncorrelated with each other
and their energies (square of L2 norm) are given by the corresponding
singular values.

5.4 The proposed compression algorithm

While it is straight-forward to verify inter-source correlation using cu-
mulative sum of singular values associated with a group of images, we
confirm the presence of information redundancy among Born normalized
images obtained between different source locations using a visual, more
intuitive approach. For this purpose an experiment was performed on an
ex vivo CD1 mouse with a fluorescent tube inserted through the esoph-
agus (refer to Appendix C). We visualized then the Born data between
3-tuples of adjacent sources in the 3rd projection as presented in Fig-
ure 5.1. Figure 5.1(a) shows the 3-tuples of Born data, each 3-D point
corresponding to a virtual detector point in the given projection image.
For each source 3-tuple, a plane (P1 through P4) is fitted through the
points. The fact that for a 3-D dataset (corresponding to 3 sources) a
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Figure 5.1: Analysis of inter-source correlation of Born data for an ex vivo
mouse dataset, (a) and (b) show from different angles 4 planes (P1 through P4)
fitted to 3-tuples of Born data, where the three elements are measured Born
values on different detectors for 3 adjacent sources. The plane P1 is fitted to
these 3-tuples for sources (n, n+1, n+2), P2 is fitted to sources (n+1, n+2,
n+3) and so on. The fact that a 2-D plane is a good fit of the 3-D data 3-
tuples and that the planes are close to each other for adjacent source 3-tuples,
signifies data correlation. (c) Born data over different detectors for sources in
a given projection.

2-D plane represents the data to a high degree of accuracy, signifies inter-
source correlation. The representation accuracy is also seen from the side
view of Figure 5.1(b) as the 4 planes are located very close to each other.
This suggests that a hyper-plane in the R6 space can be good approxi-
mation for all 6 sources of this example. This dependency can also been
seen in Figure 5.1(c) where different Born signals across different sources
are shown versus different detectors.
As discussed in Chapter 2, the forward modeling of the FMT is achieved
here by finite element method (FEM) based discretization of the diffusion
equation. The volume of the tissue is discretized using a tetrahedral mesh
P with Np nodes and elements T . The unknown fluorophore distribution
is denoted by a Np × 1 vector X representing the fluorophore concentra-
tions on the nodes. Although the method presented here is constructed
with the framework of a tetrahedral mesh, it is easily expandable to other
implementations.
Through out this chapter we use the following notations. For a vector
X and matrices M and N, the notations |X|, ‖M‖, M>, mean(M) and
M�N denote, respectively, the number of elements of X, the Frobenius
norm of M, the transpose of M, a column vector consisting of the average
values of the rows of M and the element-wise multiplication between M
and N. Also, 1k is a row vector consisting of k 1’s and {ai} is a set
consisting of elements ai, i = 1 . . . L where L is implied in context.
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As a reminder, assuming a set of source and boundary conditions and
optical absorption and scattering values for the tissue, the FMT recon-
struction problem can be written as

WX = M, (5.14)

where W is the weight matrix and M is the measurement vector con-
sisting of the ratio between the measurements at the fluorescence and
excitation wavelengths (i.e. the Born ratio). This linear problem is then
solved using regularization as

X0 = arg min
(
‖WX −M‖2

2 + λ2‖ΓX‖2
2

)
, (5.15)

where Γ represents the regularization matrix, which can be determined us-
ing the a priori anatomical information from CT and λ is set to a fraction
of ‖W‖. W is formed from the Green’s function (GF) g(r, v) between
surface points r and mesh nodes v (for notation simplicity, we assume
the same optical properties for excitation and emission wavelengths).
For any r and v the GF can be calculated as a linear combination of the
GF’s of vertices of the surface triangle containing r. Hence, the forward
problem needs to be solved only for all surface nodes, as discussed in
Section 4.2.3. This suggests that the number of forward equations in the
FMT-XCT problem is not likely to be affected by any compression ap-
proach, as discussed later. The proposed compression method is demon-
strated using a flowchart in Figure 5.2. The first step of the compression
consists of defining a set of indexed detector points. This is achieved by
defining the detector points directly on the sample 3-D surface, rather
than in the CCD image domain. Specifically, let di, i = 1 . . . K and si,
i = 1 . . . L be 3-D points denoting K virtual detectors and L sources on
the sample surface. In practice, this is achieved by generating a surface
triangular mesh with the desirable detector pitch (usually around 1 mm).
It is also possible to set the virtual detector points directly to the mesh
surface nodes. The next step consists of forming a “source-detector asso-
ciation” binary matrix. This matrix specifies which detector is “seen” by
which sources. An example is demonstrated in Figure 5.3. Figure 5.3(a)
shows a group of detector points (red dots) which are seen by a subset
of sources. The sources are shown by circles of different colors, where
each color corresponds to a given projection angle to which the respec-
tive source belongs. This specific group of detector points are seen by
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Meshing 

Generating virtual detectors 
on the mesh surface 

Forming source-detector 
association matrix 

K-means clustering Solving FEM model for mesh 
nodes in the FOV 

PCA in each cluster Compressed Born data 
Forming the explicit 

compressed weight matrix 

Rendering modules as  
in uncompressed FMT 

LSQR Inversion as in 
uncompressed FMT 

Measurements 

Figure 5.2: Flowchart of the compression algorithm showing the operational
components which differ from the conventional FMT-XCT in green. The in-
dexed virtual detectors are clustered based on the respective source-detector
association binary matrix and PCA is performed within each cluster. The PCA
components then form the compressed measurements, for which the weight ma-
trix is calculated from the solution to the forward problem.

sources across 8 projection. A binary matrix is depicted as a binary im-
age in Figure 5.3(b), which shows if a detector (columns) is observed
when the sample is illuminated by a given source (rows). There can be
several reasons that some locations are black within the white stripe of
Figure 5.3(b); either geometrical irregularities or the mouse holder block
the vision at a specific location or the corresponding source-detector pair
does not pass the thresholding criteria.

Specifically, a subset of {si} is used during acquisition at each of the
projection angles. A L×K source-detector association binary matrix F
is defined as F(i, j) = 1 if and only if (1) the detector di is seen by the
camera when the source sj is illuminated and (2) the signal measured on
the pixel corresponding to di during excitation by sj passes the thresh-
olding requirements. The number of 1’s in the matrix F designates the
total number of measurements.

The columns of the matrix F are divided into a group of clusters Ck, so
as to form a partitioning of the set {di} such that

∀ Ck ∃ a set Sk s.t. F(Sk, Ck)
|Sk| × |Ck|

≈ 1. (5.16)
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Figure 5.3: Source-detector association across adjacent gantry locations; (a)
the detector points shown with red dots on the animal surface all seen by a
subset of the source, shown with circles of different colors - each color corre-
sponding to a different projection. (b) The source-detector association as a
binary image; each detector on the x-axis is visible in by the corresponding
sources on the y-axis. A detector is not seen by all the sources because of
geometrical irregularities and applied signal thresholds.

In other words, a clustering is performed on columns of F so as to group
the detector points such that within each group the detectors almost all
see the same group of sources. The clustering is done to maximize the
right side ratio of above equation; however, achieving a maximum ratio
of 1 might not be possible, due to geometrical irregularities and below-
threshold measurements. This partitioning is performed through k-means
clustering of the binary columns of F with the Hamming distance [93].
The sets Sk are not disjoint, meaning some sources can be seen by different
detectors in different spatial clusters.

The k-means clustering can be briefly explained as follows. For a group
of N vectors vi ∈ Rm, i = 1 . . . N , K vectors are selected which represent
the centroids of K respective clusters. The selection method operates
using the following iterative method:

1. Initialization: for p = 0, set K cluster centroids c(p)
i ∈ Rm, i =

1 . . . K using, for instance, random partitioning.

2. Update:

c
(p+1)
i =

∑
j∈Ipi vj

|Ipi |
,
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where Ipi consists of indices of vectors which are closest to cpi and
|Ipi | is the number of elements in Ipi .

3. Termination: upon maxi
(
‖c(p)
i − c

(p−1)
i ‖

)
< ε, for a preset thresh-

old ε.

For every cluster Ck a |Sk| × |Ck| matrix Bk is formed such that

Bk(i, j) =
 b(Sk(i), Ck(j)) F(Sk(i), Ck(j)) = 1

0 else,
(5.17)

where b(s, d) denotes the Born ratio between source s and detector d.

The rows of Bk are decorrelated using PCA after subtraction of the mean
value as

UkΛUk = QkQ
>
k , (5.18)

where
Qk =

(
Bk −mean(Bk)1|Ck|

)
� F(Sk, Ck). (5.19)

The main diagonal of Λ is sorted in descending order. The singular values
contained in Λ fall rapidly, due to the higher correlation of the measure-
ments within one cluster. The compression is achieved by maintaining
only a few components with significant singular values.

Specifically, for cluster Ck the first Nk(β) components are maintained
using a threshold β, between 0 and 100, applied to the normalized cumu-
lative energy vector Ei defined as

Ei =
i∑
l=1

Λ(l, l)− Λ(1, 1), (5.20)

using

Nk(β) = min
{
i| Ei
E|Ck |

≤ β

100

}
. (5.21)

The compressed measurement matrix for Ck is a Nk(β)× |Ck| matrix Mk

given as
Mk = Uk(1 : Nk(β), :)Bk. (5.22)

The values in matrices Mk are the transformations of the Born data Bk

using the first Nk(β) rows of the PCA unitary matrix Uk.
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In the next step, we construct the weight matrix corresponding to each of
these values. Specifically, for Mk(i, j) the weight matrix is defined as

Wk(i, j, v) =
∑
s∈Sk

Uk(i, s)F(s, j)G(s, v)G(j, v)
G(s, j) . (5.23)

The tensor Wk is a 3-D matrix relating the value of the ith row, jth

column value of Mk to the concentration on the voxel v. Vectorizing
and assembling the Mk matrices and Wk tensors for all clusters, the
compressed FMT-XCT problem can be written as

WpX = Mp, (5.24)

where the total number of measurements is
∑

clusters

Nk(β)× |Ck|, (5.25)

and the compression rate is defined as |Mp|/|M |.

The reconstructed solution Xβ is compared to the original, uncompressed
solution X0 using two measures. One measure ht(X) quantifies the fi-
delity of the reconstructed target and another one hb(X) quantifying the
relative amount of background signal.

Given I as a set of indices of X0, where X0(I) > αmax(X0) and Ic

as the set complement of I (I and Ic denote target and background,
respectively),

ht(X) = 100 ×
(
‖X(I)−X0(I)‖
‖X0(I)‖

)
, (5.26)

and
hb(X) = 100 ×

(
‖X(Ic)‖|X0‖
‖X0(Ic)‖‖X‖ − 1

)
. (5.27)

Positive ht(X) and hb(X) signify distortion in the desired signal and in-
creased background signal, respectively. The target-background thresh-
old parameter α was set to 0.3. Equation 5.14 and Equation 5.22 are
solved then using the LSQR method [69] with 50 iterations.
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5.5 Results

The proposed compression method is validated using a phantom dataset
as well as ex vivo and in vivo experiments. For the ex vivo experiment,
a glass tube with an inner diameter of 1 mm was filled 10 mm with 390
picomoles of Alexa 750. The dye was mixed with Intralipid to mimic
tissue scattering and the upper tube was filled with diluted Intralipid
20% and small oil layer separated the two sections (see Appendix C for
description). The animal preparation was as follows. An 89 day old
CD1 mouse was sacrificed and shaved and the tube was inserted 25 mm
through the esophagus.

For in vivo validation, a 96 day old nude mouse was injected with 1
million 4T1 breast cancer cells subcutaneously on the back, 10 days be-
fore imaging. 2 nanomoles of IntegriSense 750 was injected in the tail
vein 24 hours before the imaging. The samples were imaged at 24 equi-
spaced gantry angles, with the CT measurements following the optical
acquisitions, using the FMT-XCT system at HMGU. In the in vivo case
the animal was kept under anesthesia using Isoflurane while imaging and
was sacrificed and frozen later at -80 degrees Celsius for cryoslicing-based
validation.

5.5.1 Compression of phantom measurements

The proposed compression method was validated using the phantom
dataset containing one tube filled with fluorescent liquid. The results
are presented in Figure 5.4.2 Specifically, Figure 5.4(a) shows a sample
axial FMT-XCT slice of the reconstructed tube without (the “original”
reconstruction) and with compression, with specified values of the PCA
threshold parameter β = 0, 20, 60, 80, 90, 95 and 98. The compression
rate ranges from 28 to 193 for this case. Figure 5.4(b) shows the values
of the metrics designed in Equation 5.26 for the reconstruction signal at
the different β values. The value of the artifact level metric hb(X) was
less than 5% and was not shown. Figure 5.4(c) shows the regions of the
clusters on the animal surface marked with different colors. The black
edges in this figure correspond to the surface mesh edges.

2 As a reminder, the FMT demonstrations presented in this work are interpolated
for rendering, as explained in Section 4.4.
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Figure 5.4: Compression results for an agar phantom with a fluorescence
tube. The tube was inserted through one of the holes with the other hole left
empty; (a) the same FMT-XCT slices for β coefficients of (0, 20, 60, 80, 90, 95,
98) corresponding to compression rate of (193, 97, 92, 64, 50, 39, 28), (b) the
object fidelity curve and the compression rate for different β’s (upper labels
in the x-axis are number of retained components per cluster). The relative
artifact level was less than 5% (and is not shown). (c) The cluster regions
shown over the phantom surface with different colors.

5.5.2 Compression of ex vivo data

Figure 5.5 shows the reconstruction results with and without compression
for the ex vivo experiment described above. Figure 5.5(a-f) show an FMT-
XCT sample axial slice through the thorax of the animal for the original
reconstruction and the values of the PCA threshold parameter β = 95,
80, 60, 20 and 0, respectively. Note that β = 0 signifies only one PCA
component per cluster. These values of β correspond to compression
rates of 16, 58, 86, 136 and 270. The red allow in Figure 5.5(b) shows
the location of the actual tube. Figure 5.5(g) shows the object fidelity and
relative background metrics defined in Equation 5.26 for this experiment.
Both the object error and the background signal level have a decreasing
trend with decreasing compression rate. Figure 5.5(h) shows the 8 cluster
regions with different colors on the animal surface.

The performance of the compression method is specially impacted by qual-
ity and nature of the clustering. This effect is shown in Figure 5.6, where
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Figure 5.5: Compression results for the ex vivo case; (a) an axial slice of the
original reconstruction, (b-f) slices for compression parameter β of 95, 80, 60,
20 and 0 (compression rates of 16, 58, 86, 136 and 270), (g) ht(X), hb(X) and
the compression rate vs. average number of retained components per cluster
and vs. β, (h) clusters shown on the animal surface. Arrow in (f) points to
the tube.

the results are presented and compared for 1, 2 and 8 clusters, applied to
the same ex vivo experiment as in this section. The three rows of axial
FMT-XCT slices in Figure 5.6(a) show the results for 1, 2 and 8 clusters
(top, middle and bottom row), for different values of β. It can be easily
seen, that for 1, 2 and 8 clusters, reasonably localized reconstructions are
achievable for β’s of 90, 80 and 20. The 2 clusters are demonstrated in
Figure 5.6(b). Therefore, it is important to achieve around 10, relatively
homogenous clusters (with the ratio in Equation 5.16 as close to 1) for
high compression rates with minimal loss of information.
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Figure 5.6: The impact of clustering on the reconstruction quality for the ex
vivo experiment; (a) reconstruction slices for different β coefficients for 1, 2 and
8 clusters, (b) the 2 clusters on the animal surface. As seen the reconstruction
quality improves significantly with increasing number of (optimized) clusters -
however, significant compression is possible with one and 2 clusters as well.

5.5.3 PCA-based compression verified using in vivo
data

The in vivo reconstructions were performed for a nude mouse with subcu-
taneously injected 4T1 cells, as described above. The proposed compres-
sion method is in fact not dependent on the regularization scheme and
is applicable to reconstructions with use of anatomical a priori informa-
tion. To demonstrate this fact, reconstruction were performed without
and with using the anatomical information of CT. A weighted-Laplace
based regularization approach [58] was used in the latter case after man-
ually segmenting the tumor from the CT data. Figure 5.7 shows the
reconstruction results with and without compression for the in vivo ex-
periment and also with and without use of a priori information about
the tumor location. Figure 5.7(a-e) show an FMT-XCT sample axial
slice through the tumor for the original reconstruction and the values
of the PCA threshold parameter β = 90, 80, 20 and 0, respectively;
corresponding to compression rates of 25, 41, 104 and 209. Similarly,
Figure 5.7(f-j) show the slices for the same parameters with the use of a
priori information. Figure 5.7(m) shows the object fidelity and relative
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Figure 5.7: Compression results for the in vivo case; (a) an axial slice of the
original reconstruction, (b-e) slices for β = 90, 80, 20 and 0 (compression rates
of 25, 41, 104 and 209), (f) and (g-j) corresponding results using anatomical
priors; (k) ex vivo validation; (m) ht(X), hb(X) and the compression rate vs.
average number of retained components per cluster and vs. β (dotted curves
correspond to reconstructions using anatomical priors). (n) Clusters on the
animal surface.

background metrics defined in Equation 5.26 for this experiment. The
detectors were partitioned into 10 clusters for this dataset, as depicted by
different colors in Figure 5.7(n). The in vivo reconstructions were further
validated ex vivo as shown in Figure 5.7(k) using cryo-sectioning, where
the fluorescence image is imposed over the grayscale image of the axial
cut of the sample. Both target fidelity and relative background metrics,
respectively ht(X) and hb(X), showed a generally descending trend for
increasing cumulative energy threshold β (corresponding to decreasing
compression rate). Also for this case, the distortion is visually minimal
for β ≥ 20 (compression rate of around 100) and increases significantly at
β = 0. For reconstructions done with the help of the anatomical informa-
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tion, seen in Figure 5.7(g-h), the distortion is more due to the increased
reconstructed signal in the background. It should be noted that within
each figure, all the axial slices are on the same location on the z-axis and
are rendered using the same colormap.

5.6 Discussion

In this chapter an algorithm was presented for reducing the size of the
FMT-XCT inverse problem, while retaining much of the information.
The performance was validated for phantom, ex vivo and in vivo measure-
ments. These datasets represent fluorescence distributions of different
natures (subcutaneous to deep-seated). It was observed that up to 100
times reduction in the measurement space are possible without losing im-
age quality. It should be noted that this compression cannot be achieved
trivially by, for instance, picking every 100th source position. The pro-
posed method results in a relatively small weight matrix, manageable in
explicit form and faster reconstruction. Also, the possibility to express
the weight matrix in explicit form affords direct inversion methods and
approaches based on SVD.

It should be noted that for full-rotation FMT-XCT, the numerical com-
plexity of solving the forward problem is independent of the compression
scheme and, to some extent, from number of source positions or projec-
tion angles. The forward problem should be solved for all surface mesh
nodes regardless if compression is used. In short, for the average tetra-
hedral mesh edge length of ≈ 1.3 mm, there are 1000-2500 surface mesh
nodes of which only a portion are in the FOV. However, for an average
setting, there are 20 gantry locations, each with 20 source positions and
400 detector points; resulting in around 8000 source or detector points.
Therefore it is numerically faster to solve the forward problem for all
surface nodes rather than for all source and detector locations for all
gantry locations, as explained in Section 4.2.3. The number of forward
problems to be solved (1000-2500) is likely to be much smaller than the
total number of retained coefficients for any compression method that
does not cause severe information loss. Therefore, the forward problem
time is not likely to be affected by compression. However, the inversion
time is significantly reduced by the compression method. The total inver-
sion time and total number of measurements for the three experiments
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Table 5.1: Reduction of FMT-XCT inversion time with compression. The re-
sults are shown for three datasets, where the first numbers in parentheses show
the total numbers of measurements and the second numbers the reconstruction
times. The reconstruction times include all processing steps involved.

Original With compression (time, number of measurements)
(time, size) β = 80 β = 60 β = 20 β = 0

Phantom (48s, 227087) (7.0s, 3531) (3.7s, 2450) (3.4s, 2332) (2.6s, 1166)
Ex vivo (60s, 401506) (7.1s, 5532) (5.1s, 2908) (5.1s,2908) (3.6s,1454)
In vivo (58s, 364040) (6.6s, 8634) (4.9s, 5193) (3.9s, 3382) (2.8s, 1691)

without and with different degrees of compression are presented in Table
5.1. The processing times with compression include all the processing
steps involved. As seen, the processing times and the system sizes are
reduced by one and two orders of magnitude, respectively. Processing
was performed in MATLAB on a computer with an Intel CoreTM i7 CPU
@ 3.4 GHz and 16 GB RAM. 3

5.7 Conclusion

An algorithm was proposed to significantly reduce the size of the weight
matrix by compressing the spatially clustered Born data acquired by
full-rotation FMT-XCT. The proposed approach takes advantage of the
redundancy among different source positions and adjacent gantry angles.
The ex vivo and in vivo experiments validated the algorithm’s perfor-
mance for fluorescence emanating from shallow as well as deep regions.
Up to 100-fold compression was demonstrated with minimal reconstruc-
tion distortion. The reduced model size speeds up the reconstructions
and affords inversion methods which require, for instance, singular value
decomposition of the weight matrix. The combination of the inter-source
compression method, presented here, and the 2-D transform-based intra-
source compression approaches is possible and a topic of ongoing research.

3 The processing times reported in P. Mohajerani and V. Ntziachristos, “Compression
of Born ratio for fluorescence molecular tomography/x-ray computed tomography
hybrid imaging: methodology and in vivo validation”, Opt. Lett. 38, No. 13
(2013), differ from those in Table 5.1, as the processing was done on different
machines.
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While compression as proposed here reduced the system size without dis-
torting the solution, robust and accurate inversion based on anatomical
priors is also an important topic and is discussed in the next chapter.
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6 Inversion based on
weighted least squares

6.1 Introduction1

Hybrid FMT and anatomical imaging systems, such as the FMT-XCT
modality discussed previously in this work, aim at mitigating the ill-posed
nature of the FMT inverse problem through structured regularization of
the solution (i.e. the fluorophore concentration vector). Conventional
regularization schemes, such as the well-known Tikhonov regularization
based on minimization of the L2 norm of the solution, can result in
reconstructions with low spatial correlation with anatomical description
of the tissue. Structured regularization methods, on the other hand,
essentially enforce different penalization methods or levels on different
parts of the solution vector, depending on the organ they geometrically
correspond to. For instance, the knowledge that a given specific probe
has a high uptake ratio (relative to general background) in a specific
organ affected by cancer, can be employed to enforce a lower level of
penalization in that organ compared to the background, as discussed in
Section 4.3.

Several penalization methods have been proposed for constructing struc-
tured regularization matrices. Weighted-segments methods [32] aim to
minimize the L2 solution norm to different degrees in different segments,
while Laplace-type approaches [32,73,74] enforce smoothness within each
segment. Edge-preserving methods have been proposed as well based on
application of the anisotropic diffusion function [94].

1 The material presented here will be also partly presented (at places with modifica-
tions and improvements) in P. Mohajerani and V. Ntziachristos, “Weighted least
squares inversion for fluorescence molecular tomography”, to be submitted.

77
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The accuracy of FMT-XCT reconstructions largely depends on the per-
formance of structured regularization methods. Two major factors de-
termine the performance of a structured regularization approach by di-
recting the inversion to the correct fluorophore distribution. The first
factor is the level of modeling error, which in general affects the quality
of reconstruction for any inversion approach. Although Born normaliza-
tion is known to mitigate the adverse impact of incomplete knowledge
about the optical map of the tissue [95], a certain level of modeling mis-
match is unavoidable due to inaccuracies of the light propagation model
involved (such as in areas with high concentration of transparent liquid
or air) and large fluctuations in optical properties of tissue. Moreover,
the penalization methods used to shape regularization matrices are often
parameterized. For instance, in the weighted-segments method, different
parameters (weights) are used to weight the solution norm in anatomi-
cal segments during the reconstruction process. The correct setting of
the regularization parameters constitutes the second factor affecting the
performance of FMT-XCT.

Estimation of the penalization parameters (such the segment weights) is
achieved using a two-step inversion process, where in the first step an
initial estimation of the distribution is obtained. The results of the first
step are often in the form of estimations of the average concentration val-
ues in different organs. The penalization parameters are then calculated
as a descending function of the estimated averages. In the next section,
we analyze this approach and demonstrate potential problems which can
adversely affect the reconstruction accuracy due to the aforementioned
issues.

In this chapter we propose a method to address the above issues to im-
prove the accuracy of structured regularization methods. The key idea in
the proposed approach is the following. When we are mainly interested in
learning about the fluorophore distribution in one anatomical segment or
a group of segments (for instance, by the way of finding initial estimates
for the average concentration values in the segment or segments), certain
data points play a more critical role in our decision making process than
others. The proposed method preferentially suppresses the residual val-
ues associated with these values to improve the reconstruction accuracy
within one or several anatomical segments (or organs). This way the
reconstruction is not required to suppress all residuals equally; a require-
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a  b  c  

Figure 6.1: Demonstration of possible shortcomings of structured
regularization-based inversion for a 4T1 subcutaneous tumor model; (a) the
actual distribution of fluorescence (yellow signal) imposed over grayscale cryo-
section, obtained by cryo-sectioning ex vivo, (b) FMT-XCT reconstruction
without use of anatomical priors and (c) reconstruction where the first inver-
sion estimates the average distribution in the heart region and the background,
demonstrating reconstruction bias.

ment which due to inherently large modeling errors can sometimes lead
to large reconstruction errors in the anatomical segments of interest.

A Mamdani-type fuzzy inference system (FIS) is designed and employed
to assign different weights to different residual values toward preferen-
tial suppression using the method of weighted least squares (WLS). The
fuzzy rules are designed based on an information-theoretic analysis of
the system behavior. The presented approach can be used to either de-
rive a more accurate initial estimation of the concentration averages (as
is done here) or, otherwise, through direct incorporation in other inver-
sion schemes with or without structured regularization. The proposed
method is demonstrated and validated in this chapter for several studies
including two phantom studies, one ex vivo study and two in vivo stud-
ies. These case studies cover a large span of modeling imperfections and
characteristics of fluorophore distribution.

6.2 Problem statement

The accuracy of FMT reconstructions are significantly improved by incor-
poration of the anatomical priors in the inversion process. These priors
are often used to design structured regularization which enforces pref-
erential penalization of a measure (most often L2 norm) of fluorophore
concentration or its spatial derivatives in segments of interest in contrast
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to other segments or background. The parameters associated with the
structured regularization are either set heuristically or are adjusted using
data-driven methods. In the later approach a first inversion is performed,
for instance on a lower resolution inversion grid or on an otherwise lower-
dimensional model, to achieve an initial estimation of the fluorophore
distribution. This initial estimation, often in form of estimated concen-
tration averages in different segments or organs, is then used to adjust
the regularization parameters, which are in turn used to further refine
the reconstruction using parameterized structured regularization in the
second inversion [25, 72]. It should be noted here that in this work, the
terms segment and organ are used interchangeably to refer to anatomi-
cally delineated subvolumes of the tissue. In context of phantom studies,
in particular, the term segment is obviously the more proper choice.
The data-specific (or data-driven) approach [72] can be described as fol-
lowed. For a group of segments Ti, i = 1 . . . n an initial estimation of the
fluorophore distribution can be obtained by estimating the average con-
centration in each segment, defined by µi, i = 1 . . . n using the following
lower-dimensional version of the FMT problem

µ = arg min (‖Woµ−M‖) subject to µ > 0, (6.1)

where µ is a column vector of n + 1 elements, with the first n entries
denoting the average fluorophore concentration values in the n segments
Ti and the (n+1)th value denoting the average concentration in the back-
ground. The set of segments Ti, i = 1 . . . n which in general can be a
subset of all available anatomical segments, is referred to in this work as
the “target set”. The initial average estimations are then used to assign
lower weights to segments with larger estimated average concentration in
the second inversion [72]. Other variations, such as directly calculating
the concentration averages from on an initial Tikhonov-based reconstruc-
tion, are also possible [25]; however, we found the approach described in
Equation 6.1 to have superior performance as it reduces ill-posedness in
the first inversion by handling a lower-dimensional problem.
The heuristic approaches assume that the fluorophores are indeed concen-
trated in the targeted region, while the data-driven approaches assume
that the initial estimation obtained from the first inversion, is already a
good approximation of the actual distribution. These assumptions, how-
ever, do not always hold. For instance, consider the following hypothet-
ical experiment. We are interested to learn if a newly developed probe
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targets a known subcutaneous tumor model or, vice versa, to find out if
a particular enzyme or macromolecule targetable using a known probe is
indeed expressed in a new tumor model - both of these situations being
of significant practical relevance in preclinical research. It is not known
a priori if the injected probe will accumulate in the target region; in fact,
this is the very question which molecular imaging using FMT-XCT seeks
to answer. Heuristically adjusted preferential penalization of the solution
norm outside the investigated organ or tumor can lead to reconstruction
bias and, hence, false alarm in case the probe is actually not accumulated
in the tumor (due to lack of the targeted enzyme, for instance). Further-
more, conventionally regularized FMT or its lower-dimensional variations
(such as solving for signal averages in segments instead of the entire dis-
tribution [72]) can lead to significantly inaccurate solutions, with large
deviation from the actual solution.

