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2
Introduction

Different imaging modalities are of great interest in various fields of current research.
In the meantime, numerous different techniques were introduced and further improved.
While some of them are still under development, many methods are now widely used in
a variety of applications. Biomedical imaging represents one meaningful area. Topics
like computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography,
and thermography play an important role in medical diagnoses and therapies.
A well-known hybrid biomedical imaging modality is photoacoustic imaging (PAI),
which is based on the photoacoustic effect. Here, delivered electromagnetic energy,
mostly a laser pulse, is absorbed by the tissue and converted into heat and this leads
to the formation of ultrasonic pressure waves.
Typically, the concerning object is located inside of a domain Ω and surrounded by
several ultrasonic detectors, which are arranged on the boundary ∂Ω of the domain
Ω. Due to limitations by certain applications, the detectors might cover the boundary
of the domain only partially. After the stimulation of the tissue by a laser pulse, the
arising ultrasonic signals are measured by the detectors at different points in time.
Under some assumptions, this process can mathematically be modeled by a partial
differential equation, the so-called Cauchy problem of the wave equation. Especially
for a constant speed of sound inside the domain, the measured data can be expressed
by spherical mean values

Mf(y, r) =

∫
Sd−1

f (y + rξ) dσ(ξ)

of the object f . We interpret y ∈ ∂Ω as the positions of the ultrasonic detectors
and r > 0 as the times of the measurements. This is analog to the concept of x-ray
computed tomography, where the measured data can be modeled by the classical Radon
transform, which assigns functions their averages over lines. Hence, the evaluation of
the above operator M is sometimes called spherical Radon transform.
Relevant applications ask for a nondestructive examination of internal structures of
in vivo entities, for example parts of the body or inner organs. With the previous
mathematical modeling of PAI, this conceptual formulation can be translated into the
inversion of the spherical mean value operator M, in other words, the recovery of
functions f from their mean values Mf .



4 2 Introduction

In general, the inversion of the mean value operatorM is a non well-defined task. For
arbitrary mean values Mf , the existence of an underlying function f is actually not
guaranteed. Even in the case of the existence, a unique solution is not ensured. It turns
out, that this issue depends essentially on the properties of the boundary ∂Ω of the
domain Ω. For a detailed treatment of this fundamental topic for the two-dimensional
case and for specific three-dimensional geometries, we refer to [18, 5, 4, 44, 57] and the
references therein.

Different concepts for the inversion of the spherical mean value operatorM have been
widely studied. For specific geometries of the domain Ω, various direct reconstruction
algorithms are discussed for example in [30, 47, 48, 29, 3, 16, 46, 31, 17]. For general
geometries, explicit inversion formulas are not known and do not represent a realistic
goal, see also [55, 28, 32].

We focus on iterative reconstruction methods. Typically, we start with a rough ap-
proximation as initial guess. Each subsequent iteration of the algorithm produces a
reconstruction with an increased quality. This requires the evaluation of the spherical
mean value operator M multiple times per iteration step. Hence, the availability of
fast algorithms for the so-called forward problem, the computation of spherical means,
is crucial for the development of efficient reconstruction methods.

The implementation and application of the algorithms require to work with finite data.
In particular, we have to approximate continuous functions by discrete data sets. This
thesis is based on the application of tools from Fourier analysis, a well-known and
extremely successful field in science and technology, which enables us to develop fast
and accurate discretizations of the considered problems. In particular, we use the fact
[42, eq. (1.5)], that the complex exponential function

eξ : Rd → C, eξ(x) = e2πiξ·x, ξ ∈ Rd,

is an eigenfunction of the spherical mean value operator M for a fixed time r, more
precise, the relation

Meξ(y, r) =
Γ
(
d
2

)
J d

2
−1 (2πr|ξ|)

(πr|ξ|)
d
2
−1

· eξ(y) (2.1)

is fulfilled. Especially the spherical mean values of trigonometric polynomials can be
expressed by nonequispaced Fourier transforms, whose efficient evaluation is given by
well-developed algorithms [43, 45].

Since the spherical mean value operatorM is an integral operator, it is also a smooth-
ing operator, which implies, that its inversion is an ill-posed problem. With noisy
or incomplete data in addition, this issue causes inappropriate results in most cases.
Therefore, the utilization of regularization techniques is a necessary element in recon-
struction algorithms. The basic idea is to force the solutions to fulfill some a-priori
characteristics. In medical imaging, piecewise smoothness is a suitable assumption on
the objects. However, even if the smooth parts can be well reconstructed, the accurate
handling of edges and other structures remains a challenging task. To overcome these
difficulties, we make use of two different regularizing techniques. In one variant, we
force a small total variation of the reconstruction, and in another approach, we prefer
results with sparse Shearlet coefficients [52, 24].
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2.1 Outline of the thesis

This thesis is organized as follows. To make it self-contained, we depict in Chapter 3
some related basic knowledge. We start with the used notations and list some funda-
mental concepts for dealing with spherical integrals. Afterwards, we introduce basic
tools from Fourier analysis, including the approximation of functions by trigonometric
polynomials and associated error estimates. The chapter finishes with the definition
of the considered mean value operators and the proof of the fundamental statement in
equation (2.1), the application of the mean value operators to the complex exponential
function.

Chapter 4 treats different discretizations of the forward problem and thus the efficient
computation of mean values. As a first variant, we consider the numerical evaluation
of integrals by quadrature rules. While this approach is used for comparison, the thesis
focuses on a Fourier based approach, obtained fundamentally from equation (2.1). Here
we consider different frequency grids and several algorithms for the evaluation of the
appearing Fourier sums. In addition, we analyze also the computational complexities
of these concepts.

For cartesian frequency grids, a fast computation of mean values is proven by Theo-
rems 26 and 27. The implementations are realized by using d-dimensional nonequi-
spaced fast Fourier transforms (NFFT, [43]) and are given by Algorithms 4 and 5.

Based on Theorem 28, we formulate with Algorithm 6 an efficient computation of
mean values for large problem sizes. In particular the computation of mean values
for O

(
Nd−1

)
center points, located on a smooth (d − 1)-dimensional submanifold,

and O (N) radii can be realized with a (d + 1)-dimensional butterfly sparse Fourier
transform [45] and ends up in an almost linear runtime complexity.

To obtain better rotational invariance, it is more natural to use polar frequency grids.
Theorem 34 and Algorithm 7 provide the efficient computation of mean values for
this setting. We complete this chapter by proving error bounds and giving stability
arguments.

The inverse problem, the reconstruction of function samples from given mean values,
is the topic of Chapter 5. We present two approaches, which are suitable for piecewise
smooth functions. Firstly, we consider a regularization technique, where we force the
reconstructions to have a small total variation. We solve the appearing system of
equations with the semismooth Newton method and summarize the implementation
in Algorithm 8. Another promising approach is to favor reconstructions with sparse
Shearlet coefficients [52, 24]. We derive a realization with the alternating direction
method of multipliers (ADMM, [7]) and summarize the whole procedure in Algorithm 9.
This chapter concludes with the construction of a Shearlet system on polar frequencies,
where we follow the approach from [36, 35].

All derived algorithms are implemented and published as a Matlab toolbox [27]. To
make the large amount of code maintainable and extensible for several developers, we
use an object-oriented design, illustrated in Figure 6.1. Additionally, some thematically
related work is also included in this toolbox [17]. Chapter 6 presents the concept and
the handling of the software. We start with a brief introduction to object-oriented
programming in Matlab and afterwards, we explain the structure of the code and
comment on the features of all the different classes.

Finally, in Chapter 7, we analyze the results of numerous numerical experiments. We
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consider the behavior of the running times as well as of the approximation error. The
chapter finishes with a combination of all essential parts of this thesis by demonstrating
the reconstruction capabilities of our algorithms in Figures 7.6 and 7.8.
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Hielscher, Ines Melzer, Thomas Peter, and Ruben Seyfried.
Finally, I highly appreciate the magnificent support in all other things in my life besides
the work. Doing a lot of sports and music with all my amazing friends gave me the
necessary motivation, energy, and recovery to finish this thesis.



3
Basics

This chapter is a collection of some basic knowledge for this thesis. We start with
the used notations, list some fundamental concepts for dealing with spherical integrals.
Afterwards, we summarize some basic tools from Fourier analysis and finish this chapter
with the definition of the mean value operators and the formulation of some useful
properties.

3.1 Notations

We denote in the usual manner by N := {1, 2, . . . } the natural numbers, by Z the
integers, by R the real numbers, and by C the complex numbers. We use abbreviatory

2N := {2, 4, . . . } for the even natural numbers and Id :=
[
−1

2
, 1

2

]d
, d ∈ N, for the

d-dimensional unit cube.
Matrices and vectors are labeled with bold symbols, in particular, we use

1 :=

1 . . . 1
...

. . .
...

1 . . . 1

 and I :=

1
. . .

1


for a matrix with ones at every position and the identity matrix, where the dimensions
are apparent from the context. We define the inner product of vectors a,b ∈ Rn, n ∈ N,
by a ·b := a1b1 + · · ·+anbn and the according Euclidean norm by ‖a‖2 := |a| :=

√
a · a.

Moreover, the lp-norm ‖ · ‖p : Cn → [0,∞) of a vector a ∈ Cn, p ∈ [1,∞], n ∈ N, is
defined by

‖a‖p :=

(
n∑
k=1

|ak|p
) 1

p

for p ∈ [1,∞) and ‖a‖∞ := max
k∈{1,...,n}

|ak|.

The summation of a matrix A with a scalar λ ∈ R is given as A + λ := A + λ1, where
1 has the same dimensions as A. For matrices A,B ∈ Cm×n, m,n ∈ N, we denote by

A�B :=

 A1,1B1,1 . . . A1,nB1,n
...

. . .
...

Am,1Bm,1 . . . Am,nBm,n

 ∈ Cm×n
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the element-wise product and for matrices A ∈ Cm×n and B ∈ Cp×r, m,n, p, r ∈ N, we
denote by

A⊗B :=

A1,1B . . . A1,nB
...

. . .
...

Am,1B . . . Am,nB

 ∈ Cmp×nr

the Kronecker product. For a spatial dimension d ∈ N and a discretization parameter
N ∈ 2N, the following sets are frequently used in this thesis,

JN :=

{
z = (z1, . . . , zd)

> ∈ Zd : z1, . . . , zd ∈
{
−N

2
, . . . ,

N

2
− 1

}}
, (3.1)

ZN :=

{
z = (z1, . . . , zd)

> ∈ Zd : z1, . . . , zd ∈
{
−N

2
, . . . ,

N

2

}}
, (3.2)

and

XN :=

{
x =

z

N
+

1

2N
: z ∈ JN

}
⊂
(
−1

2
,
1

2

)d
. (3.3)

Let a set Ω ⊂ Rd, d ∈ N, be given. We use the notation C(Ω) for the set of all
continuous functions f : Ω → R, and C(Ω,C) for the set of all continuous functions
f : Ω→ C. For a measure space (Ω,A, µ) with a nonempty set Ω ⊂ Rd, a σ-algebra A
over Ω and a measure µ : A → [0,∞], the function space Lp (Ω, µ), p ∈ [1,∞], contains
all measurable functions f : Ω→ R with a finite norm ‖ · ‖Lp(Ω,µ),

‖f‖Lp(Ω,µ) :=

(∫
Ω

|f(x)|pdµ(x)

) 1
p

for p ∈ [1,∞) and ‖f‖L∞(Ω) := ess sup
x∈Ω

|f(x)|.

Unless otherwise stated, µ is the Lebesgue measure λ : A → [0,∞], which is the unique
measure on Rd, that assigns d-dimensional cuboids their volumes,

λ ([a1, b1]× [ad, bd]) := (b1 − a1) · · · (bd − ad).

Abbreviatory, we set Lp (Ω) := Lp (Ω, λ). For sets Ω1, Ω2 and Ω3, we denote the set
of all linear functions f : Ω1 → Ω2 by L(Ω1,Ω2) and the product fg : Ω3 → Ω2 of
functions f : Ω1 → Ω2 and g : Ω3 → Ω1 is defined by the composition fg(x) := f(g(x)).

3.2 Spherical coordinates

The elements of Rd can be represented by different coordinate systems. The well-
known Cartesian coordinates are in some cases unqualified for dealing with spherical
geometries and hence, polar and spherical coordinates in Figure 3.1 are typically used
for two and three dimensions. For higher dimensions, we use a generalization of this
concept [33, Sec. 21.2.1].
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x1

x2

ξ

r

ϕ

(a) Polar coordinates.

r

x2x1

x3

ϑ

ϕ

ξ

(b) Spherical coordinates.

Figure 3.1: Spherical coordinate systems for spatial dimensions d = 2 (left) and d = 3
(right).

Definition 1. We define the operator Pd, which maps generalized d-dimensional spher-
ical coordinates to Cartesian coordinates, d ∈ N \ {1}, recursively by

P2 : [0,∞)× [0, 2π)→ R2,

(
r
ϕ

)
7→
(
r cosϕ
r sinϕ

)
,

for d = 2 and

Pd : [0,∞)× [0, 2π)× [0, π]d−2 → Rd,

(r, ϕ,ϑ) := (r, ϕ, ϑ1, . . . , ϑd−2)> 7→
(

sinϑd−2Pd−1 (r, ϕ, ϑ1, . . . , ϑd−3)
r cosϑd−2

)
,

for d ∈ N, d ≥ 3. Since the restriction of the operator Pd to (0,∞)× [0, 2π)× (0, π)d−2

is bijective, the inverse operator

P−1 : Rd \
(
{0} × Rd−2

)
→ (0,∞)× [0, 2π)× (0, π)d−2

is well-defined.

We proceed with some basic transformations for spherical integrals and start with the
substitution between Cartesian and spherical coordinates.

Lemma 2. Let a spatial dimension d ∈ N \ {1}, an open set

Ω ⊂ (0,∞)× [0, 2π)× (0, π)d−2,

and an integrable function f ∈ C (PdΩ) be given. With

Dd : (0,∞)×(0, π)d−2 → R, Dd(r,ϑ) := rd−1 sinϑ1 (sinϑ2)2 . . . (sinϑd−2)d−2 , (3.4)

it follows∫
PdΩ

f(x)dx =

∫
Ω

f (Pd(r, ϕ,ϑ))Dd(r,ϑ)dϑdϕdr.
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Proof. With the notation w := (r, ϕ,ϑ) and the Jacobian matrix

JPd :=

(
∂ (Pd)j
∂wk

)
j,k=1,...,d

(w),

complete induction shows

det JPd(r,ϑ) = (−1)dDd(r,ϑ).

The substitution formula for integrals finishes the proof.

Next, we specify the integration over surfaces of spheres.

Definition 3. Let a spatial dimension d ∈ N \ {1} be given. We denote by

Sd−1 :=
{
x ∈ Rd : |x| = 1

}
⊂ Rd

the (d− 1)-dimensional unit sphere, use the notation

Gd(w2, . . . , wd) :=

(
∂ (Pd)j
∂wk

)
j,k=1,...,d

(1, w2, . . . , wd),

and define the spherical surface measure dσ by∫
Sd−1

f(x)dσ(x) :=

∫ 2π

0

∫
(0,π)d−2

f (Pd(1, ϕ,ϑ))
√

G>d (ϕ,ϑ)Gd(ϕ,ϑ)dϑdϕ (3.5)

and the surface ωd−1 of the unit sphere Sd−1 by

ωd−1 :=

∫
Sd−1

1dσ(x).

We obtain the following useful representations for spherical integrals.

Corollary 4. Let a spatial dimension d ∈ N \ {1} be given. For an integrable function
f ∈ C

(
Sd−1

)
, it follows∫

Sd−1

f(x)dσ(x) =

∫ 2π

0

∫
(0,π)d−2

f (Pd(1, ϕ,ϑ))Dd(1,ϑ)dϑdϕ,

with Pd from Definition 1 and Dd from equation (3.4). For an integrable function
f ∈ C(Rd) and a radius R > 0, it follows∫

|x|≤R
f(x)dx =

∫ R

0

∫
Sd−1

f(rξ)dσ(ξ)rd−1dr.

Proof. Complete induction shows√
G>d (ϕ,ϑ)Gd(ϕ,ϑ) = Dd(1,ϑ)
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and we obtain the first assertion from the definition in equation (3.5). Furthermore,
Lemma 2 and the definition of Dd in equation (3.4) leads to∫

|x|≤R
f(x)dx =

∫ R

0

∫ 2π

0

∫
(0,π)d−2

f (Pd(rϕ,ϑ))Dd(rϑ)dϑdϕdr

=

∫ R

0

∫ 2π

0

∫
(0,π)d−2

f (rPd(1, ϕ,ϑ))Dd(1,ϑ)dϑdϕrd−1dr,

and applying of equation (3.5) proves the second assertion.

With the previous statements, we can state an explicit formula for the surface of the
unit sphere.

Corollary 5. The surface of the unit sphere ωd−1 for a spatial dimension d ∈ N \ {1}
is given by

ωd−1 =
2π

d
2

Γ
(
d
2

) .
Proof. The proof is given by complete induction, where the inductive step follows from
[1, eq. 6.2.1, 6.2.2, 6.1.18],

ωd−1 =

∫ 2π

0

∫
(0,π)d−2

Dd(1,ϑ)dϕdϑ = 2ωd−2

∫ π
2

0

(sinϑd−2)d−2 dϑd−2

=
2π

d−1
2

Γ
(
d−1

2

) · Γ
(
d−1

2

)
Γ
(

1
2

)
Γ
(
d
2

) =
2π

d
2

Γ
(
d
2

) .

3.3 Fourier analysis

We define the d-dimensional torus Td :=
(
Rd,+

)
/Zd, d ∈ N, as quotient group with

the common periodical addition and identify its elements by the unique representatives

in
[
−1

2
, 1

2

)d
. We denote with C

(
Td
)

the space of the continuous and periodic functions
f : Td → R and can approximate these functions with their Fourier partial sum.

Definition 6. Let a spatial dimension d ∈ N and a function f ∈ C
(
Td
)

be given. We
define the Fourier coefficients cz(f) ∈ C, z ∈ Zd, of the function f by

cz(f) :=

∫
Td
f(x)e−2πiz·xdx. (3.6)

Furthermore, we denote by SNf : Td → C, N ∈ 2N,

SNf(x) :=
∑
z∈JN

cz(f)e2πiz·x,

the N -th Fourier partial sum. In the case of convergence, we call the function

f̃ : Td → C,
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pointwise defined by the limit

f̃(x) := lim
N→∞

SNf(x),

the Fourier series of the function f .

If the Fourier coefficients of a function f ∈ C
(
Td
)

fulfill
∑

z∈Zd |cz(f)| < ∞, then the
Fourier series converges absolutely and thus uniformly to the function f and it follows
f(x) = limN→∞ SNf(x) for all x ∈ Td. However, in general it is challenging to evaluate
the integral (3.6) accurately. The numerical integration with a trapezoidal rule leads
to the definition of the trigonometric interpolant.

Definition 7. Let a spatial dimension d ∈ N and a discretization parameter N ∈ 2N
be given. We define the discrete Fourier coefficients f̂z ∈ C, z ∈ JN , of a vector f ∈ RNd

by

f̂z :=
1

Nd

∑
k∈JN

fke−2πiz·xk , z ∈ JN , xk :=
k

N
+

1

2N
∈ XN , (3.7)

and call the map f 7→ f̂ the discrete Fourier transform of the vector f . Moreover, we
define the (complex) trigonometric interpolant INf : Td → C of a function f ∈ C

(
Td
)

by

INf(x) :=
∑
z∈JN

f̂ze
2πiz·x, (3.8)

where we denote by f̂z ∈ C, z ∈ JN , the discrete Fourier coefficients of the vector
(f (xk))k∈JN .

Remark 8. It is also common to define the discrete Fourier coefficients from equa-
tion (3.7) with points xk on an asymmetric grid,

f̃z :=
1

Nd

∑
k∈JN

fke−2πiz·xk , z ∈ JN , xk :=
k

N
. (3.9)

If we allow indices z ∈ Zd, then the Definitions (3.7) and (3.9) differ slightly in the
periodicity of the discrete Fourier coefficients. For spatial dimension d = 1, it follows

f̂z+N = −f̂z and f̃z+N = f̃z

for all z ∈ Z and appropriate relations hold for higher dimensions d ∈ N.

In applications we are interested in real-valued approximations, which can be obtained
by a modification of the trigonometric interpolant.

Definition 9. Let a spatial dimension d ∈ N and a discretization parameter N ∈ 2N
be given. We define the real trigonometric interpolant TNf : Td → C of a function
f ∈ C

(
Td
)

by

TNf(x) :=
∑
z∈ZN

bz(f)e2πiz·x
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with the coefficients

(bz(f))z∈ZN := Adf̂ ∈ C(N+1)d , Ad := A1 ⊗Ad−1 ∈ C(N+1)d×Nd

,

and

A1 :=


1
2

0 . . . 0
0 1
...

. . .

0 1
−1

2
0 . . . 0

 ∈ R(N+1)×N .

The notation “interpolant” in Definitions 7 and 9 is justified, since basic computations
verify for a given function f ∈ C

(
Td
)

and a discretization parameter N ∈ 2N the
interpolation property

f(x) = INf(x) = TNf(x) for all x ∈ XN

on the regular Cartesian grid XN . A relation between the Fourier coefficients ck(f)
and the discrete Fourier coefficients f̂k of a function f is given by the aliasing formula

f̂k =
∑
z∈Zd

(−1)z1+···+zdck+zN(f) for all k ∈ JN , (3.10)

which implies the following estimates.

Lemma 10. Let a spatial dimension d ∈ N, a discretization parameter N ∈ 2N, and
a function f ∈ C(Td) with an absolutely convergent Fourier series

f(x) =
∑
z∈Zd

cz(f)e2πiz·x, cz(f) ∈ C,

be given. Then the estimates

‖f − SNf‖L∞(Td) ≤
∑

z∈Zd\JN

|cz(f)|, ‖f − INf‖L∞(Td) ≤ 2
∑

z∈Zd\JN

|cz(f)|,

and

‖f − TNf‖L∞(Td) ≤ 4
∑

z∈Zd\JN−2

|cz(f)|

are valid.

Proof. The first inequality follows from the definition and the other two from the
aliasing formula (3.10), see for example [64, Chap. X, Thm. (5.16)].

It follows from Lemma 10, that we obtain a high approximation quality by finite
Fourier sums for functions with a fast decrease of the Fourier coefficients. We call such
functions smooth and measure the degree of the smoothness with the following norms.
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Definition 11. For a spatial dimension d ∈ N, a smoothness parameter s ≥ 0, and a
function f ∈ C

(
Td
)
, we define the following norms,

‖f‖s,1 :=
∑
z∈Zd

(1 + |z|)s|cz(f)|, ‖f‖s,2 :=

(∑
z∈Zd
|cz(f)|2(1 + |z|2)s

) 1
2

,

and

‖f‖s,∞ := max
z∈Zd

(1 + |z|)s|cz(f)|.

To prove some error estimates for the finite Fourier sums, we start with the following
statement.

Lemma 12. Let a spatial dimension d ∈ N and parameters c > 0, N ∈ 2N, N ≥ 4
√
d,

and s > d
c

be given. Then the estimate∑
z∈Zd\JN

(1 + |z|c)−s ≤ 22cs−d−1ωd−1

cs− d
·Nd−cs

is valid.

Proof. We start with

(1 + |z|c)−s ≤ |z|−cs

for all z ∈ Zd and∑
z∈Zd\JN

|z|−cs ≤
∫
|x|≥N

2

(
|x| −

√
d
)−cs

dx =

∫ ∞
N
2

∫
Sd−1

(
r −
√
d
)−cs

rd−1dσ(ξ)dr

= ωd−1

∫ ∞
N
2
−
√
d

r−cs(r +
√
d)d−1dr ≤ 2d−1ωd−1

∫ ∞
N
4

r−cs+d−1dr

completes the proof.

We apply Lemma 12 and obtain different error bounds, which explicitly show, that a
higher smoothness of the function, given by a larger smoothness parameter s, leads to
a faster decrease of the approximation error.

Lemma 13. Let a spatial dimension d ∈ N, a discretization parameter N ∈ 2N,
N ≥ 4

√
d, and a continuous function f ∈ C(Td) be given. With

C1(s, d) :=

(
24s−d−1

2s− d
ωd−1

) 1
2

, s >
d

2
, and C2(s, d) :=

22s−d−1

s− d
ωd−1, s > d,

the following estimates are valid. For s ≥ 0 and ‖f‖s,1 <∞, it follows

‖f − SNf‖∞ ≤ 2−s‖f‖s,1N−s and ‖f − INf‖∞ ≤ 2−s+1‖f‖s,1N−s,

for s > d
2

and ‖f‖s,2 <∞, it follows

‖f − SNf‖∞ ≤ C1(s, d)‖f‖s,2N
d
2
−s and ‖f − INf‖∞ ≤ 2C1(s, d)‖f‖s,2N

d
2
−s,

and for s > d and ‖f‖s,∞ <∞, it follows

‖f − SNf‖∞ ≤ C2(s, d)‖f‖s,∞Nd−s and ‖f − INf‖∞ ≤ 2C2(s, d)‖f‖s,∞Nd−s.
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Proof. We give the proof only for the Fourier partial sum SN ; the estimates for the
trigonometric interpolant can be shown in the same way. Lemma 10 yields

‖f − SNf‖∞ ≤
∑
z∈Zd
|cz(f)|(1 + |z|)s(1 + |z|)−s

≤
(

max
z∈Zd\JN

(1 + |z|)−s
)∑

z∈Zd
|cz(f)|(1 + |z|)s ≤

(
N

2

)−s
‖f‖s,1.

Again Lemma 10, the Cauchy-Schwarz inequality, and Lemma 12 lead to

‖f − SNf‖∞ ≤

 ∑
z∈Zd\JN

|cz(f)|2(1 + |z|2)s

 1
2
 ∑

z∈Zd\JN

(1 + |z|2)−s

 1
2

≤ C1(s, d)‖f‖s,2N
d
2
−s.

Finally, Lemma 10, Lemma 12, and

‖f − SNf‖∞ ≤
(

max
z∈Zd\JN

|cz(f)|(1 + |z|)s
) ∑

z∈Zd\JN

(1 + |z|)−s

show the last inequality.

The Fourier coefficients of periodic functions are given by Definition 6. For functions
on Rd, a generalization is given in the following way.

Definition 14. Let a spatial dimension d ∈ N and an absolute integrable function
f ∈ C

(
Rd
)

be given. We define the Fourier transform f̂ : Rd → C of the function f by

f̂(v) :=

∫
Rd
f(x)e−2πiv·xdx.

3.4 Mean value operators

The fundamental subject of this thesis, the spherical mean value operator, is given by
the following Definition 15.

Definition 15. Let a spatial dimension d ∈ N \ {1} be given. The spherical mean
value operator M : C

(
Rd
)
→ C

(
Rd × R

)
,

Mf(y, r) :=
1

ωd−1

∫
Sd−1

f(y + rξ)dσ(ξ),

assigns to functions f ∈ C
(
Rd
)

mean values over (d − 1)-dimensional spheres with
center points y ∈ Rd and radii r ∈ R.

To make sure, that the previous Definition 15 of the spherical mean value operator is
correct, it remains to show the continuity of Mf : Rd × R→ R.
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Lemma 16. Let a spatial dimension d ∈ N\{1} and a continuous function f ∈ C
(
Rd
)

be given. Then, it follows Mf ∈ C
(
Rd × R

)
.

Proof. We choose a center point y ∈ Rd, a radius r ∈ R, and a sequence

(yk, rk) ∈ Rd × R, k ∈ N,

with limk→∞ (yk, rk) = (y, r) arbitrarily and define the set

A :=
{
yk + rkξ : ξ ∈ Sd−1 and k ∈ N

}
.

The function f is continuous and hence bounded on A and it follows

s := sup
x∈A
|f(x)| <∞.

Furthermore, each element fk of the function sequence

fk : Sd−1 → R, fk(ξ) := f (yk + rkξ) , k ∈ N,

is continuous and thus integrable on Sd−1. Since

|fk(ξ)| ≤ s for all k ∈ N and ξ ∈ Sd−1

is fulfilled, we can apply Lebesgue’s dominated convergence theorem, obtain

lim
k→∞
Mf (yk, rk) =

1

ωd−1

lim
k→∞

∫
Sd−1

fk(ξ)dσ(ξ)

=
1

ωd−1

∫
Sd−1

lim
k→∞

fk(ξ)dσ(ξ) =Mf(y, r)

and this proves the assertion.