Examples of these two situations are demonstrated in Figure 6.1 for an
in vivo study of a nude mouse injected with 1 million 4T1 cells subcu-
taneously. IntegriSense 750 was injected through the tail vein 24 hours
prior to imaging and accumulated exclusively in the subcutaneous tumor,
as also seen in the ex vivo validation based on cryo-sectioning illustrated
in Figure 6.1(a). FMT-XCT reconstruction without use of anatomical
priors in the inversion is shown Figure 6.1(b), where the reconstructed
concentration drifts toward the region deeper than the tumor instead
of being contained within the tumor volume. Note that this example
is not to demonstrate the necessity of utilization of anatomical priors
in inversion, but to show that the initial reconstruction (later used in
adjusting the structured regularization term) can be highly inaccurate.
The second scenario, namely the reconstruction bias, is demonstrated in
Figure 6.1(c) where the tissue is divided into heart and background. The
interest of imaging has been to find out there is considerable concentra-
tion in the segment of interest (here heart) where, as seen, the inversion
has erroneously reconstructed high concentration in the heart.

6.3 Weighted least squares (WLS)

Weighted least squares (WLS) is a powerful tool for directing reconstruc-
tion accuracy into a given subset of measurements. We briefly review
this method in this section. Suppose F (x; θ) is a parameterized system
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model where θ is a vector denoting the system parameters, x is the input
vector and y = F (x; θ) constitutes the output vector. The method of
least squares itself is an approach for estimating the set of system param-
eters given a set of input and output data vectors X and Y by solving
the following minimization problem

θ0 = arg min
θ
‖R‖2 , R = y − F (x; θ), (6.2)

where the vector R is called the residual vector and ‖R‖2 =
√∑

iR(i)2.
Minimization of the derivative of the residual norm in general case can
be achieved using various numerical methods, such as the Gauss-Newton
method.
A particularly interesting case occurs when the model function is linear.
Through differentiation it can be shown that the optimal least square
solution to the linear problem of M = WX is given as

X0 =
(
W>W

)−1
W>M. (6.3)

If measurement noise (or error) are uncorrelated random variables with
zero mean and equal variance and also uncorrelated withX, then the least
square solution is an unbiased estimator with minimum energy of error
(Gauss-Markov theorem). This solution is also the maximum-likelihood
estimation (MLE) when the measurements are corrupted by uncorrelated
Gaussian noise. If the measurement noise variables are uncorrelated but
have different variances, then an unbiased best linear estimator is con-
structed by weighting the residual in the linear least squares formulation
as

X0 = arg min
X

(∑
i

ωi|R(i)|2
)
, (6.4)

where residual vector is R = WX−M and the weights ωi are real positive
numbers equal to reciprocal of the variances the measurement noises [96].
ωi’s are referred herein as “residual weights” or simply gains.
The optimization problem of Equation 6.4 is referred to as weighted least
square (WLS) as the residual terms are weighted differently. The weights
ωi in Equation 6.4 formulation of WLS are optimally set to the reciprocals
of the noise variances [96]. In other words, the larger the noise associated
with a given measurement point, the less we care about the corresponding
residual value and, accordingly, the smaller the corresponding weight ωi.
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Accurate knowledge about the noise characteristics in the FMT-XCT
problem is not available in animal imaging scenarios, where the noise
is often caused more dominantly by modeling errors than the additive,
relatively small, camera noise.

WLS has the capability to “focus the accuracy” of the inversion to certain
portions of the measurement as well as “discounting imprecision” due to
large measurement noise or modeling error [96] (terms in double quota-
tion marks introduced in [96]). As a result, WLS is a suitable tool for
enforcing lower residual energy for the measurements which have a higher
impact on the reconstruction in the segments of interest (i.e. the target
set). Assignment of residual weight ωi to a given measurement accord-
ing to the corresponding intrinsic and fluorescence values as well as the
spatial relationship to the target set, is a fairly complex problem which
hardly lends itself to comprehensive quantitative formulation. In this
next section, we present an information-theoretic analysis which paves
the way for designing a fuzzy inference system for weight adjustment.

6.4 Analysis based on information theory

Consider a given source-detector data pair (i,m), where i and m denote,
respectively, the intrinsic and fluorescence measurements (normalized by
the corresponding laser powers and exposure times). For simplicity, we
assume that each segment in a group of segments T1, . . . , Tn is limited
to only one voxel and that the fluorescence concentration in background
has a constant value. Then, the fluorescence measurement can be written
as

m =
n∑
i=1

gs,i gi,d µi +
∑

i 6=1...n
gs,i gi,d µb + ν, (6.5)

where gs,i and gd,i are the modeled (in contrast to the actual) Green’s
function between source s and detector d and the voxel i, µi’s denote the
concentration on voxel i corresponding to the segment Ti and µb is the
background concentration. In the more general case, µi’s denote average
concentration values in different segments. The noise term is denoted as
ν and contains in reality the measurement noise as well as terms arising
from inaccurate values of the Green’s function due to modeling mismatch
(difference between modeled and actual values). We further simplify the
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analysis by assuming the target fluorescence has a homogenous value of
µt within all target regions and µb outside the target regions. These
assumptions are only to make the analysis tractable and are not later
enforced when processing FMT-XCT datasets. Then, Equation 6.5 can
be written as

m = αµt + βµb + ν, (6.6)

where

α =
n∑
i=1

gs,i gi,d

β =
∑

j 6=1...n
gs,j gj,d.

(6.7)

To quantify the information gained regarding the value of µt after having
observed the measurement pair (m, i), we employ the Kullback-Leibler
(K-L) divergence [97]. For two probability distributions fP (x) and fQ(x)
over a random variable X, the K-L divergence is defined as

DKL(P ||Q) =
∫ +∞

−∞
fP (x) log

(
fP (x)
fQ(x)

)
dx. (6.8)

K-L divergence has been used in several medical imaging applications
and primarily for image registration [98, 99]. The information gained
regarding target segment T having observed (m, i) is given as

IGT (m, i) = DKL(f(µt|m, i)||f(µt)). (6.9)

The conditional probability distribution f(µt|m, i) can be written using
Bayes’ rule as

f(µt|m, i) = f(m, i|µt)f(µt)
f(m, i) . (6.10)

The subscript indices designating the corresponding random variables are
implied in the context and not displayed here for simplicity of notations.
Furthermore f(m, i|µt) can be expanded as

f(m, i|µt) = f(m|i, µt)f(i|µt). (6.11)

Ignoring the increase of optical absorption causes by the higher fluo-
rophore concentration (a common approximation in FMT methodology),
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it can be safely assumed that the value of the intrinsic signal and the
fluorophore concentration are independent. That is,

f(i|µt) = f(i). (6.12)

By combining equations Equation 6.10, Equation 6.11 and Equation 6.12,
and using f(m, i) = f(m|i) f(i) we get

f(µt|m, i) = f(m|i, µt)f(µt)
f(m|i) . (6.13)

The conditional probability distributions f(m|µt, i) and f(m|i) can be
easily shown to be proportional to the respective distributions for the
Born ratio. That is

fM(m|i, µt) =
fB(m

i
|i, µt)
i

fM(m|i) =
fB(m

i
|i)

i
,

(6.14)

where M and B are random variables associated with fluorescence and
Born signals. Denoting the Born ratio b = m

i
, the information gain

IGT (m, i) can be written then as

IGT (m, i) =
∫ +∞

−∞

f(m|i, µt)f(µt)
f(m|i) ln

(
f(m|i, µt)
f(m|i)

)
dµt, (6.15)

where f(µt) has been cancelled out in the numerator and the denominator
of the fraction of the natural logarithm term.

Furthermore, the Born signal can be written as

b := m

i
= α

i
µt + β

i
µb + ν

i
. (6.16)

The Green’s function values gs,d, gi,d and gs,i are not known a priori -
otherwise, there would be very small or no modeling mismatch and the
reconstructed results would have been actual maximum likelihood solu-
tions due to independence of the measurement noise. We assume the
intrinsic measurement i is a good approximation of the modeled (using
FEM) Green’s function between the respective source and detector pair
and, hence, α

i
and β

i
can be properly approximated using the correspond-
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ing conventional FMT weight matrix vector. That is, we assume

Wt :=
∑n
i=1 gs,i gd,i
gs,d

≈ α

i

Wb :=
∑
i 6=1...n gs,i gd,i

gs,d
≈ β

i
.

(6.17)

In reality, the intrinsic measurement is not equal to the modeled Green’s
function gs,d; however, this assumption makes the analysis tractable and
leads to conclusions which are intuitively justifiable as well.

To solve Equation 6.15, the distributions of the Born data given µt and
i can be easily found based on Equation 6.16 as follows. It should be
noted that given two independent random variables, the distribution of
their summation Z = X + Y is given by the convolution of the two
distributions as

fZ=X+Y (z) =
∫ +∞

−∞
fX(x) fY (z − x) dx. (6.18)

The information gain IGT (m, i) can be found by solving the integrals in
Equation 6.15. The integrals are readily numerically calculated for given
distributions of noise, µt and µb.

It is critical to take positivity of concentrations into account in the
respective probability distributions of these variables; otherwise, the
calculations would reduce to trivial conclusions. To facilitate numeri-
cal calculations, the values of µt and µb are assumed to be instances
of random variables with uniform distributions between 0 and µ0, i.e.
µt , µb ∼ U(0, µ0). The fluorescence noise term is further assumed to be
uniformly distributed, that is ν ∼ U(0, σ). As described above, the noise
value contains terms due to modeling mismatch and is, hence, in practice
not independent from the fluorophore concentration values µt, µb. How-
ever, in the analysis presented here we assume independence of the noise
term from the measurements and µt and µb.

Toward numerical calcluation of the integrals in Equation 6.15, it should
be noted that when X and Y are uniformly distributed as X ∼ U(a, b)
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and Y ∼ U(c, d), then fX+Y (z) is given by

fZ=X+Y (z) =



h(z−a−c)
z1−a−c a+ c < z < z1

h z1 ≤ z ≤ z2
h(b+d−z)
b+d−z2

z2 < z < b+ d

0 z ≥ b+ d or z ≤ a+ c,

(6.19)

where z1 = a + c + min(b − a, d − c) and z2 = b + d −min(b − a, d − c)
and h = 1

max(b−a,d−c) . The results of the numerical calculations of the
information gain are presented in Figure 6.2, where we have used β = 1,
µ0 = 1 and σ = 0.1. IG has been calculated and shown in Figure 6.2(a)
for a fixed value of fluorescence m = 0.2, which can be considered as
a “low” value for the specified probabilistic settings, versus α defined
as relative weight and the intrinsic signal. Results for fixed intrinsic
= 1 (“medium” value), fixed relative weight α = 1 (“medium value”)
and fixed fluorescence = 2.5 (“high value”) are shown, respectively, in
Figure 6.2(b-d). Here, we present an analysis of the results shown in
Figure 6.2. This analysis helps us in the next section to design a fuzzy-
based approach for adjusting residual weights in the WLS method. In
the following analysis we refer to signal values by qualitative adjectives
such as low, medium and high. While the respective signal ranges justify
these descriptive terms, they are not quantified in this section and serve
to facilitate qualitative discussion.

Figure 6.2(a) indicates that the information gain decreases with decreas-
ing intrinsic signal for a fixed, low fluorescence signal. This can be justi-
fied as low intrinsic values correspond to larger noise energy (as the Born
signal noise is given by ν

i
in Equation 6.16). The larger noise range means

that less information can be drawn from the measurements regarding µt.
In other words, a Born value of 0.2

i
could have been contributed to by

either of the α, µt, µb or noise (ν
i
) terms and, given the signal ranges,

none of these options can be reliably excluded. Furthermore, it can be
observed that IG increases with increasing α. This is justified as follows.
Given the low value of the fluorescence, the Born signal has low values
for medium and high intrinsic signals. For higher values of the relative
weight α, we can be more certain that the value of µt is small; otherwise,
it would have resulted in a large Born signal. This is new information
drawn from the measurement regarding µt, which results in higher IG.

Figure 6.2(b) when examined vertically, for instance along the depicted
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Figure 6.2: Information gain (Kullback-Leibler divergence between a priori
and a posteriori distributions of target fluorescence) versus normalized intrin-
sic and fluorescence signals and relative weight α; (a) for fluorescence equal
to 0.2 (“low”), (b) for intrinsic equal to 1 (“medium”), (c) for relative weight
of 1 (“medium”) and (d) for “high” fluorescence of 2.5. The information gain
profiles along the lines in (b) and (d) and the contours in (c) are analyzed in
the text.

white vertical line segment, indicates that IG first decreases and then
increases with increasing fluorescence. For low fluorescence IG is high, as
given intrinsic = 1, µt should have been low (otherwise, the Born signal
would have been large). With increasing fluorescence, this conclusion,
however, does not hold anymore; resulting in lower IG. However, for
higher fluorescence (e.g. 2), IG is high again as large Born signal could
not be accounted for solely from the sum of µb + ν < 1.2. Therefore µt
should be large. A similar argument holds along the horizontal white
line Figure 6.2(b). The three white contours (marked with circles) in
Figure 6.2(c) indicates that when the intrinsic and fluorescence values
have comparable values (both low, both medium or both large) then IG
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is low. This is shown in Figure 6.2(c) for α = 1, but holds generally in
other cases as well. This is justified as these values correspond to medium
Born values, which could have been contributed to by any of the three
terms in Equation 6.16.

Figure 6.2(d), when studied along the horizontal white line, indicates that
the first decreasing and then increasing trend in IG for fixed intrinsic
values and fixed high fluorescence vs. increasing α. This is justifiable
using a similar line of reasoning as for Figure 6.2(b). The dark regions in
Figure 6.2(b-d) indicate non-realizable values, given the above parameter-
settings.

In the next section, we build upon the heuristic knowledge afforded by
this analysis to construct a fuzzy inference system (FIS) to estimate the
residual weights given the optical measurements and the anatomical pri-
ors. Approaches based on using conditional entropy or the concept of “ob-
served information” presented above can be used to quantify the amount
of information (or uncertainty) that a given measurement pair adds to
the information (or removes from the uncertainty) associated with one or
a group of segments. Accordingly, the measurements with more relevant
information are assigned larger residual weights. However, the formula-
tions are highly parameterized and make strong assumptions. We have
found that these issues severely limit the applicability of information-
theoretic approaches to improve the accuracy of FMT-XCT inversion in
targeted segments in a robust manner. As a result, we propose a robust
fuzzy inference system in the next section for optimization of the residual
weights in WLS.

6.5 Fuzzy-based algorithm optimization of
WLS

In this section we use heuristic knowledge about behavior of measured
signals with respect to geometrical relationship to target segments, to de-
sign a fuzzy inference system (FIS) to robustly adjust the residual weights.
FIS systems are well-suited to system design applications where robust
and complete quantitative description of input-output relationships are
not readily available [100]. The input and outputs in our case consists
of, respectively, the measurements plus the anatomical information and
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the residual weights (or, alternatively, the residual weights and the recon-
struction accuracy in the targeted region). The fuzzy-based WLS method
is also referred to herein as FWLS.

Specifically let is,d, fs,d, pfs,d, pis,d, τ
f
s,d and τ is,d represent, respectively, the

measured intrinsic and fluorescence intensities read out from the CCD
and the laser powers at fluorescence and intrinsic measurements and the
exposure times for source s and detector d. Also, let σ denote the average
value of the CCD dark image. Toward fuzzification of is,d and fs,d, we
normalize these measurements in the domain of the respective gantry
angle θ as

Fs,d = min
(
f
′
s,d

Fm
, 1
)

Is,d = min
(
i
′
s,d

Im
, 1
)
,

(6.20)

where

f
′

s,d = max(fs,d − σ, 0)
pfs,d τ

f
s,d

i
′

s,d = max(is,d − σ, 0)
pis,d τ

i
s,d

,

(6.21)

and

Fm = Pα
(
f
′

s,d|(s, d) ∈ Ps
)

Im = Pα
(
i
′

s,d|(s, d) ∈ Ps
)
,

(6.22)

where Ps denotes the set of all detectors in projection angle θ for source s
and Pα(S) denotes the αth percentile of the set S, defined as the smallest
number which is greater that α percent of elements of S (α = 94).

Furthermore, for a group of anatomical segments T1, . . . , Tn defined as
subsets of the set of all reconstruction voxels, the relative weight is defined
for the FIS system as

ζ(s, d) = min
(

ρ(s, d)
max(ρ(s, d)) ,

γ(s, d)
max(γ(s, d))

)
, (6.23)
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where
γ(s, d) =

∑
v∈
⋃
Ti
gs,vgv,d∑

v/∈
⋃
Ti
gs,vgv,d

= ‖W((s, d),⋃Ti)‖1

‖W‖1 − ‖W((s, d),⋃Ti)‖1
,

(6.24)

and
ρ(s, d) =

∑
v∈
⋃
Ti

gv,d, (6.25)

where W((s, d),⋃Ti) in Equation 6.24 denotes entries of the weight ma-
trix W corresponding the row of the measurement pair (s, d) and voxels
located in the segment set {T1, . . . , Tn} and the maxima in Equation 6.23
are taken over (s, d), i.e. all measurements.

The definitions of ρ(s, d) and γ(s, d) given above, can be interpreted as
follows. For a given group of segments, γ(s, d) is equal to ratio of the
fluorescence (or, equally, the Born) signal measured (at detector d when
tissue is illuminated by source s) when the distribution is 1 inside ⋃Ti
and 0, outside relative to when the distribution is 0 inside ⋃Ti and 1
outside. Furthermore, the value of ρ(s, d) is equal to the fluorescence
signal measured at detector d, when the distribution is 1 inside ⋃Ti and
0 outside, assuming homogenous distribution of excitation fluence. That
is, ρ(s, d) is equal to the fluorescence emanating from ⋃

Ti if the entire
volume of ⋃Ti was excited equally.

The value of γ(s, d) is relatively large if ⋃Ti has a considerable overlap
with the “banana shape” between s and d. The banana shape consists of
a cluster of voxels to which the measurement has a high sensitivity and
arises in fluorescence and not fluorescence diffuse optical tomography,
where the sensitivity is defined with respect to changes in optical proper-
ties [8]. Also, The value of ρ(s, d) is relatively large if ⋃Ti is relatively
close to the detector d, in comparison with other detectors. Therefore,
roughly speaking, ζ(s, d) as defined in Equation 6.23 has a large value
if and only if ⋃Ti has a considerable overlap with the one half of the
banana shape which is closer to the detector side. Both terms in Equa-
tion 6.23 are normalized with corresponding maximum values across all
source and detector pairs in any given projection.

The variables Is,d, Fs,d and ζ(s, d) defined above, are referred to as normal-
ized intrinsic (INT), normalized fluorescence (FLUO) and relative weight
(ALPHA), respectively. These variables are fuzzified using the fuzzy sets
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Figure 6.3: Input and output membership functions of the fuzzy inference
system (FIS) for optimization of weighted least squares (WLS); (a) normalized
intrinsic signal INT, (b) normalized fluorescence signal FLUO, (c) normalized
weight ALPHA and (d), the output variable GAIN.

depicted in Figure 6.3. Four sets for very low (VL), low (L), medium
(M) and high (H) values are defined for each of normalized intrinsic and
fluorescence variables. The relative weight ALPHA is fuzzified using the
three L, M and H fuzzy sets as shown in Figure 6.3(c). Figure 6.3(d)
shows 4 fuzzy output sets for the residual weight, defined as GAIN. The
membership functions of all the fuzzy sets are designed using generalized
bell-shaped membership functions. The fuzzy rules of the FIS system are
presented in Table 6.1. Residual values corresponding to measurements
with very low normalized intensity or very low relative weight, as well
as measurements with comparable normalized fluorescence and intrinsic
values are assigned a “very low” gain (the fuzzy set VL for GAIN has a
maximum value at 1, which corresponds to conventional suppression of
residuals in LS). The Mamdani-type [101] FIS system employed in this
work used multiplication for (fuzzy) logical AND operation and maximum
for OR operation. Aggregation was done through summation and the fi-
nal gain was achieved by defuzzifying the aggregated fuzzy output using
“middle of maximum”.
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Table 6.1: Fuzzy inference system rules for assigning residual weights driven
by data and anatomical priors. The fuzzy variables INT, FLUO and ALPHA
are normalized intrinsic, fluorescence and relative weight (as described in the
text) and GAIN represents the residual weighting gain. Also VL, L, M and H
represent the fuzzy sets “very low”, “low”, “medium” and “high”, respectively.

Antecedent Consequent
1 if (INT is VL) or (ALPHA is L) then (GAIN is VL)
2 if (INT is L) and (FLUO is L) then (GAIN is VL)
3 if (INT is M) and (FLUO is M) then (GAIN is VL)
4 if (INT is H) and (FLUO is H) then (GAIN is VL)
5 if (INT is L) and (FLUO is M) and (ALPHA is L) then (GAIN is L)
6 if (INT is H) and (FLUO is L) and (ALPHA is M) then (GAIN is L)
7 if (INT is L) and (FLUO is H) and (ALPHA is M) then (GAIN is M)
8 if (INT is L) and (FLUO is M) and (ALPHA is M) then (GAIN is M)
9 if (INT is L) and (FLUO is H) and (ALPHA is H) then (GAIN is H)
10 if (INT is M) and (FLUO is VL) and (ALPHA is H) then (GAIN is H)
11 if (INT is H) and (FLUO is VL) and (ALPHA is H) then (GAIN is H)

The WLS approach can be used with or without structured regulariza-
tion. However, using the WLS approach along with structured regular-
ization, takes full advantage of the anatomical priors by first improving
the accuracy of the initial estimation of segment averages in few targeted
segments and then, using this improved initial estimation to penalized
the reconstruction in low-value segments. Specifically, this combination
of the two methods can be written as:

a. G = FIS(M, I,
⋃
Ti)

b. µ0 = arg min (‖diag(G)(Woµ−M)‖) subject to µ > 0

c. λ0 = Γ(µ0)

d. X = arg min (‖WX −M‖+ ‖diag(λ0)X‖) ,

(6.26)

where Γ is a decreasing function of the vector µ, which maps the segment
averages to segment weights (for the weighted segment approach of part
(c)). Also, G = FIS(M, I,

⋃
Ti) denotes residual weights calculated by

the FIS system for fluorescence and intrinsic measurement vectorsM and
I and the segments ⋃i Ti.
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Table 6.2: Optical (reduced) scattering and absorption coefficients for various
tissues (extracted from [49]) and for the phantom material.

Tissue Bone Lung Heart Phantom
µa (cm-1) 0.3 0.1 0.25 0.35 0.2
µs (cm-1) 10 20 30 23 15

As a reminder, the “data-specific priors” method referred to as DS herein,
is defined as

a. µ0 = arg min (‖Woµ−M‖) subject to µ > 0

b. λ0 = Γ(µ0)

c. X = arg min (‖WX −M‖+ ‖diag(λ0)X‖) .

(6.27)

In this work, we have used the following mapping [32]

Γ(µi) = (1 + a) maxi(µi)
µi + amaxi(µi)

, (6.28)

where a was set to 0.06 herein.

Obviously, the combination of the fuzzy-based WLS approach with other
penalization approaches in various orders is also possible.

6.6 Results

The proposed method, as shown in Equation 6.26, has been verified using
a large number of phantom and animal studies. In this section, we demon-
strate the results for two phantom studies, one ex vivo study and two in
vivo studies. These cases cover a large range of modeling imperfections
and fluorophore distributions. The optical scattering and absorption co-
efficients used for all cases are presented in Table 6.2. Measured intrinsic
values (prior to power and exposure time normalization and after sub-
traction of the average readout noise level of 620 counts) smaller than
100 counts were not used in the processing and reconstruction using any
of the methods.
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Figure 6.4: Fuzzy-based WLS verified using two phantom studies. Recon-
structions based on Tikhonov regularization, data-specific priors and the pro-
posed fuzzy-based WLS are shown for phantom I (phantom II) in (a),(b) and
(c) ((d), (e) and (f)), respectively. In both phantoms, two absorbing, carbon
rods are placed inside 2 (white arrows in (a)) of the 5 holes in an agar-based
phantom and one hole is left empty (yellow arrow (a)). Two fluorescent tubes
are placed in 2 other holes in locations marked with white arrows in (b), for
phantom I, and (e), for phantom II. Each slice is normalized to its own maxi-
mum (denoted by the numbers in right, bottom corners).

6.6.1 FWLS inversion of phantom and ex vivo
data

Figure 6.4 present the results for two phantom studies performed us-
ing a silicon-based cylindrical phantom with a diameter of 19 mm. To
introduce optical perturbation and increase modeling mismatch, two ab-
sorbing, carbon rods were placed inside the phantom and one hole was
left empty (filled with air), as shown in Figure 6.4. Two fluorescent tubes
filled (as explained in Appendix C) with Alexa 750 (Invitrogen, Grand
Island, NY, USA) were inserted into two of the holes. In phantom I case,
one tube was inserted in the center and one in an off-center hole while in
the phantom II case both tubes were inserted in two off-center holes. In
both cases, 4 segments were created; two containing the inserted tubes
and two segments adjacent to the tubes containing no fluorophores.

The Tikhonov-based reconstruction for both cases, Figure 6.4(a) and (d),
do give an indication of approximate tube locations. However, the results,
especially for phantom I, are relatively inaccurate. The results based on
data-specific priors (DS), as demonstrated in Equation 6.1, are presented
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Table 6.3: Relative concentration values in different segments for phantom
and ex vivo studies; DS and FWLS denote, respectively, data-specific priors
and fuzzy-based weighted least squares. Numbers in brackets correspond to
segments containing the fluorescent tubes. Last column shows the L2 norm
of the entire reconstructed vector. The second row shows segment volumes
normalized to the volume of the first segment “Tube 1”.

Segment Tube 1 Cylinder 1 Tube 2 Cylinder 2 ‖X‖Volume 1 1 1 1

Phantom I DS [59] 3 [0] 37 19.2
FWLS [61] 0 [38] 1 17.9

Phantom II DS [41] 4 [55] 0 43.2
FWLS [41] 2 [56] 0 43.5

Ex vivo DS [0] 100 17.1
FWLS [63] 37 11.2

in Figure 6.4(b) and (e) and reconstruction using the fuzzy-based WLS
are shown in Figure 6.4(c) and (f), for phantoms I and II, respectively.
The “target set” consisted here of all four segments. While for phantom
II, both approaches reconstruct the tubes in the correct segments, the
DS-based method failed to reconstruct the middle tube in phantom I
correctly, as seen in Figure 6.4(b). This is because of erroneous first
estimation of segment averages, which is likely due to large modeling
mismatch and large depth of the middle tube. However, the fuzzy-based
WLS approach has correctly reconstructed the middle tube in phantom
I as well.

For quantification and comparison purposes we use the following measure.
For a given anatomical segment (organ) within a group of segments (or-
gans), its “relative concentration” is defined as

ri = 100× µi∑
i µi

, (6.29)

where µi is the average value of the reconstructed signal within the vol-
ume of the ith segment. A value of, say, 70% for the relative concentration
defined as such for a given segment, however, does not mean that 70%
of the reconstructed signal is contained within the respective segment.
But in general the higher the value of relative concentration, the more
pronounced the segment appears in the reconstructions in comparison
to other segments and background. The reconstruction results are quan-
tified for different segments and the results are presented in Table 6.3
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Figure 6.5: Fuzzy-based WLS verified using an ex vivo study. Two anatomical
segmented are specified: red curve, containing the fluorescent tube (pointed to
in (a)), and an additional segment shown by the yellow curve. Reconstructions
based on Tikhonov regularization, data-specific priors and the proposed fuzzy-
based WLS are shown in (a), (b) and (c), respectively. Numbers in bottom
right corners denote maximum fluorescence intensities within respective slices.

using the “relative concentration” for the two tubes and the two other
segments (cylinder 1 and cylinder 2). Furthermore, Figure 6.5 demon-
strates reconstruction results for an ex vivo study, where a fluorescent
tube filled with Alexa 750 was inserted through the esophagus in a CD1
mouse post-mortem. Two segments were created; one containing the tube
and one adjacent to it, containing no fluorophores. Both Tikhonov-based
and DS-based approaches (Figure 6.5(a) and (b), respectively) have er-
roneously reconstructed the fluorophores in the cylinder segment while
the fuzzy-based approach has correctly reconstructed the solution in the
tube segment. The “target set” consisted here of both segments. The
quantification results for this case are also presented in Table 6.3.

6.6.2 FWLS inversion of subcutaneous
distributions

The proposed method is further verified using an in vivo study for a
subcutaneous fluorophore distribution. A nude mouse developed a sub-
cutaneous tumor through injection of one million 4T1 breast tumor cells
subcutaneously behind the thorax. The 4T1 model was injected with 2
nmol of IntegriSense 750 (PerkinElmer, Waltham, MA, USA) in the tail
vein 24 hours prior to imaging (same mouse was used in Section 7.3.2)

Figure 6.6 shows the verification results for the 4T1 model. The recon-
structions were performed once using the optical properties presented
in Table 6.2 for the respective organs (Figure 6.6(a-c)) and once using
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Figure 6.6: Fuzzy-based WLS verified using an in vivo study of a nude mouse
with a subcutaneous 4T1 tumor. Five anatomical segmented are specified:
bones (blue), lung (white), heart (green), tumor periphery (yellow) and tu-
mor (red). Reconstructions based on Tikhonov regularization, data-specific
priors and the proposed fuzzy-based WLS are shown with (without) inclusion
of different optical properties denoted as case I (case II) in (a), (b) and (c)
((d), (e) and (f)), respectively. Ex vivo validation for this case is shown in Fig-
ure 6.1(a). Numbers in bottom right corners denote maximum fluorescence
intensities within respective slices.
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Figure 6.7: Fuzzy-based WLS reconstruction - a bias study; (a-c) denote,
respectively, reconstructions based on Tikhonov regularization, data-specific
priors and the proposed fuzzy-based WLS, the target set is “Heart”.

homogenous optical properties for all organs (Figure 6.6(b-e)). The
proposed approach focuses the reconstruction accuracy in the target seg-
ment set; however, it does not create reconstruction bias. In fact by
the virtue of higher reconstruction focus, the typical bias behavior of
conventional weighted-segment approaches is largely avoided using the
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Table 6.4: Relative concentration values in different segments for the 4T1
in vivo study; DS and FWLS denote, respectively, data-specific priors and
fuzzy-based weighted least squares. Numbers in brackets correspond to recon-
structions in the subcutaneous tumor. Case I (case II) denote reconstructions
for target set {tumor, periphery} with inclusion of organ-specific (homogenous)
optical properties and case III is where the target set is {heart}. Cases I and II
and the case III are graphically demonstrated in, respectively, Figure 6.6 and
Figure 6.7. Italic numbers signify that the corresponding segment (column)
was not in the target set for the corresponding row. Last column shows the
L2 norm of the entire reconstructed vector. The second row shows segment
volumes normalized to the volume of the first segment “Tumor”.

Organ Tumor Periphery Heart ‖X‖Volume 1 0.98 2.81

Case I DS [39] 45 5 73.5
FWLS [84] 0 4 87.1

Case II DS [19] 56 9 62.7
FWLS [73] 1 9 66.7

Case III DS [15] 16 47 68.9
FWLS [29] 28 0 87.8

proposed approach. To demonstrate this fact, we have reprocessed the
4T1 study, while setting the target segment to the heart segment only. It
is know that heart contains almost no concentration of IntegriSense, as
also seen from the ex vivo validation in Figure 6.1(a). The results are pre-
sented in Figure 6.7, where the DS-based approach has resulted in large
concentration in the heart, as seen in Figure 6.7(b). This is typical of
weighted-segment based approaches. This issue is, however, mitigated by
using the fuzzy-based approach, as seen in Figure 6.7(c). In fact, using
the proposed method, not only no fluorescence was reconstructed in the
heart, but also the signal was largely reconstructed in the tumor region.
The quantitative results for case I, Figure 6.6(a-c), as well as this bias
study denoted as case II are presented in Table 6.4

6.6.3 FWLS inversion of FMT—phase-contrast
CT

An interesting case is presented in this section using a model of pan-
creatic ductal adenocarcinoma (PDAC). The study was performed on
a 63 day old Ptf1a+/Cre, Kras+/LSL-G12D, p53 LoxP/LoxP (CKP) [102–104]
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Figure 6.8: Fuzzy-based WLS verified using an in vivo study of a PDAC
mouse with pancreatic tumor. Five anatomical segmented are specified: bones
(cyan), pancreas (white), kidneys (yellow), stomach (green) and spleen (red).
(a-c) Reconstructions using data-specific priors when the targeted segment sets
are {pancreas, stomach, spleen, kidneys}, {pancreas, stomach, spleen} and
{pancreas, stomach}, respectively. Corresponding results using the proposed
fuzzy-based WLS approach are shown in (d-f). Tikhonov- based reconstruc-
tion is shown in (b). (i) Ex vivo validation depicting fluorescence in yellow
transparency over the gray-scale cryo-section (green, white, yellow and red
arrows point to stomach, pancreas, kidneys and spleen, respectively). Num-
bers in bottom right corners denote maximum fluorescence intensities within
respective slices.

model of pancreatic ductal adenocarcinoma (PDAC), injected with Inte-
griSense 680, 24 hours prior to injection.2 This animal was imaged using
new hybrid modality approach consisting of FMT and phase-contrast X-
ray computed tomography (PCCT). Briefly, PCCT is a novel anatomical
modality which enables imaging organs with much higher soft tissue con-
trast than conventional CT. This hybrid approach is called FMT-PCCT
and is presented and discussed later in detail in Section 7.3.

Figure 6.8 presents the reconstruct results using Tikhonov-based and DS-
based approaches as well as the proposed fuzzy-based approach for the
PDAC model. In addition to bones, 4 organs were segmented from the
PCCT images as well. These segments include the pancreas (white con-
tour), stomach (green contour), spleen (red contour) and kidneys (yellow

2 Animal and its strain specification were provided by Dr. M. Trajkovic-Arsic, as
part of a collaboration project with Priv.-Doz. Dr. Jens Siveke’s research group
from II. Medizinische Klinik, Klinikum rechts der Isar.
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Table 6.5: Relative concentration values in different segments for the PDAC
in vivo study. DS and FWLS denote, respectively, data-specific priors and
fuzzy-based weighted least squares. Numbers in brackets correspond recon-
structions in the subcutaneous tumor. Cases I, II and III correspond to target
sets {pancreas, stomach, spleen, kidneys}, {pancreas, stomach, spleen} and
{pancreas, stomach}, respectively. Italic numbers signify that the correspond-
ing segment (column) was not in the target set for the corresponding case
(row). Last column shows the L2 norm of the entire reconstructed vector.
The second row shows segment volumes normalized to the volume of the first
segment “Pancreas”.

Organ Pancreas Stomach Spleen Kidneys ‖X‖Volume 1 2.18 0.43 1.90

Case I DS [65] 31 1 0 73.5
FWLS [70] 25 3 0 87.1

Case II DS [62] 35 0 1 62.7
FWLS [81] 17 0 0 66.7

Case III DS [62] 35 1 1 68.9
FWLS [76] 21 1 1 87.8

contour) are all located geometrically close to each other on the left side
of the animal. The results presented for three cases; case I, II and III cor-
respond to target sets {pancreas, stomach, spleen, kidneys}, {pancreas,
stomach, spleen} and {pancreas, stomach}, respectively. As explained in
Section 6.2, the “target set” include the anatomical segment for which the
average concentrations are estimated using either the DS-based approach
or the proposed approach. All other segmented and non-segmented or-
gans are referred to as “tissue”.

As can be seen in all cases, the DS-based method reconstructed the signal
in both the pancreatic tumor and the stomach, while the fuzzy-based
method has correctly reconstructed the fluorescence in the pancreas in
all three cases. The quantification results based on Equation 6.29 are
presented for all cases in Table 6.5.

Finally, it should be noted that the entire execution of the fuzzy inference
system along with projection-based normalization of the intrinsic and
fluorescence values lasted around 1 second in MATLAB on a computer
with an Intel CoreTM i7 CPU @ 3.4 GHz and 16 GB RAM.
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6.7 Discussion

Given a linear model of FMT and set a of measurements, under certain
assumptions, the maximum likelihood solution is obtained by minimiz-
ing the residual norm. However, it was observed that the FMT solution
without anatomical priors may be inaccurate due to modeling imperfec-
tion. In this direction, the major step toward improving the solution
has been inclusion of anatomical priors in the structure of the regular-
ization term. Efficiently using anatomical priors necessitates sensible
settings of penalization parameters; otherwise, the solution can become
biased. Optimization methods of these parameters rely on solving a lower-
dimensional version of the FMT problem, with or without priors, to form
initial estimations of distribution intensity in each segment. However,
this approach is also limited by the accuracy of the first solution, which
may have large spatial offset from the actual distribution - a situation
an example of which was illustrated in Figure 6.1(b). To mitigate these
problems, the accuracy of the first estimations should be improved. Once
an initial estimation with correct spatial relation between segments has
been established, the penalization terms can be reliably optimized.

A reevaluation of the imaging standpoint is at this stage in order. In
many molecular tomographic imaging applications, such as probe or an-
imal model development or therapy monitoring, the primarily interest
of using imaging is to learn about the concentration of a particular flu-
orophore, or the lack thereof, in a particular lesion. Hence, simply put,
the reconstruction accuracy in a given organ or lesion matters more than
the accuracy of reconstruction in the rest of the tissue. One underly-
ing assumption in conventional FMT-XCT reconstruction schemes, is
the independence and uniform variance of the errors associated with dif-
ferent measurements. This assumption then leads to the conventional
least-squares reconstructions, which as seen can result in erroneous re-
constructions.

In this chapter we proposed a fuzzy inference system for optimizing the
residual weights. The proposed fuzzy-based WLS system, also called
FWLS, was employed to improve initial concentration average estimation
for the two-step inversion process using the weighed segments approach.
However, combinations with other inversion schemes and in different or-
ders are also possible. The optimal combination of FWLS with other
penalization schemes is an interesting topic for further investigation.
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The proposed fuzzy-based weighted least squares approach was verified
using two phantom studies and one ex vivo study for reconstruction of
fluorescent tubes. The phantom results presented in Figure 6.4 demon-
strate more accurate reconstruction using FWLS than without (i.e. us-
ing DS) in reconstructing the middle tube in phantom I. For phantom II,
both methods were equally accurate with comparable signal intensities, as
shown in Table 6.3. For the ex vivo study, DS erroneously reconstructed
the tube in the empty segment, due to the erroneous initial estimation of
concentration, while FWLS resulted in a more accurate reconstruction.

The proposed method was also verified using in vivo studies; a nude
mouse injected with 4T1 cells subcutaneously (referred to here as the
4T1 model) and a model of PDAC. These two models represent two im-
portant classes of fluorophore distributions in small animal imaging. The
distribution in the 4T1 model was confined to the small volume of the
subcutaneously tumor and was, therefore, on average only few millime-
ters under the skin. The PDAC model, on the other hand, represents
a case where the tumor spans a volumetric domain (the oblong shape
of pancreas) which extends from around 3 mm up to 10 mm under the
skin.

The 4T1 model was reconstructed with heterogeneous optical properties
(as described in Table 6.2), denoted as case I, and homogenous optical
properties (all organs set to “Tissue” values of Table 6.2), denoted as case
II. The results were presented in Figure 6.6. It is known and expected
that the reconstructions are generally more accurate with the inclusion of
organ-specific optical properties in the forward modeling. Nevertheless,
the two cases were included to investigate different levels of modeling
imperfection. As can be seen from Figure 6.6, the solutions with inclu-
sions of a priori information in the inversion solution are better than
Tikhonov-based regularization - a fact which is also expected. However,
data-specific based (DS) approach generates a large portion of the recon-
structed signal in the segment labeled tumor’s periphery. It is clear from
the ex vivo validations that no significant signal existed in this periphery
region. The DS results, however, have a larger signal average in the pe-
riphery region than in the tumor region in both case I and case II, as can
also be seen in Table 6.4. This is due to fact that initial estimation of
fluorophore distribution was partly erroneous. The situation is worse for
case II, where almost all of the signal is reconstructed in the periphery.
On the other hand, FWLS has correctly reconstructed the concentration
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in the tumor, where it in reality exists. The FWLS solutions are almost
equally accurate for both case I and case II.

Interestingly, although FWLS uses gains as high as 50 to preferentially
minimize certain residual values, the high gains do not translate to ar-
tificially increased signal concentrations. This can be observed in all of
the cases presented in the previous section. For the 4T1 study, as can
be seen in Table 6.4, the FWLS reconstructions have an L2 norm (last
column) comparable to the other solutions. In fact, the FWLS have
slightly a smaller than other reconstructions, as the correct solution (ac-
cumulated in the tumor) has on average a lower depth than erroneous
ones (e.g. accumulation in periphery). It was further observed for all
cases presented that FWLS does not necessarily create reconstruction
bias by reconstructing artificially high or low values in regions subject to
reconstruction focus, i.e. the “target set”.

The processing results for the PDAC model, imaged using a novel FMT-
based hybrid modality called FMT-PCCT (refer to Section 7.3), demon-
strate superior performance for reconstruction with a group of anatom-
ically neighboring segments. As observed in Table 6.5, DS resulted in
signal accumulation in the stomach segment with an average value of
48-56 % of the average in pancreatic tumor. The corresponding range
for using the proposed approach was 21-35%; a difference also clearly
visually visible from the reconstructions illustrated in Figure 6.8.

Reconstruction bias is a typical behavior of structured regularization ap-
proaches and, in particular, the weighted segments approach. An exam-
ple is presented in the bias study of Figure 6.7, where the heart was set as
the target segment in both DS and FWLS algorithms. It is known from
ex vivo validation (Figure 6.1(a)) that there is no conspicuous accumula-
tion of IntegriSense in the heart. Nevertheless, DS reconstructed almost
the entire distribution in the heart while FWLS reconstructed almost no
signal in the heart, as seen in Figure 6.7. By improving the accuracy of
the initial estimation in the heart region, FWLS has assigned a very low
weight to the heart for the second inversion using weighted-segments.

The regularization parameter λ was set to 0.023‖W‖ and 0.051‖W‖ for
phantom and animal studies, respectively. Both of these values are less
than the point of the maximum curvature of the L-curve of the respective
Tikhonov reconstructions. The point of maximum curvature was found
in the studies presented here to result in over-regularization. Moreover,
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a smaller λ is generally applied to phantom studies due to lower level of
modeling error.

The fuzzy rules presented in Table 6.1 were designed heuristically with
the help of insight driven from the analysis of the results afforded by
the information-theoretic treatment presented in Section 6.4. The infor-
mation gain (IG) was defined as the Kullback-Leibler distance between
a priori probability distribution of the concentration (in a target set of
segments) and the conditional probability distribution given a pair of in-
trinsic and fluorescence measurements. This measure can be potentially
used itself to optimize the residual weights (or gains, as defined here).
However, determination of the residual weights as a direct function of
the information gain defined using the statistical settings presented in
Section 6.4, was hindered due to the difficulty of robust settings of the
model parameters and incompleteness of the statistical model itself in
fully representing the FMT-XCT system. These shortcomings were over-
come by the fuzzy inference system, which made construction of a robust
weight optimization framework possible. Optimization of the current
statistical framework and application of other measures such the Fisher
information, defined as the negative of the Hessian of the log-likelihood
function, for direct adjustment of the residual weights is an interesting
topic for further investigation.

An important issue regarding the data-specific approach and similar ap-
proaches based on obtaining an initial estimation of the concentration
average in one or more segments is the following. For convenience of dis-
cussion let us consider the case of the ex vivo case presented in Figure 6.5.
If the initial estimation was to be made for the concentration in the seg-
ment containing the fluorescent tube, while ignoring other anatomical
segments, the initial estimation (through the DS approach, for instance)
would have correctly estimated a high concentration in the tube. However,
the same occurs if the estimation is performed for the empty cylindrical
segment - that is, DS reconstructs mainly in the empty cylinder. The
reason for this phenomenon is partly due to the very small volume of the
targeted segment with respect to the background. In other words, even
a small amount of fluorophore erroneously reconstructed in a small seg-
ment, results in a large average value. While, a large segment containing
small tumors with high fluorophore concentrations (typical in lung mod-
els, for instance), will be assigned a small average concentration. This
way, the smaller segments are in general assigned larger concentration
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values, which could lead to inaccurate reconstructions. While this issue
does not directly affect the proposed WLS-based approach (as, per se, it
does not entail estimation of average values), it does pose a problem for
approaches relying on initial estimation of segment averages (such the
combination of the FWLS and DS proposed above, or DS alone). Esti-
mation of other statistical moments for different segment might mitigate
this problem.

6.8 Conclusion

In this chapter we proposed a method for robust inversion of FMT-XCT
through weighted residual minimization. The weights applied to the resid-
ual vector were optimized for each measurement pair using a fuzzy infer-
ence system consisting of three inputs, one output and 11 rules. The
inputs consisted of normalized intrinsic and fluorescence values as well as
a relative weight assigned to the set of target segments (or organs). The
rules were designed with the insight afforded through an information-
theoretic analysis of the FMT-XCT problem using the Kullback-Leibler
divergence. The fuzzy system then creates fuzzy gains, which when de-
fuzzified can be applied to preferentially suppress the corresponding resid-
ual values. As such, the accuracy of the weighted least square can be
focused within the target segments. The proposed approach can be ap-
plied with structured regularization approaches in many configurations
to optimize the inversion of FMT-XCT. The proposed method was ver-
ified using several phantom, ex vivo and in vivo studies. The results
demonstrated significant improvement in reconstruction accuracy for all
cases and especially in animal studies.

Building upon the system potential and the flexibility and accuracy of
the XFMT code equipped with FEM modeling of light propagation and
other algorithmic developments, we have further explored and developed
several preclinical applications, as presented in the next chapter.



7 Hybrid tomographic
imaging of animal models

7.1 Introduction

The processing framework developed so far has been verified with and ap-
plied to several in vivo experiments targeting regions in various organs for
small animal studies performed using the FMT-XCT systems at HMGU
and Klinikum rechts der Isar. In this chapter we present one example,
consisting of imaging a pancreatic tumor. While FMT has been proposed
for imaging in the pancreas region in stand-alone mode [105] and in con-
junction with MRI [106], the results presented here constitute, to our
knowledge, the first three-dimensional quantitative imaging of a pancre-
atic tumor using FMT-XCT. As aforementioned, other animal studies
have been processed using the developed XFMT processing framework
as well and are presented briefly in Appendix C. We furthermore present
here for the first time, hybrid imaging using FMT and phase-contrast CT,
called FMT-PCCT, for small animal imaging. Phase-contrast computed
tomography (PCCT) is an emerging technology which aims at anatomi-
cal imaging using the phase-shift experienced by X-ray photons traveling
through the tissue [107]. PCCT has a much higher soft tissue contrast
than the conventional absorption-based CT. We demonstrating hybrid
imaging using FMT-PCCT via in vivo animal studies, where the high
contrast PCCT images were used to generate a priori information for
FMT inversion, in regions where the conventional CT has low or no con-
trast. The FMT-PCCT images presented in this chapter are the first
demonstration of this hybrid approach, which we believe, as will be dis-
cussed, will play an important role in the future wider-scale deployment
of FMT.

107
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Figure 7.1: Tomographic imaging of integrin expression in a pancreatic cancer
model in vivo; (a) 3-D demonstrations of the reconstructed fluorescence signal
along with skeleton, lungs and heart (red and brown isosurfaces), (b,c) FMT
reconstructed as transparency overlays on CT slices through the abdomen,
(d,e) corresponding ex vivo validations using cryo-sectioning as fluorescence
signal imposed over grayscale cryo-sections and (f) animal positioning on the
bed with red arrows pointing to the scanned field of view. Coordinate system is
designated by D (dorsal), V (ventral), H (head), T(tail), L(left) and R(right).

7.2 Imaging of a pancreatic cancer model1

FMT-XCT was applied toward tomographic, in vivo imaging and charac-
terization of tumors in Ptf1a+/Cre, Kras+/LSL-G12D, p53 LoxP/LoxP (CKP)

1 The imaging results here are presented also in M. Trajkovic-Arsic, et.al. “Molecular
imaging of integrin αυβ3 for in vivo detection of precursor lesions and pancreatic
cancer”, Journal of Nuclear Medicine, vol. 55, 2014 (see Publications overview at
the end of the dissertation for full author list). The imaging and processing were
performed by the author at HMGU. Xiaopeng Ma from IBMI and Dr. Neal C.
Burton from iThera Medical helped with cryo-sectioning. Dr. Neal. C. Burton
also helped with animal positioning on imaging bed. Animal and its strain specifi-
cation were provided by Dr. M. Trajkovic-Arsic, as part of a collaboration project
with Priv.-Doz. Dr. Jens Siveke’s research group at from II. Medizinische Klinik,
Klinikum rechts der Isar. Results are reproduced with permission from Dr. M.
Trajkovic-Arsic.
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[102–104] model of pancreatic ductal adenocarcinoma (PDAC). The
PDAC model was injected with IntegriSense 680 and imaged 24 hours
later in vivo by the FMT-XCT system. The imaging results are pre-
sented in Figure 7.1. To our knowledge, this is the first demonstration
of imaging pancreatic tumors using FMT-XCT. The reconstructed signal
closely resembles the known topography of the pancreas itself and the ex
vivo cryo-sections. The mouse was imaged in the shaved region pointed
to in Figure 7.1(f). No anatomical priors were used in the processing, as
micro-CT has negligible soft tissue contrast in this region; an issue which
sets the stage for the development presented in the next section.

7.3 Hybrid FMT—phase-contrast CT
(FMT-PCCT)2

The performance of FMT as a molecular imaging modality is generally
limited due to strong scattering of NIR photons in tissue and model-
ing imperfections arising from lack of complete optical description of the
sample and light propagation modeling inaccuracies. The performance
of FMT can also be improved by efficient synergy of anatomical informa-
tion in light propagation modeling and inverse solution. FMT-XCT as
a hybrid modality enabled in vivo imaging of several animal models, as
demonstrated in the previous section.

While offering high spatial resolution at low cost and short imaging time,
conventional absorption-based CT (also referred to as micro-CT) - with-
out enhancement of contrast agents - suffers from low soft tissue contrast.
In a typical CT scan of a mouse, for instance, only the bones and lungs
have significant contrast with respect to the general tissue. This issue

2 The results presented here will also be presented (at places with minimal or no
changes) in P. Mohajerani, et al., “FMT-PCCT: Hybrid fluorescence molecular
tomography - X-ray phase-contrast CT imaging of mouse models in vivo”, IEEE
Trans. Medical Imaging, vol. 33, 2014 (see Publications overview at the end of the
dissertation for full author list). All phase-contrast imaging and reconstructions
were performed by Alexander Hipp, Marian Willner and Mathias Marschner at
Professor Franz Pfeiffer’s research group at Garching Forschungszentrum. Animal
preparation, FMT imaging, FMT-PCCT coregistration and processing, genera-
tion of FMT-PCCT results and reconstructions as well as ex vivo validations were
performed by the author at HMGU. Xiaopeng Ma at IBMI contributed to segmen-
tation of PCCT images. Karin Rardich, Dr. Neal C. Burton, Uwe Klemm and Dr.
Vladimir Ermolayev helped with animal experiments.
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hinders the realization of the full potential of FMT-XCT by posing a
challenge in delineation of target lesions which are often surrounded by
soft tissue.

Phase-contrast X-ray imaging methods have rapidly evolved lately.
Among them is grating interferometry which functions with common
X-ray tubes [107]. In vivo small animal imaging has been potentially
made possible recently through integration of an X-ray phase-contrast
computed tomography (PCCT) system into a rotating gantry [108, 109].
High resolution and low cost, as advantages of conventional micro-CT
over other methods such as MRI, are also afforded by PCCT. Moreover,
PCCT also information regarding electron density [110] as well as scatter-
ing caused by features on the micrometer length scale [111]. However, the
PCCT requires longer acquisition times and exposures doses as several
images are recorded per projection. Nevertheless, the improved contrast
is maintained for doses compatible with in vivo experiments [112].3

Herein, we demonstrate for the first time hybrid FMT-PCCT imaging of
mice. Two animal models, one with a subcutaneously injected 4T1 breast
cancer cells and a model of pancreatic ductal adenocarcinoma (PDAC),
were imaged in vivo by a full-rotation FMT system and then ex vivo by
a grating-based PCCT system. The results substantiate the potential of
FMT-PCCT in imaging specific uptake of fluorescent probes in lesions
where there is low or no contrast with surrounding tissue in micro-CT.

The animals were imaged with the FMT systems in vivo. A 93 day old
nude mouse was injected with one million 4T1 breast tumor cells subcu-
taneously behind the thorax 10 days before imaging. Furthermore, a 63
day old Ptf1a+/Cre, Kras+/LSL-G12D, p53 LoxP/LoxP (CKP) [102–104] model
of pancreatic ductal adenocarcinoma (PDAC) was imaged using FMT
as well.4 The 4T1 model and the PDAC model were injected with 2
nmol of IntegriSense 750 and IntegriSense 680 (PerkinElmer, Waltham,
MA, USA) in the tail vein 24 hours prior to imaging, respectively. In-
tegriSense targets integrin αvβ3 which is known to be expressed in both
models [25, 113]. The mice were imaged by the FMT system [32] at
HMGU in vivo under Isoflurane anesthesia.

3 Dr. Martin Bech at Professor Franz Pfeiffer’s group at TUM’s department of
physics in Garching Forschungszentrum significantly contributed to this para-
graph.

4 Animal and its strain specification were provided and by Dr. M. Trajkovic-Arsic,
as part of a collaboration project with Priv.-Doz. Dr. Jens Siveke’s research group
from II. Medizinische Klinik, Klinikum rechts der Isar.
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Figure 7.2: FMT-PCCT system components; (a) the fluorescence molecular
tomography (FMT) system and the complementary conventional computed to-
mography (micro-CT) subsystem and (b) the X-ray phase-contrast computed
tomography system (PCCT) based on a Talbot-Lau interferometer consisting
of three gratings. The sample was imaged in vivo under Isoflurane anesthesia
in the FMT and ex vivo in a falcon tube immersed in a transparent water
container (not shown) in the PCCT system.5

The FMT system was discussed previously in this work; however, a
schematic diagram of this system is shown in Figure 7.2(a) for complete-
ness of discussion. Optical imaging was performed within a field of view
centered on the region of interest at 24 equispaced gantry angles. The
680 nm and 750 nm lasers scanned the sample at, on average, 26 source
locations per gantry angle, where at each location intrinsic and fluores-
cence images were obtained using the cooled CCD [32]. The in vivo
FMT imaging lasted a total of on average 45 minutes for each mouse.
Conventional micro-CT scans were also acquired after the FMT acqui-
sition for volumetric coregistration and comparison purposes and lasted
20 minutes. The animals were sacrificed after the FMT imaging through
intraperitoneal overdose injection of Ketamin and Xylazin. Afterwards,
the 4T1 and PDAC mice were preserved in a 4% paraformaldehyde (PFA)
fixation solution for 2 weeks and 4 weeks, respectively. A longer fixation
time was required for the PDAC model to ensure most of the air bub-
bles mainly arising in colon are dissolved away in PFA. The air bubbles

5 Xiaopeng Ma at IBMI contributed to graphic designs. Figure 7.2(b) was designed
using a photograph provided by Alexander Hipp, at Garching Forschungszentrum.
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can cause significant artifacts in PCCT images due to high scattering.
X-ray phase-contrast computed tomography (PCCT) was carried out for
both mice using a Talbot-Lau interferometer [110] located at the chair for
biomedical physics of TUM, as demonstrated in Figure 7.2(b), equipped
with a photon counting detector and a rotating anode X-ray tube source.
The interferometer consisted of source, phase and analyzer gratings [107].
The sample was placed directly in front of the phase grating to maxi-
mize sensitivity [114].6 The mice were transported back to HMGU for ex
vivo validation after PCCT imaging. Ex vivo validation was achieved us-
ing a cryostat (CM1950, Leica Microsystems GmbH, Wetzlar, Germany),
retrofitted with a fluorescence imaging system [115]. A maximum 30 sec-
ond exposure time was applied for acquiring fluorescence cryo-sections,
as the fluorescence is strongly weakened after several weeks of immersion
in PFA 4%.