It is well known [11, §VI.13, eq. 13-15], that the solution of the Cauchy problem for
the d-dimensional wave equation, d ∈ N \ {1},

∂2
rp(y, r)−∆p(y, r) = 0 for (y, r) ∈ Rd × (0,∞),

p(y, 0) = f(y) for y ∈ Rd, (3.11)

∂rp(y, 0) = 0 for y ∈ Rd,

is given as

pd(y, r) =


1

Γ( d2)2
d−2
2

∂
∂r

∫ r
0

ρ√
r2−ρ2

(
1
ρ
∂
∂ρ

) d−2
2
ρd−2Mf (y, ρ) dρ for even d,

√
π

Γ( d2)2
d−1
2

∂
∂r

(
1
r
∂
∂r

) d−3
2
(
rd−2Mf(y, r)

)
for odd d.

In particular, for spatial dimension d = 3, we obtain the representation

p3(y, r) =
∂

∂r
(rMf(y, r))

and spatial dimension d = 2 leads to

p2(y, r) =
∂

∂r

∫ r

0

ρ√
r2 − ρ2

Mf (y, ρ) dρ =
∂

∂r
r

∫ 1

0

Mf (y, rρ)
ρdρ√
r2 − ρ2

=
∂

∂r
r

(∫ 1

0

∫ 2π

0

f

(
y + rρ

(
cosϕ
sinϕ

))
dϕ

ρdρ√
r2 − ρ2

)
,

which motivates the introduction of a further mean value operator.
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Definition 17. The mean value operator N : C(R2)→ C(R2 × R) is defined by

N f(y, r) :=
1

2π

∫
|x|≤1

f(y + rx)
dx√

1− |x|2

=
1

2π

∫ 1

0

∫ 2π

0

f

(
y + rρ

(
cosϕ
sinϕ

))
dϕρdρ√

1− ρ2
.

Remark 18. To be complete, we have to show the continuity of N f : R2 ×R→ R for
a continuous function f ∈ C (R2). The substitution ρ = sinα leads to

N f(y, r) =
1

2π

∫ π
2

0

∫ 2π

0

f

(
y + r sinα

(
cosϕ
sinϕ

))
sinαdϕdα

and this motivates the definition of the function sequence

fk : [0, 2π]×
[
0,
π

2

]
→ R, fk(ϕ, α) := f

(
yk + rk sinα

(
cosϕ
sinϕ

))
sinα,

for a given sequence (yk, rk) ∈ R2 × R, k ∈ N. The arguments from the proof of
Lemma 16 show the continuity of N f .

This thesis focuses on Fourier based methods, where we have to deal with complex
exponential functions. Spherical integrals over this basic functions lead to Bessel func-
tions.

Definition 19. For an order ν ≥ 0, we define the Bessel functions of the first kind
Jν : R→ R by the integral representation, see [62, Sec. 3.3, eq. (6)],

Jν(x) :=
xν

Γ
(
ν + 1

2

)
Γ
(

1
2

)
2ν

π∫
0

eix cos ξ(sin ξ)2νdξ. (3.12)

We continue with the computation of mean values for the complex exponential function.
This fundamental statement builds the basis of the Fourier based algorithms in this
thesis.

Theorem 20 ([42, eq. (1.5)]). Let a spatial dimension d ∈ N\{1} and a vector v ∈ Rd

be given. The mean values of the function

ev : Rd → C, ev(x) := e2πiv·x,

according to a center point y ∈ Rd and a radius r ≥ 0 can be computed by

N ev(y, r) =

{
ev(y) for r = 0 or v = 0,
sin(2πr|v|)

2πr|v| · ev(y) otherwise,

for d = 2, and

Mev(y, r) =

ev(y) for r = 0 or v = 0,
Γ( d2)J d

2−1
(2πr|v|)

(πr|v|)
d
2−1

· ev(y) otherwise,

for general dimension d ∈ N \ {1}.
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Proof. The assertions for r = 0 and v = 0 follow directly from the definition of the
mean value operators. Otherwise, let R ∈ Rd×d be a rotation around the origin with

Rv = |v|ed, ed :=
(
0, . . . , 0, 1

)> ∈ Rd.

It follows∫
|x|≤1

e2πirv·x dx√
1− |x|2

=

∫
|R−1x|≤1

e2πirv·R−1x dx√
1− |R−1x|2

=

∫ 1

0

∫ 2π

0

e2πir|v|ρ sinϕdϕ
ρdρ√
1− ρ2

= 2

∫ 1

0

∫ π

0

e2πir|v|ρ cosϕdϕ
ρdρ√
1− ρ2

= 2π

∫ 1

0

J0(2πr|v|ρ)
ρdρ√
1− ρ2

= 2π

∫ π
2

0

J0(2πr|v| sinϕ) sinϕdϕ

and Sonine’s first finite integral [62, Sec. 12.11, eq. (1)] yields∫
|x|≤1

e2πirv·x dx√
1− |x|2

=
π

(r|v|)
1
2

J 1
2
(2πr|v|) = 2π · sin (2πr|v|)

2πr|v|
.

Similar computations show∫
Sd−1

e2πirv·ξdσ(ξ) =

∫
RSd−1

e2πirv·R−1ξdσ(ξ) =

∫
Sd−1

e2πir|v|ξddσ(ξ)

=

∫ 2π

0

∫
[0,π]d−2

e2πir|v| cosϑd−2Dd(1,ϑ)dϑdϕ

= ωd−2

∫ π

0

(sinϑd−2)d−2 e2πir|v| cosϑd−2dϑd−2

= ωd−2

Γ
(
d−1

2

)
Γ
(

1
2

)
2
d
2
−1

(2πr|v|)
d
2
−1

J d
2
−1 (2πr|v|)

= ωd−1

Γ
(
d
2

)
J d

2
−1 (2πr|v|)

(πr|v|)
d
2
−1

.

Finally,

N ev(y, r) =
1

2π

∫
|ξ|≤1

e2πiv·(y+rξ) dσ(ξ)√
1− |ξ|2

=
1

2π

∫
|ξ|≤1

e2πriv·ξ dσ(ξ)√
1− |ξ|2

· ev(y)

and

Mev(y, r) =
1

ωd−1

∫
Sd−1

e2πiv·(y+rξ)dσ(ξ) =
1

ωd−1

∫
Sd−1

e2πirv·ξdσ(ξ) · ev(y)

complete the proof.
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Definitions 15 and 17 introduced mean values for continuous functions. In common ap-
plications, the data is given by discrete values, which motivates the following problem.
Let a spatial dimension d ∈ N \ {1}, samples f of a continuous function f ∈ C

(
Rd
)
,

supp f ⊂ Id, on a regular grid XN ,

f = (f(x))x∈XN ∈ RNd

, N ∈ 2N, (4.1)

and sets of center points Y and radii R,

Y = {y1, . . . ,yM1} ⊂ Rd and R = {r1, . . . , rM2} ⊂ (0,∞), M1,M2 ∈ N,

be given. The task is to find an efficient approximation of the mean values

Mf (yj, rk) , j = 1, . . . ,M1, k = 1, . . . ,M2. (4.2)

In the following, we consider different discretizations of the mean value operators.
Excluding Section 4.2.2.1, this part of the thesis has already been published in [25, 26].
For comparison, we start with approximations of integrals by a simple rectangular rule,
which can also be generalized to quadratures of higher orders. The main part of this
thesis is a Fourier based approach, which is based on accurate computation of mean
values for finite Fourier sums. For frequencies on a rectangular Cartesian grid, this
leads to evaluations of nonequispaced discrete Fourier sums. Furthermore, we present
a fast discretization of the two-dimensional mean value operator N for functions, which
are given by its Fourier coefficients on polar frequencies.

4.1 Numerical integration

A standard approach for the discretization of an integral operator is the numerical
integration, also known as quadrature. The main idea is to replace the integrand by a
piecewise polynomial, which is easy to integrate. A simple class of functions for this
purpose are piecewise constant functions, labeled as step functions, which assign the
function value of the nearest grid point.
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Definition 21 (Approximating step function). Let a spatial dimension d ∈ N, a con-
tinuous function f ∈ C

(
Rd
)
, supp f ⊂ Id, and a discretization parameter N ∈ 2N be

given. The approximating step function fQ : Rd → R of f is defined by

fQ(x) := f

([
N · x− 1

2

]
+ 1

2

N

)
,

where [x] denotes the componentwise rounding of the vector x.

We approximate the mean values by replacing the function by its approximating step
function and using a rectangular rule for the resulting integral afterwards. For spatial
dimension d = 2, a fixed center point y ∈ R2, and a fixed radius r ∈ (0,∞), this leads
to

Mf(y, r) ≈MfQ(y, r) =
1

2π

∫ 2π

0

fQ

(
y + r

(
cosϕ
sinϕ

))
dϕ

≈ 1

n

n−1∑
l=0

·fQ
(

y + r

(
cosϕl
sinϕl

))
,

where n ∈ N denotes the number of nodes for the rectangular rule and

ϕl :=
2πl

n
, l ∈ {0, . . . , n− 1}.

A suitable choice of this parameter requires some theory about quadratures. For our
purposes it is sufficient to use the heuristic argument, that the distance of two neigh-
boring nodes xl and xl+1 should be less than the distance of two neighboring grid
points, so for l ∈ {0, . . . , n− 2} we demand

|xl+1 − xl| ≤ r|ϕl+1 − ϕl| ≤
1

N
⇒ 2πr

n
≤ 1

N
⇔ n ≥ 2πrN.

The whole procedure is summarized in Algorithm 1 with the numerical complexity of
O (M1M2N) operations.
An appropriate computation for spatial dimension d = 3 leads to

Mf(y, r) =
1

4π

∫ π

0

∫ 2π

0

fQ

y + r

sinϑ cosϕ
sinϑ sinϕ

cosϑ

 dϕ sin θdϑ

≈ π

2n

n−1∑
l=0

sinϑl
nl

nl−1∑
m=0

fQ

y + r

sinϑl cosϕl,m
sinϑl sinϕl,m

cosϑl


with

n := dπrNe, ϑl :=
π
(
l + 1

2

)
n

, nl := d2πN sinϑle, and ϕl,m :=
2πm

nl
,

and for d = 2 the mean value operator N can be discretized as
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(N f) (y, r) =
1

2π

∫ 1

0

∫ 2π

0

f

(
y + r

(
ρ cosϕ
ρ sinϕ

))
dϕ

ρ√
1− ρ2

dρ

≈ 1

n

n−1∑
l=0

1

nl

nl−1∑
m=0

f

(
y + r

(
ρl cosϕl,m
ρl sinϕl,m

))
ρl√

1− ρ2
l

with

n := drNe, ρl :=
l

n
+

1

2n
, nl := d2πrρlNe, and ϕl,m :=

2πm

nl
.

Algorithms 2 and 3 with numerical complexity of O (M1M2N
2) operations realize both

results.

Remark 22. The previous approach can be improved by using polynomials and quadra-
tures of higher order, which leads to a higher accuracy of the numerical integration.
However, the complexity of the algorithms has still the same order. The concept of
Algorithms 1 and 2 can also be generalized to higher dimensions, which produces a
numerical complexity of O

(
M1M2N

d−1
)

operations.

Algorithm 1 Discrete mean value operator M, using quadrature, d = 2.

Input
1: d ∈ N . spatial dimension
2: N ∈ 2N, M1 ∈ N, M2 ∈ N . discretization parameters
3: f ∈ RNd

. samples
4: yj ∈ Rd : j = 1, . . . ,M1 . center points
5: rk ∈ (0,∞), k = 1, . . . ,M2 . radii

Output
6: g ∈ RM1M2 . mean values

7: for k = 1, ...,M2 do
8: n := d2πrkNe . number of nodes
9: for j = 1, ...,M1 do

10: s := 0
11: for l = 0, ..., n− 1 do
12: ϕl := 2πl

n
. discretisation of the angle

13: xl := yj + rk

(
cosϕl
sinϕl

)
. node

14: x̃l :=
[N ·xl− 1

2 ]+ 1
2

N
. nearest grid point

15: s := s+ f (x̃l) . summation
16: end for
17: gj,k := 1

n
s

18: end for
19: end for
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Algorithm 2 Discrete mean value operator M, using quadrature, d = 3.

Input and Output as in Algorithm 1

1: for k = 1, ...,M2 do
2: n := dπrkNe . number of nodes for the polar angle
3: for j = 1, ...,M1 do
4: s1 := 0
5: for l = 0, ..., n− 1 do

6: ϑl :=
π(l+ 1

2)
n

. discretization of the polar angle
7: nl := d2πN sinϑle . number of nodes for the azimuthal angle
8: s2 := 0
9: for m = 0, ..., nl − 1 do
10: ϕl,m := 2πm

nl
. discretization of the azimuthal angle

11: xl,m := yj + rk

 sinϑl cosϕl,m
sinϑl sinϕl,m

cosϑl

 . node

12: x̃l,m :=
[N ·xl,m− 1

2 ]+ 1
2

N
. nearest grid point

13: s2 := s2 + f (x̃l,m) . summation
14: end for
15: s1 := s1 + sinϑl

nl
· s2

16: end for
17: gj,k := π

2n
· s1

18: end for
19: end for
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Algorithm 3 Discrete mean value operator N , using quadrature, d = 2.

Input and Output as in Algorithm 1

1: for k = 1, ...,M2 do
2: n := drkNe . number of nodes for the radius
3: for j = 1, ...,M1 do
4: s1 := 0
5: for l = 0, ..., n− 1 do
6: ρl := l

n
+ 1

2n
. discretization of the radius

7: nl := d2πrkρlNe . number of nodes for the angle
8: s2 := 0
9: for m = 0, ..., nl − 1 do

10: ϕl,m := 2πm
nl

. discretization of the angle

11: xl,m := yj + rkρl

(
cosϕl,m
sinϕl,m

)
. node

12: x̃l,m :=
2[N ·xl,m+N

2
− 1

2 ]+1−N
2N

. nearest grid point
13: s2 := s2 + f (x̃l,m) ρl√

1−ρ2l
. summation

14: end for
15: s1 := s1 + s2

nl
16: end for
17: gj,k := s1

n

18: end for
19: end for
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4.2 Fourier based approach

The following approach for disretizing the mean value operators is a fundamental part
of this thesis. With the intention to use tools from Fourier analysis, we approximate
functions by trigonometric functions p : Rd → C,

p(x) =
M∑
k=1

p̂ke
2πiξk·x, M ∈ N, (4.3)

with coefficients p̂k ∈ C and frequencies ξk ∈ Rd, k ∈ {1, . . . ,M}. The mean values of
such functions are given by the application of Theorem 20.