7.3.1 FMT-PCCT processing
To reconstruct the phase-contrast CT images, filtered back-projections us-
ing Hilbert filter were applied to the recorded differential phase-contrast
projections and the effective pixel size was 100 µm× 100 µm.7 The PCCT
slices were then manually segmented to extract the animal volume from
the surrounding PFA solution and container and organs. A mouse at-
las [116] as well as cryo-section photographs obtained ex vivo were con-
sulted during the segmentation to help with recognition and localization
of different organs. The animal volume extracted from the PCCT was
coregistered with the CT volume (obtained after the FMT acquisition in
vivo using the conventional CT subsystem of Figure 7.2(a)), employed as
the volumetric reference for coregistration, by achieving a maximum over-
lap between the skeletons in both scans using an rigid transformation.8
Different optical absorption and scattering coefficients as reported in [49],

6 Technical details, citations and text regarding phase-contrast imaging hardware
and reconstruction were provided and corrected by Alexander Hipp, Marian Will-
ner and Dr. Martin Bech at Professor Franz Pfeiffer’s research group at Garching
Forschungszentrum and reproduced here with their permission.

7 Further technical details regarding PCCT system, imaging and reconstruction to
be presented in P. Mohajerani, et al., “FMT-PCCT: Hybrid fluorescence molecular
tomography - X-ray phase-contrast CT imaging of mouse models in vivo”, IEEE
Trans. Medical Imaging, vol. 33, 2014 (see Publications overview at the end of
the dissertation for full author list).

8 Coregistration was done using D-J. Kroon’s “demon registration version 8f” toolbox
based on a method described in [117]. Functions LineNormals2D.m and LineCur-
vature2D.m from same author were used for line curvature calculations.
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reported in Table 6.2, were assigned to general tissue, bone, lungs and
heart for solving the forward problem. The tissue volume was discretized
for each mouse using a tetrahedral mesh with an average edge length of
1.3 mm. The mesh was generated using the methods described in [43,44].
The light propagation in mouse tissue was then modeled using a finite
element method (FEM) approach based on the method described in [33],
as described in detail in Chapter 2. The inverse problem was solved
over a rectilinear grid with 1 mm resolution using LSQR with 50 itera-
tions [69]. The segmented organs containing the cancerous lesions were
used as a priori anatomical information shaping the regularizer using the
weighted-segmented approach in the inverse problem [32]. The segment
weights for the structured regularization were set using a two-step inver-
sion approach, where in the first step the average concentration values
in different anatomical segments are estimated and in the second step
these initial estimations are used to penalize reconstructions in different
segments [32, 72]. To set the regularization parameter, the L-curve was
calculated and the point with maximum curvature was found. The regu-
larization parameter was set to the point of maximum curvature, which
means the solutions are not over-regularized.

7.3.2 Results

Figure 7.3 demonstrates FMT-PCCT imaging of the nude mouse with
a subcutaneous 4T1 tumor. Figure 7.3(a) shows the 3-D representa-
tion of FMT reconstruction results along with skeleton, lungs, heart and
parts of adipose tissue segmented from PCCT images. Figure 7.3(b) il-
lustrates one transverse slice of the FMT-PCCT reconstruction overlaid
as transparency on the corresponding PCCT slice. Ex vivo validation
was achieved using cryo-sectioning, as shown in Figure 7.3(c) where the
contrast-enhanced fluorescence image of the cryo-section is overlaid on
the grayscale cryo-section; showing specific uptake of IntegriSense 750 in
the subcutaneous tumor. Representative corresponding PCCT and con-
ventional micro-CT transverse slices are illustrated in Figure 7.3(d) and
(e). As seen, the tumor has a much higher soft tissue contrast in the
PCCT image than the conventional CT image. Specifically, soft tissue
contrasts (ratio of intensity difference intensity in target region, in per-
centage) of 15% and 85% were observed for a point inside the tumor, red
marks in Figure 7.3(d) and (e), relative to the adjacent background (blue
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Figure 7.3: Hybrid FMT-PCCT imaging for a subcutaneous 4T1 tumor
model; (a) 3-D FMT-PCCT reconstruction showing the high concentration
of IntegriSense 750 in the tumor - heart, lungs and adipose tissue are shown
in red, light brown and green, respectively, (b) FMT-PCCT reconstruction im-
posed over a PCCT transverse slice, (c) ex vivo validation using cryo-sectioning
where the fluorescence cryo-section is contrast-enhanced superimposed as trans-
parency over the cryo photograph, (d) PCCT slice and (e) the corresponding
CT slice. The relative soft tissue contrast between the tumor and surrounding
tissue (red and blue marks in (d) and (e), respectively) were 85% and 15% for
the PCCT slice (d) and the CT slice (e), respectively. Coordinate system is
designated by D (dorsal), V (ventral), H (head), T(tail), L(left) and R(right).
The brightness of images (a,b,d) was slightly increased for print clarity.

marks), for the CT and PCCT slices, respectively. The pixel intensities in
the PCCT grayscale slice images represent the phase shift induced to the
X-rays by the tissue in each voxel and are proportional to the refractive
index decrement. Figure 7.4 further illustrates the potential of FMT-
PCCT hybrid imaging for the PDAC model. Specifically, Figure 7.4(a)
and (b) demonstrate the FMT reconstruction coregistered with the 3-D
PCCT scan from the two view angles denoted by arrows in Figure 7.4(c),
which shows the animal volume obtained from the micro-CT (shown here
due its slightly larger FOV). First-level estimations were performed for
the pancreatic tumor, kidneys, spleen and the rest of the tissue.
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Figure 7.4: FMT-PCCT imaging of a PDAC model; (a, b) 3-D FMT-PCCT reconstructions
showing specific accumulation of IntegriSense in the pancreatic tumor (both tumor ends
marked with white arrows). Organs are segmented from PCCT, while micro-CT skeleton is
shown in (a,b) due to its slightly larger FOV. View angles of (a, b) are shown with, respectively,
dark green and gray arrows on the micro-CT volume in (c). (d) 3-D ex vivo validation, (e,
f) FMT-PCCT reconstruction imposed over transverse PCCT slices, (g, h) corresponding
FMT-XCT reconstruction, (i-j) fluorescence cryo-sections (pseudo-green, contrast enhanced)
over cryo photograph, (k-l) enlarged views of the PCCT slices.)



116 7.3. Hybrid FMT-phase—contrast CT (FMT-PCCT)

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

Distance in mm

N
o
rm

a
li
z
e

d
 C

T
 a

n
d

 P
C

C
T

 

p
ix

e
l 

in
te

n
s
it

ie
s

mm 

 N
o

rm
al

iz
e

d
 p

ix
e

l i
n

te
n

si
ty

 

d e 

colon 

pancreas 
spleen 

muscle 

 colon 

f 

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

 N
o

rm
al

iz
e

d
 p

ix
el

 in
te

n
si

ty
 

mm 
a b c 

tumor 

  fat  

bone 

bone 

Figure 7.5: Intensity profiles of phase-contrast and micro-CT images; (a)
micro-CT slice of the 4T1 model, (b) the corresponding PCCT slice and (c)
the intensity profiles of the micro-CT image (red curve) and the PCCT image
(blue curve) along the white dotted lines. Corresponding results for the PDAC
model are shown in (d-f). Parts of the intensity curves corresponding to dif-
ferent tissues are labeled in (c) and (f), where the labels in black (red) fonts
correspond to PCCT (micro-CT) intensity profiles. The x-axis in (c) and (f)
denote distance in mm along the line segments, where distance 0 corresponds
to the upper white squares in all four cases. No enhancement was applied for
brightness or contrast to the raw images.

Lung, heart, pancreas, stomach, spleen, kidneys, colon, cecum as well
as panniculus adiposus are segmented from the PCCT images using a
semi-automatic method. Although the bones are clearly visible in the
PCCT scan, the skeleton segmented from the micro-CT scan is shown in
Figures 7.4(a) and (b) for better demonstration due to the larger FOV of
the micro-CT. Ex vivo validation based on cryo-sectioning is illustrated
in Figure 7.4(d), where the accumulation of the probe in the pancre-
atic tumor can be readily distinguished (the lower hyperintensity shows
probe accumulation in the bladder and peritoneal cavity). Two trans-
verse slices of the FMT-PCCT reconstruction overlaid as transparency
on the corresponding PCCT slices are shown in Figure 7.4(e) and (f) and
corresponding FMT-XCT reconstructions are presented in Figure 7.4(g)
and (h), respectively.
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Corresponding ex vivo validation images are shown in Figure 7.4(i) and
(j) where the fluorescence image of the cryo-section is overlaid in pseudo-
green on the color cryo-section photographs. Enlarged portions of the
PCCT slices are shown in Figure 7.4(k) and (l), where the spleen, pan-
creas, stomach, left kidney and colon are marked with orange, white,
green, pink and black, respectively.

The body of the mouse bloated slightly post-mortem, as can be recognized
from different cross-sectional areas between PCCT and PC scans (e.g.
between Figure 7.4(e) and (g)). Coordinate systems are designated by
D (dorsal), V (ventral), H (head), T (tail), L (left) and R (right). The
brightness of parts (a-d) was slightly increased for print clarity. The
intensity of the micro-CT and PCCT images along sample line segments
for the two in vivo studies are presented in Figure 7.5. Figure 7.5(a) and
(b) show corresponding transverse micro-CT and PCCT images, without
processing for contrast or brightness enhancements, for the 4T1 model.
The pixel intensity profiles along the dotted white lines are shown in
Figure 7.5(c), where the red and blue curves correspond to, respectively,
micro-CT and PCCT images. Different tissues are marked as intervals
on the intensity profile curves Figure 7.5(c). As seen, there are significant
gaps between tumor, fat and bone tissue in the PCCT intensity profile
(blue curve), while only bone tissue has conspicuous contrast relative to
background in the micro-CT intensity profile (red curve).

The 15% contrast in micro-CT intensity between fat and tumor tissue
(blue and red marks in Figure 7.3(e)) is barely distinguishable in the
red curve in Figure 7.5(c). Both intensity profiles are normalized to
the respective maxima. The corresponding results for the PDAC model
are given in Figure 7.5(d-f). The line segment in Figure 7.5(e) starts
(from the upper white square) in skin and crosses, respectively, fat, mus-
cle, fat, spleen and pancreas and ends at the lower white square in the
colon. Different intervals corresponding to these tissues can be readily
distinguished in the PCCT intensity profile (blue curve) in Figure 7.5(f).
Micro-CT had noticeable contrast only in colon.
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7.4 Discussion

We proposed and demonstrated for the first time hybrid herein fluo-
rescence molecular tomography-X-ray phase-contrast computed tomogra-
phy (FMT-PCCT) for non-invasive three-dimensional molecular imaging
of small animals. FMT-PCCT combines the sensitive molecular imag-
ing capability of FMT with the high resolution, high contrast anatomi-
cal imaging of PCCT to deliver improved quantitative tomographic im-
ages of biodistribution of fluorophores in vivo. FMT-PCCT was demon-
strated for two animal experiments; a nude mouse with subcutaneously
injected 4T1 tumor cells and a model of pancreatic ductal adenocarci-
noma (PDAC). The FMT measurements were performed in vivo followed
by ex vivo PCCT imaging. Conventional CT scans were also obtained
in vivo after FMT imaging for comparison and volumetric coregistration
purposes. The PCCT images showed a much higher soft tissue contrast
than the conventional CT images. This capability of PCCT afforded
accurate reconstruction of cancerous lesions in both models through in-
corporation of anatomical information segmented from the PCCT in the
FMT reconstruction process. A current drawback of PCCT is the long
acquisition time, which is mainly due to the quantum efficiency of the
detectors, the need to acquire multiple radiographic projections and the
imperfect grating structures.9 The reduction of the phase-contrast imag-
ing acquisition time toward in vivo phase-contrast imaging is possible
and a topic of ongoing research [108,109,118–120].

While sustaining the high resolution and low cost of conventional CT,
PCCT improves the soft tissue contrast. We believe this feature will play
a critical role in future evolvement of FMT-PCCT as a preclinical whole
body in vivo imaging modality. An important current issue toward wider
deployment of FMT-XCT is the difficulty associated with segmentation
of organs from the CT images due to the low contrast of target lesions
relative to the background or the complete lack thereof (as observed
in our demonstration of the PDAC model in Figure 7.4). This issue

9 Author appreciates insight provided by Alexander Hipp at Garching Forschungszen-
trum for this sentence.
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specially poses problems for the end users of current FMT systems, as
the segmentation of conventional CT segments are mostly based on semi-
automatic methods which require user interference. This issue will likely
play a smaller role in FMT-PCCT, as the higher soft tissue contrast will
make possible or improve segmentation automation.

7.5 Conclusion

Building upon the flexibility, efficiency and accuracy of the processing
framework presented in the previous chapters, we presented in this chap-
ter in vivo experiments for studying tumor development in various mod-
els (one case presented in this chapter and more cases presented in Ap-
pendix C). Some of the results were first-time imaging demonstrations
using FMT-XCT. Furthermore, FMT-PCCT was developed and demon-
strated here for the first time for imaging animal models. The FMT
and PCCT imaging were performed in vivo and ex vivo, respectively,
and the imaging results were cross validated with ex vivo cryo-sectioning.
FMT-PCCT demonstrates the ability to effectively reconstruct the tar-
get fluorescence signal through incorporation of anatomical information
afforded by PCCT in lesions, where low or no contrast relative to sur-
rounding tissue is observed in conventional CT images. Due to low cost,
high sensitivity and ability to tomographically image fluorescence in soft
tissue lesions, we believe FMT-PCCT equipped with better segmenta-
tion methods afforded by high soft tissue contrast of PCCT will be an
important tool for preclinical molecular imaging in future.

The developments presented until this point in this work addressed
solely preclinical applications. We have further expanded the scope of
fluorescence-enhanced molecular imaging to the clinic to develop novel
algorithms and applications for imaging of inflammation in human hand
joints, made possible by the insight and accuracy afforded by the tools
developed so far.
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8 Spatiotemporal analysis for
imaging rheumatoid
arthritis

8.1 Introduction1

Imaging can play a significant role in the early diagnosis of rheumatoid
arthritis (RA) and monitoring the effectiveness of a corresponding treat-
ment [121,122]. As most common chronic form of arthritis [123] RA is an
autoimmune disease which typically affects the synovial joint linings, trig-
gering buildup of synovitis in joints and resulting in cartilage and bone
damage. Conventionally, X-ray imaging has been employed for imaging
RA features, such as bone and joint destruction as a result of inflamma-
tion. However, this approach is limited to imaging effects due to relatively
advanced inflammation with visible bone damage [124]. MRI and ultra-
sound imaging are also employed as alternatives to X-ray imaging for

1 The materials presented in this chapter are also presented (mostly with minimal or
no changes) in P. Mohajerani, et al., “Spatiotemporal analysis for ICG-aided imag-
ing of rheumatoid arthritis in hand joints”, Journal of Biomedical Optics 18(9),
097004, September 2013 (see Publications overview at the end of the dissertation
for full author list). Material reproduced with permission from the Society of
Photo Optical Instrumentation Engineering (SPIE).
Dr. Peter B. Nöel and Priv.-Doz. Dr. Reinhard Meier from Professor Ernst J.
Rummeny’s group at the department of radiology, Klinikum rechts der Isar per-
formed optical and MR imaging of hands, examined the patients, assisted with
clinical details and provided clinical insight, information and findings (such as
MR scans, inflammation severity and location as well as other information from
patients) used in this chapter.
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early RA imaging. Promising results have been shown to make early di-
agnosis possible. Limitations include the high cost and long examination
time (for MRI) or the operator dependency (for ultrasound) [125].

Optical imaging has been considered as an alternative RA imaging
method, since it offers fast non-invasive imaging [126–134]. Trans-
illumination planar imaging using a 675 nm laser was considered to as-
sess the progress of disease by observing human proximal interphalangeal
(PIP) finger joints and evaluating features of the optical images collected
using image classification algorithms [128]. This approach was able to
resolve inflammation in PIP joints in a group of 72 joints with 80% sen-
sitivity and 89% specificity, and was shown better in assessing inflamma-
tory variations in the synovium. Optical tomography approaches have
also been considered to three-dimensionally resolve diffusion coefficient
changes between rheumatoid synovial tissue in rheumatoid PIP joints in
comparison to healthy PIP joints [127] [131, 133, 135, 136]. These meth-
ods aim at reconstructing the optical absorption and scattering coeffi-
cients in two-dimensional planes or three-dimensionally in finger joints
and rely on the increase in the optical absorption and scattering due to
“clouding of the synovial fluid or membrane inflammation” [128, 131] or
measurement of water concentration and tissue oxygen saturation lev-
els [137] to differentiate between osteoarthritic and healthy joints. It was
reported in [131] that the optical absorption and scattering of synovial
tissue can increase up to an order of magnitude with inflammation and
the frequency-domain diffuse optical tomography was shown to differen-
tiate between healthy and arthritic joints with more than 85% sensitivity
and specificity in a group of 99 PIP joints with rheumatoid arthritis
and 120 healthy PIP joints [135]. Diagnosis of osteoarthritis in distal
interphalangeal (DIP) joints of 22 patients and 18 volunteers with 91%
sensitivity and 100% specificity was demonstrated in [137] using an X-
ray guided multispectral technique. It should be noted that optoacoustic
methods have also been proposed for imaging inflammatory arthritis and
osteoarthritis in small animal and human joints [138,139]. The aforemen-
tioned optical and optoacoustic planar or tomographic optical imaging
methods have been limited to interphalangeal human finger joints. Laser
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Doppler imaging has further been proposed for imaging perfusion maps
of microvasculature in PIP and metacarpophalangeal MCP human hand
joints [140,141].

In addition to intrinsic contrast, the use of fluorescent dyes and probes
has been also proposed to offer diagnostic information on the inflamed
synovial tissue based on planar and tomographic molecular imaging tech-
niques [142, 143]. Optical imaging employing Indocyanine Green (ICG)
has been considered in particular for visualizing RA in preclinical and
clinical applications [23, 129, 132, 144, 145]. Indocyanine Green is a syn-
thetic organic fluorescent dye that has been considered in a variety of
clinical applications, including hepatic clearance studies, retinal angiog-
raphy as well as intraoperative applications such as brain surgery and
gastroenterological surgery [146–150]. Studies for the detection of breast
cancer [151] and the identification of atherosclerosis [152] have been also
considered. Upon intravenous administration, ICG distributes into the
vascular system, typically binding to plasma proteins. ICG has a half-life
of 3-4 minutes after injection and clears though the hepatobiliary tract.
ICG has peak optical absorption at around 780 nm and peak fluorescence
at 830 nm in blood [153].

A common method to clinically visualize ICG using optical imaging is epi-
illumination fluorescence imaging (EFI), i.e. a photographic approach,
whereby the illumination and the detection are placed on the same side
of tissue [21, 134, 154, 155]. Trans-illumination and optical tomography
imaging have, however, also been demonstrated [2, 156]. When perform-
ing EFI, the sample is typically subjected to plane illumination and the
fluorescence signal is measured using a CCD at the corresponding wave-
length using appropriate optical filters that reject the excitation light
and only allow the emission light to be detected. Such cameras can
operate at video rates allowing dynamic measurement of fluorophore bio-
distribution. This approach is “surface weighted” which means that fluo-
rescence coming from the surface of the tissue is collected more efficiently
than deeper seated fluorescence which is instead attenuated as a function
of depth. It should be noted that ICG-based EFI imaging as proposed
in [144] is, to our knowledge, to date the only fluorescence-based clinical



124 8.1. Introduction

tool for imaging synovitis in human hand joints and at the same time the
only technique for simultaneously imaging synovitis in all carpal, metacar-
pophalangeal and interphalangeal joints of the human hand. ICG-aided
diagnosis of rheumatoid arthritis in carpal, MCP, PIP and DIP joints
of human hands was reported in [27] to have a sensitivity of 39.6% and
specificity of 85.2% in a group of 45 patients. Another study reported
76% sensitivity and 54% specificity for 252 patients [23].

The output of EFI imaging is a number of fluorescence frames obtained
at sequential time points. The visual inspection of this information and
derivation of diagnostic information is not straight-forward due to the
large amount of the data collected and perhaps the presence of subtle
spatiotemporal changes that are not easily captured by human percep-
tion. In order to quantitatively examine the ICG spatiotemporal profile
obtained from clinical measurements following an intravenous bolus in-
jection of ICG to patients, we employed principal component analysis
(PCA) [87]. PCA analysis is commonly applied in studying dynamic
events and has been used in such applications as differentiating inter-
nal organs in mice [155], spectral unmixing applications [157] and multi-
spectral optoacoustic tomography real-time imaging [158]. PCA was ap-
plied herein to decompose the complex temporal and spatial dependen-
cies of fluorescence signals following ICG administration and investigate
whether we could identify dynamic or spatial patterns associated with RA.
A secondary objective of this work was to further gain insights on the ef-
fects of depth on the signals recorded. The purpose of the spatiotemporal
processing was to investigate whether ICG of higher concentration or dif-
ferent time-kinetics was delivered at the synovial lining compared to the
surrounding tissue; as this could be employed as a marker of RA charac-
terization. A numerical phantom model built using a manually segmented
MR scan of a metacarpophalangeal joint has been used to simulate the
fluorescence image sequences based on the finite element method (FEM).
The performance of the proposed method has been demonstrated using
this phantom as well as for individual joints from 10 patients diagnosed
with RA and 5 healthy volunteers. Detailed case-studies are presented
as well for 8 joints with various degree of synovitis severity.
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Figure 8.1: Sample clinical images of a patient’s hand after ICG injection; (a)
sample epi-illumination fluorescence image of the left hand 40 seconds after
injection of ICG. The patient has mild synovitis in the 3rd metacarpopha-
langeal joint of the left hand, as seen by relative signal increase in the delin-
eated region, (b) the joint names indicated on the fluorescence image (MCP
= metacarpophalangeal, PIP = proximal interphalangeal and DIP = distal
interphalangeal). White curves depict regions of interest (ROI) specified for
processing purposes, (c) the corresponding contrast enhanced, fat saturated,
T1-weighted MR image of the metacarpophalangeal region where the inflamma-
tion in the 3rd MCP joint is highlighted due to a higher relative concentration
of the MR contrast agent.

8.2 Clinical imaging of rheumatoid
arthritis

The methodology and analysis performed in this chapter have been devel-
oped in the context of a recent study conducted at the Klinikum rechts
der Isar, Munich, Germany, with the purpose of evaluating ICG-aided
diagnosis of RA [27]. Patients with more than one tender and/or swollen
joint among carpal, metacarpophalangeal, proximal interphalangeal or
distal interphalangeal joints were recruited, when the symptom duration
exceeded 6 weeks for up to 24 months. The patients were examined by
two rheumatologists via bimanual palpation and then underwent imaging
using a 3T MR machine (Verio, Siemens Erlangen, Germany). The MR
scanning was performed on both hands simultaneously with patients in
a prone position and hands stretched out in praying posture. Gadopente-
tatedime glumine (Magnograf, Schering, Berlin, Germany) was injected
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as contrast agent at a dose of 0.02 ml per kg body weight. Non-enhanced
proton density fat saturated images and post-contrast T1-weighted fat
saturated scans were obtained in axial and coronal planes. The contrast
agent shows a higher relative concentration in inflamed than healthy syn-
ovial joint linings [27]. Three radiologists scored the degree of inflamma-
tion in a total of 30 joints of both hands using the MR scans. Synovi-
tis scores on a 4-point-ordinate scale (0: no inflammation, 1: mild, 2:
moderate, 3: severe) were assigned to each joint according to the semi-
quantitative assessment system suggested by the OMERACT MRI group.
These MR scores constitute the diagnostic information for our work.

Figure 8.1 shows characteristic images for a patient with mild (MR score
of 1) arthritis in the third metacarpophalangeal (MCP) joint of the left
hand. The bright area around the 3rd MCP joint region, marked in Fig-
ure 8.1(b) indicates relatively high accumulation of ICG in the synovial
membrane of this joint. The corresponding axial MR image is shown in
Figure 8.1(c), where the inflammation is visible as hyper-intense signal
alteration on T1 weighted, fat saturated, contrast enhanced MR images
due to the higher concentration of the MR contrast agent. The regions
of interest delineated with white lines in Figure 8.1(c) are manually spec-
ified for each patient and are used in the proposed method, presented in
the Section 8.3.

Fluorescence imaging was performed with a near-infrared fluorescence
imaging system (Xiralite X4, Mivenion GmbH, Berlin, Germany), which
allows for real-time image acquisition at the fluorescence wavelength of
ICG from the human hands after epi-illumination excitation [23,27,144].
The device employs a cooled CCD camera, equipped with an 800 nm long-
pass optical filter, which captured images at a frame rate of one image
per second for a total duration of 360 seconds. For optical imaging, the
patient placed the hands inside the device, on a template designed to
keep the fingers apart. Continuous illumination with LEDs at 740 nm
was applied to both hands. The patients received a bolus injection at a
dosage of 0.1 mg per kg body weight. ICG was injected intravenously 10
seconds after the beginning of the imaging acquisition so that pre-ICG
administration baseline measurements were always available.
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8.3 Spatiotemporal analysis

To analyze the fluorescence data collected, principal component analysis
(PCA) was employed to decouple the fluorescence image sequence into
different temporal and spatial components. As reviewed in Section 5.3,
PCA is a transformation for converting a group of random variable real-
izations to set a of numbers, which can be considered as realizations of
uncorrelated random variables [87]. PCA was applied to a temporally and
spatially-windowed subsequence of the original raw fluorescence image se-
quence, measured from patients’ hands as described in Section 8.2. The
resulting principal components in each subsequence were then combined
to form another sequence. This new sequence was efficiently rendered as
a sequence of color images, where each color corresponds to a principal
component. The signal due to inflammation is likely to appear as one of
such components if it had a dynamic behavior that differs from this of
regular tissue.

The proposed processing method achieves signal separation through mul-
tiple levels of localization in time and space. In the first pre-processing
step, the hand image is divided into various regions of interest (ROI) as
shown in Figure 8.1(b). There are 7 ROIs considered for different regions
of the hand. This step is necessary as the signals have different tempo-
ral and spatial characteristics in various hand regions due to different
vascular and anatomical structures and, therefore, hemodynamic. For
example, there is a denser dorsal venous network in the digital (consist-
ing of proximal interphalangeal (PIP) and distal interphalangeal (DIP)
ROIs) compared to the carpal joints, contributing to more signal inter-
ference in interphalangeal joints. Similarly, the synovial tissue regions in
the metacarpophalangeal (MCP) joints are shallower and smaller than
the carpal synovium and, therefore, appear as better defined yet smaller
spots in the fluorescence images compared to the signal coming from
inflamed carpal joints. These observations necessitate spatially local-
ized processing, as the processing method seeks component separation
through minimization of spatial and temporal correlations. The process-
ing is best focused on regions with similar signal dynamics. Hence, joints
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with similar signal behavior are processed in one ROI. The 7 ROIs used
herein were shown to result in adequately homogenous spatiotemporal
dynamics within each ROI, without losing spatiotemporal features. A
second pre-processing step was used to localize the processing also in the
time domain. This step is explained in the next paragraph.

To briefly explain the application of PCA herein, we can assume {Ip},
p = 1 . . . P , as a set of P fluorescence images of M1 × M2 pixel size,
obtained correspondingly at P time points after the injection of ICG.
In our study P was equal to 360, corresponding to 360 images acquired
over 360 seconds. Then for a given joint, let {Jp}, p = 1 . . . P denote
the sequence of cropped images at the corresponding ROI, as shown in
Figure 8.1. The average intensity within each ROI was subtracted from
this image sequence, such as each {Jp} had a mean value of zero. Just
as the spatial windowing through the application of the ROI windows is
conducive to better performance, the windowing across the time domain
also leads to better signal separation, due to changes in hemodynamic
characteristics post injection. For instance, signals undergo rapid changes
in the first seconds after injections, while they tend to have an exponential
decay in the last few minutes of imaging. Specifically, L successive images
were taken from the subsequence {Jp} and weighted using a time window.
Assuming that this subsequence is Hk

i , where i ranges from 1 to L and k
ranges from 1 to P − L, we then write

Hk
i = W (i)Jk+i, (8.1)

where W denotes the window sequence. The windows length L was em-
pirically adjusted such as the L images within the time window W have
a stationary spatiotemporal behavior, that is, can be well approximated
as linear combinations of few spatial components.

For the work presented here, a rectangular window of varying length was
employed. The length of the window W was shorter at the beginning of
the sequence, where the temporal dynamism was stronger and became
longer as signal later stabilized. The sequenceHk

i was the image sequence
that was finally processed by PCA.
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To implement the PCA on Hk
i , every image in the sequence Hk

i was first
vectorized by tagging along all the columns, i.e.

hki =
(
Hk
i (1, 1) . . . Hk

i (M1, 1) . . . Hk
i (1,M2) . . . Hk

i (M1,M2)
)
, (8.2)

where Hk
i (n,m) is the nth row, mth column element of the matrix Hk

i . For
a given k all the images in the sequence Hk

i were vectorized and stacked
on top of each other to form a L×M1M2 matrix Xk as

Xk =


hk1
...
hkL.

 . (8.3)

The PCA transformation on this matrix relied on the singular value anal-
ysis of the L× L correlation matrix Ck defined as

Ck := X>k Xk = T>k DTk, (8.4)

where the L × L unitary matrix Tk is the matrix of eigenvectors of Ck

and > is the transpose operator. The diagonal matrix D contains the
eigenvalues of Ck, i.e. the singular values of Xk, sorted in decreasing
order. The PCA transformation of matrix Xi is then given by

Sk = T>k Xk, (8.5)

where Tk and Sk are L×L and L×M1M2 respectively. It was observed
that only the first three components had significant energy and the com-
ponents beyond the third one could be ignored. In other words,

Xk ≈ T̂kŜk, (8.6)

where T̂k and Ŝk are matrices containing the first 3, respectively, columns
and rows of matrices Tk and Sk. The values of the time profile and the
spatial components, in T̂k and Ŝk matrices respectively, may become
negative, as the PCA transformation does not enforce positivity. The
negative values pose a problem for result interpretation. For this reason
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Figure 8.2: Numerical tissue phantom built using segmentation of axial MRI
slices of a metacarpophalangeal finger joint; (a) the phantom contains general
tissue, two dorsal veins (yellow isosurfaces), bones (gray isosurface) and syn-
ovium (red isosurface) and ICG accumulated in the synovium shown by the
green shade; (b) tetrahedral mesh generated for the numerical phantom with
the red dots designating the illumination on the surface; (c) a sample simulated
fluorescence image (as seen by a camera located above the hand and seeing
the dorsal side) for synovium located at the depth of 2 mm with an uptake
ratio of 3 relative to general tissue, with the black curve delineating the joint
region. The units in (c) are pixel intensity counts.

the three imaging components were weighed by the corresponding values
of the temporal vectors and thresholds were applied using preset positive
numbers. The corresponding three PCA components sequences are called
{C1

i }, {C2
i } and {C3

i }. For each window position the three components
from the middle frame weighed as such are then mapped into the blue, red
and green transparency channels of a colored image, in decreasing order
of the amplitude of their corresponding singular values. The resulting
color image is considered as a single frame in a video sequence, which is
finally presented to the reader. It should be noted also that all frames are
normalized across the entire sequence for a more meaningful depiction.

8.4 FEM-based analysis

To justify the use of superficial measurements for recovering diagnostic
information from deeper seated activity as well as studying the perfor-
mance of the proposed PCA method, we simulated the fluorescence sig-
nals recorded as a function of assumed physical and geometrical factors
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that relate to the imaging problem studied herein. The simulated fac-
tors include the depth and estimates of the relative ICG uptake ratio
of the synovial linings. We have furthermore investigated the visibility
of the targeted fluorescence signal in various time stages as the ICG is
distributed through the hand and joint area.

Figure 8.2 demonstrates the numerical phantom model that was devel-
oped and used for the above purposes. The phantom geometry was devel-
oped using manual segmentation of axial MR images of a MCP joint of
patient with severe inflammation in the 2nd MCP joint. Three elements
were identified in the segmentation; bone, veins and synovium as shown
by different colors on Figure 8.2(a). The ICG was assumed to accumulate
in both the background tissue (volume outside of bones) and in the syn-
ovium at different concentrations. In particular, it was assumed that the
concentration of the fluorophores in the inclusion and the background,
i.e. the rest of the slab, constitute an uptake ratio of N : 1. To esti-
mate the dynamic range of the uptake ratio N , we measured intensity of
fluorescence observed in several inflamed joints relative to signal in ad-
jacent non-joint tissue. In the measured samples, the joint to non-joint
fluorescence ratios ranged between 2.5 and 6.0. While these measured
ratios depend on many physical factors such as the imaging time point
or the location, the extracted dynamic range serve as an estimate of the
underlying uptake ratio. Because of higher attenuation of deep-seated
inflammation signal due to depth effects, this estimate is likely to be a
conservative one. Interestingly, intensity of the inflamed synovium was
observed in MR images to be, depending on severity of inflammation,
2 to 7 times larger than surrounding tissue. This is justifiable, as the
Gadolinium-based MR contrast agent and ICG are both blood pooling
agents and the respective signal intensities are expected to correlate with
blood concentration; even though having different distribution patterns
due to their different molecular weights. This effect has also been ob-
served in ICG-based mammography [159].

The ICG that accumulated in the synovium is shown by green shade
on Figure 8.2(a) and corresponded N -fold increased fluorophore concen-
tration in the target tissue (synovium), with regard to background, as
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described above. A finite-element method (FEM) was employed to sim-
ulate the propagation of the incident light and calculate the intensity
emitted by fluorophores for a given ICG distribution. The mesh con-
sisted of 48880 nodes and 278832 elements, with an average edge length
of 1.3 mm and was generated using the methods described in [43, 44].
The light propagation in tissue was modeled using FEM-based discretiza-
tion of the diffusion equation (DE) [33]. The DE, as a first order ap-
proximation of the more general radiative transfer equation (RTE), is
valid for modeling light propagation in turbid tissue where the scatter-
ing coefficient is much larger than the absorption coefficient. In tissues,
this optical condition does not generally hold in regions containing clear
fluid such as the synovial or air such as in the lungs, or in regions with
very high absorption such as within large blood vessels. Nevertheless,
light modeling based on the diffusion approximation is widely used for
preclinical applications (such as tumor localization in murine models of
lung cancer [25]) and clinical applications, including tomographic imag-
ing of human interphalangeal finger joints [137, 160, 161] as well as for
simulation of light propagation in joints [127]. RTE and its higher or-
der approximations are employed as well as a more accurate model for
tomographic imaging of finger joints but computational particulars also
impose a number of approximations and assumptions [135]. A recent
study showed that, given a priori anatomical information, the DA-based
modeling of light propagation results in less than 4% error tomographic
reconstruction for in human joints, in comparison with higher order ap-
proximations of RTE; however, the error was higher without knowledge
of accurate optical properties [35]. The tissue’s optical absorption and
scattering coefficients were set to typical values of 0.05 mm-1 of 1.0 mm-1,
typical for tissue. Figure 8.2(b) shows the tetrahedral mesh generated
for the phantom and the red dots mark the illumination. Figure 8.2(c)
depicts a sample fluorescence image obtained via FEM modeling.

Dynamic fluorescence images were simulated over 360 seconds by as-
signing time-dependent ICG concentrations to different tissue segments.
Specifically, the blood flow was mimicked by weighting the ICG concen-
tration in the background, veins and synovium according to time courses
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experimentally obtained from fluorescence measurements from the pa-
tient whose MR scan was used for the phantom construction. Three
time-curves were measured from three different locations, i.e. the dorsal
vein, general tissue and inflamed joint locations. The final simulated im-
age sequence contains the fluorescence signal emanating from different
entities in the phantom and an added Gaussian measurement noise with
1.5% of the fluorescence signal energy.

8.5 A localization metric

In this section, we establish a framework for quantitative evaluation of
the results and comparison of raw and processed component image se-
quences. This framework is then used to evaluate the performance of
the proposed method in localizing desirable signal components in both
FEM-based simulated and clinical fluorescence image sequences. The
idea behind such framework is to quantify the presence of a component
in an image which can be potentially attributed to the target fluores-
cence source, i.e. in our case, the inflammation signal. This is achieved
by segmentation of the image and then evaluation of the binary segments
against a reference binary image. The reference binary image is manually
set to a region where the joint is expected (for clinical images, this region
was set with the help of MR coronal images). If an image segment is
localized to the region denoted by the reference binary image, it can be
potentially associated with the fluorescence signal emanating from joint
inflammation. Specifically, given an image sequence, raw or processed,
and a region of interest where a joint is expected to be located, a local-
ization metric was designed whose value indicates if the image sequence
suggests the existence of a localized signal component in the joint region.
This metric has a value between 0 and 100, where a value of 100 indicates
suggests existence of a signal component confined within and spanning
the joint region and 0 suggest no localized signal component in the joint
region. This metric is applied on every image in the sequence and the
metric associated with the image sequence is defined as the maximum
of all metrics for the images in the sequence. Hence, the image with
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Figure 8.3: Fluorescence image in the MCP area of a patient with moderate
inflammation in the 2nd right MCP joint. The blue ellipse shows the region
the joint is located, i.e. the reference joint region, and the red curve designates
the segmented region that best overlaps with the reference joint region.

the maximum metric value is regarded as the one containing the best
candidate signal component. For clarification purposes, an example is
presented in Figure 8.3. The blue ellipse delineated in Figure 8.3 denotes
the approximated location of the 2nd MCP joint, defined as the “joint
ROI”. The fluorescence signal emanating from the ICG accumulated in
the inflamed synovial lining is expected to appear as a distinguishable
and localized signal component at least partly within the joint ROI. The
fluorescence image in Figure 8.3 contains such component, delineated by
the red curve. This component has been segmented using the segmenta-
tion approach metric framework proposed in the section.

Specifically, let R denote a binary image which is 1 inside the joint region
and 0 outside. For a given image I of size N ×M , a binary image J is
constructed as follows.

J = I > βI0, (8.7)

where I0 indicates the average intensity of I and the coefficient was heuris-
tically set to 1.5 for the fluorescence images I obtained from patients
hands as described in Section 8.2. The binary image J is further pro-
cessed using morphological operations. Finally, a connected component,
also called a binary label, of the resulting binary image that has the
largest overlap with R is kept as the candidate signal component. Let K
be the binary image containing this segment.

The similarity between the reference binary images R and the segmented
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binary image K renders a measure of the likelihood of the signal com-
ponent designated by the binary region in K, to have been originated
from fluorescence within the region designated by R. To quantify the
similarity between R and K, we employ the Jaccard distance [162] as an
overlap-based measure and the Hausdorff distance [163] as a boundary-
based measure and the signal energy. The application of Hausdorff and
Jaccard distances as typical boundary-based and overlap-based localiza-
tion metrics is a common approach for segmentation and image retrieval
evaluation purposes [164–168]. A survey and comparison of several lo-
calization metrics for the purpose of evaluation of image interpretation
systems is presented in [169].

Specifically, for two sets A and B in a metric space, the Jaccard distance
is given as

Jδ(A,B) = 1− A
⋂
B

A
⋃
B
. (8.8)

Also, the Hausdorff distance is defined as

dH(A,B) = max{dA(b), dB(a)|a ∈ A, b ∈ B}, (8.9)

where for a set S
dS(a) = min{d(a, s)|s ∈ S}, (8.10)

with d(a, s) denoting the Euclidean distance between points a and s. For
two binary images, the metrics above are then defined for the sets of
non-zero pixels.

In this work the localization metric for a binary image K, a given refer-
ence binary image R and the original grayscale image I, is defined as

S(K,R) = 100×(
1−max

(
max (dH(K,R), r)

r
, Jδ(K,R), 1− E(K)

))
,

(8.11)

where dH(K,R) and Jδ(K,R) denote respectively the Hausdorff distance
and the Jaccard distance between K and R and E(K) is the energy of
the image I within the label in K normalized by the energy of the image
I. The number r denotes the major radius of an ellipse that envelopes R.
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S(K,R) ranges between 0 and 100. The configuration of Equation 8.11
ensures that a high value of S(K,R) means small Hausdorff and Jaccard
distances and a high energy concentration within the segmented region.
Specifically, S(K,R) = 100 means that the K and R are identical and
that the entire signal energy is confined to K, i.e. perfect localization.
On the other hand, a value of 0 for S(K,R) indicates no overlap or a
large Hausdorff distance between K and R or no signal energy contained
within the area defined by K.

The metric for a given image sequence Ii is defined as

S({Ii}, R) = max
i
S(Ii, R). (8.12)

The metric proposed here is used later for two purposes. First, it is em-
ployed to compare the processed component sequences against the draw
image sequence for various joints with different degrees of inflammation
severity. Secondly, the metric is used to study the performance of the
method vs. different physical factors such as lesion depth and uptake
ratio using the numerical phantom presented above in Section 8.4.

8.6 Processing of simulated data and
impact of physical factors

In this section we investigate the impact of physical and geometrical pa-
rameters, such as the synovium depth or the concentration of the ICG
in the synovium on the fluorescence signal obtained for the geometrical
arrangement presented in Section 8.2. Figure 8.4(a) demonstrates results
from the numerical phantom study. The FEM-based model discussed in
Chapter 2 was used to simulate the propagation of incident planar illumi-
nation in the tissue and the resulting fluorescence signal emanating from
the synovial inclusion, the background tissue and the veins. The z-axis in
Figure 8.4(a) denotes the relative contrast between the fluorescence signal
in the joint region, as shown in Figure 8.2(c), and the background signal
in the simulated images for different depths between 2 and 7 mm and
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uptake ratios between 1 and 10, whereby “uptake ratio” denotes ratio of
ICG concentration in synovium over the background. Figure 8.4(b) illus-
trates the results obtained from a simulated longitudinal measurement.
Specifically, for each depth and uptake ratio the proposed PCA-based
method was applied to the raw fluorescence image sequence generated
using the numerical phantom, where different frames denote the simu-
lated fluorescence signal intensity images over 360 seconds, as elaborated
in Section 8.3. Next, localization metric values for the simulated raw
image sequences as well as the corresponding processed sequences were
found, as shown in Equation 8.12. The localization metric was calculated
for the individual simulated images based on the approach described in
Section 8.5. The z-axis in Figure 8.4(b) denotes the value of the localiza-
tion metric calculated for different depths and uptake ratios for both the
raw image sequences (surface marked with solid lines) and the processed
sequences (surface marked with dotted lines). A high value for the local-
ization metric indicates presence of a signal component attributable to
the synovium fluorescence. The results suggest that fluorescence signals
can be retrieved for depths where synovitis can occurs for different joints.
In addition the PCA analysis shows the presence of a signal component
localized in the joint region for larger range of uptake ratios and a given
a depth and vice versa. The fluorescence signal in finger joints is also
affected by the impact of the blood flow on the ICG distribution. After
the intravenous injection, the ICG circulates to the hands though the
radial and ulnar arteries and then flows back through palmar and ve-
nous veins, resulting in fluorescence signal emanating from dorsal veins
and general tissue interfering with the synovitis signal. The FEM simu-
lations presented in Figure 8.4(a) suggest that even for synovitis up to 3
mm under skin, interference occurring for uptake ratios less than 3 can
complicate signal detection. However, as seen in Figure 8.4(b), the PCA-
based method could decouple the fluorescence signals from the vein and
background signal for the FEM-based time-series simulations for lesions
up to 5 mm deep for uptake ratios less than 5, while the target signal
could be distinguished in the raw fluorescence images only up to 2 mm
of depth.
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Figure 8.4: Simulation and processing results for the numerical phantom pre-
sented in Figure 8.2, Section 8.4; (a) the ratio between the signal intensities
in the joint ROI and in the background for various depths of the synovium
and ICG uptake ratio in the synovium, calculated for the simulated raw flu-
orescence image sequence (contrast denotes the maximum of this ratio over
the entire sequence); (b) localization metric for the raw simulated fluorescence
sequences (surface marked with solid lines) and for the 3 processed image
sequences corresponding to the three components (surface marked with dot-
ted lines) vs. depths and uptake ratios. A higher value for the localization
metric indicates presence of a localized component in the joint region in the
corresponding image sequence.

8.7 Results

8.7.1 Spatiotemporal analysis of arthritic joint
images

Following the analysis of simulated data, we applied the PCA method
in the study of RA patients. Figure 8.5 shows raw and processed results
for a fluorescence image sequence obtained from a 64 year old female
patient with severe arthritis in the left carpus and moderate and severe
synovitis in, respectively, left 4th and 2nd PIP joints. The ROI of these
three joints of the left hand are delineated in Figure 8.5(a). Transverse
T1-weighted contrast-enhanced fat-saturated MR images verifying the
synovitis severity of left carpus and 2nd and 4th PIP joints for this patient
are also shown in Figure 8.5(r-t), respectively. The raw fluorescence
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images measured at time points 37, 43, 53 and 89 seconds are shown in,
respectively, Figure 8.5(b-e) within the ROI corresponding to the carpus
joint. Figure 8.5(f-i) show the corresponding processed images at these
time points, where the three components are mapped, accordingly to
increasing magnitude of the corresponding singular values, to the green,
red and blue channels of depicted color images. The color values in
processed images range between 0 and 1. A prominent fluorescence signal
appears on the raw images of the carpus, in particular at time point 37
seconds. Accordingly a strong first PCA component (mapped to the blue
channel) appears image in Figure 8.5(f-i), congruent to the location where
the fluorescence signal appears in the raw data. Interestingly, component
number 1 appears in all time points of the sequence, in contrast to the
raw fluorescence signal that virtually disappeared at later time points
as shown in Figure 8.5(d, e). The raw and processed image frames for
the left 2nd PIP joint are shown in Figure 8.5(j,k) and (n,o), respectively,
and Figure 8.5(l,m) and (p,q) present corresponding results for the left
4th PIP joint, for time points 30 and 42 seconds post injection. Similar
to the carpus, a strongly localized signal component appears in the first
component, visible in the two time points displays for both joints.

The severe synovitis of the left carpal and 2nd PIP joints as well as the
moderate synovitis of 4th PIP joint can be easily seen in the blue chan-
nel of the processed images. This example demonstrates the virtue of
the proposed method in temporal and spatial decoupling of the various
signal components contributing to the fluorescence image. Specifically,
the signal from the veins and the synovitis are clearly decoupled into the
three color channels (corresponding to the three principal components) in
Figure 8.5(g) for the carpus, at the time point 24 seconds. The synovitis
signal is the most temporally persistent component (in comparison with
the vein signals, for instance). It is therefore transformed into the blue
channel, which is the most dominant channel; i.e. with the largest singu-
lar value. On the other hand, the vein signal passes through the green
and red channels at different time points. Some of the synovitis signal
has leaked as well into the red channel, as seen in Figure 8.5(f). The lo-
calization metric calculated for raw and processed image sequences were
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Figure 8.5: Case study of a 64 year old female patient with severe synovitis in
the left carpus and severe and moderate synovitis in, respectively, left 2nd and
4th PIP and joints; (a) sample fluorescence image at 100 seconds with corre-
sponding three regions of interest (ROI) delineated by white curves; (b-e) raw
fluorescence images (0-65535 intensity counts with black indicating 0) corre-
sponding to time points 37, 43, 53 and 89 seconds post injection, respectively;
(f-i) corresponding processed colored images at the same four time points.
Moreover, (j-k) and (n,o) are raw and processed images for the left 2nd PIP
and (l,m) and (p,q) correspond to the results for the left 4th PIP joint for time
points 30 and 42 (seconds post injection). The inflamed synovial linings char-
acterized by higher relative accumulation of MR contrast agent are marked on
transverse contrast-enhanced T1-weighted MR images in (r-t) for left carpus
and 2nd and 4th PIP joints, respectively. The three principal components are
mapped to red, green and blue channels in (f-i) and (n-q). In all cases and time
points shown, the signal in the blue channel signifies synovitis, while green and
red channel signals can be mainly attributed to fluorescence emanating from
dorsal veins in (f-i) and the dense vascular network of fingertips in (n-q).

calculated according to Equation 8.12. The reference ROIs for the three
joint in this and next cases were set using the fluorescence images and
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Figure 8.6: Case study of a 46 year old female patient with severe synovitis
in the third right metacarpophalangeal (MCP) joint; (a) sample fluorescence
image at 100 seconds with metacarpophalangeal ROI delineated by white line;
(b-e) Raw fluorescence images corresponding to time points 35, 57, 67 and
91 seconds post injection, respectively; (f-i) corresponding processed colored
images at the same four time points; (j) a transverse contrast-enhanced T1-
weighted fat-saturated MR image of the MCP joints with the red arrow depict-
ing the inflamed synovial lining characterized by higher relative accumulation
of MR contrast agent. The three principal components are mapped to red,
green and blue channels in (f-i). The signal in the blue channel signifies syn-
ovitis in the 3rd MCP at all 4 time points. The green and red channel signals
can be attributed to background and vein signal, respectively.

the corresponding MR coronal images, as the anatomical reference. The
metric values for these joints and other joints studied in this section are
presented in Table 8.1. The metric for the processed sequence represent
the maximum of the 3 sequences, corresponding to the 3 components.
As can be seen the 1st component (mapped to blue channel) in the pro-
cessed sequence achieves a maximum metric of 83 for the carpus, while
the corresponding value for the raw sequences is 35. For the 2nd and 4th

PIP joints of the left hand, metric values of, respectively, 66 and 46 were
calculated for the processed sequences, while no localized components
were found in the raw images, leading to a metric value of 0. This is
likely due to the strong coupling of synovitis signal with the signal from
non-specific background and dorsal venous networks of fingers. Another
presentation for a severely arthritic joint presented in Figure 8.6, further
demonstrates the decoupling ability of the proposed method. In this case
a 46 year old female patient with severe synovitis in the 3rd right MCP
joint. The raw fluorescence images in the MCP region, as delineated in
Figure 8.6(a), are shown in Figure 8.6(b-e) at time points 35, 57, 67 and
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91 seconds after ICG injection. The corresponding processed images are
shown in Figure 8.6(f-i). As in the previous case, a strong fluorescence
signal appeared in this case as well in the raw fluorescence images at the
MCP 2nd region. This signal is stronger at earlier time points and later
weakens. Correspondingly, the first PCA component showed a strong
signal that similarly diminished with time due to mechanical movements
or instability. A transverse MR image of the right metacarpophalangeal
joints of this patient is shown in Figure 8.6(j), which verifies an area with
apparent severe synovitis at the 3rd right MCP joint. Due to its strength
and temporal persistence, the synovitis signal also shows up in the blue
channel here and the vein signal mostly in the red channel. There is
very little contribution in the green channel. Similar to the previous case,
the inflammation signal is well decoupled from the background in the
last time point, while fairly unclear in the raw fluorescence image. The
metric values for this case, as seen from Table 8.1, are 31 and 60 for,
respectively, the raw and the blue channel of the processed sequence.

The cases presented in Figure 8.5 and Figure 8.6 corresponded to carpal,
MCP and PIP joints with moderate to severe synovitis. The proposed
method is also applied to joints with mild to moderate synovitis. As
described in Section 8.2 the joints with mild and moderate synovitis
correspond to MR-assigned synovitis scores of 1 and 2, respectively.

The processing results for a 49 year old female patient with mild to mod-
erate joint synovitis are presented in Figure 8.7. The processing results
are shown for two regions of interest (ROI); the carpus ROI in the MCP
ROI as shown in Figure 8.7(a). Transverse images of the metacarpopha-
langeal region and image of the carpus, as shown in Figure 8.7(h-i) and
(r-s) respectively, present the MR findings for this patient with the red
arrows depicting synovitis. The patient suffers moderate synovitis in the
3rd right MCP and the left carpal joints and mild synovitis in the 2nd

right MCP joint.

Figure 8.7(b-d) and Figure 8.7(e-g) demonstrate the raw fluorescence im-
ages and the processed images corresponding to the time points 37, 52
and 99 for the MCP region. The results of the analysis for the MCP
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Figure 8.7: Case study for a 49 year old female patient with moderate syn-
ovitis in the left carpal and second metacarpophalangeal (MCP) joints and
mild synovitis in the 3rd left MCP joint; (a) sample fluorescence image at 100
seconds with metacarpophalangeal and carpal ROIs delineated by white lines;
(b-d) raw fluorescence images corresponding to time points 37, 52 and 99 sec-
onds, respectively; (e-g) corresponding processed colored images at the same
three time points in the left MCP region; (h-i) transverse contrast-enhanced
T1-weighted MR images of the MCP joints with the red arrows depicting the
inflamed synovial lining in 2nd and 3rd MCP joints. The signal in the red
channel specified by the dashed ellipses in (f) and (g) can be attributed to
synovitis. Images (j-m) and (n-q) corresponding to, respectively, raw and pro-
cessed images of the carpus at time points 37, 48, 72 and 99 seconds; (r-s) two
transverse MR images of the carpus. The red channel signal in (q) delineated
by the dashed ellipse can be associated with the moderate carpus synovitis.

region are presented in. This patient had mild synovitis in the 3rd MCP
joint and moderate synovitis in the 2nd, 4th and 5th MCP joints. While
almost invisible and indistinguishable in the raw fluorescence images, the
synovitis signals are clearly seen in the marked locations in Figure 8.7(f)
and (g). Furthermore, the raw fluorescence images for time points 37,
48, 72 and 99 are and the corresponding processed images for the carpus
are shown in Figure 8.7(j-m) and (n-q) respectively. The signal from
carpus synovitis is almost invisible in the raw fluorescence images, i.e.
Figure 8.7(j-m). However, the red channel shows a transient signal com-
ponent in Figure 8.7(q) inside the marked region, which can be potentially
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attributed to the inflammation in the carpus. The vein signal appears in
the red and green channels transiently in Figure 8.7(n-q) and persistently
in the blue channel across all 4 time points. As seen in Table 8.1, the
localization metric values for the 2nd and 3rd MCP joints reach a max-
imum of, respectively, 54 and 48 in the red channel and 0 in the raw
sequence. The corresponding metric values for the carpus are 32 and
0 for the red channel of the processed sequence and the raw sequence,
respectively. It should be mentioned that although the patient was diag-
nosed based on MR to have moderate synovitis in both 4th and 5th left
MCP joints, both raw and processed sequences achieve very low (0 and
8, respectively) metric values, which means the inflammation was not
detectable in either sequence.

8.7.2 Spatiotemporal analysis of healthy joint
images

Figure 8.8 demonstrates a control case of a 43 year old male patient with
no inflammation in the right carpus. The raw fluorescence and processed
images are shown in Figure 8.8 for the carpus ROI, delineated in Fig-
ure 8.8(a) for a sample fluorescence image at time point 100 seconds.
Specifically, images Figure 8.8(b-d) depict the cropped raw fluorescence
images obtained at time points 36, 42 and 61 seconds post injection and
Figure 8.8(e-g) shows the corresponding processed images consisting of
the 3 PCA components mapped to red, green and blue channels. More-
over, Figure 8.8(h) presents the T1-weighted MR findings for this patient
as a coronal image of the carpus. No significant contrast due to a higher
uptake of MRI contrast agent can be observed in Figure 8.8(h) and an
synovitis score of 0 was subsequently assigned by the radiologists group
(see Section 8.2 for explanation). The signal components appearing in
the three color channels, corresponding to the 3 PCA components, of
Figure 8.8(b-d) are uncharacteristic of carpus inflammation and can be
attributable to veins or artifacts. In this case, neither the raw fluores-
cence sequence nor the processed color images show any signal compo-
nents typical of carpus inflammation. As observed in Table 8.1 the metric
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Figure 8.8: Control case study of a 43 year old male patient with healthy
right carpal joint (a) Sample fluorescence image at 100 seconds with carpal
ROI delineated by white line; (b-d) raw fluorescence images corresponding to
time points 36, 42 and 61 seconds respectively; (e-g) corresponding processed
colored images at the same four time points; (h) a coronal contrast-enhanced
T1-weighted MR image of the carpus joints. The signal appearing in the red,
blue and green channels in (e-g) are due to veins or otherwise isolated spots,
as in (e), and are uncharacteristic of carpus inflammation signal.