Corollary 23. Let a spatial dimension d ∈ N \ {1}, a center point y ∈ Rd, a radius
r > 0, and a trigonometric function p : Rd → C as in equation (4.3) with p̂k ∈ C and
ξk ∈ Rd \ {0}, k ∈ {1, . . . ,M}, M ∈ N, be given. Then it follows

Mp(y, r) =
M∑
k=1

h̃ke
2πiξk·y for d ∈ N \ {1} (4.4)

and

Np(y, r) =
M∑
k=1

g̃ke
2πiξk·y for d = 2 (4.5)

with

h̃k := p̂k ·
Γ
(
d
2

)
J d−2

2
(2πr|ξk|)

(πr|ξk|)
d−2
2

and g̃k := p̂k ·
sin (2πr|ξk|)

2πr|ξk|
, k ∈ {1, . . . ,M}.

Proof. The assertion follows from Theorem 20 and the linearity of the operators.

In the following sections we discuss different methods for evaluating the sums in equa-
tions (4.4) and (4.5) with suitable choices for the frequencies ξk.

4.2.1 Regular Cartesian frequency grids

A standard approximation of functions f ∈ C
(
Td
)

by trigonometric polynomials is
given by the trigonometric interpolant INf : Td → C, see equation (3.8), with frequen-
cies on a regular Cartesian grid JN , see equation (3.1) and Figure 4.1. The appropriate
Fourier coefficients are provided by the discrete Fourier transform, see equation (3.7).
Finally, we approximate the mean values of a function f by

Mf(y, r) ≈MINf(y, r) and N f(y, r) ≈ NINf(y, r),

where the right sides are given by Corollary 23.

Remark 24. While the trigonometric interpolant is restricted to functions on the torus
Td, we can also handle nonperiodic functions, if some assumptions are fulfilled. For
example, let a function f ∈ C(Rd) with bounded support,

supp f ⊂
{
x ∈ Rd : |x| ≤ a

}
, 0 < a <

1

2
,
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ξ1

ξ2

3−3

3

−3

Figure 4.1: Regular Cartesian frequency grid for discretization parameter N = 6.

a center point y ∈ Rd, and a radius r > 0 be given. Under the condition

r + |y| < 1− a,

the associated periodic function f̃ : Td → R

f̃(x) :=
∑
z∈Zd

f(x + z)

and the nonperiodic function f have the same mean values,

Mf(y, r) =Mf̃(y, r) and N f(y, r) = N f̃(y, r).

Remark 25. The proposed approach is based on computing means of the trigonometric
interpolant. For real-valued functions, the computed polynomials and means are never-
theless complex-valued in general. This matter can be avoided by applying the following
procedure to the real trigonometric interpolant, see Definition 9. For reasons of sim-
plicity, we restrict our further considerations to the complex-valued interpolation.

4.2.1.1 Nonequispaced FFT based algorithm

For a regular frequency grid, a set of center points {y1, . . . ,yM1}, and a fixed radius r,
the sums in equations (4.4) and (4.5) are nonequispaced discrete Fourier transforms,
which can be straightforwardly evaluated.

Theorem 26. Let f be the samples of a function f : Td → R at the regular grid
XN ⊂ Td with discretization parameter N ∈ 2N and spatial dimension d ∈ N \ {1}.
Then the spherical mean values

gj,k =MINf(yj, rk)

at center points y1, . . . ,yM1 ∈ Td, M1 ∈ N, and radii r1, . . . , rM2 ∈ (0, 1], M2 ∈ N,
can be computed by Algorithm 4. If we evaluate the sum in line 16 approximately with
a fixed accuracy, then it exists a fast realization of Algorithm 4 with the numerical
complexity O

(
M2(Nd logN +M1)

)
.
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Proof. We start the algorithm by computing the discrete Fourier coefficients in line 8 by
a fast Fourier transform with the numerical complexity O

(
Nd logN

)
, [10]. In line 12

we continue for each radius r1, . . . , rM2 with a multiplication of vectors with length
Nd. The numerical complexity of this step is O

(
M2N

d
)
. Finally, for each radius the

evaluation of the nonequispaced discrete Fourier transform (NDFT) in line 16 can be
approximated with fixed accuracy by a nonequispaced FFT (NFFT), which produces
the leading numerical complexity O

(
M2

(
Nd logN +M1

))
, see [43]. Corollary 23 com-

pletes the proof.

Algorithm 4 Discrete mean value operator M, using NFFT [43].

Input
1: d ∈ N \ {1} . spatial dimension
2: N ∈ 2N, M1 ∈ N, M2 ∈ N . discretization parameter
3: f ∈ RNd

. samples
4: yj ∈ Td : j = 1, . . . ,M1 . center points
5: rk ∈ (0, 1], k = 1, . . . ,M2 . radii

Output
6: g ∈ CM1M2 . mean values

7: for z ∈ JN do
8: p̂z := 1

Nd

∑
x∈XN

f(x)e−2πiz·x . fast computation by a FFT

9: end for
10: for k = 1, ...,M2 do
11: for z ∈ JN \ {0} do

12: h̃z,k := p̂z ·
Γ( d2)J d−2

2
(2π|z|rk)

(π|z|rk)
d−2
2

. multiplier

13: end for
14: h̃0,k := f̂0
15: for j = 1, . . . ,M1 do
16: gj,k :=

∑
z∈JN

h̃z,ke
2πiz·yj . fast approximation by NFFTs [43]

17: end for
18: end for

Theorem 27. Let f be the samples of a function f : T2 → R at the regular grid
XN ⊂ T2 with discretization parameter N ∈ 2N. Then the spherical mean values

gj,k = NINf(yj, rk)

at center points y1, . . . ,yM1 ∈ T2, M1 ∈ N, and radii r1, . . . , rM2 ∈ (0, 1], M2 ∈ N, can
be computed by Algorithm 5. As in Theorem 26, if we approximate the sum in line 10
with fixed accuracy, then it exists a fast realization of Algorithm 5 with the numerical
complexity O (M2 (N2 logN +M1)).

Proof. Similar steps as in the proof of Theorem 26 show the assertion.
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Algorithm 5 Discrete mean value operator N , using NFFT [43], d = 2.

Input and Output as in Algorithm 4

1: for z ∈ JN do
2: p̂z := 1

N2

∑
x∈X

f(x)e−2πiz·x . fast computation by a FFT

3: end for
4: for k = 1, . . . ,M2 do
5: for z ∈ J \ {0} do

6: h̃z,k := p̂z · sin 2πrk|z|
2πrk|z|

. multiplier
7: end for
8: h̃0,k := p̂0
9: for j = 1, . . . ,M1 do

10: gj,k :=
∑

z∈JN
h̃z,ke

2πiz·yj . fast approximation by NFFTs [43]

11: end for
12: end for

In order to derive fast algorithms for the transpose operators, we set

ωz,k :=


Γ( d2)J d−2

2
(2π|z|rk)

(π|z|rk)
d−2
2

for z ∈ JN \ {0},

1 for z = 0,

for the operator M and

ωz,k :=

{
sin 2πrk|z|

2πrk|z|
for z ∈ JN \ {0},

1 for z = 0,

for the operator N , k ∈ {1, . . . ,M2}, and obtain with the notation from Algorithm 4
and 5 the matrix-vector multiplication

gj,k =
∑
z∈JN

h̃z,ke
2πiz·yj =

∑
z∈JN

p̂zωz,ke
2πiz·yj = (Af)(j,k)

with

A ∈ CM1M2×Nd

, A(j,k),n :=
∑
z∈JN

ωz,k

Nd
e−2πiz 2n+1−N

2N e2πiz·yj ,

(j, k) ∈ {1, . . . ,M1} × {1, . . . ,M2}, n ∈ JN . It follows

(
M>g

)
n

=

M1,M2∑
j,k=1

Mn,(j,k)gj,k =
1

Nd

∑
z∈JN

(
M2∑
k=1

ωz,k

(
M1∑
j=1

gj,ke
2πiz·yj

))
e−2πiz 2n+1−N

2N .

Similar to Algorithms 4 and 5, this formula can be implemented in three steps. We
start with adjoint NFFTs for each radius to evaluate the sums over j, do multiplications
and summations and close with one FFT for the computation of the outer sum over z.
All in all, this discretization of the transpose operators has the numerical complexity
O
(
M2

(
Nd logN +M1

))
.
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4.2.1.2 Butterfly sparse FFT based algorithm

The previous method is based on applying a d-dimensional NFFT for each radius. For
certain settings we develop another variant for evaluating the sums in equation (4.4)
and (4.5), where we use overall one (d + 1)-dimensional sparse Fourier transform to
compute the mean values for all given center points and radii. To be more precise, we
define for a spatial dimension d ∈ N the following discrete subset

J̃N :=

{
(z, ζ) ∈ JN ×

[
−
√
dN

2
,

√
dN

2

]
: |ζ| = |z|

}
\ {0}

of a d-dimensional double cone in Rd+1, see Figure 4.2 for dimension d = 2.

Figure 4.2: Distribution of the frequencies on a double cone.

Theorem 28. Let a spatial dimension d ∈ {2, 3}, a discretization parameter N ∈ 2N,
a center point y ∈ Td, a radius r ∈ (0, 1], and a trigonometric polynomial

p : Td → C, p(x) =
∑
z∈JN

p̂ze
2πiz·x, p̂z ∈ C,

be given. With the operator

A :=

{
N for d = 2, see Definition 17,

M for d = 3, see Definition 15,
(4.6)

the mean values of the polynomial p have the representation

Ap(y, r) := p̂0 −
i

4πr

∑
(z,ζ)∈J̃N

p̂z
ζ

e2πi(z,ζ)·(y,r). (4.7)

Proof. First of all we observe that for all z ∈ JN\{0} and r > 0 the identity

Γ
(

3
2

)
J 1

2
(2π|z|r)√

π|z|r
=

sin 2π|z|r
2π|z|r

=
−i

4π|z|r
(
e2πi|z|r − e−2πi|z|r)
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holds true. Hence, we have by Theorem 20

Ap(y, r) =
∑
z∈JN

p̂z ·
(
Ae2πiz·(·)) (y, r)

= p̂0 +
∑

z∈JN\{0}

p̂z · e2πiz·y ·
Γ
(

3
2

)
J 1

2
(2π|z|r)√

π|z|r

= p̂0 +
−i

4πr
·
∑

z∈JN\{0}

p̂z
|z|
· e2πiz·y · (e2πi|z|r − e−2πi|z|r).

For the purpose to derive a fast discretization based on Theorem 28, we consider center
points yj ∈ Rd, j = 1, . . . ,M1, on smooth (d−1)-dimensional submanifolds of Rd, which
is a common assumption in relevant applications. For example an arrangement on a
cylinder or something similar is for practical reasons an adequate setting. For arbitrary
radii rk ∈ (0, 1], k = 1, . . . ,M2, the set of nodes

(yj, rk) ∈ Rd+1, j = 1, . . . ,M1, k = 1, . . . ,M2,

lies on a smooth d-dimensional submanifold of Rd+1. Hence, equation (4.7) describes
a (d+ 1)-dimensional Fourier transform with Fourier coefficients as well as evaluation
nodes on smooth (d + 1)-dimensional submanifolds. An efficient computation of such
a sparse Fourier transform is given by the results in [63, 45].
The main idea consists of two ingredients. At first, we employ a low rank approximation

e2πiν·τ ≈
R∑
l=1

al(ν)bl(τ ), al(ν), bl(τ ) ∈ C,

of the Fourier kernel e2πi(·)·(·) : Λ × Ω → C for restricted sets Λ,Ω ⊂ Rd+1, where the
rank fulfills R ≈ logd+1

(
N
ε

)
under certain conditions on the widths of the spatial and

frequency domains. In order to meet these conditions, the second ingredient is a dyadic
subdivision of both domains, resulting in a particular divide and conquer strategy, the
so-called butterfly scheme. The following Corollary 29 summarizes its application to
the computation of mean values and an implementation for spatial dimension d = 3 is
given by Algorithm 6.

Corollary 29. Let f be the samples of the function f ∈ C
(
Td
)

at the regular grid
XN ⊂ T2 with discretization parameter N ∈ 2N and spatial dimension d ∈ {2, 3}, and
A the operator from equation (4.6). Then, for fixed accuracy, the spherical mean values

gj,k = AINf(yj, rk)

at center points y1, . . . ,yM1 ∈ Td, M1 ∈ N, located at a smooth (d − 1)-dimensional
submanifold of Td, and radii r1, . . . , rM2 ∈ (0, 1], M1 ∈ N, can be approximately com-

puted with the numerical complexity O
(

(logN)d+1 M1M2 + (logN)d+3 Nd
)

. In par-

ticular for M1 = O
(
Nd−1

)
and M2 = O (N) this leads to the almost linear complexity

O
(

(logN)d+3Nd
)

.
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Proof. As in Theorem 26 we start with the computation of the discrete Fourier coeffi-
cients by a FFT. The essential complexity is given by the Fourier sum in equation (4.7).
A fast computation is given by the algorithm described in [45], which results in the
claimed complexity. Theorem 28 completes the proof.

Algorithm 6 Discrete mean value operator M, using sparse FFT [45], d = 3.