Table 8.1: Localization metric values calculated for raw and processed image
sequences for cases presented in Figure 8.5-Figure 8.8. Columns 1 through
5 indicate, respectively, the joint name and location, the MR-based synovitis
score, the localization metric values for raw and processed sequences and the
channel where the frame with the maximum metric occurs.

Score Metric values Channel with
raw processed maximum score

Left carpus, Fig. 8.5 3 35 83 1 (blue)
Left 2nd PIP, Fig. 8.5 3 0 66 1 (blue)
Left 4th PIP, Fig. 8.5 2 0 46 1 (blue)
Right 3rd MCP, Fig. 8.6 3 31 60 1 (blue)
Left carpus, Fig. 8.7 2 0 32 2 (red)
Left 2nd MCP, Fig. 8.7 2 0 54 2 (red)
Left 3rd MCP, Fig. 8.7 1 0 48 2 (red)
Left 4th MCP, Fig. 8.7 2 0 8 3 (green)
Left 5th MCP, Fig. 8.7 2 0 9 3 (green)
Right carpus, Fig. 8.8 0 0 0 -

values for both processed and raw sequences are 0 for this case; that is,
no localized component in the joint ROI was detected. The data pro-
cessing and simulations presented here were performed in MATLAB on a
Windows-based PC with a 2:3 GHz Intel CPU and 3.25 GB of RAM. The
mesh generation, FEM modeling and forward problem solution lasted, re-
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Table 8.2: Distribution of synovitis severity among the 450 hand joints of 10
patients and 5 healthy volunteers.

Healthy Mild Moderate Severe
(score 0) (score 1) (score 2) (score 3)

Carpal 10 11 5 2
Metacarpophalangeal 59 73 17 1
Interphalangeal 235 28 6 1

spectively, 60, 127 and 460 seconds. The processing of a given dataset
consisting of 360 images took 110 seconds for all of 30 hand joints.

8.7.3 Analysis results for 450 joints

The PCA-based processing method proposed in Section 8.3. was applied
to fluorescence image sequences obtained from a group of 10 patients (7
females, aged 49±15) and 5 healthy volunteers (4 females, aged 24±2).
The patients and volunteers were selected, examined and imaged with
contrast-enhanced MRI and MR-based synovitis scores of 0 to 3 (healthy
to severe) were assigned to each of the 450 joints, as explained in Sec-
tion 8.2. The distribution of synovitis severity among different joint
groups (carpal, metacarpophalangeal and interphalangeal) are shown in
Table 8.2. For each of the 450 joints, the localization metric was calcu-
lated for both the raw sequence and the processed sequences, as defined
in Section 8.5. As a reminder, the metric has values in the range of 0
to 100, where a higher metric value indicates presence of a signal compo-
nent in the corresponding sequence localized around the respective joint.
Figure 8.9 presents a box-and-whisker plot of metric values for all joints
grouped according to synovitis severity for both raw and processed se-
quences. A threshold can be applied to the localization metric to make
a decision about synovitis severity of a given joint and the results can
be illustrated using the so-called receiver operating characteristic (ROC)
curves. In a typical classification method, the ROC curve denotes the
true positive rate (TPR) vs. the false positive rate (FPR). TPR denotes
the percentage of positives classified as such and is also called sensitiv-
ity. The FPR is the percentage of negatives classified as positive. The
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Figure 8.9: Box plot of localization metric values assigned to raw and pro-
cessed sequences for individual 450 joints of 10 patients and 5 healthy volun-
teers. The joints are grouped according to the severity of synovitis, where the
left, blue boxes in each of the 4 groups correspond to processed sequences and
the right boxes to raw sequences. Outliers are denoted by red points, the red
line segment indicates the median and box lower and upper edges are 25th and
75th percentile. In groups “healthy”, “mild”, “moderate” and “severe” there
were 285, 121, 40 and 4 joints, respectively.

rate of negatives detected as such equals specificity, hence, FPR in one
minus specificity. Therefore, ROC can be seen as well as sensitivity vs.
specificity.

The ROC curves for the analysis of 450 joint imaging results are pre-
sented in Figure 8.10 for both raw (blue solid and dotted curves) as well
as processed (red solid and dotted curves). The solid ROC curves denote
sensitivity vs. specificity when the threshold is applied to the metric to
make a decision between “healthy” and “mild, moderate or severe syn-
ovitis”, denoted here as classification I. The dotted ROC curves present
sensitivity vs. specificity when the decision is made between “healthy
or mild synovitis” and “moderate or severe synovitis”, denoted here as
classification II.
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Figure 8.10: Receiver operator characteristic (ROC) curves for localization
metric values assigned to raw (blue curves) and processed (red curves) se-
quences for 450 joints of 10 patients and 5 healthy volunteers. The solid and
dotted curves show classification performance for differentiating, respectively,
between (healthy) vs. (mild, moderate or severe synovitis), denoted as classi-
fication I, and (healthy or mild synovitis) vs. (moderate and severe synovitis),
denoted as classification II. The green dotted line represents random classifi-
cation line of (sensitivity = 1 - specificity).

8.8 Discussion

Fluorescence images from RA patients and a healthy volunteer were an-
alyzed for their intensity and their spatiotemporal characteristics also
against MR images. It was found that PCA analysis applied in time-
series fluorescence images of the hand captured following intravenous
ICG administration can decouple fluorescence signals associated with in-
flammation from the background and vein interference signals simulated.
Case studies were presented for 8 carpal, metacarpophalangeal and in-
terphalangeal joints from 4 patients with varying degrees of synovitis
(healthy to severe) were presented in sections 8.7.1 and 8.7.2. Two pa-
tients had severe synovitis (MR-assigned synovitis score of 3) and one
had mild to moderate synovitis (respective MR scores of 1 and 2) in
carpal and metacarpophalangeal joints. One of the patients had moder-
ate and mild synovitis in the 2nd and 4th proximal interphalangeal joints
of the left hand. One patient with healthy carpal joint, as verified by
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MRI, was shown to visually establish a control case study. The process-
ing result along with the corresponding transverse or coronal images of
contrast-enhanced T1-weighted MR images where presented in Figure 8.5-
Figure 8.8.

These findings were corroborated with numerical simulations based on
a numerical phantom built using a segmented MR scan and were used
to better understand the clinical findings. As expected, the contrast be-
tween the target and background fluorescence quickly falls with increas-
ing depth and uptake ration, as shown in Figure 8.4(a). This reduces
the detection sensitivity as was also observed by the localization metric
surface in Figure 8.4(b), which suggests lack of a localized signal com-
ponent distinguishable as desirable fluorescence in the raw fluorescence
measurements. It was found that a localized signal component appears
in the joint region in at least one of the PCA components for lower depth
and uptake ratios than in the original images, as shown in the dotted
surface in Figure 8.4(b), in a wider area in depth-uptake plane.

The impact of physical factors on the fluorescence signal was studied in
Section 8.6. Observations of MR images of different patients revealed a
synovial lining depth of 2-5 mm, 3-8 mm and 7-16 mm for interphalangeal,
metacarpophalangeal and carpal joints, respectively. It can be seen from
Figure 8.4(a) that, even for relatively large uptake ratios, it is difficult to
detect the desirable signal at locations deeper than around 5 mm, due to
the low relative contrast. These observations suggest low detectability of
the targeted fluorescence signal in the raw fluorescence images for joints
located deeper than 5 mm under skin, which can apply to some MCP and
carpal joints. However, this conclusion does not necessarily mean that
the fluorescence emanating from the inflammation of such joints cannot
be distinguished in the raw images. The reason is that the numerical
phantom presented in Section 8.4 does not render a full description of
the in vivo situation. Factors such as heterogeneous and time-variant
background fluorescence or non-uniform optical properties in tissue can
degrade or improve the signal quality in comparison to predictions by the
numerical model.
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As noted, a low value of localization metric suggests presence of a signal
component localized to the joint region and hence potentially attributable
to the inflammation signal. While a higher metric value generally sug-
gests improved performance in terms of signal visibility, the metric value
cannot be interpreted as an indicator of the statistical sensitivity or speci-
ficity values. This observation means that the manifestation of a local-
ized signal component in the joint regions, attributable the synovitis
signal, has been more frequent in the processed sequences. However, the
proposed method has a higher localization metric value for the healthy
interphalangeal joints. This can be attributed to the dense dorsal vein
network in the fingers; a fact that contributes to false positives and lowers
sensitivity for the interphalangeal joints.

Corresponding analysis of the clinical data demonstrated that the con-
trast between synovial tissue and background tissue generally scaled
with the severity of the disease; however it diminished with time due to
background non-specific fluorescence signals. Subcutaneous dorsal veins
demonstrated particularly high non-specific signals, however the entire
tissue non-specifically uptakes ICG and offer strong background signals.
This reduction of contrast may lead to false positives or negatives; thus,
adversely affecting sensitivity. Similarly, fluorescence obtained from ICG
circulating in the relatively dense subcutaneous venous network in inter-
phalangeal joints further complicates the reading of raw images and may
lead to reduced sensitivity and specificity.

Conversely the PCA analysis revealed components linked to time-
dependencies of the ICG circulation. Three components were identified
to reveal clinically relevant time relationships. In particular, the first
component demonstrated congruence with the appearance of increased
fluorescence signals in joints. In other words, the first PCA component
(i.e. the blue channel in the processed images) demonstrates consistent
fluorescence signal increase in given joints. This was the case for fluo-
rescence signals emanating from joints with moderate to severe synovitis
demonstrated in Figure 8.5 and Figure 8.6. Signals from veins are also
mapped to the first component for the same reason in Figure 8.7. The 2nd
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and 3rd PCA components mapped respectively to the red and green chan-
nels in the processed images generally represent signal of transient nature.
This temporally variable signal can arise from several sources. The fluo-
rescence emanating from deep seated lesions such as synovial lining, due
to transitory accumulation of ICG, or the fluorescence carried quickly
through veins can contribute to the 2nd and 3rd components. The tran-
sient, yet strong, signal emanating from dense vascular of fingertips also
often contributes to red and green components, as seen in Figure 8.5(n-q).
Since the 3rd component, represented by the green channel, corresponds
to the lowest singular value and, hence, signal with lowest temporal corre-
lation, it is generally expected to represent highly transient signals. The
transient nature and, therefore, the level of information in the three PCA
components are more pronounced at early time points, e.g. 20 seconds
to 100 seconds, after the injection. At later time points, such as after
120 seconds post injection, the signal is mainly composed of the 1st PCA
component and there is very little contribution from the 2nd and 3rd com-
ponents, as the ICG has reached a relatively stable distribution in the
hands and the signal experiences merely an exponential decay.

As explained, the temporal characteristics of the fluorescence signal in
a given location in tissue impact the association of the fluorescence to
a given PCA component. These temporal characteristics are mainly de-
termined by the distribution of the ICG by the blood, as explained in
Section 8.6, and other physiological factors such as tissue capillary per-
meability. However, it is not possible to attribute the fluorescence due
to ICG presence in a certain tissue to a given PCA component.

The performance of the proposed approach is also limited by the physical
factors of depth and uptake ratio. As with the raw fluorescence images,
the interpretation of the processing results is user dependent. Charac-
terization of certain signal components localized around the joint areas
should be performed carefully so as not to lower diagnostic specificity.
Furthermore, the presence of a strong transient or persistent signal com-
ponent in a given joint might deteriorate the decoupling of the targeted
fluorescence signals emanating from other joints. An example can be seen
in the case study demonstrated in Figure 8.7. The patient was diagnosed
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based on the MR images with moderate synovitis in the 4th and 5th left
MCP joints. However, neither the raw data nor the processed sequence
can indicate synovitis in these joints. This might be due to poor accu-
mulation of ICG in the joint linings, or interference from background
tissue. In Section 8.7.3 we presented imaging results for 450 joints of
5 healthy volunteers and 10 patients. The box plot demonstration of
the localization metrics calculated for raw and processed sequences was
presented in Figure 8.9. As seen, the metric values calculated for the
processed sequences generally correlate with severity of synovitis and are
much higher than the corresponding values for calculated using raw data
for arthritis joints. The metric values for processed data from healthy
joints are also lower for healthy joints than arthritic joints. A more rigor-
ous performance analysis was achieved using the ROC curves presented
in Figure 8.10. It can be seen that when differentiating between “healthy”
and “mild, moderate or severe synovitis”, denoted as “classification I” and
corresponding to solid ROC curves in Figure 8.10, classification using raw
data is relatively close to random line (specificity = sensitivity). This is
due to fact that the target inflammation signal is almost always corrupted
by interference from veins and other tissue; hence, complicating observa-
tion of a localized signal component in the joint regions. The situation
is better when differentiating between “healthy or mild synovitis” and
“moderate or severe synovitis”, denoted as “classification II”, using raw
data (corresponding to the dotted blue curves in Figure 8.10). In fact
for classification II, a specificity of 90% and a sensitivity of 44% can be
achieved using the raw data. This is in accordance with the results of the
clinical study presented in [27], which reports relatively low sensitivity
(around 39%) for a relatively high specificity (around 85%) when differen-
tiating between healthy and inflamed joints (classification I). It should be
noted for specificity values larger than 90%, the sensitivity values when
using the raw data are slightly larger than when using the processed data,
in both classifications I and II; though in all cases sensitivity is smaller
than 45%. This is due to the fact that for healthy joints, more localized
components have been detected in processed sequences than in raw data,
as also seen in Figure 8.9.
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The area under curve (AUC) values found for the ROC curves presented
in Figure 8.10. For a given classifier ranking positive samples higher than
negative ones, Ref. [170] reports, “the AUC of a classifier is equivalent
to the probability that the classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance”. Hence, AUC
a measure of classifier’s quality [170]. For classification I, AUC values
of 0.57 and 0.67 were found when using, respectively, raw (dotted blue
ROC curve) and processed sequences (dotted red ROC curve). For clas-
sification II, AUC values of 0.69 and 0.83 were calculated when using,
respectively, raw data (solid blue ROC curve) and processed data (solid
red ROC curve). For the current dataset and specificity > 60%, the sen-
sitivity achievable for any threshold when using the raw data is limited
to 25% and 50% for classifications I and II, respectively. However, when
using the processed data, the sensitivity is limited to 65% and 94% for
classifications I and II, respectively. These observations suggest using
the proposed PCA-based method results in superior clinical performance
than relying on raw data for diagnosis.

It is important to note that the fluorescence image sequenauthor = Ab-
doulaevces are in practice analyzed and interpreted for diagnosis by spe-
cially trained human readers [23, 27]. The specificity and sensitivity val-
ues inferred from ROC curves of Figure 8.10 serve to compare diagnostic
value between raw and processed data. While the results demonstrate
performance improvement when using the proposed method, the sensitiv-
ity and specificity of diagnosis performed by an expert human reader is
expected to be higher than the values inferable from the ROC curves pre-
sented here. Furthermore, a cross-examination of both raw and processed
sequences is likely to improve performance over using either sequence
alone. A more complete clinical assessment of the proposed method re-
quires examination of processed sequences by trained human readers for
a clinically significant group of patients and is a subject of ongoing re-
search.
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8.9 Conclusion

The proposed method has the capability of differentiating between signal
components which have different temporal behavior. This capability po-
tentially enables separation of fluorescence emanating from tissue parts
with different temporal and spatial profiles of ICG uptake. The interfer-
ence from fluorescence in veins and the general tissue can be particularly
mitigated rendering the time-series analysis potentially as highly relevant
to improve detection of inflamed joints compared to observing intensity
images. The resulting color image sequences, when examined along with
the original raw dataset, can help better localize the signal components
due to the inflammation; hence, improving diagnostic performance as
shown by analysis of results of processing imaging data for 450 joints.
The results of this work can also be employed to design next generation
optical systems and methods for imaging and detection of joint inflamma-
tion using exogenous fluorescence. Understanding the impact of physical
and physiological factors on the detectability of the desirable fluorescence
signal and the proposed numerical model can be employed to optimize
the hand and finger posture during imaging. Moreover, the FEM-based
time-series simulation framework can be employed to analyze the per-
formance of other post-processing approaches. The imaging approach
considered in this chapter was a planar imaging method. In this chapter
we propose and study three-dimensional imaging of synovitis in human
finger joints using tomography.



9 Tomographic imaging of
synovitis

9.1 Introduction1

In this chapter, we report optical imaging of synovitis in human finger
joint using contrast-enhanced fluorescence molecular tomography (FMT).
The proposed methods and imaging results are the, to our knowledge,
the first demonstration of fluorescence-based imaging of inflammation in
human joints.

The process of detection and assessment of disease progression of inflam-
matory arthritis disorders is often based on a combination of clinical,
laboratory and imaging data. Early initiation of effective therapy pre-
vents destruction, preserves function and is able to induce lasting remis-
sion. Therefore, there is a growing demand for sensitive and specific
tools for early detection of inflammatory arthritis [121]. Current clinical
imaging approaches include X-ray radiography, ultrasound and magnetic
resonance imaging (MRI). As detailed in Section 8.1, optical imaging

1 The materials in this chapter are presented (at places with minimal or no
changes and with slightly different processing parameters) in P. Mohajerani, et
al., “Fluorescence-aided tomographic imaging of synovitis in the human finger”,
Radiology, vol. 272, 2014 (see Publications overview at the end of the dissertation
for full author list). Priv.-Doz. Dr. Reinhard Meier (department of radiology) and
Dr. med. Klaus Thürmel (department of rheumatology) at Klinikum rechts der
Isar performed MR imaging of hands, examined the patients, assisted with clinical
details and provided clinical insight, information and findings (such as MRI scans,
inflammation severity and location as well as other information from patients)
used in this chapter. Maximilian Koch at IBMI performed FMT imaging for one
of the patients.
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methods have been proposed as well for imaging inflammation in joints,
and in particular, hand joints, as inexpensive and sensitive alternatives.
These methods often rely on changes in optical characteristic of affected
joints to provide quantitative 2-D or 3-D images of the underlying joint,
synovium, or synovial fluid. As mentioned, recently Indocyanine Green
(ICG), a nonspecific, clinically-approved synthetic organic near-infrared
fluorescent dye, has been employed for detecting inflammatory lesions
in hand joints [27, 144]. Current fluorescence-based approaches rely on
planar methods and allow for fast two-dimensional imaging of biodistri-
bution of ICG.
However, planar imaging methods do not resolve information in depth
and deliver a weighted projection of the underlying three-dimensional (3-
D) fluorophore distribution [11]; limiting sensitive and quantitative detec-
tion of synovitis [27]. A more complete survey of current optical methods
for imaging arthritis in hand joints was presented in Section 8.1.
We report the first clinical fluorescence-based tomography for 3-D optical
imaging of synovitis in the human finger joint. Synovitis is an inflamma-
tion of the synovial membrane lining the joint capsule and typically marks
the onset of rheumatoid arthritis. Our approach relies on the higher local
concentration of intravenously injected ICG in hyperperfused synovium
- a fact substantiated by the results presented in the previous chapter.
The FMT system at HMGU was optimized for imaging finger proximal
interphalangeal (PIP) joints of the 2nd and 3rd fingers.
A study was conducted in collaboration with the department of radiol-
ogy and the department of rheumatology of TUM and Klinikum rechts
der Isar, wherein a group of 4 healthy volunteers and 5 patients with
rheumatoid arthritis (and not other forms of arthritis) were examined
and imaged using the proposed method. In vivo results are presented
here and validated and fused with contrast enhanced 3T MR images.

9.2 Image acquisition

The 360 degree rotation FMT system located at HMGU [32] was opti-
mized and used for imaging the proximal interphalangeal (PIP) joint, as
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shown in Figure 9.1. The imaging protocol was optimized to allow acqui-
sition over several hundred source positions, at reasonable signal quality
and imaging time, as explained later.

FMT imaging was planned 20 minutes after intravenous bolus injection
of 1 mg ICG per kg of body weight(actual imaging times were 22.7 ± 6.0
minutes, see Table 9.2).2 Patients placed the hand inside the FMT device
on a hand holder in prone position and the imaging lasted on average 12
minutes (12.0 ± 2.4 minutes) in an average field of view of 15 mm in the
axial direction of finger over 17 gantry projections.

The individual imaging times and starting points are given in minutes in
Table 9.2. The tip of the finger was placed in a thimble, which serves as a
reference pivotal point. The 750 nm laser (B&W Tek, Newark, DE, USA)
scanned the sample at on average 14 source locations per gantry angle,
where at each location intrinsic and fluorescence images were obtained
using the cooled CCD (Pixis 512B, Princeton Instruments, Trenton, NJ,
USA) [32].

Fixed laser powers of 97 and 184 mW and exposure times of 100 and
200 ms were used for intrinsic and fluorescence acquisitions, respectively.
These values were observed consistently to result in intrinsic and fluo-
rescence signal in counts of tens of thousands, without saturation. A
analysis of the acquisition time is given in Table 9.1. The imaging con-
sisted of acquisition of front-illumination images at every 10 degrees (used
for volume reconstruction) during the first minute of imaging. Intrinsic-
fluorescence image pairs were afterwards acquired every 20 degrees. A
front-illumination image was acquired at every gantry angle prior to
laser scanning to manually indicate the scanning FOV using MATLAB’s
ginput - devised to prevent erroneous source positioning due to finger
movement.

In the beginning of the project, the axial span of the joint was extracted
automatically by marking the joint area with two black tapes wrapped
on the middle and based knuckles. For the two female volunteers this

2 Injections performed at HMGU by Priv.-Doz. Dr. Reinhard Meier and Claudio
von Schacky from the department of radiology, Klinikum rechts der Isar.
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Figure 9.1: Hardware for imaging finger joint using FMT; the patient places
the forearm on the holder in prone position and stretches the middle or index
finger out, placing the fingertip in a thimble. The CT modules are not turned
on during acquisition and a lead plate covers the front face.

initial method was used which resulted in relatively lower imaging time
of 8 minutes for these two cases. For one patient (9th row of Table 9.2)
the black tape was used in conjunction with the manual method (the tape
can be seen in Figure D.2). The tape was later removed and replaced
with the manual indication of FOV toward further convenience.
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Table 9.1: Acquisition time analysis for tomographic joint imaging; the total
imaging time of 13 minutes consists of approximately 100 seconds attributable
to optical exposure times shown below and around 620 seconds overhead. The
overhead consists of mechanical overhead (due to gantry and filter wheel move-
ment) and CCD readout time. The intimal acquisition of 34 front-illumination
images lasts approximately 1 minute. The information below is presented for
an average of 320 source positions.

Intrinsic Fluorescence 1st Front illum. 2nd Front illum.
acquisition acquisition acquisition acquisition

Frequency 320 320 34 17
Exposure (s) 0.1 0.2 0.1 0.1
Total (s) 32 64 3.4 1.7

9.3 Clinical imaging and examination3

Five patients with rheumatoid arthritis (all female, mean age 64.8 ±
13.2), and four healthy volunteers (2 female, mean age 28.8 ± 3.5) were
imaged in this study. The patients underwent 3T MRI imaging (Verio,
Siemens, Erlangen, Germany) using a flexible surface coil. T1 weighted
fat-saturated contrast-enhanced MR images were obtained with patients
in prone position with for both hands simultaneously in praying form.
The protocol presented in [27] was used toward MR imaging. Briefly,
the protocol consists of coronal fat-saturated and T1-weighted turbo spin
echo imaging, followed by injection of 0.02 ml/kg of gadopentetate dimeg-
lumine (Magnograf, Schering, Berlin, Germany). Transverse and coronal
fat-saturated T1-weighted turbo-spin echo imaging were performed post-
injection [27].

Synovitis scores on a 4-point-ordinate scale (0: no inflammation, 1: mild,
2: moderate, 3: severe) were assigned to each joint according to the
assessment system designed by the OMERACT MRI group. The patients
and volunteers were recruited from March 2012 to March 2013 through
the Department of Rheumatology at Klinikum rechts der Isar.

Patients with affected proximal interphalangeal joints of the hand with
certain exclusion criteria as mentioned in [27] were included in this study.

3 Clinical information and protocol were provided by Priv.-Doz. Dr. Reinhard Meier,
Klinikum rechts der Isar.
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This study was approved by the local ethics committee at our institu-
tions and was conducted according to the principles of the Declaration
of Helsinki.4

9.4 FMT processing of finger joints

Since, unlike FMT-XCT, the acquisition of CT images was not a possi-
bility in this study, front illumination images were used to reconstruct a
3-D volume of the imaged tissue. This volume was required for modeling
the light propagation and as a geometrical reference for motion compen-
sation. The light propagation in the finger tissue was modeled using
finite element method (FEM) based discretization of the diffusion equa-
tion [33], as described in Chapter 2. A background subtraction method
was applied to Born normalized data to compensate for non-specific up-
take of ICG. Reconstructions were performed at 1 mm3 resolution using
the LSQR method. The impact of ICG temporal decay was compensated
during reconstructions as explained in Section 9.4.2. The fluorescence sig-
nal was observed to drop about 47% after the 12 minute acquisition, as
discussed in Section 9.4.2.

The 3-D volume designating the tissue’s volume was reconstructed using
the 34 front-illumination images by back-projection of the image bound-
aries based on the camera’s geometrical description, as discussed in Sec-
tion 9.4.1. Homogenous optical absorption and scattering of 0.1 and 1.5
cm-1, typical for human tissue, were used in the FEM-based modeling of
light propagation in finger. The FEM tetrahedral mesh (generated using
the CGAL library [44]) consisted of on average 10000 nodes and 58000
tetrahedral elements.

Performance of the FEM-based propagation modeling for one source po-
sition is examined in Figure 9.3 for clinical data obtained from a finger
at intrinsic wavelength (this level of conformance does not hold for all
source positions, due to unaccounted-for geometrical irregularities and

4 “Ethical Principles for Medical Research Involving Human Subjects” http://www.
who.int/bulletin/archives/79(4)373.pdf.

http://www.who.int/bulletin/archives/79(4)373.pdf
http://www.who.int/bulletin/archives/79(4)373.pdf
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tissue heterogeneity). Finger motion in the transverse plane was cor-
rected by finding the offset between the acquired intrinsic images and
the projection of the 3-D volume for the given gantry angle. The intrin-
sic and fluorescence images were shifted to match the projected image
of the volume and source position locations were corrected accordingly.
This scheme can compensate translational motion in the transverse plane,
but not motion in the axial direction or rotation of the finger. The fluo-
rescence signal was observed for to drop exponentially at with a half time
of 13 minutes.

The measured fluorescence images were correspondingly weighted prior
to reconstruction based on their acquisition time point (with 20 minutes
post-injection time point taken as ‘0’ time point). This operation also
compensated for differences between the actual imaging times and the
planned 20-minute point-injection time point. These time differences
were unavoidable due to logistical limitations, such as system crash and
restarting, measurement interruption due to large motion of the finger
or the subject’s preference toward speedier completion of the imaging.
LSQR with 50 iterations was used to solve the following regularized prob-
lem

x = arg min
(
‖W x−M‖2

2 + λ2‖x‖2
2

)
, (9.1)

where W, x and M are weight matrix, fluorophore concentration vector
and measurement vectors, respectively. The regularization parameter λ
was set to 0.03‖W‖2 for all cases. The reconstruction voxels located
2 mm or less under the skin were attributed to surface artifacts and re-
moved from all reconstructions. Born data larger than 1.7, corresponding
to intrinsic values less than 100 or with corresponding source-detector Eu-
clidean distance of less than 10 mm were discarded. The performance of
this method, including volume reconstruction and motion compensation
schemes, was verified using a phantom study containing a fluorescent
tube with simulated motion applied during acquisition. The results are
shown in Figure 9.2.
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Figure 9.2: Compensation of simulated motion for phantom data; the com-
pensation approach was verified by manually moving the phantom during the
reconstructions. The reconstructed tube shown in the FMT slice in (a) is ob-
served to be in the correct location, pointed to by the blue arrow in the CT
transverse image shown in (b).

9.4.1 Volume reconstruction

The volume of the finger is required for (1) modeling the light propaga-
tion in the tissue (2) motion compensation after the acquisition. Here we
describe the reconstruction of tissue volume from the front-illumination
images. At every gantry angle θ in the first acquisition stage one photo-
graph is in reflection mode obtained using the front-illumination electro-
luminescent foils. There are 34 such angles spanning -10 to 320 degrees.
Let Ii denote the photograph at the ith gantry position.