Input and Output as in Algorithm 4

1: for z ∈ JN do
2: p̂z := 1

N3

∑
x∈XN

f(x)e−2πiz·x . fast computation by a FFT

3: end for
4: for (z, ζ) ∈ J̃N do
5: ĥz,ζ := p̂z

ζ
. coefficients for sparse FFT

6: end for
7: for j = 1, . . . ,M1 do
8: for k = 1, . . . ,M2 do
9: gj,k :=

∑
(z,ζ)∈J̃N

ĥz,ζ · e2πi(z,ζ)·(yj ,rk) . fast approx. by a sparse FFT [45]

10: end for
11: end for
12: g := p̂0 − i

4πr
g

4.2.1.3 Error estimates

The presented algorithms in the current Section 4.2.1 consist mainly of two steps. We
replace the function by the trigonometric interpolant and utilize fast approximation
algorithms for the evaluation of the nonequispaced Fourier transforms afterwards. In
the following, we assume a sufficient high accuracy of the second step, such that the
approximation error from applying the NFFT and butterfly sparse FFT is negligible
compared to the interpolation error. For this reason, we continue with analyzing the
convergence rates of the discretization error, which is caused by the approximation of
the function by the trigonometric interpolant. We start with a bound for the operator
norm of M.

Lemma 30. For a given spatial dimension d ∈ N \ {1}, the spherical mean value
operator M satisfies

‖Mf‖L∞(Td×[0,1]) ≤ ‖f‖L∞(Td)

for f ∈ L∞
(
Td
)

and

‖Mf‖Lp(Td×[0,1],dyrd−1dr) ≤ d−
1
p‖f‖Lp(Td)

for 1 ≤ p <∞ and f ∈ Lp
(
Td
)
.
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Proof. We use abbreviatory Lp(Td× [0, 1]) := Lp(Td× [0, 1], dyrd−1dr), p ∈ [1,∞). For
p =∞ we have

‖Mf‖L∞(Td×[0,1]) = sup
r∈[0,1]

sup
y∈Td

∣∣∣∣ 1

ωd−1

∫
Sd−1

f(y + rξ)dσ(ξ)

∣∣∣∣
≤ 1

ωd−1

∫
Sd−1

dσ(ξ) sup
y∈Td
|f(y)|,

for p = 1 the estimate

‖Mf‖L1(Td×[0,1]) =

∫ 1

0

∫
Td

1

ωd−1

∣∣∣∣∫
Sd−1

f(y + rξ)dσ(ξ)

∣∣∣∣ dyrd−1dr

≤
∫ 1

0

∫
Td

1

ωd−1

∫
Sd−1

|f(y + rξ)| dσ(ξ)dyrd−1dr

≤ 1

ωd−1

∫ 1

0

rd−1dr

∫
Sd−1

dσ(ξ) sup
y∈Td
|f(y)| = 1

d
‖f‖L1(Td)

is valid, and for 1 < p <∞ and q :=
(

1− 1
p

)−1

, the Hölder inequality yields

‖Mf‖p
Lp(Td×[0,1])

=

∫ 1

0

∫
Td

1

ωpd−1

∣∣∣∣∫
Sd−1

f(y + rξ)dσ(ξ)

∣∣∣∣p dyrd−1dr

≤
∫ 1

0

∫
Td

1

ωpd−1

(∫
Sd−1

dσ(ξ)

) p
q
∫
Sd−1

|f(y + rξ)|pdσ(ξ)dyrd−1dr

=

∫ 1

0

ω
p
q
−p

d−1

∫
Sd−1

∫
Td
|f(y + rξ)|pdydσ(ξ)rd−1dr

= ‖f‖p
Lp(Td)

∫ 1

0

rd−1dr =
1

d
‖f‖p

Lp(Td)
.

An appropriate version of Lemma 30 for the mean value operator N is given by the
following Lemma 31.

Lemma 31. The mean value operator N satisfies

‖N f‖L∞(T2×[0,1]) ≤ ‖f‖L∞(T2),

for f ∈ L∞ (T2) and

‖N f‖Lp(T2×[0,1]) ≤ 2−
1
p‖f‖Lp(T2)

for 1 ≤ p <∞ and f ∈ Lp (T2).

Proof. The assertion is proven similar to Lemma 30. Again, we use abbreviatory
Lp(T2× [0, 1]) := Lp(T2× [0, 1], dyrdr), p ∈ [1,∞). For p = 1 and p =∞ the estimate
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follows from the definition, and for 1 < p < ∞, we apply the Minkowski inequality
instead of the Hölder inequality and appropriate computations lead to

‖N f‖pLp(T2×[0,1]) =

(∫
T2

∫ 1

0

∣∣∣∣∣ 1

2π

∫ 1

0

∫ 2π

0

f

(
y + rρ

(
cosϕ
sinϕ

))
dϕρdρ√

1− ρ2

∣∣∣∣∣
p

dyrdr

) 1
p

≤ 1

2π

∫ 1

0

∫ 2π

0

(∫
T2

∫ 1

0

∣∣∣∣f (y + rρ

(
cosϕ
sinϕ

))∣∣∣∣p dyrdr

) 1
p dϕρdρ√

1− ρ2

=
1

2π
‖f‖Lp

(∫ 1

0

rdr

) 1
p

(∫ 1

0

ρdρ√
1− ρ2

)(∫ 2π

0

dϕ

)
= 2−

1
p‖f‖Lp(T2).

Now we can bound the discretization errors of the mean value operators by the inter-
polation errors.

Theorem 32. Let a spatial dimension d ∈ N \ {1}, a discretiation parameter N ∈ 2N,
N ≥ 4

√
d, and a continuous function f ∈ C(Td) be given. With

C1(s, d) :=

(
24s−d+1

2s− d
ωd−1

) 1
2

, s >
d

2
, C2(s, d) :=

22s−d

s− d
ωd−1, s > d,

A :=M for d ∈ N \ {2} and A ∈ {M,N} for d = 2, the following estimates are valid.
For s ≥ 0 and ‖f‖s,1 <∞

‖Af(y, r)−AINf(y, r)‖∞ ≤ 2−s+1‖f‖s,1N−s,

for s > d
2

and ‖f‖s,2 <∞

‖Af(y, r)−AINf(y, r)‖∞ ≤ C1(s, d)‖f‖s,2N
d
2
−s,

and for s > d and ‖f‖s,∞ <∞

‖Af(y, r)−AINf(y, r)‖∞ ≤ C2(s, d)‖f‖s,∞Nd−s.

Proof. For fixed y ∈ Td and r ∈ [0, 1], it follows

|Mf(y, r)−MINf(y, r)| = 1

ωd−1

∣∣∣∣∫
Sd−1

f(y + rξ)− INf(y + rξ)dσ(ξ)

∣∣∣∣
=
‖f − INf‖∞

ωd−1

∫
Sd−1

dσ(ξ) = ‖f − INf‖∞

and for d = 2 also

|N f(y, r)−NINf(y, r)| ≤ ‖f − INf‖∞.

Lemma 13 completes the proof.
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Due to the smoothing effect of integral operators, we expect, that the proven conver-
gence rates in Theorem 32 are not optimal. If we replace the function by the Fourier
partial sum instead of the trigonometric interpolant, then we can show a faster decrease
of the approximation error. For this reason, we will also use this variant in the numer-
ical experiments for a more precise evaluation of the results and state an appropriate
error estimate. However, this approximation is not applicable in general, because it is
hard to compute exactly the Fourier coefficients of an arbitrary function.

Theorem 33. Let a spatial dimension d ∈ N\{1}, a discretization parameter N ∈ 2N,
N ≥ 4

√
d, a center point y ∈ Td, a radius r ∈ (0, 1], and a continuous function

f ∈ C(Td) be given. If we define

C1(s, d) :=
Γ
(
d
2

)
2s+

d
2
− 1

2

π
d
2

, s ≥ 0, C2(s, d) :=
Γ
(
d
2

)
22s+ d

2
− 3

2
√
ωd−1

π
d
2

√
2s− 1

, s >
1

2
,

and

C3(s, d) :=
Γ
(
d
2

)
22s−2ωd−1

π
d
2

(
s− d

2
− 1

2

) , s > d

2
+

1

2
,

then there exist constants C4(f, s, d, r), C5(f, s, d, r), C6(f, s, d, r) > 0 such that the
following estimates are valid. For s ≥ 0 and ‖f‖s,1 <∞

|Mf (y, r)−MSNf (y, r)| ≤ C1(s, d)r−
d
2

+ 1
2‖f‖s,1N−s−

d
2

+ 1
2 +C4(f, s, d, r)N−s−

d
2
− 1

2 ,

for s > 1
2

and ‖f‖s,2 <∞

|Mf (y, r)−MSNf (y, r)| ≤ C2(s, d)r−
d
2

+ 1
2‖f‖s,2N−s+

1
2 + C5(f, s, d, r)N−s−

1
2 ,

and for s > d
2

+ 1
2

and ‖f‖s,∞ <∞

|Mf (y, r)−MSNf (y, r)| ≤ C3(s, d)r−
d
2

+ 1
2‖f‖s,∞N−s+

d
2

+ 1
2 +C6(f, s, d, r)N−s+

d
2
− 1

2 .

Proof. Let x0 > 0 be fixed. From the asymptotic expansion of the Bessel functions
[1, p. 9.2.1] we know that there is a constant C7(d) > 0 such that for all x ≥ x0 we
have ∣∣∣∣∣J d−2

2
(x)−

√
2

πx
cos

(
x− d− 3

4
π

)∣∣∣∣∣ ≤ C7(d)x−
3
2 , C7(d) > 0

and with

x0 := min
z∈JN

2π|z|r = 2π
N

2
r = πNr > 0,
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it follows

|Mf(y, r)−MSNf(y, r)| ≤

∣∣∣∣∣∣
∑

z∈Zd\JN

cz(f)Me2πiz·(·)(y, r)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

z∈Zd\JN

cz(f)
Γ
(
d
2

)
J d−2

2
(2π|z|r)

(π|z|r) d−2
2

∣∣∣∣∣∣
≤

Γ
(
d
2

)
(πr)

d−2
2

∑
z∈Zd\JN

|cz(f)|
|z| d−2

2

(√
1

π2|z|r
+

C7(d)

(2π|z|r) 3
2

)

≤
Γ
(
d
2

)
π
d
2 r

d−1
2

∑
z∈Zd\JN

|cz(f)|
(
|z|

1−d
2 + C8(d, r)|z|−

d+1
2

)
with a constant C8(d, r) > 0. With the methods from the proof of Lemma 13 we can
show upper bounds of the sums. For example the estimate∑

z∈Zd\JN

|cz(f)||z|
1−d
2 =

∑
z∈Zd\JN

|cz(f)| · |z|s · |z|
1−d
2
−s

≤ max
z∈Zd\JN

|z|
1−d
2
−s

∑
z∈Zd\JN

|cz(f)| · (1 + |z|)s

=

(
N

2

) 1−d
2
−s

‖f‖s,1

is valid.

We summarize the previous results for the convergence rates in Table 4.1.

Assumptions |Af(y, r)−AINf(y, r)| |Mf(y, r)−MSNf(y, r)|

‖f‖s,1 <∞, s ≥ 0 O (N−s) O
(
N−s−

d
2

+ 1
2

)
‖f‖s,2 <∞, s ≥ d

2
O
(
N−s+

d
2

)
O
(
N−s+

1
2

)
‖f‖s,∞ <∞, s ≥ d O

(
N−s+d

)
O
(
N−s+

d
2

+ 1
2

)
Table 4.1: Convergence rates from Theorems 32 and 33 for fixed center point y ∈ Td

and radius r > 0. The operator A denotes A ∈ {M,N} for spatial dimen-
sion d = 2 and A :=M for d ∈ N \ {1, 2}.

4.2.2 Polar frequency grids

For spatial dimension d = 2, we restrict to the special case when the center points

yj :=
1

2

(
cos

2πj

M1

, sin
2πj

M1

)>
, j = 0, . . .M1 − 1, M1 ∈ N, (4.8)
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discretize a circle and the radii

rk :=
k

M2

, k = 0, . . . ,M2 − 1, M2 ∈ N, (4.9)

are equally spaced. Moreover, the function f : R2 → C is assumed to be given by the
coefficients f̂s,l ∈ C in the nonharmonic Fourier series

f(x) =

M1−1∑
s=0

dM3

√
2e−1∑

l=0

f̂s,le
2πiξs,l·x (4.10)

with frequencies on the polar grid

J ′N :=

{
ξs,l :=

lN

2M3

(
cos

2πs

M1

, sin
2πs

M1

)>
:
s = 0, . . . ,M1 − 1

l = 0, . . . ,
⌈
M3

√
2
⌉
− 1

}
(4.11)

and

f̂s,l := 0 for ξs,l /∈
(
−N

2
,
N

2

)2

,

see also Figure 4.3. The mean values for the operator N can be computed efficiently
in the following way.

x1

x2

1
2

1
2

0

(a) Center points arranged on a
circle, M1 = 16.

r
10

(b) Equispaced radii, M2 = 8.

ξ1

ξ2

N
2

N
2

(c) Frequencies on a polar grid,
M1 = 16, M3 = 4.

Figure 4.3: Setting for a fast computation of mean values of functions, which are given
by Fourier sums with frequencies on a polar grid.

Theorem 34. Let parameters M1,M2,M3 ∈ N and coefficients

f̂s,l ∈ C, s = 0, . . . ,M1 − 1, l = 0, . . . ,
⌈
M3

√
2
⌉
− 1,

of the nonharmonic Fourier series from a function f : R2 → C, see equation (4.10),
with frequencies on a polar grid J ′N , see equation (4.11), be given. Using the notations
from equations (4.8) and (4.9), the spherical means

gj,k = N f(yj, rk), j = 0, . . . ,M1 − 1, k = 0, . . . ,M2 − 1,
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can be computed by Algorithm 7. For an evaluation of the sum in line 14 with a fixed
accuracy, the algorithm can be realized with the numerical complexity

O (M1 (M3 logM1 +M2 logM2)) .

In particular for M1 = O (N), M2 = O (N), and M3 = O (N), such a realization has
the almost linear complexity O (N2 logN).

Proof. With M4 :=
⌈
M3

√
2
⌉

and Corollary 23, for k 6= 0 it follows

N f(yj, rk) =

M1−1∑
s=0

f̂s,0 +
M2M3

πkN

M4−1∑
l=1

(
M1−1∑
s=0

f̂s,l
l

e
πilN
2M3

cos
2π(s−j)
M1

)
sin

πlkN

M2M3

.

For each l = 1, . . . ,M4 − 1, the inner sum is a one-dimensional cyclic convolution
of length M1, which can be realized by FFTs, multiplications of the discrete Fourier
coefficients and inverse FFTs. This first step ends in the total complexity

O (M4M1 logM1) . (4.12)

For each j = 0, . . . ,M1−1, the outer sums are one-dimensional discrete sine transforms,
which can for instance be computed by adjoint nonequispaced fast Fourier transforms
with bandwith M2 and 2M4 nodes. Denoting by ε > 0 the desired accuracy of the
NFFT, this second step can be computed with the total complexity

O (M1 (M2 logM2 + 2| log ε|M4)) . (4.13)

Combining equations (4.12) and (4.13) finishes the proof.

Remark 35. The original task was the computation of spherical means from given
function samples f , see equation (4.2). In contrast, Algorithm 7 requires Fourier coeffi-
cients f̂ as input. For the utilizing of this approach in iterative reconstruction methods,
we propose to iterate in the Fourier domain and to compute once the sampels from the
reconstructed Fourier coefficients at the end.
However, even in the discrete case, it is a challenging task to give conditions to the num-
ber of angles M1 and radii M3, which guarantees a representation as in equation (4.10).
Numerical experiments indicate at least approximations with arbitrary precisions for
sufficiently large numbers M1 and M3. This fits to typical applications, where we have
to deal with noisy data and other circumstances, such that exact reconstructions are no
realistic goal.

4.2.2.1 Frame properties

Remark 35 motivates the use of polar frequencies with a numerical argument. Another
promising fact is given by Theorem 40, which states stability in a certain sense, if the
frequency grid has a sufficient high density.

Definition 36 (δ-dense). For δ > 0, a given set Ω = {ζ1, . . . , ζM} ⊂ T2, M ∈ N, is
called δ-dense in T2, if

sup
x∈T2

inf
ζ∈Ω
|x− ζ| ≤ δ

is fulfilled.
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Algorithm 7 Discrete mean value operator N , using a polar frequency grid, d = 2.

Input
1: M1,M2,M3 ∈ N . parameters
2: f̂s,l ∈ CM1M4 . coefficients

Output
3: g ∈ CM1M2 . spherical means

4: M4 :=
⌈
M3

√
2
⌉

5: s := (0, . . . ,M1 − 1)>

6: for l = 1, . . . ,M4 − 1 do

7: a :=
f̂s,l
l

8: b := e
πilN
2M3

cos 2πs
M1

9: hl,s := iFFT (FFT(a)� FFT(b))> . convolution
10: end for
11: gs,0 := 0
12: for j = 0, . . . ,M1 − 1 do
13: for k = 1, . . . ,M2 − 1 do
14: gj,k := M2M3

πkN

∑M4−1
l=1 hl,j sin πlNk

M2M3
. discrete sine transform

15: end for
16: end for
17: g := g +

∑M1−1
s=0 f̂s,0

Definition 37 (Voronoi regions and weights). Let a set Ω = {ζ1, . . . , ζM} ⊂ T2,
M ∈ N, be given. For s ∈ {1, . . . ,M}, the Voronoi regions Vs of ζs ∈ Ω and the
associated weights ws ≥ 0 are defined by

Vs :=
{
x ∈ T2 : |x− ζs| ≤ |x− η| for all η ∈ Ω \ {ζs}

}
and

ws :=

∫
T2

χVs(x)dx.

We will denote by W the collection of the weights to all elements ζ1 . . . , ζM ∈ Ω in
the diagonal matrix

W :=

w1

. . .

wM

 ∈ RM×M .

Remark 38. For reasons of simplicity we use the Voronoi weights from Definition 37
for the following procedure. Similar results can also be obtained by weights constructed
from another partition V1, . . . , VM ⊂ T2 of T2 with

⋃
· Ms=1 Vs = T2 and ζs ∈ Vs for all

s ∈ {1, . . . ,M}.
Definition 39 (Weighted norm). The weighted norm ‖ · ‖W : CM → [0,∞] for given
weights w1, . . . wM > 0, M ∈ N, is defined by

‖f‖W :=

(
M∑
s=1

ws|fs|2
) 1

2

.
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For a sufficiently large number of frequencies, the samples and related polar Fourier
coefficients are norm-equivalent in the following sense.

Theorem 40 ([23, Sec. 4.3],[2, Sec. 2.2]). Let δ > 0, a vector f = (fz)z∈JN ∈ CN2
,

N ∈ 2N, and a δ-dense set Ω = {ζ1, . . . , ζM} ⊂ T2 with associated Voronoi weights
w1, . . . , wM ≥ 0, M ∈ N, be given. With

f̃ : T2 → C, f̃(x) :=
∑
z∈JN

fze
−2πix·z, and f̃ :=

(
f̃ (ζs)

)
s∈{1,...,M}

,

it follows that∣∣∣‖f‖2 −
∥∥∥f̃∥∥∥

W

∣∣∣ ≤ (eπNδ
√

2 − 1
)
‖f‖2.

Proof. The main steps of this proof are given by [23, Sec. 4.3] and [2, Sec. 2.2], where
general dimensions d ∈ N are considered. We adapt this ideas to our two-dimensional
situation, but remark, that we use nonessential simplifications concerning the special
case d = 2.
For abbreviation, we define

ψs : T2 → {1, 0}, ψs := χVs , s ∈ {1, . . . ,M},

and with∥∥∥f̃∥∥∥2

W
=

M∑
s=1

ws

∣∣∣f̃s∣∣∣2 =
M∑
s=1

∣∣∣f̃s∣∣∣2 ∫
T2

ψs(x)dx =

∫
T2

M∑
s=1

∣∣∣f̃sψs(x)
∣∣∣2 dx

=

∫
T2

M∑
s=1

∣∣∣∣∣f̃sψs(x)
M∑
l=1

ψl(x)

∣∣∣∣∣
2

dx =

∫
T2

∣∣∣∣∣
M∑
l=1

f̃lψl(x)

∣∣∣∣∣
2

dx

=

∥∥∥∥∥
M∑
s=1

f̃sψs

∥∥∥∥∥
2

L2(T2)

,

the Parseval identity, and the reverse triangle inequality, it follows∣∣∣‖f‖2 −
∥∥∥f̃∥∥∥

W

∣∣∣ ≤ ∥∥∥∥∥f̃ −
M∑
s=1

f̃sψs

∥∥∥∥∥
L2(T2)

. (4.14)

Fixing s ∈ {1, . . . ,M} and x ∈ Vs, using the Taylor series around x, and applying the
Cauchy-Schwarz inequality, we obtain

∣∣∣f̃(x)− f̃ (ζs)
∣∣∣2 =

∣∣∣∣∣∣
∑

α∈N2
0\{0}

(x− ζs)
α

α!
Dαf̃(x)

∣∣∣∣∣∣
2

≤

 ∑
α∈N2

0\{0}

√
c‖α‖1 |(x− ζs)

α|√
α!

·
√
c−‖α‖1 |Dαf̃(x)|√

α!

2

≤

 ∑
α∈N2

0\{0}

c‖α‖1 (x− ζs)
2α

α!

 ∑
α∈N2

0\{0}

c−‖α‖1|Dαf̃(x)|2

α!

 (4.15)
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with c := πN
√

2
δ

. We continue with separate estimates of the two sums in equa-
tion (4.15). The binomial theorem yields∑

‖α‖1=k

k!

α!
(x− ζs)2α = |x− ζs|2k

and it follows∑
α∈N2

0\{0}

c‖α‖1 (x− ζs)
2α

α!
= −1 +

∞∑
k=0

ck

k!

∑
‖α‖1=k

k!

α!
(x− ζs)

2α

≤ −1 +
∞∑
k=0

(δ2c)
k

k!
= eδ

2c − 1 (4.16)

and furthermore, the Parseval identity and again the binomial theorem lead to

∫
T2

∑
α∈N2

0\{0}

c−‖α‖1
∣∣∣Dαf̃(x)

∣∣∣2
α!

dx =
∞∑
k=1

c−k

k!

∑
‖α‖1=k

k!

α!

∥∥∥Dαf̃
∥∥∥2

L2(T2)

=
∞∑
k=1

c−k

k!

∑
z∈JN

|fz|2
∑
‖α‖1=k

k!

α!
(2πz)2α

=
∞∑
k=1

c−k

k!

∑
z∈JN

|fz|2|2πz|2k

≤
∥∥∥f̃∥∥∥2

L2(T2)

∞∑
k=1

c−k
(
πN
√

2
)2k

k!

=

(
e

(πN
√
2)2

c − 1

)∥∥∥f̃∥∥∥2

L2(T2)
. (4.17)

Finally, combining equations (4.15), (4.16) and (4.17) results in∥∥∥∥∥f̃ −
M∑
s=1

f̃sψs

∥∥∥∥∥
2

L2(T2)

≤
M∑
s=1

∫
T2

∣∣∣f̃(x)− f̃ (ζs)
∣∣∣2 ψs(x)dx

≤
(

eδ
2c − 1

)(
e

(πN)2

c − 1

)∥∥∥f̃∥∥∥2

L2(T2)

=
(

eπNδ
√

2 − 1
)2 ∥∥∥f̃∥∥∥2

L2(T2)

and equation (4.14) completes the proof.

Let A be the matrix, whose adjoint A∗ assigns samples f to polar frequencies f̂ ,
f = A∗f̂ . Then, Theorem 40 implies the following statement about the eigenvalues
of A∗WA.

Corollary 41 (Eigenvalue version). Let δ > 0 and a δ-dense set

Ω = {ζ1, . . . , ζM} ⊂ T2
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with the associated Voronoi weights w1, . . . , wM ≥ 0, M ∈ N, be given. With

A :=
(
e−2πiζs·z

)
s∈{1,...,M},z∈JN

∈ CM×N2

the eigenvalues λ1, . . . , λN2 of the matrix A∗WA fulfill(
2− eπNδ

√
2
)2

≤ λ1, . . . , λN2 ≤ e2πNδ
√

2

in particular for δ < log 2

πN
√

2
, the matrix A∗WA has full rank N2.

Proof. We choose f ∈ CN2 \{0} arbitrarily, and set f̃ := Af and ε := eπNδ
√

2−1. From
Theorem 40 it follows∣∣∣‖f‖2 −

∥∥∥f̃∥∥∥
W

∣∣∣ ≤ ε‖f‖2,

which is equivalent to

(1− ε)2 ≤

∥∥∥f̃∥∥∥2

W

‖f‖2
2

≤ (1 + ε)2. (4.18)

Writing∥∥∥f̃∥∥∥2

W
=
∥∥∥W 1

2 f̃
∥∥∥2

2
= f̃∗W

1
2 W

1
2 f̃ = f̃∗Wf̃ = f∗A∗WAf

yields

(1− ε)2 ≤ f∗A∗WAf

f∗f
≤ (1 + ε)2

and hence, the matrix A∗WA has eigenvalues

λ1, . . . , λM ∈
[
(1− ε)2, (1 + ε)2

]
.

With the assumption δ < log 2

πN
√

2
, we obtain positive eigenvalues λ1, . . . , λN > 0 and

consequently, the matrix A∗WA has full rank in this case.

Theorem 40 can also be used to interpret the rows of the matrix A as elements of a
frame.

Definition 42 (Weighted frame). A set of vectors
{
bs ∈ CN

}
s∈{1,...,M}, M,N ∈ N,

is said to be a weighted frame for CN with weights w1, . . . , wM > 0, if there exist
constants A,B > 0 such that for all f ∈ CN the relation

A‖f‖2
2 ≤

M∑
s=1

ws |〈f ,bs〉|2 ≤ B‖f‖2
2

is valid. The constants A and B are called upper and lower frame bounds, respectively.
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The results from Corollary 41 provides directly frame bounds for the rows of the ma-
trix A.

Corollary 43 (Frame version). Let N ∈ N, 0 < δ < log 2

πN
√

2
, and a δ-dense set

Ω = {ζ1, . . . , ζM} ⊂ T2 with the associated Voronoi weights w1, . . . , wM ≥ 0, M ∈ N,
be given. With

A :=
(
e−2πiζs·z

)
s∈{1,...,M},z∈JN

∈ CM×N2

the set of rows
{

as := (As,JN )>
}
s∈{1,...,M}

of the matrix A is a weighted frame for CN2

with the frame bounds

A :=
(

2− eπNδ
√

2
)2

and B := e2πNδ
√

2.

Proof. We choose f ∈ CN2
arbitrarily, and set f̃ := Af and ε := eπNδ

√
2− 1. Analog to

Equation (4.18), we obtain

(1− ε)2‖f‖2
2 ≤

∥∥∥f̃∥∥∥2

W
≤ (1 + ε)2‖f‖2

2.

Writing

∥∥∥f̃∥∥∥2

W
=

M∑
s=1

ws

∣∣∣f̃s∣∣∣2 =
M∑
s=1

ws |〈f , as〉|2

yields the stated frame bounds A = (1− ε)2 and B = (1 + ε)2.





5
Inverse problem

Several applications in photoacoustic imaging require an inversion of the mean value
operator. More precise, let mean values g ∈ RM1M2 for center points y1, . . .yM1 ∈ R2,
M1 ∈ N, and radii r1, . . . , rM2 > 0, M2 ∈ N, be given. The task is to find a function
f : R2 → R , such that

Mf (yj, rk) = g for all j ∈ {1, . . . ,M1} and k ∈ {1, . . . ,M2} (5.1)

is fulfilled. Since we are restricted to finite data, we consider a discretization of
equation (5.1). Let a discretization parameter N ∈ 2N be given, we denote by
M ∈ RM1M2×N2

one of the discretizations of the mean value operator from Sec-
tion 4 with the modification for real data, see Remark 25. Typically, the function
f is discretized as the collection of samples on a regular Cartesian grid XN in a matrix
f ∈ RN×N ,

f ≈ (f(x))x∈XN .