The image Ii contains skin as well as background and is segmented to
a binary image Ji which contains only the pixels representing the skin.
Furthermore, at every gantry angle the camera is modeled using a 3× 4
camera matrix Ci such that point (X, Y, Z) in the 3-D coordinate sys-
tem corresponds to a pixel (x, y) in the binary mask Ji according to the
following equation [52]:


xw

yw

w

 = Ci


X

Y

Z

1,

 , (9.2)
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Figure 9.3: Light propagation modeling in finger tissue - experimental intrin-
sic signal measurements vs. FEM simulations; (a) trans-illumination image
(with 20% brightness enhancement) of a finger joint, seen from the palmar
side, at the intrinsic wavelength of 750 nm with the red marker showing the
source location; (b) measured intrinsic signal (blue) vs. the FEM-based simu-
lated signal (red) over different detector indices. Both signals are normalized
to 1.

where the left side is the representation of the pixel location in homoge-
nous coordinates. We define then the projection operator Pi

(x, y) = Pi(X, Y, Z). (9.3)

The reconstruction volume is define of all 3-D points (X, Y, Z) such that

∑
i

Ji (Pi(X, Y, Z)) > N. (9.4)

In other words, all 3-D points whose projections fall inside at least N
image masks. N was set to a value less than 34, depending on the
number of obstructers in each case (such as the holder’s bar attached to
the thimble or other fingers).

9.4.2 ICG decay compensation

After the injection, ICG is gradually washed out of the blood mainly
through the hepatobiliary tract and is known to have a half-time of 2-
3 minutes in human blood [153]. The temporal decay of fluorescence
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signal due to ICG’s washout should be taken into account in the FMT
reconstruction process.

To characterize the temporal decay of the fluorescence signal measured
using the trans-illumination geometry of the FMT system in the finger
joint region, we performed the following experiment. After the FMT
imaging of the finger joint, a second set of the measurements using the
same imaging settings were obtained for 2 patients and 2 healthy vol-
unteers. For one volunteer a 3rd set was obtained as well for the same
joint and imaging parameters. Then for each case the average value of
the fluorescence signal within a region of interest (ROI) on the skin was
found for different source locations for both the first and the second ac-
quisitions. The ROIs were the same between the consecutive acquisitions
for a given joint. For one volunteer these values were also found for the
3rd acquisition.

Let v1 and v2 denote the corresponding average values within the same
ROIs for a given joint and source location at times t1 and t2 in seconds.
We assume t2 > t1, which results in v1 > v2. Assuming exponential
decay of form e(−αt) for the fluorescence signal (a valid assumption as
acquisitions occur several minutes post injection), the exponential decay
coefficient α for measurement pair (v1, v2) is given as

α = (ln v1 − ln v2)
(t2 − t1) . (9.5)

Correspondingly, signal reduction in percentage after 12 minutes of ac-
quisition time, given as 100× (v1− v2)/v1 for t2 = t1 + 720s, is estimated
as e−α×720. A histogram of these estimations of the fluorescence signal
fall in percentage for all the 4 joints and source locations is presented
in Figure 9.4. The time difference between samples, i.e. t2 − t1, ranged
from 720 seconds to 2700 seconds. To compensate for the effect of the
temporal decay of the ICG’s fluorescence signal in the FMT measure-
ments, based on the results presented in Section 9.4.2, an exponential
decay coefficient α = 8.83 × 10−4 s−1 was selected, which corresponds
to 47% reduction of fluorescence signal in 12 minutes (typically between
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Figure 9.4: Reduction of fluorescence signal after 12 minute imaging time;
the histogram shows signal reduction in percentage after 12 minutes calculated
using consecutive imaging of 2 patients and 2 volunteers. The signal values
corresponding to the same regions were calculated between same source loca-
tions in the first and second acquisitions and the difference was calculated in
percentage as the ratio between the signal reduction and the first value.

20 and 32 minutes after injection) and a half-time of around 13 min-
utes for the fluorescence intensity. The fluorescence measurements were
then compensated for the decay according to their acquisition time point.
Specifically, for a study lasting a total N minutes and P projections,
the fluorescence measurements acquired at the pth projection are then
multiplied by e+(α×60× (p−1)(N−20)

P−1 ), where p = 1 . . . P .

9.4.3 Background fluorescence correction

ICG shows higher accumulation in the inflamed synovium due to syn-
ovial hyperplasia with neoangiogenesis and subsequent local hyperperfu-
sion. However, as a blood pooling agent, ICG has also non-negligible
concentration in vascular bed present in other tissue. This non-specific
distribution of ICG contributed to significant background fluorescence
emanating from the rest of the joint and interfering with the target sig-
nal originating at the inflamed synovial tissue. Here, we describe our
implementation of an approach presented in [61] for compensation of
background fluorescence.

Specifically, for the ith source-detector pair, let M(i) and D(i) denote,
respectively, the normalized Born value (after compensation of temporal
decay as described above) and the Euclidean distance between the corre-
sponding source and detector points. The background fluorescence can
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be approximated by a linear function of the source-detector distance [61].
Accordingly, the measurement vector corrected for background fluores-
cence, defined as M̃ , is estimated herein as

M̃(i) = M(i)−max(β D(i) + δ, 0). (9.6)

The parameter δ is as δ = −σ
β
, where σ is the 1st percentile of the vectorD

(smallest number larger than 1% of all elements of D, selected to remove
outliers) and the slope β is adjusted so that the 99.9% of Born values in
M lie above the line β d+δ, with d denoting the source-detector distance
variable. This way the line presents a linear lower bound of the Born data
within the source-detector distance span. Values of M falling below this
line were set to zero. Parameters heuristically optimized as such, achieve
reasonable performance for all subjects. Imaging prior to ICG injection
revealed small (< 50 counts) signal due to autofluorescence. Background
subtraction is an important step to achieve imaging accuracy, which in
some cases was relatively sensitive to parameters of Equation 9.6.

9.4.4 FMT and MRI coregistration

The FMT reconstructions were performed within the volume recon-
structed from the front-illumination photos. The reconstruction re-
sults were coregistered with MRI for validation and comparison pur-
poses, using the following approach. Given an transverse MR image
of the joint, the problem of coregistration consist of two steps; (1) find-
ing a corresponding transverse representation of the FMT reconstruc-
tion and (2) finding the proper orientation in the transverse plane be-
tween the FMT and MR transverse images. To solve the first prob-
lem, an MR transverse image indicative of the joint inflammation was
selected. These slices have a slice spacing of 2.7 mm and slice thick-
ness of 2 mm. In most cases, the inflammation is visible in 1 or 2
such MR images through the joint split or right underneath it. A cor-
responding group of FMT slices was selected using the following ap-
proach. It is known that palmar joint creases of PIP joints present a
good approximation of the anatomical location of the underlying joint
split. A distance of 2-3 mm between the palmar PIP crease and joint



Chapter 9. Tomographic imaging of synovitis 167

location has been reported in [171] for a group of 48 patients. We have
used these surface anatomical markers to approximately locate the un-
derlying joint location. Specifically, for every finger joint studied, one
or two salient transversal creases on the palmar side of the joint were
delineated. The “crease location” was set to with the help of these crease
lines. A group of 5 FMT slices with 2 mm above the crease location and
3 mm below it were selected and believed to span the area of interest in
the joint. For one patient, the inflammation was approximately 7-9 mm
below the PIP joint split, and the ROI was set accordingly for the FMT.
The transverse FMT images shown in results below are the maximum
intensity projections (MIP) of FMT in this ROI, after proper orientation
performed as follows.

The orientation of a MIP projection of FMT signal should be properly
adjusted such that the polar coordinate system in the FMT image and
the MR image are the same. That is, the dorsal and palmar sides in
both images should be oriented in the same angles; for instance, with
the sagittal planes in both modalities to be vertical in the transverse
planes. This was again achieved using anatomical markers. For the
FMT, the sagittal plane was found by seeking the gantry angle where
the front-illumination photograph shows the palmar side, again based on
palmar creases. For the MRI the accurate sagittal plane was found using
the orientation of the flexion tendons with respect to proximal phalanx.
Although the patients were asked to place the hand in prone position
on the arm rest Figure 9.1, the sagittal plane in the imaged finger was
found to have a deviation of up to 30 degrees in some cases from the
expected vertical orientation, which results from involuntary twisting of
the hand.

After proper orientation of both transverse MR image and MIP image
of FMT, the MR image was scaled to match the resolution of the FMT
volume (voxel side length of 0.095 mm). Then a 2-D translation was
optimally found using correlation to superimpose the transverse image of
the FMT volume and the MR image.
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Table 9.2: Details for individual volunteers and patients; the 2nd and 3rd

joints denote, respectively, the proximal interphalangeal joints of the index
and middle fingers of the respective side. The image time point designates
the start of the FMT acquisition after intravenous ICG administration and
imaging length is the acquisition time (both numbers given in minutes). The
signal mean, maximum and root mean square (RMS) values are presented for
the reconstructed fluorescence signal with a field of view of 5 mm in the axial
direction (along the finger) centered on the respective joint using the palmar
joint crease lines (abbreviations: male (M), female (F), healthy volunteer (Vol.)
and patient (Pat.)).

Age Gender Joint MR Imaging Imaging Signal Signal Signal
score point length mean max RMS

Vol. 28 M 2nd, Right 0 23 11 1.67 3.83 1.77
Vol. 33 M 3rd, Left 0 14 12 0.70 1.48 0.74
Vol. 28 F 2nd, Right 0 16 8 1.40 2.84 1.48
Vol. 25 F 2nd, Right 0 27 8 1.44 3.39 1.51
Pat. 67 F 2nd, Right 2 33 12 2.37 5.09 2.50
Pat. 42 F 3rd, Left 2 24 13 4.25 8.68 4.50
Pat. 73 F 3rd, Left 3 20 13 2.42 5.40 2.56
Pat. 67 F 3rd, Right 3 20 13 3.00 8.36 3.13
Pat. 75 F 3rd, Right 3 28 13 3.59 7.77 3.78

9.5 Results

To validate the FMT acquisition and reconstruction approaches described
herein along with the volume reconstruction and motion compensation
approaches, a phantom experiment was performed as follows. A silicon-
based cylindrical phantom with containing a fluorescent tube filled with
around 400 picomoles of Alexa 750 was imaged in the FMT system.

Finger motion was simulated by moving the phantom arbitrarily in the
transverse plane during the acquisition. The phantom volume was recon-
structed from the front-illumination images and motion compensation
approach was applied to the acquired dataset. The reconstruction result
showing the reconstructed tube in transverse slices is presented in Fig-
ure 9.2(a) and an transverse slice of the corresponding CT scan imaged
using the built-in micro-CT module, is shown in Figure 9.2(b). This
example verifies the operation of the volume reconstruction and motion
compensation operations.
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Figure 9.5: FMT imaging results of the 3rd left PIP joint (with MR synovitis
score of 2) of a 42 year old female patient; (a) 3-D representation of the
reconstruction fluorescence, where the skin on the palmar and dorsal side is
wrapped on the volume surface (b) isosurface of the reconstructed volume, (c)
MIP projection of the FMT signal in the transverse plane as a transparency
color image with jet colormap on a white volume slice. (d) and (e) MIP
projections in the coronal and sagittal planes. The 5 mm axial ROI of the MIP
projection of (c) is shown in (d) and (e). (f) The corresponding transverse MR
image, where the red arrows point to the inflammations and (g) coregistered
image between the FMT MIP image and the MR transverse image, with the
white arrow pointing to the boundary of the coregistered FMT volume. (h)
and (i) MR images in two coronal planes, with the location of the transverse
image of (f) pointed to by red arrows and the orange arrow points to the
palmar creases. Imaging ROI denotes the detector range.

Below we present the imaging results for one patient and one healthy
volunteer. Further processing results for the other 4 patients and one
volunteer are presented in Appendix D.

9.5.1 FMT imaging of an inflamed joint

FMT imaging results for a patient with moderate synovitis in the left 3rd

PIP joint are shown in Figure 9.5(a). Palmar creases were employed as
anatomical surface markers indicative of underlying joint location [171]
The reconstruction fluorescence signal was limited to a region 2 mm distal
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from the distal palmar joint crease and 3 mm proximal to it, as shown
in Figure 9.5(d, e). A maximum intensity projection (MIP) of the FMT
signal within this region of interest (ROI) in the axial direction is shown in
Figure 9.5(c). MIP projections in sagittal and coronal planes (seen from
the palmar side) are demonstrated in Figure 9.5(d, e), respectively. An
T1-weighted post-contrast MR transverse image of the joint is shown in
Figure 9.5(f), where the bright spots designated inflammation marked by
higher uptake of gadolinium [27]. The FMT MIP image was coregistered
with the MR transverse image (as explained in Section 9.4.4) and shown
in Figure 9.5(g). The MR image is collocated with the palmar creases;
partly visible in the coronal MR images Figure 9.5(h) and (i). The FMT
reconstruction demonstrated a signal profile similar to the MR image. It
shows higher ICG uptake on the dorsal side 3 mm below the skin with the
left side (blue ×) stronger than the right side (green ×); profile features
that are also observed in the MR image and are therefore indicative of
signal uptake in the underlying inflamed synovium.

9.5.2 FMT imaging of a healthy joint

Imaging results for the 2nd right PIP joint of a 28 year old male healthy
volunteer is presented in Figure 9.6. The MIP images shown in this
figure showing the same colormap (and same maximum value) as in the
previous case.

9.5.3 Processing results for 9 joints5

Figure 9.7 shows signal maximum and average values within respective
MIP ROIs for 4 volunteers and 5 patients with moderate to severe in-
flammation. Signal characteristics between the healthy and inflamed
joints varied significantly (signal average for volunteers 1.55±0.15; pa-
tients 3.12±0.80). A double-sided T-test [172] between average values
rejected the null hypothesis (both groups having the same average signal)

5 The results are extended to 12 joints in P. Mohajerani, et al., “Fluorescence-aided
tomographic imaging of synovitis in the human finger”, Radiology, vol. 272, 2014.
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Figure 9.6: FMT imaging results of the 2nd right PIP joint of a 28 year old
male healthy volunteer; (a) 3-D representation of the reconstruction fluores-
cence, where the skin on the palmar and dorsal side is wrapped on the volume
surface and two salient dorsal and proximal palmar crease lines are visible, (b)
isosurface of the reconstructed volume, (c) MIP projection of the FMT signal
in the transverse plane as a transparency color image with jet colormap on a
white volume slice. (d) and (e) MIP projections in the coronal and sagittal
planes. The 5 mm axial ROI of the MIP projection of (c) is shown in (d) and
(e). This joint showed largest reconstructed signal among all healthy subjects.

at significance level of 0.0047 (less than the conventional limit of 0.05).
Although the ICG concentration in blood is believed to be comparable in
all cases (1.7 µM assuming 75 kg body weight and 5 liters of blood), the
controls showed weaker signal intensity than the patients. This can be ex-
plained as the ICG in healthy joints does not concentrate in any specific
lesion and therefore contributes mainly to the background fluorescence,
which is significantly reduced after the background subtraction approach-
leaving only weak signal components. Moreover, the FMT reconstruction
results can be scored from 0 to 3 according to their in a fashion similar to
MRI. One way to achieve this is by assigning semi-quantitative synovitis
scores according to the average intensity. We assign synovitis scores of 0,
2 and 3 to the joints within the span of the blue, orange and red squares
shown in Figure 9.7, respectively. This way all volunteers are given a
score of 0 and all joints with RA are given a score of 3, except number
5 and 7 which are given a score of 2. The correlation between the semi-
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Figure 9.7: Comparison of signal characteristics for healthy joints of 4 healthy
volunteers and arthritic joints of 5 patients; average and maximum of recon-
structed fluorescence signal intensity in a region of 5 mm in the axial direction
around respective proximal interphalangeal (PIP) joints. The same processing
parameters were applied to all cases. Two patients had moderate synovitis
(MR synovitis score of 2) in their left PIP joints and 3 patients had severe syn-
ovitis (MR synovitis score of 3) in one left and two right PIP joints. The blue,
orange and red squares show average signal intervals used for semi-quantitative
scoring of the FMT results.

quantitative scoring between FMT (achieved as described here) and MRI
can be evaluated using, for instance, Spearman’s rank correlation co-
efficient.6 The Spearman’s coefficient calculated as such for the 9 subjects
presented herein has a value of 0.88.

9.6 Discussion

Application of FMT to imaging synovitis was presented in this chapter.
Imaging was performed for a group of 4 healthy volunteers and 5 patients.
The results for a patient and a healthy volunteer were presented in Fig-
ure 9.5 and Figure 9.6, respectively. Signal metrics and imaging details

6The Spearman’s coefficient was calculated using MATLAB’s corr.m, where a value
of 1 indicates maximum correlation.
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were presented for all patients in Table 9.2. The imaging results for an-
other healthy volunteer and all other patients are presented in Section D,
Figure D.1, Figure D.2, Figure D.3, Figure D.4 and Figure D.5. Based on
the MR findings, three of the patients had inflamed synovium just under
(proximal) the joint split on the dorsal side. One patient had synovitis
several millimeters under the joint split (Figure D.4).

The FMT reconstructions in form of the maximum intensity projection
(MIP) images, closely resemble the MR findings for all 5 patients in terms
of relative signal distribution in the transverse plane. The conspicuous
signal components in most cases appear in almost the same locations
(with respect to anatomical markers) in the transverse plan for both MR
and FMT reconstructions. There are, however, some differences. Specif-
ically, while the high ICG accumulation seen in Figure D.3(c) and (g)
(located toward the anatomical right side) does correspond to the hyper-
intensity in the MR image shown in Figure D.3(f) with the red arrow, the
FMT signal has a slightly lower depth than the MR signal. Furthermore,
the left-side FMT signal (located at the lower half of Figure D.3(c) and
(g)) remotely corresponds to the lower (or anatomically left-most) part
of the MR signal and can be, perhaps, considered as an artifact. Another
imperfection can be seen in Figure D.5(c) and (g), where the FMT sig-
nal does not span the entire stretch of the MR signal and additionally
presents an artifact on the palmar side. It should be noted that such
artifacts and reconstruction imperfections are common and understand-
able in fluorescence tomography and occur even in controlled experiments
with homogenous phantoms. Therefore, the spatial correlation between
MR and FMT signal profiles for the results presented here can be reason-
ably deemed as satisfactory and is relatively accurate given the ill-posed
nature of the FMT problem and high levels of modeling imperfection
due to lack of complete optical description of in vivo joint tissue. The
application of anatomical priors obtained from MRI in conjunction with
optical measurements can potentially improve the imaging accuracy.

The mean, maximum and RMS values of the reconstructed fluorescence
within a FOV of 5 mm span in the axial direction were presented in Ta-
ble 9.2. Based on the results presented in Figure 9.7 and Table 9.2, the
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healthy joints all had a lower signal value (both in terms of mean and max-
imum intensity) than the ones affected with RA. Furthermore, the joint
number 5 which had moderate synovitis had a lower signal value than
the three joints with severe synovitis; namely joints 7-9. However, the
joint number 6 with moderate synovitis had the strongest signal among
all joints. This could be due to the difference distribution patterns of
ICG and MR contrast agent (as the mild-severe semi-quantitative scoring
has been obtained from the MRI findings) or due to experimental vari-
abilities which are unaccounted for. Nevertheless, the proposed method
achieves significant signal characteristics between healthy and inflamed
joints. This was shown by the two-sided T-test performed on the average
values of reconstructed signal. The null hypothesis states that the group
of patients and the group of volunteers have the same signal average.
The T-test rejected this hypothesis at 0.0047 - well below the customary
0.05 level. Similarly low significance values were observed when the hy-
pothesis is constructed for signal maximum and RMS. As can be seen
in Figure 9.7, the points 7, 8 and 9 (corresponding to joints with severe
inflammation) lay above the points 1-4 (healthy) and 5 (moderate inflam-
mation) but under point 6 (severe inflammation) in the mean-maximum
plane. However, the same statistical claim made above regarding differ-
entiation between healthy and inflamed joints cannot be made regarding
differentiating between moderate and severe inflammation using the T-
test applied to either of signal metrics (p-value of 0.0047). The statistical
evaluation of our method is limited by the number of subjects (n = 9)
in our study. While a larger scale study is needed to fully character-
ize the method, the initial results here are promising and demonstrating
potential of imaging RA using FMT.

An injection dose of 1 mg per kg of body weight was carried out approxi-
mately 20 minutes before the imaging. Assuming a body weight of 75 kg
and 5 liters of blood in body, this dose translates an ICG concentration
of around 20 µM. The fluorescence was observed to have a significant
value even up to 1 hour after injection. This fact suggests that it is pos-
sible to reduce ICG injection dose - perhaps down to 0.1 mg per kg as
used in the planar rheumatoid arthritis imaging studies of the previous
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chapter. While reducing the injection cost, currently several hundred
euros per dose, the reduction of injection dose is likely to necessitate cer-
tain adjustments in the acquisition protocol and the processing, as the
signal levels would be reduced and the ICG temporal decay characteris-
tics might change. Several improvements to the current methodology are
possible, as delineated in Chapter 10.

9.7 Conclusion

By providing a 3-D quantitative map of fluorescence throughout the joint,
FMT was shown to have the potential to be employed in clinic for de-
tecting synovitis. Patients with synovitis could be discriminated from
healthy volunteers. MRI was used in this study as the gold standard,
and the FMT images were found to have intensity characteristics that
are generally stronger for severe synovitis. Also, the spatial profile of the
reconstructed signal was observed to resemble closely that of the contrast-
enhanced transverse MR images. It is not foreseen that FMT will replace
the MRI in the clinic - however, due to its low cost and high sensitivity it
is a potential complementary tool for early inflammation detection and
therapy monitoring. Coregistration of FMT data with MRI or XCT al-
low for precise anatomic orientation and additional information of bony
erosions. Further optimization of system hardware and software toward
faster imaging of all finger joints at lower injection doses are possible and
topic of ongoing research.



176 9.7. Conclusion



10 Conclusions and
recommendations for
future work

Molecular imaging using optical technology powered by specific and non-
specific fluorescent probes has vast preclinical and clinical applications.
Several of these applications have only emerged in the recent years and
seek to provide new tools for new demands or to replace or complement es-
tablished imaging technology. The emerging applications and the increas-
ingly powerful imaging systems pose several numerical and algorithmic
challenges. Full realization of imaging potential for recent and upcoming
preclinical and clinical applications demands highly optimized processing
and novel algorithms capable of accurate modeling of light propagation
in tissue and data processing in a timely and memory-efficient fashion as
well as inversion and analysis algorithms for robust extraction of under-
lying physical quantities from the large quantities of measured signal.

In this thesis we addressed some of the main challenges associated with
fluorescence-enhanced imaging using planar and tomographic technolo-
gies. We developed a comprehensive framework for processing data ac-
quired by hybrid FMT-X-ray CT systems. The code builds upon op-
timized processing, accurate FEM-based modeling of light propagation
in tissue, geometrical calibration as well as optimization of the acquisi-
tion protocol to facilitate efficient processing of FMT-XCTmeasurements.
Several technical issues were handled toward achieving an optimized pro-
cessing framework capable of fully capturing the wealth of information
made available by the FMT-XCT hardware. As an example, the mesh
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size and quality used for discretization of the tissue volume for solving the
forward problem using the FEM method was analysed using numerical
and tissue phantoms and it was concluded that a tetrahedral mesh with
uniform resolution and an average edge length of 1.3 mm or smaller re-
sults in a maximum 5% error in forward modeling, which suffices for our
application. Accurate geometrical calibration between optical and CT
domains is another issue which was thoroughly addressed in this work
using a two-step camera and laser calibration process. The MATLAB-
based code, implementable in 32 bit environment, is equipped with a
highly efficient and versatile GUI which is critical in tailoring the several
functionalities of the code to each specific application. A short manual
of the code operation is given in Appendix B and the processing time for
a typical animal study takes a total of about 5-10 minutes.

We further proposed a novel compression method to address the issue
of measurement space size in FMT-XCT. Rapid acquisitions using CCD
technology and rotational geometries, afford large amount of data, result-
ing in up to millions of measurement points. In such sizes, the represen-
tation of the weight matrix is often only possible in implicit form; a fact
which limits the inversion algorithm to methods requiring only matrix-
vector multiplication, such as the conjugate gradient methods. Moreover,
large measurement space size reduces the processing speed by, for in-
stance, slowing down the inversion process. While previous methods for
reducing the measurement size have relied on compression based on the
redundancy in the domain of acquired images, in Chapter 5 we proposed
a new method for compression of Born data in FMT-XCT based upon
data redundancy and correlation between different source positions. The
method was verified using phantom as well as mice measurements. Be-
sides the novelty of the method itself, we demonstrated for the first time
to our knowledge, compression of in vivo FMT measurements.

A new method based on weighted least squares was proposed in Chapter 6
toward robust inversion of FMT-XCT. The proposed method is driven by
the measurements and the anatomical priors and uses a fuzzy inference
system to optimize the residual weights. The fuzzy system was designed
with the help of an analysis of the tomographic system using the concept
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of Kullback-Leibler divergence from the information theory. The pro-
posed method was applied in conjunction with structured regularization
to estimate the signal averages in different anatomical segments; used in
turn to design the regularizer matrix. The proposed algorithm was veri-
fied using several phantom and animal studies. It was observed that the
reconstruction accuracy is significantly improved, while the conventional
problem of reconstruction bias is alleviated.

The developed processing framework was further verified using several
in vivo animal studies. In particular, we demonstrated for the first time
hybrid imaging using FMT and phase-contrast CT; a hybrid imaging
approach called FMT-PCCT. FMT-PCCT draws upon the large soft tis-
sue contrast afforded by phase-contrast imaging to further improve the
quality of molecular imaging. Animals were imaged in vivo in the FMT
machine at HMGU and later ex vivo in the phase-contrast imaging sys-
tem located at Garching research center. The results demonstrate the
superior performance of FMT-PCCT relative to FMT-XCT where micro-
CT has low or no contrast. FMT-PCCT is expected to be a future trend
in fluorescence tomography, as the enhanced soft tissue contrast makes
specific reconstruction in various organs possible. The increased contrast
also makes automatic segmentation of tumors possible; a factor of critical
importance for wider adaptation of hybrid FMT in preclinical research.

We further expanded the utility of the developed framework and pre-
sented further methods for clinical applications. Drawing upon the flexi-
bility and accuracy of the XFMT code and the insight affordable by the
FEM modeling of light propagation in tissue, we analyzed and proposed
methods for two clinical applications for fluorescence-enhanced imaging
and characterization of arthritis in human hand joints. A spatiotempo-
ral analysis method was proposed and applied to fluorescence image se-
quences acquired by a planar imaging system, which has recently entered
the clinic for diagnosis and monitoring the therapy of rheumatoid arthri-
tis in human hand joints. The method proposed in this work aimed at
decoupling various signal components in fluorescence images obtained in
epi-illumination geometry post intravenous injection of ICG in patients.
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The proposed method was extensively analyzed using FEM-based sim-
ulations of a phantom build from segmentation of a MR scan as well
as clinical data. Localized signal components in the locations of joints
could be attributed to inflammation signal, which is some cases were
indistinguishable in the original sequence due to interference from the
background. Processing results for 450 joints of patients and healthy
volunteers quantified using the developed localization metric suggested
improved diagnostic performance when the proposed spatiotemporal anal-
ysis is used.
We further proposed and performed for the first time fluorescence molec-
ular tomographic imaging of synovitis in human finger joints through
several acquisition and algorithmic optimizations carried out to make
the imaging possible. The FMT system located at HMGU was opti-
mized for imaging human finger joints in vivo after intravenous injection
of ICG. Previous optical methods for imaging arthritis to human joints
have been limited to planar or diffuse optical tomography methods with-
out fluorescence. The results were demonstrated for a group of 4 healthy
volunteers and 5 patients with moderate to severe inflammation. The
patients were examined by clinicians at Klinikum rechts der Isar. The
FMT imaging results as well as the results of the spatiotemporal analysis
were compared against T1 weighted post-contrast MR images as the gold
standard. The tomographically reconstructed fluorescence had a consis-
tently higher value in the inflamed than in the healthy joints and showed
high correlation of spatial profile with the MR findings.
Future development is possible in many aspects of this work, both in
optimization and algorithmic developments as well as hardware improve-
ment.

10.1 Numerical and algorithmic
developments

There are several opportunities for algorithmic developments to improve
the performance of FMT-XCT. Concurrent reconstruction of the opti-
cal parameters and the fluorophore concentration has been previously
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researched [173]. This optimization approach can minimize the error due
to modeling imperfection. It has also been shown that using different op-
tical properties for heart, lung and bone regions as well as background tis-
sue results in improved performance [25,49]. However, these methods use
preset optical properties which are not necessarily accurate. Combining
DOT and FMT techniques using anatomical priors can further improve
imaging performance by optimizing the estimated optical map. Possible
implementations are a topic for future research in this direction.