For algorithmic reasons, we will denote by

f :=

 f:,1
...

f:,N

 ∈ RN2

the concatenation of the columns of the matrix f ∈ RN×N into a vector of length N2.
With this notation, equation (5.1) can be modified to the task of finding a vector
f ∈ RN2

, such that Mf = g is fulfilled.
However, we have to consider inaccuracies for different reasons. For example, there
are simplifications in the modelling of the whole process. Furthermore, instead of
continuous functions, we work with discrete data. Another fact is given by noisy
measurements, which are inevitable in applications. All in all, an existence of an
unique solution is not guaranteed and even if the system of equations has a solution,
the results are usually imprecise. To eliminate this issue, it is common to add a convex
regularizer R : RN2 → [0,∞) to favor solutions with some special characteristics, given
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by a-priori information from the specific application. This leads to the minimization
problem

min
f∈RN2

‖Mf − g‖2
2 +R(f). (5.2)

In medical imaging, a suitable assumption to the function f is smoothness away from
smooth curves. With a Fourier based approximation, we can expect a good processing
of the smooth areas, but for reconstruction of the edges, we have to utilize regulariza-
tion. In the following, we consider two variants, a total variation and a Shearlet based
approach.

5.1 Total variation based regularization

The total variation (TV) seminorm, having great success in image restoration [58],
is defined by mixed `1-`2-norms of discrete derivatives. Reducing the TV seminorm
leads to denoising, while edges are preserved. For the solution of the minimization
problem (5.2) with TV based regularization, we proceed with a detailed description
of an approach, whose main ideas are published in [13]. We start with a precise
formulation of the problem and present a numerical solution with the semismooth
Newton method afterwards.

5.1.1 Primal and dual problems

For a stable solution of minimization problems, it is advantageous to analyze the primal
and the dual problem, whose derivation requires some notations.

Definition 44. For a discretization parameter N ∈ N, we define the following discrete
gradient operators,

∇x ∈ RN2×N2

, (∇xf)l :=

{
0 for mod (l, N) = 0,

fl+1 − fl else,

∇y ∈ RN2×N2

, (∇yf)l :=

{
0 for l ∈ {N2 −N + 1, . . . , N2},
fN+l − fl for l ∈ {1, . . . , N2 −N + 1},

∇l ∈ R2×N2

, ∇lf :=

(
(∇xf)l
(∇yf)l

)
, l = 1, . . . , N2,

∇ ∈ R2N2×N2

, ∇f :=

 ∇1f
...

∇N2f

 .

Since these operators are linear, we interprete them also as matrices, so that in par-
ticular the transposes are well defined. We denote by

div := ∇> ∈ RN2×2N2

the discrete divergence operator.
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Definition 45. The total variation (TV) seminorm ‖ · ‖TV : RN2 → R for a discretiza-
tion parameter N ∈ N is given by

‖f‖TV :=
N2∑
l=1

‖∇lf‖2.

In addition to the natural Definition 45 of the TV seminorm we will also use the dual
representation.

Lemma 46. Let α > 0, N ∈ N, and f ∈ RN2
be given. Then, for

Pα :=
{

p ∈ R2N2

: ‖pl‖2 ≤ α for all l ∈ {1, . . . , N2}, pl :=
(
p2l−1 p2l

)> ∈ R2
}

it follows

α‖f‖TV = max
p∈Pα

f> div p.

Proof. Let f ∈ RN2
be arbitrarily. As a consequence from the Cauchy-Schwarz inequal-

ity we know

‖x‖2 = max
y∈R2,‖y‖2≤1

x>y (5.3)

and it follows

α‖f‖TV = α
N2∑
l=1

‖∇lf‖2 =
N2∑
l=1

max
pl∈R2,‖pl‖2≤α

f>∇>l pl = max
p∈Pα

f> div p.

For a better readability we introduce a matrix related inner product and the induced
norm.

Definition 47. Let a matrix A ∈ RM×N , M,N ∈ N, be given, such that A>A ∈ RN×N

is invertible. We define the inner product 〈·, ·〉A : RN × RN → R and the norm
‖ · ‖A : RN → R by

〈f ,g〉A := f>
(
A>A

)−1
g and ‖f‖A :=

√
〈f , f〉A.

Remark 48. For arbitrary center points and radii, and the associated discretization M
of the mean value operator, the invertibility of the matrix M>M is not given in general.
We assume that M>M is invertible and will add a small multiple of the identity matrix
if this is not the case.
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Combining the TV regularization with an `2-data-fitting term, we reconstruct the image
f by solving the minimization problem

min
f∈RN2

J0(f), J0 : RN2 → R, J0(f) :=
1

2
‖Mf − g‖2

2 + α‖f‖TV, (5.4)

where α > 0 is the regularization parameter to control the trade-off between a good
fitness to the data g and the smoothness from the TV term. However, since the
TV term is not differentiable, standard methods for minimizing of smooth functionals
cannot be applied. Using Lemma 46 and [39, Chapter VII.4] leads to

min
f∈RN2

J0(f) = max
p∈Pα

min
f∈RN2

1

2
‖Mf − g‖2

2 + f> div p. (5.5)

A solution f ∈ RN2
of the inner minimum satisfies

0 = M> (Mf − g
)

+ div p⇔ f = (M>M)−1
(
M>g − div p

)
.

Substituting this solution back to equation (5.5) results in

min
f∈RN2

J0(f) = max
p∈Pα

1

2

∥∥Mf
∥∥2

2
−
〈
Mf ,g

〉
+

1

2
‖g‖2

2 + (div p)> f

= max
p∈Pα

1

2

∥∥M(M>M)−1
(
M>g − div p

)∥∥2

2

−
〈
M(M>M)−1

(
M>g − div p

)
,g
〉

+
1

2
‖g‖2

2 + (div p)> (M>M)−1
(
M>g − div p

)
= max

p∈Pα

1

2

∥∥M>g
∥∥2

M
−
〈
M>g, div p

〉
M

+
1

2
‖div p‖2

M −
∥∥M>g

∥∥2

M

+
〈
M>g, div p

〉
M

+
1

2
‖g‖2

2 +
〈
M>g, div p

〉
M
− ‖div p‖2

M

= max
p∈Pα
−1

2

∥∥M>g
∥∥2

M
+
〈
M>g, div p

〉
M
− 1

2
‖div p‖2

M +
1

2
‖g‖2

2

and we obtain the dual maximization problem

max
p∈Pα
−1

2

∥∥M>g − div p
∥∥2

M
+

1

2
‖g‖2

2, α > 0. (5.6)

The kernel of the divergence operator div ∈ RN2×2N2
is nontrivial and this holds also

for the restricted domain Pα. Consequently, the solution of the dual maximization
problem (5.6) is not unique, which poses an algorithmic challenge. To overcome the
nondifferentiability of the TV term in the primal problem (5.4) as well as the nonunique-
ness of the solution of the dual problem (5.6), we replace similarly to [38] the TV term
locally by a quadratic regularization, controlled by a parameter γ > 0. This acts also
as a dual regularization, more precisely, we solve

min
f∈RN2

J (f), J : RN2 → R, J (f) :=
1

2
‖Mf−g‖2

2+
N2∑
l=1

Φα,γ,l(∇f), α, γ > 0, (5.7)

with the following definition of the Huber function [41].
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Definition 49. For a discretization parameter N ∈ N and regularization parameters
α, γ > 0, the Huber function Φα,γ,l : R2N2 → R, l ∈ {1, . . . , N2}, is defined by

Φα,γ,l(x) :=

{
α
2γ
‖xl‖2

2 for ‖xl‖2 < γ,

α
(
‖xl‖2 − γ

2

)
for ‖xl‖2 ≥ γ

with the notation xl =
(
x2l−1 x2l

)> ∈ R2 from Definition 45.

To motivate this construction of the Huber function, we give some additional remarks.

Remark 50. Definition 49 of the Huber function is essentially based on the norm

h : R→ [0,∞), h(x) := α‖x‖2 = α|x|, α > 0,

which is used in the Definition 45 of the TV seminorm. To avoid the nondifferentiability
in x = 0, we replace this norm by the quadratic map

h1 : R→ [0,∞), h1(x) := c1‖x‖2
2 = c1x

2, γ, c1 > 0,

in a neighbourhood (−γ, γ) of zero. Outside of this region in (−∞, γ]∪[γ,∞), the Huber
function is defined with the original norm h, shifted by c2 ∈ R to obtain a differentiable
function. With

h2 : R→ R, h2(x) := h(x) + c2 = α‖x‖2 + c2 = α|x|+ c2, α > 0, c2 ∈ R,

and the conditions

h1(±γ) = h2(±γ) and h′1(±γ) = h′2(±γ)

we arrive at

c1 :=
α

2γ
and c2 := −αγ

2
.

The resulting functions are illustrated in Figure 5.1.

Similar to Lemma 46 we continue with a dual representation of the regularization term
in (5.7).

Lemma 51. Let a discretization parameter N ∈ N and regularization parameters
α, γ > 0 be given. With the notations Pα and pl from Lemma 46 it follows for f ∈ RN2

the relation

N2∑
l=1

Φα,γ,l(∇f) = max
p∈Pα

f> div p− γ

2α

N2∑
l=1

‖pl‖2
2.

Proof. The convex conjugate

ϕ∗ : P → R, P :=

{
p ∈ R2 : sup

x∈R2

x>p− ϕ(x) <∞
}
,

of a convex function ϕ : R2 → R is defined by

ϕ∗(p) := sup
x∈R2

x>p− ϕ(x).
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−γ 0 γ

0

1

x

Figure 5.1: The maps from Definition 50, which are the basis for the TV seminorm,
h(x) (dashed), and for the Huber function, h1(x) (solid) and h2(x) (dotted),
with α = γ = 1.

We consider the function

ϕ : R2 → R, ϕ(x) := Φα,γ,1

((
x
0

))
=

{
α
2γ
‖x‖2

2 for ‖x‖2 < γ,

α
(
‖x‖2 − γ

2

)
for ‖x‖2 ≥ γ.

For p ∈ R2, ‖p‖2 > α, we obtain

sup
x∈R2

x>p− ϕ(x) ≥ lim
n→∞

(np)>p− ϕ(np) = lim
n→∞

n‖p‖2 (‖p‖2 − α) +
αγ

2
=∞,

and therefore, we assume p ∈ R2, ‖p‖2 ≤ α, in the following steps. A maximizer
x ∈ R2 of

max
x∈R2

x>p− ϕ(x) (5.8)

fulfills

0 =

{
p− α

γ
x for ‖x‖2 < γ,

p− α
‖x‖2

x for ‖x‖2 ≥ γ,
(5.9)

and consequently, it exists a maximum of equation (5.8) in x = γ
α
p with the function

value γ
2α
‖p‖2

2. From the Cauchy-Schwarz inequality it follows

sup
x∈R2,‖x‖2≥γ

x>p− α
(
‖x‖2 −

γ

2

)
≤ sup

x∈R2,‖x‖2≥ γ(‖p‖2+α)2α

‖x‖2 (‖p‖2 − α) +
αγ

2

=
γ (‖p‖2 + α)

2α
(‖p‖2 − α) +

αγ

2
=

γ

2α
‖p‖2

2,

which leads to

sup
x∈R2

x>p− ϕ(x) = max
x∈R2

x>p− ϕ(x),

and we obtain the convex conjugate

ϕ∗ : {p ∈ R2 : ‖p‖2 ≤ α} → R, ϕ∗(p) =
γ

2α
‖p‖2

2.
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With [40, Chapter X, Corollary 1.3.6], for x ∈ R2 it follows

ϕ(x) = ϕ∗∗(x) = sup
p∈R2,‖p‖2≤α

x>p− γ

2α
‖p‖2

2 = max
p∈R2,‖p‖2≤α

x>p− γ

2α
‖p‖2

2,

which leads to

N2∑
l=1

Φα,γ,l(∇f) =
N2∑
l=1

max
pl∈R2:‖pl‖2≤α

f>∇>pl −
γ

2α
‖pl‖2

2

and this proves the assertion.

With Lemma 51 and [39, Chapter VII.4], we obtain

min
f∈RN2

J (f) = min
f∈RN2

1

2
‖Mf − g‖2

2 + max
p∈Pα

f> div p− γ

2α

N2∑
l=1

‖pl‖2
2

= max
p∈Pα

min
f∈RN2

1

2
‖Mf − g‖2

2 + f> div p− γ

2α

N2∑
l=1

‖pl‖2
2.

Since the sum is independent of f , we can use the results from the derivation of equa-
tion (5.6) and conclude, that the primal minimization problem (5.7) is equivalent to
the dual maximization problem

max
p∈Pα
−1

2

∥∥M>g − div p
∥∥2

M
+

1

2
‖g‖2

2 −
γ

2α

N2∑
l=1

‖pl‖2
2, α, γ > 0. (5.10)

For a better understanding of the workflow, we summarize the previous optimization
problems.

Remark 52. We start with the primal problem

min
f∈RN2

1

2
‖Mf − g‖2

2 + α‖f‖TV, (5.11)

which is equivalent to the dual problem

max
p∈Pα
−1

2

∥∥M>g − div p
∥∥2

M
+

1

2
‖g‖2

2, (5.12)

where the regularization parameter α > 0 controls the trade-off between a good fitness to
the data g and the smoothness from the TV term. To overcome the nondifferentiablity of
the primal problem (5.4) and the nonuniqueness of the dual problem (5.6), we consider
the modified primal problem

min
f∈RN2

1

2
‖Mf − g‖2

2 +
N2∑
l=1

Φα,γ,l(∇f) (5.13)

with the associated dual problem

max
p∈Pα
−1

2

∥∥M>g − div p
∥∥2

M
+

1

2
‖g‖2

2 −
γ

2α

N2∑
l=1

‖pl‖2
2, (5.14)
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where the parameter γ > 0 regulates the balance between quadratic regularization and
the TV term. Roughly speaking, large γ leads to smooths edges and benefits the numer-
ical computation. On the other hand, small γ leads to good edge preservation due to
the nondifferentiability of the TV term.

To establish a connection between the original optimization problem (5.4) and the
modified problem (5.7), we refer to a result from [38].

Lemma 53. Let f be a solution of (5.4) and fγ be a solution of (5.7). Then, fγ
converges to f for γ → 0.

Proof. See [38, Theorem 2.2].

5.1.2 Numerical solution

Let f ∈ RN2
be a solution of the primal problem (5.7). Based on equation (5.9),

p :=

 p1
...

pN2

 , pl :=


α
γ
∇lf ∈ RN2

for
∥∥∇lf

∥∥
2
< γ,

α

‖∇lf‖
2

∇lf for
∥∥∇lf

∥∥
2
≥ γ,

is a solution of the dual problem (5.10). From the first order optimality condition for
equation (5.7), it follows

0 = M> (Mf − g
)

+
N2∑
l=1

∇>l pl = M> (Mf − g
)

+ div p,

which is equivalent to the system of equations(
F1(f ,p)
F2(f ,p)

)
= 0 (5.15)

where the functions F1 : RN2 × R2N2 → RN2
, F2 : RN2 × R2N2 → R2N2

, and

F2,l : RN2 × R2N2 → R2, l ∈ {1, . . . , N2},

are given by

F1(f ,p) := M> (Mf − g) + div p, F2 :=

 F2,1
...