The segmentation of the CT images is a function of critical importance
in FMT-XCT. So far, the segmentation implemented in FMT-XCT is
mainly limited to bones, lungs and heart and is often semi-automatic
methods requiring expert interference from the user [59]. This limits
the availability of the technology to end-users, who are oftentimes biolo-
gists. Moreover, tumors can arise in other locations which do not lend
themselves to current segmentation methodologies. For instance, sub-
cutaneous tumor models are widely used by biologists to research and
develop new probes. However, segmentation of these tumors is currently
done manually. It seems that segmentation frameworks based on anatom-
ical atlases of mice can facilitate automatic segmentation of known organs
as well as deformities arising from abnormal lesions, such as the subcuta-
neous tumors. We believe atlas-driven segmentation approaches will play
an important role in future deployment of FMT-XCT. This issue will have
even more significance in FMT-PCCT, where the wealth of anatomical
information in the phase-contrast CT scans can evoke a breakthrough
in the FMT technology - yet, only when automatic, rapid and reliable
extraction of these anatomical priors is made possible.

In this work we presented a compression approach for reducing the size of
the FMT problem. It was shown that it is possible to compress the Born
data up to two orders of magnitude without losing information. This fact
makes explicit representation of the weight matrix possible. The ability
to keep the entire weight matrix in memory in a manageable fashion can
potentially open the door to other reconstruction approaches than the
conventional conjugate-gradient based methods (such as LSQR), as it
might be possible to devise more intelligent inversion schemes using, for
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instance, SVD decomposition of the weight matrix. Full exploitation of
this smaller weight matrix size, is an attractive opportunity for future
research. Furthermore, the combination of intra-source, transformation-
based approaches with the proposed inter-source method is possible and
can potentially result in higher compression rates while maintaining a
minimal information loss.

The fuzzy-based weighted least squares method proposed in Chapter 6
can be further expanded in several ways. Neuro-fuzzy systems can be
used to further optimize the fuzzy rules using several phantom and an-
imal studies. Furthermore, it is possible to directly optimize the resid-
ual weights using information-theoretic measures such as the proposed
Kullback-Leibler divergence-based information gain or other measures
such as Fisher information. However, successful approaches for direct
weight adjustment based on information-theoretic measures require ade-
quately accurate statistical modeling of the underlying system behavior.
Finally, tomographic imaging of synovitis using FMT can be potentially
improved using higher order approximations of RTE instead of DE for
modeling light propagation in joint tissue as well as by application of
anatomical priors (e.g. extracted from post-contrast or non-contrasted
MR scans) in the inversion process.

10.2 Hardware developments

From the hardware point of view, we have shown that the bottleneck in
acquisition time was the overhead due to mechanical movement, CCD
readout time and LabView overhead time. The acquisition protocol can
be optimized to significantly reduce the acquisition time. This entails
more intelligent algorithms for setting the laser power and exposure times,
as was accomplished to a certain extent in this work for the finger imag-
ing project presented in Chapter 9. Furthermore, more intelligent source
positioning algorithms relying on a priori knowledge about the target
lesion location can result in reduction of measurement time. Patterned
source illumination achievable, for instance, using micro-mirrors will ex-
pedite the acquisition. As an alternative, it is possible to mimic diffusive
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source patterns using curvilinear scan of the laser beam. Given the new
CT technology which has enabled us at IBMI to acquire full CT scans
at less than 2 minutes along with the aforementioned developments, it is
believed to be possible to achieve a full-rotation FMT-XCT scan within
a nominal axial field of view of 20 mm in about 10 minutes or less.

Fluorescence-enhanced planar and tomographic imaging of joint inflam-
mation also lends itself to further hardware optimization and develop-
ment. Specifically, the spatiotemporal treatment and the FEM-based
analysis of the fluorescence image sequences acquired by the ICG-
enhanced planar imaging system, paves the way for optimization of the
illumination and imaging configuration. As the hand and finger position-
ing can affect the local blood flow, other hand formations (such as the
clenched formation, for instance) can be examined and analyzed to fur-
ther reduced the interfering signal specially emanating from the dorsal
veins, toward improved diagnostic capability.

Tomographic imaging of synovitis as presented in Chapter 9, can espe-
cially benefit from hardware optimization. To achieve the full potential
of this method it is necessary to design a custom FMT system for this
application, with provisions for fixed positioning of the finger and mini-
mization of imaging time and discomfort for the patients, who are often
among the elderly. We have performed the experiment with the rela-
tively high ICG dose of 1 mg per kg of body weight. Such high dose is
relatively expensive (several hundred euros per injection) and, in our ex-
perience, unnecessary. Acceptable signal levels were observed even 40-60
minutes after injection - suggesting possibility of using much lower doses.
Due to mechanical difficulties, it was not possible with the current FMT
system and holder to image distal interphalangeal (DIP) joints. Imaging
these joints and other joints of the hand are possible with FMT from the
imaging point of view, and are an attractive topic for future research. We
believe with a custom designed FMT system for imaging interphalangeal
joint, it can be possible to acquire a full dataset in 3-5 minutes or less.

Further, it is foreseeable that the combination of FMT and phase-contrast
CT, presented in this work as FMT-PCCT, will be a future direction of
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fluorescence tomography. However, the full in vivo realization of this
technology is perhaps a few years away, as the phase-contrast imaging
technology is still in the development phase and is too time consuming.

In conclusion, we developed a framework for efficient processing of FMT
or FMT-XCT measurements based on accurate modeling of light propaga-
tion in tissue, processing and system calibration, while addressing several
numerical challenges. We presented a novel method for compression of
FMT data verified, for the first time to our knowledge, to in vivo data,
thereby significantly reducing the complexity of the system. The fuzzy-
based weighted least squares method is a novel approach toward robust
inversion of FMT-XCT, which when combined with structured regulariza-
tion methods, largely improves the reconstruction accuracy, beyond the
current state of the art, as verified using several studies. The developed
framework enabled several preclinical cancer studies in various organs in
vivo. Drawing upon the flexibility and potential of the developed process-
ing and algorithmic framework, we presented for the first time hybrid
imaging using FMT and phase-contrast CT - a hybrid approach we be-
lieve to have a critical role in the future of preclinical molecular imaging.
The developed technology and insight allowed us to further expand the
scope to clinical applications. We presented signal analysis algorithms
for planar ICG-aided imaging of rheumatoid arthritis, enabling signifi-
cantly improved visibility of target inflammation fluorescence signal and
better understanding of signal behavior in human tissue. We further de-
veloped hardware and processing methods and algorithms for the first
molecular tomographic imaging of synovitis in human finger joints. The
clinical results for several patients were corroborated with MRI findings
and demonstrated accurate localization of inflammation in finger joints
in vivo as well as reliable differentiation between healthy and inflamed
joints. We believe the presented methods and algorithms further pave
the way for wider adaptation of fluorescence imaging and tomography
in preclinical as well as clinical scenarios toward better understanding of
cancer, drug development, monitoring of personalized therapy and more
accurate and earlier clinical diagnosis.
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Finite-element integral
calculations

As explained in Section 2.3, FEM modeling of light propagation of light in
turbid media involves solving several integrals as shown in Equation 2.11-
Equation 2.13. Consider a given voxel υ consisting of 4 nodes p1, p2, p3

and p4. Within this voxel, a spatial basis function ψi is assigned to each
node pi, such that for every point in space r, we have

ψi(r) =
 1− ‖r−pi‖‖q−pi‖ if r ∈ υ

0 else,
(A.1)

where q is the intersection of the line formed by points (r, pi) and the
plane formed by the other three nodes of the voxel.

To solve the FEM problem, it is necessary to find the following integrals
within this voxel

I1 =
∫
υ
ψj(r)ψi(r) dυ

I2 =
∫
δ
ψj(r)ψi(r) dδ

I3 =
∫
υ
∇ψj(r).∇ψi(r) dυ,

(A.2)

where the second integral is performed over a surface triangle of the voxel
shown by δ, and ∇ψj(r) shows the gradient of the spatial basis function
ψj(r).
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A relatively easy way to solve these integrals is to find an affine transform
f(r)

f(r) = A r + b, (A.3)

such that under this transformation, the voxel υ becomes a “unit” tetra-
hedron υ0 with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). The volume
of the original voxel is then given as 1

6 detA .

The integrals in Equation A.2 can be then rewritten for f(r) instead of
for r and solved instead over this unit tetrahedron. It can be easily shown
that the following integrals hold for the unit tetrahedron v0

∫
v0
ψj(r)ψi(r) dυ =


V0
10 if i = j
V0
20 if i 6= j.

(A.4)

Similarly, for a “unit triangle” τ0 with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)
we have ∫

τ0
ψj(r)ψi(r) dδ =


A0
6 if i = j
A0
12 if i 6= j.

(A.5)

A0 and V0 represent area and volume of τ0 and v0, respectively. These
integrals for an arbitrary tetrahedron or triangle are then given as the
corresponding value for the unit elements multiplied by the tetrahedron’s
volume or triangle’s area.

The last integral in Equation A.2 can be solved as follows. Under transfor-
mation of Equation A.3, we have r0 = A r+b which maps the tetrahedral
v to the unit tetrahedral v0. It can be shown that the basis functions for
v0 denoted by ψ0

i (r0) are given as

ψ0
1(r0) = 1− x− y − z
ψ0

2(r0) = x

ψ0
3(r0) = y

ψ0
4(r0) = z,

(A.6)

where is it assumed the 1st, 2nd, 3rd and 4th vertices of the tetrahedral
falls on (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. Since the trans-
formation retains distance ratios and straight lines, ψi(r) = ψ0

i (r0). Fur-
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thermore, ∇ψi(r) = δ ψi(r)
δ x

+ δ ψi(r)
δ y

+ δ ψi(r)
δ z

. For a given coordinate x we
have

δ ψi(r)
δ x

= δ ψ0
i (r0)
δ x

. (A.7)

By combining Equation A.7 and A.6, we have

δ ψ1(r)
δ x

= δ

δ x

1−
[
1 1 1

]
A


x

y

z


 = − (A1 +A2 +A3)︸ ︷︷ ︸

As

δ ψ2(r)
δ x

= δ

δ x

(
A1

[
x 0 0

]>)
= A1(1)

δ ψ3(r)
δ x

= δ

δ x

(
A2

[
0 y 0

]>)
= 0

δ ψ4(r)
δ x

= δ

δ x

(
A3

[
0 0 z

]>)
= 0,

(A.8)

where Ai is the ith row of A. The derivatives can be similarly calculated
versus y and z. Therefore, Therefore for an arbitrary tetrahedron υ we
have ∫

υ
∇ψj(r).∇ψi(r) dυ = V F(i, j), (A.9)

where ∇ denotes the divergence operator, V is the volume of the voxel v
and

F =


As
A1

A2

A3



> 
As
A1

A2

A3

 . (A.10)

Based on these closed-form representations, the integrals for all voxels in
are easily calculated, based on which an efficient MATLAB-based imple-
mentation of FEM modeling was presented in Section 2.4.
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Appendix B

Workflow of the XFMT code

This appendix serves a short manual for working with the XFMT code.
The code can be run from within the code folder by invoking the GUI,
using the command XFMT_GUI.m. The GUI sets up the path. The code
is capable of processing datasets acquired the FMT system located at
HMGU and the FMT system located at the Klinikum rechts der Isar, as
well as the FMT 2500 system. Here we focus on processing data obtained
the first two systems; PerkinElmer’s data is processed similarly.

Note - To eliminate the need to redo certain operations, the code saves
internal variables at several instances in MAT files (described below). If
one needs to redo these operations, the corresponding MAT files should be
deleted.

Loading a new dataset – In load a new dataset can be loaded by
clicking on the corresponding FMT file. The code reads all the FMT files
in the corresponding folder and combines files into a single dataset - it is
assumed that the different FMT files corresponding to separate gantry an-
gles, as the imaging operation might have been interrupted and resumed.
Therefore, the obsolete FMT files should be removed. After automatically
resolving gantry jitter, the code reads the optical data from SPE and EPI
files and normalizes for laser power and exposure times using the meta-
data read from the FMT file. The CT dataset is read from the VFF file and
the user is asked to set the air-tissue threshold and locate the bed bars,
if any, using a GUI. The entire combined dataset is then normalized for
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laser power and exposure times and saved in a unifedimport.mat file.
Next, CT preview images are generated (and stored in a MAT file), which
are maximum intensity projection (MIP) images of the CT volume seen
through the CCD camera. The comparison between these CT preview
images and the front-illumination images also helps detect calibration
problems, if any. A copy of the parameters file, XFMT_GUI.m is copied to
the folder of the running study. This file can be edited in the next stage,
which makes customized processing for a given dataset possible.

Adjusting ROIs – The user now sets several ROIs as seen in Figure B.1:
the reconstruction ROI (the red line segment), the light propagation mod-
eling ROI (the yellow line segment) and the detector placement ROI (the
cyan line segment). The ROIs can be moved separately or together. Gen-
erally, changing the smallest ROI (the reconstruction ROI), changes all
other ones accordingly. It is necessary to remove detectors located in
undesirable regions; such as over the bars, the bed strings or ears. This
is possible using the Remove detectors button. Upon Save detectors
the removed regions are saved in a MAT file and applied to future process-
ing of the same dataset as well, at any detector pitch. Any changes made
to the XFMT_Param.m file should be made at this stage. The segmenta-
tion can also be carried out here using the segmentation buttons or in
MATLAB using the variable Geo.Volume.

Processing – By pressing Processing several operations are performed.
First, the mesh is generated at the target edge size for the forward mod-
eling ROI and then the forward problem is solved for all surface nodes
within the FOV. The inverse problem is solved and the results are shown
in the transverse slice panel of the GUI.

Further processing – A useful feature of this code is that it allows
reprocessing with modifications of the setting parameters at minimally
required effort. Such postprocessing steps, include background subtrac-
tion (using the lower right panel), changing the reconstruction resolution,
using prior information with different algorithms and parameters, etc.

Viewing, saving and retrieving the results – The results can be
viewed in the transverse plane, or in separate MATLAB figures within
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a given ROI (purple line segment) for several transverse slices, for any
given lambda. The lambda can be set according to the L-curve displayed
in the L-curve panel. Upon calling globals.m, all structures relevant
to the working dataset are made global. The GUI should be closed and
the variables saved in a MAT file. The MAT file can be later loaded into
MATLAB and into the GUI, using Import from workspace. All specific
details and settings of the past processing are loaded and applied to the
GUI.
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Appendix C

Further FMT-XCT processing
results

An in vivo small animal study involving FMT often consists of the follow-
ing steps. Animals are normally injected with a nonspecific or specific
fluorescent probe targeting specific receptors believed to be expressed in
the target lesion or tumor. Every probe has a certain half-life time in tis-
sue which determines an optimal imaging time point. For instance, imag-
ing with ProSense, AngioSense and IntegriSense (PerkinElmer, Waltham
MA, USA) should be done 24 hours post injection, while MMPSense 750
Fast (PerkinElmer, Waltham MA, USA) requires an imaging time point
of 6 hours post injection. In vivo imaging using FMT is carried out un-
der Isoflurane anesthesia. The animals are often sacrificed after one or
several imaging sessions and deep frozen in a -80 C freezer for ex vivo
validation via cryo-sectioning [115] or histological staining.

Furthermore, in many phantom and ex vivo experiments it is helpful or
necessary to insert a glass tube filled with fluorescent solution in the
phantom or in the animal. This can be achieved as follows. A fluores-
cent solution is produced with desirable concentration solved in a 2%
solution of Intralipid. Then a capillary plastic tube is inserted inside a
capillary glass tube and the fluorescent solution is inject using a syringe
of appropriately thin size at the bottom of the glass tube through the
plastic tube. When approximately at desirable length, the plastic tube
is pulled out and the liquid at the bottom of the glass tube is forced
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to accumulate all at the bottom using a centrifuge device. The same
process is followed by using a new plastic tube to seal off the top of the
fluorescent solution with a thin drop of oil (such microscope oil) and the
same process is repeated to fill the rest of the tube with 2% Intralipid
(with no fluorescence). To insert the tube through the esophagus of a
mouse post-mortem, the mouse is placed in supine position before rigor
mortis and the tongue is pulled out using a pair of tweezers and the glass
tube is inserted with the closed end first. For an adult CD1 mouse, the
tube is expected to penetrate up to 3 cm inside the body.1

In Section 7.2 we demonstrated tomographic imaging of specific uptake of
IntegriSense 680 in the pancreas of a PDAC model. In this appendix, we
demonstrate further tomographic imaging results for other in vivo studies,
processed using the proposed numerical and algorithmic framework. Here
we demonstrate three other processing case studies to substantiate the
potential of the developed framework.
– Tomographic imaging of scVEGF\Cy in tumor xenografts2

Vascular endothelial growth factor (VEGF) is a signaling protein which
plays an important role in angiogenesis, i.e. the process of blood vessels
formation. By binding to VEGF receptors, VEGF leads to expansion
of tumor vasculature by promoting angiogenic signaling [174]. Several
therapeutic approaches aim at inhibition of VEGF signaling. Success of
these approaches often relies on ability to extract information about vas-
cularization processes in vivo by using VEGF as an imaging target. Here
we present the results of imaging the biodistribution of a single-chain
Cys-tagged VEGF, labeled with Cy5.5 (scVEGF\Cy), as the fluorescent
probe binding to cell-surface receptors of VEGF. Figure C.1 demonstrates
in vivo imaging of scVEGF\Cy distribution in a CD1 nude mouse in-
jected subcutaneously on the dorsal side with HT-29 human colorectal

1 The author appreciates Dr. Nikolaos Deliolanis for instructions.
2 The imaging results are presented in V. Ermolayev, et al. “Non-invasive in

vivo and ex vivo imaging and quantification of scVEGF\Cy distribution in tu-
mor xenografts”, to be submitted. Further technical details regarding the biology,
model and probe can be found there. The FMT imaging, animal preparation and
cryo-sectioning were carried out by Dr. Vladimir Ermolayev and Dr. Angelique
Ale and FMT-XCT processing and image generation was carried out by the author
at HMGU using the XFMT code. Results are reproduced with permission from
Dr. Vladimir Ermolayev.
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Figure C.1: Tomographic imaging of scVEGF\Cy accumulation in tumor
xenograft; (a) 3-D reconstruction of scVEGF\Cy fluorescence, (b, c) FMT-
XCT slices showing fluorescence accumulation just underneath the tumor, (d)
3-D demonstration of fluorescence signal measured ex vivo via cryo-sectioning
and (e) ex vivo validation as fluorescence image over grayscale cryo-section.

carcinoma cells. FMT-XCT reconstructions, corroborated with ex vivo
validations, demonstrate specific distribution of scVEGF\Cy inside and
on the periphery of the subcutaneous tumor xenograft. No anatomical
priors were used in the inversion.

– Tomographic imaging of internal hemorrhages in Aga2\+
mutant mice3

3 The imaging results are presented in V. Ermolayev, et al., “Ex vivo assessment and
non-invasive in vivo imaging of internal hemorrhages in Aga2\+ mutant mice”,
Biochem Biophys Res Commun, 2013. 432(2). The FMT imaging, animal prepa-
ration and cryo-sectioning were carried out by Dr. Vladimir Ermolayev and Dr.
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Figure C.2: Tomographic imaging of internal hemorrhages in a Aga2\+ mu-
tant mouse; (a) 3-D demonstration showing high fluorophore concentration
(pointed to by arrows) indicating active bleeding sites reconstructed in the
periphery of thorax area of a 9 day old severely affected Aga2\+ mouse, (b)
2-D demonstration as fluorescence over CT slice (c) ex vivo validation via
cryo-sectioning where the red signal shows strong fluorescence, (d) 3-D recon-
struction of fluorescence cryo-sections and (e) FMT reconstruction for a 9-day
wild type, where the reconstructed signal is negligible.

As a part of a study to understand the development of osteogenesis
imperfecta [79], Aga2\+ mouse models of osteogenesis imperfecta [175]
were imaged using FMT. Wild types and Aga\+ mice of different ages
were intraperitoneally injected with AngioSense (a blood pooling agent,
PerkinElmer, M.A.) and imaged with FMT-XCT 1.5-2 hours post injec-
tion. Hemorrhages in the thorax area of wild type mice as well as Aga2/+
were studied by imaging the fluorescence emanating from AngioSense ac-
cumulation in affected sites. The results for a 9 day old Aga2\+ mutant
mouse presented in Figure C.2, demonstrated active internal bleeding
only in the periphery of thorax.

Angelique Ale and FMT-XCT processing and image generation were carried out
by the author at HMGU using the XFMT code. Results are reproduced with
permission from Dr. Vladimir Ermolayev.
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Figure C.3: Detection of lung tumors in KRAS mice; (a) 3-D representation
of FMT-XCT imaging results of a 4 week old KRAS mouse, (b) ex vivo val-
idation as a fluorescence image of the cryo-section with the arrows pointing
to the tumors, (c) an FMT-XCT slice as fluorescence signal laid over the CT
slice, (d-f) corresponding results for an 18 week old KRAS with larger tumors.
The lungs are shown in (a) and (d) by green color.

– Tomographic lung imaging in transgenic KRAS mice4

FMT-XCT was employed toward in vivo detection early malignant lung
tumors by targeting integrins as early cancer markers. Integrin αυβ3 is in
particular expressed in transgenic KRAS models of lung cancer [176]. Fig-
ure C.3 presents the result of imaging a 4 week and an 18 week old mouse
injected with IntegriSense 680 as the fluorescent probe. IntegriSense 680
(PerkinElmer, Waltham MA, USA) is a fluorescent probe with peak exci-
tation at 675 nm and peak fluorescence at 700 nm and specifically targets
integrin αυβ3. The in vivo imaging results along with the ex vivo valida-

4 The imaging results are presented in V. Ermolayev, et al., “Early recognition
of lung cancer by integrin targeted imaging in KRAS mouse model”, submitted.
The FMT imaging, animal preparation and cryo-sectioning were carried out by
Dr. Vladimir Ermolayev and Dr. Angelique Ale and FMT-XCT processing and
image generation were carried out by the author at HMGU using the XFMT code.
Results are reproduced with permission from Dr. Vladimir Ermolayev.
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tions demonstrate the imaging potential for very small tumors as well as
metastasized lesions. Anatomical priors were employed in the reconstruc-
tion.



Appendix D

Tomographic imaging of
synovitis - further case studies

Tomographic imaging of synovitis in human finger joints in vivo was
presented in Chapter 9. The results were shown for 1 patient and 1
healthy volunteer. In this appendix we present imaging results for one
other healthy volunteer (the results from the two other volunteer equally
present no conspicuous signal as quantified in Table 9.2 and are hence
not shown here) and the other 4 patients. In the figures below, the FMT
reconstructions are shown both in 3-D form as 2-D projections. The 2-D
projections consist of maximum intensity projections (MIP) in transverse,
coronal and sagittal planes, superimposed as transparency color images
(using MATLAB’s “jet colormap”) over, respectively, the corresponding
transverse volume slice, the front-illumination photograph of the dorsal
side and the front-illumination photograph of the left or right sagittal side.
The transverse MIP is taken within a 5 mm span around the “crease
location”, denotes as the MIP ROI. For patients the FMT transverse
MIP slices are coregistered with corresponding transverse MR images, as
described in Section 9.4.4. The locations of the MR transverse images in
the coronal planes are also shown. The notations and markers otherwise
follow those depicted in Figure 9.5 and are not repeated for brevity.

Further processing details are also provided here for completeness. As
mentioned in Section 9.2, the acquisition method was slightly different
for the first two female volunteers. Specifically, for these volunteers there
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was only one front-illumination acquisition performed during the imaging
(i.e. using the older acquisition method described in Section 3.4). The
compensation of the temporal decay of ICG was performed for all sub-
jects accordingly to the respective fluorescence-intrinsic total acquisition
times (i.e. ignoring the first illumination set). Moreover, for these sub-
jects there fluorescence exposure time was 150 ms (instead of 200 ms for
the other subjects) and the laser powers were also slightly different (i.e.
86 and 241 mW instead of 97 and 184 mW). These differences between
laser powers and exposure times were taken into account for equal scaling
the reconstructions across all subjects. All reconstruction were further
clipped at 0.25 of their respective maxima. For the patient presented
in Figure D.4, 14 projections were used due to mechanical blocking of
the gantry movement by the hand. Lastly, the MIP demonstrations in
figures below and Figure 9.5 and Figure 9.6 were performed after inter-
polating the reconstructed values of the rectilinear reconstruction grid
voxels from the grid nodes in the transverse plane using the 2× 2 kernel

of
0.25 0.25

0.25 0.25

.

Figure D.1: FMT imaging results of the 3rd left PIP joint of a 33 year old male
healthy volunteer; (a) 3-D representation of the reconstruction fluorescence (b)
isosurface of the reconstructed volume, (c) MIP projection of the FMT signal
in the transverse plane as a transparency color image with jet colormap on
a white volume slice, (d) and (e) MIP projections in the coronal and sagittal
planes.
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Figure D.2: FMT imaging results of the 2nd right PIP joint (with MR synovi-
tis score of 2) of a 67 year old female patient; (a) 3-D fluorescence reconstruc-
tion, (b) isosurface of the reconstructed volume, (c) FMT MIP projection, (d)
and (e) coronal and sagittal MIP projections, (f) the corresponding transverse
MR image, where the red arrow point to the inflammations, (g) coregistered
image between the FMT MIP image and the MR transverse image, (h) and
(i) MR images in two coronal planes.

Figure D.3: FMT imaging results of the 3rd right PIP joint (with MR syn-
ovitis score of 3) of a 75 year old female patient; (a) 3-D fluorescence recon-
struction, (b) reconstructed volume, (c) transverse MIP projection, (d) and
(e) coronal and sagittal MIP projections, (f) transverse MR image, (g) coregis-
tered image between the FMT MIP image and the MR transverse image, (h)
and (i) MR images in two coronal planes.
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Figure D.4: FMT imaging results of the 3rd left PIP joint (with MR synovitis
score of 3) of a 73 year old female patient; (a) 3-D fluorescence reconstruction,
(b) reconstructed volume, (c) transverse MIP projection, (d) and (e) coronal
and sagittal MIP projections, (f) transverse MR image, where the red arrow
points to the inflammations, (g) coregistered image between the FMT MIP
image and the MR transverse image, (h) and (i) MR images in two coronal
planes.

Figure D.5: FMT imaging results of the 3rd right PIP joint (MR score of
3) of a 67 year old female patient; (a) 3-D fluorescence reconstruction, (b)
reconstructed volume, (c) transverse MIP projection, (d) and (e) coronal and
sagittal MIP projections, (f) transverse MR image, (g) coregistered image
between the FMT MIP image and the MR transverse image, (h) and (i) MR
images in two coronal planes.
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Abbreviations and acronyms

2-D Two-dimensional

3-D Three-dimensional

CCD Charge-coupled device

CG Conjugate gradient

CT Computed tomography

CW Continuous wave

DA Diffusion approximation

DE Diffusion equation

DS Data-specific

DIP Distal interphalangeal

DOT Diffuse optical tomography

EFI Epi-illumination fluorescence imaging

FEM Finite element methods

FIS Fuzzy inference system

FWLS Fuzzy-based weighted least squares

FMT Fluorescence molecular tomography

FOV Field of view

GF Green’s function

GUI Graphical user interface

III



IV

HMGU Helmholtz Zentrum München – Deutsches Forschungszentrum
für Gesundheit und Umwel

IBMI Institute for biological and medical imaging

ICG Indocyanine green

IG Information gain

K-L Kullback-Leibler

LSQR Least squares method

MCP Metacarpophalangeal

MIP Maximum intensity projection

MRI Magnetic resonance imaging

NIR Near-infrared

PCA Principal component analysis

PCCT Phase-contrast X-ray computed tomography

PDAC Pancreatic ductal adenocarcinoma

PIP Proximal interphalangeal

RA Rheumatoid arthritis

RMS Root mean square

ROC Receiver operator characteristic curve

ROI Region of interest

RTE Radiative transfer equation

SVD Singular value decomposition

TUM Technische Universität München

WLS Weighted least squares

XCT X-ray computed tomography

XFMT Fluorescence molecular tomography/X-ray CT, used to refer to
the processing framework developed and presented here
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