F2,N2

 , (5.16)

and

F2,l(f ,p) := α∇lf −max {γ, ‖∇lf‖2}pl

=

{
α∇lf − γpl for ‖∇lf‖2 < γ,

α∇lf − ‖∇lf‖2 pl for ‖∇lf‖2 ≥ γ.

(5.17)

A well-known method for solving such a system numerically, is the Newton method, but
the presence of the max-operator with the nondifferentiability as consequence prevents
us to use the standard formulation. Similar to [22, 37], we apply the semismooth or
generalized Newton method, which requires the introduction of a generalized derivative.
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Definition 54. A function f : RN1 → RN2 , N1, N2 ∈ N, is called Newton (or slantly)
differentiable on RN1 , if there exists a mapping G : RN1 → L

(
RN1 ,RN2

)
with

lim
h→0
h6=0

‖f(x + h)− f(x)− (G(x + h)) (h)‖2

‖h‖2

= 0 for all x ∈ RN1 .

The function G is called a generalized derivative (or slanting function) for f .

Remark 55. If the function f is differentiable in x, then there exists a generalized
derivative G for f in x with G(x) = J, where J denotes the Jacobian matrix of f in x.

For a system of equations F (x) = 0, a iteration step of the semismooth Newton method
is given by

x(k+1) = x(k) −
(
G
(
x(k)
))−1 (

F
(
x(k)
))
, k ∈ N ∪ {0}.

With the methods from [22], we obtain, that there are general derivatives

G1 : RN2 × R2N2 → L
(
RN2 × R2N2

,RN2
)

and

G2 : RN2 × R2N2 → L
(
RN2 × R2N2

,R2N2
)

for the functions F1 and F2, see equations (5.16) and (5.17), with

G
(k)
1 := G1

(
f (k),p(k)

)
=
(
M>M ∇>

)
∈ RN2×3N2

and

G
(k)
2 := G2

(
f (k),p(k)

)
=
(
A(k) D(k)

)
∈ R2N2×3N2

, k ∈ N ∪ {0}.

Here, we use for l ∈ {1, . . . , N2} and k ∈ N ∪ {0} the following notations,

D(k) :=

D
(k)
1 0

. . .

0 D
(k)

N2

 ∈ R2N2×2N2

,

D
(k)
l := −max

{
γ,
∥∥∇lf

(k)
∥∥

2

}
I2×2 ∈ R2×2,

and

A(k) := α∇− χ(k)P(k)B(k)∇ ∈ R2N2×N2

,

χ(k) :=

χ
(k)
1 I2×2 0

. . .

0 χ
(k)

N2I2×2

 ∈ R2N2×2N2

, χ
(k)
l :=

{
0 for

∥∥∇lf
(k)
∥∥

2
< γ,

1 for
∥∥∇lf

(k)
∥∥

2
≥ γ,

P(k) := diag p(k) =

p
(k)
1 0

. . .

0 p
(k)

2N2

 ∈ R2N2×2N2

,
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B(k) :=



(
∇1f

(k) ∇1f
(k)

)>
‖∇1f (k)‖

2

0

. . .

0

(
∇N2f (k) ∇N2f (k)

)>
‖∇N2 f (k)‖

2

 ∈ R2N2×2N2

.

Each Newton step for solving the system (5.15) is given by(
f (k+1)

p(k+1)

)
=

(
f (k)

p(k)

)
+

(
δ

(k)
f

δ(k)
p

)
,

(
M>M ∇>
A(k) D(k)

)(
δ

(k)
f

δ(k)
p

)
= −

(
F1

(
f (k),p(k)

)
F2

(
f (k),p(k)

))
and from the lower block it follows

δ(k)
p = −

(
D(k)

)−1
(
A(k)δ

(k)
f + F2

(
f (k),p(k)

))
. (5.18)

Together with the first block, this leads to

M>Mδ
(k)
f −∇>

(
D(k)

)−1
(
A(k)δ

(k)
f + F2

(
f (k),p(k)

))
= −F1

(
f (k),p(k)

)
⇔
(
M>M−∇>

(
D(k)

)−1
A(k)

)
δ

(k)
f = −F1

(
f (k),p(k)

)
+ ∇>

(
D(k)

)−1
F2

(
f (k),p(k)

)
⇔
(
M>M−∇>

(
D(k)

)−1
A(k)

)
δ

(k)
f = −M> (Mf (k) − g

)
+ α∇>

(
D(k)

)−1 ∇f (k)

and again with equation (5.18), we obtain

p(k+1) = p(k) + δ(k)
p = p(k) −

(
D(k)

)−1
(
A(k)δ

(k)
f + F2

(
f (k),p(k)

))
= −

(
D(k)

)−1
(
A(k)δ

(k)
f + α∇f (k)

)
= −

(
D(k)

)−1
(
α∇f (k+1) − χ(k)P(k)B(k)∇δ(k)

f

)
.

Algorithm 8 summarizes the results of the previous computations.

5.2 Shearlet based regularization

Shearlets are a representation system, generated by translations, scalings, and shearings
of a so-called mother Shearlet. Roughly speaking, the shearing operation is something
like a rotation, which allows to capture directional features like edges. Moreover, Shear-
lets provide a sparse decomposition of images which are smooth away from smooth
curves. These features motivate to regularize the reconstruction by searching for so-
lutions with sparse Shearlet decompositions. Since a small `1-norm provokes sparsity,
we consider the minimization problem

min
f∈RN2

‖Mf − g‖2
2 + λ‖Sf‖1, λ > 0, (5.19)

where S is the discrete operator, which assigns a vector its Shearlet coefficients. We
continue with a short introduction to Shearlets and present an approach for solving
the minimizing problem in equation (5.19) with the alternating direction method of
multipliers. Finally, we construct a modification of the fast finite Shearlet transform,
which fits to the polar frequency grid from Section 4.2.2.



5.2 Shearlet based regularization 53

Algorithm 8 Inversion of the discrete mean value operator, using a generalized Newton
method and total variation based regularization.

Input
1: N ∈ 2N, M1 ∈ N, M2 ∈ N . discretization parameters
2: M ∈ RM1M2×N2

. discrete mean value operator
3: g ∈ RM1M2 . mean values
4: α > 0 . regularization parameter
5: γ > 0 . trade-off between quadratic and TV regularization

Output
6: f ∈ RN2

. reconstruction, Mf ≈ g

7: f (0) ∈ RN2
, p(0) ∈ R2N2

. initialization
8: k := 0
9: repeat

10: create A(k), D(k), B(k) and χ(k)

11: A :=
(
M>M−∇>

(
D(k)

)−1
A(k)

)
12: b := −M> (Mf (k) − g

)
+ α∇>

(
D(k)

)−1 ∇f (k)

13: δ
(k)
f := solution of Aδ

(k)
f = b . linear system of equations

14: f (k+1) := f (k) + δ
(k)
f . update of the primal variable

15: p(k+1) := −
(
D(k)

)−1
(
α∇f (k+1) − χ(k)P(k)B(k)∇δ(k)

f

)
. update of the dual

variable
16: k := k + 1
17: until a convergence criterion is reached
18: f := f (k)
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5.2.1 Directional representation systems

Many applications ask for representation systems, which allow highly sparse approxi-
mations of functions. For one-dimensional signals, Wavelets [54] and their associated
transforms provide those features and became a successful tool for detection and an-
alyzing of pointwise singularities. However, Wavelets are not qualified for an optimal
handling of multivariate functions, since they are deficient in dealing with anisotropic
features. Starting from this fact, a variety of different representation systems were in-
troduced with the goal to achieve an optimal sparse approximation of two-dimensional
functions in the sense of the decay rate of the L2-error of the best N -term approxi-
mation. The system of Curvelets [9] achieves such an optimal behaviour for functions
that are C2 except for discontinuities along C2 curves, so-called cartoon-like functions,
which were introduced in [14]. Since the rotation operation requires a frequency par-
tition on polar grids, the discretization for images, sampled on Cartesian grids, is very
challenging [8]. This fact motivated the development of Contourlets [12], but in con-
trast to Wavelets, there is no unified treatment of the continuous and the discrete
theory for both Curvelets and Contourlets, and hence, the implementation differs from
the continuous theory. Shearlets [52, 24] were introduced to provide a framework with
an optimal sparse approximation of cartoon-like functions on the one side and with a
faithful implementation on the other side. Since the further considerations focus on the
application of Shearlets we will not go into any more detail, but note shortly, that there
exist also many other representation systems such as anisotropic Wavelets, Bandlets,
Ridgelets, Wedgelets, and so on.

5.2.2 Implementations of Shearlet transforms

From the construction of the Shearlets, the implementation can be realized by a natural
discretization of the continuous theory. Currently, there are three toolboxes available,
published as Local Shearlet Toolbox [15], ShearLab [50, 53, 49, 51] and fast finite
Shearlet transform (FFST) [36, 35], see the given references for details. Since the
algorithms related to this thesis are implemented with the FFST, we continue with a
basic overview to the construction of the implemented Shearlet system following [36].
We start with a so-called mother Shearlet ψ : R2 → R, which is defined by its Fourier
transform

ψ̂ : R2 → R, ψ̂(ω1, ω2) := ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
,

where ψ1 : R → R behaves like a Wavelet and ψ2 : R → R like a spline, such that
ψ̂ consists of two wedges, see Figure 5.2a. Figure 5.2b shows the mother Shearlet in
the spatial domain. The whole system of Shearlets is constructed by dilations a > 0,
shearings s ∈ R, and translations t ∈ R2 of the mother Shearlet ψ in the following way,

ψa,s,t : R2 → R, ψa,s,t(x) := a−
3
4ψ
(
A−1
a S−1

s (x− t)
)
,

with

Aa :=

(
a 0
0
√
a

)
and Ss :=

(
1 s
0 1

)
.
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Figure 5.2 illustrates the dilation and shearing operations. In addition, there are some
more technical issues necessary, for example the treatment of lower frequencies and
the arrangement into cones. For simplicity, we skip these details in the following. The
continuous Shearlet transform S of a square-integrable function f ∈ L2(R2) is defined
by

(Sf) (a, s, t) := 〈f, ψa,s,t〉 .

The discretization is done in two steps. For a discretization parameter N ∈ 2N, we
start with the discretization of the parameters,

aj :=
1

4j
, j ∈ {0, . . . , j0 − 1} , j0 :=

⌈
1

2
log2N

⌉
,

sj,k :=
k

2j
, k ∈ {−kj, . . . , kj} , kj ∈ N,

and

tm :=
m

N
, m ∈ [0, N − 1]2 ∩ Z2.

We note, that in particular this discretization of the shearing operation s ∈ R is an
oversimplification. As mentioned before, an efficient implementation requires some
additional technical details. We obtain continuous Shearlets with discrete parameters,

ψD
j,k,m : R2 → R, ψD

j,k,m(x) := ψaj ,sj,k,tm(x).

Secondly, we replace continuous functions by function samples on a grid. In particular,
we define discrete Shearlets Ψj,k,m ∈ CN2

by their discrete Fourier transforms

Ψ̂j,k,m :=
(
ψ̂D
j,k,m(ω)

)
ω∈JN

∈ RN2

.

We denote by η the number of scales and shears,

η :=

j0−1∑
j=0

(2kj + 1)

and define the discrete Shearlet transform Sf ∈ CηN2
of a vector f ∈ RN2

by

(Sf)j,k,m := 〈f ,Ψj,k,m〉 .

With Parseval’s identity, it follows

(Sf)j,k,m :=
〈
f̂ , Ψ̂j,k,m

〉
,

which leads to computations of fast Fourier transforms. This system of discrete Shear-
lets constitute a Parseval frame and consequently, the inverse transform is given by
the transpose operator. Here we stop this rough introduction to the FFST and refer
to [36] for a detailed and extensive description.
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(a) ψ̂(ω) = ψ̂1,0,0(ω) (b) ψ(x) = ψ1,0,0(x)

(c) ψ̂0.5,0,0(ω) (d) ψ0.5,0,0(x)

(e) ψ̂0.5,1,0(ω) (f) ψ0.5,1,0(x)

Figure 5.2: The mother Shearlet (first row) and dilated and sheared versions (second
and third row). The left column shows the Fourier transforms and the right
the appropriate functions in the spatial domain.
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5.2.3 Numerical solution

In order to solve the minimization problem in equation (5.19), we use the strategy of
a similar work about seismic data reconstruction via Shearlet-regularized directional
inpainting [34]. One difference is the fact, that we deal with the discrete mean operator
M instead of a diagonal matrix, which requires to solve additionally a linear system of
equations.
We start by rewriting the minimization problem (5.19) as

min
f∈RN2 ,v∈RηN2

‖Mf − g‖2
2 + λ‖v‖1 subject to Sf = v, λ > 0. (5.20)

With

A := S, B := −I, c := 0,

and the convex functions F1 : RN2 → R and F2 : RηN2 → R,

F1(f) := ‖Mf − g‖2
2 and F2(v) := λ‖v‖1,

equation (5.20) is equivalent to

min
x∈Rn1 ,y∈Rn2

F1(x) + F2(y) subject to Ax + By = c.

As well as in [35, 34], we apply the alternating direction method of multipliers (ADMM)
[7] to solve this minimization problem. The scaled form of the ADMM consists of the
iterations

f (k+1) := argmin
f∈RN2

(
‖Mf − g‖2

2 +
ρ

2

∥∥Sf − v(k) + u(k)
∥∥2

2

)
, (5.21)

v(k+1) := argmin
v∈RηN2

(
λ‖v‖1 +

ρ

2

∥∥Sf (k+1) − v + u(k)
∥∥2

2

)
, and (5.22)

u(k+1) := u(k) + Sf (k+1) − v(k+1), (5.23)

where ρ > 0 penalizes the constraint Sf = v, see Algorithm 9 for the complete proce-
dure.
While the computation of the update of the variable u in equation (5.23) is straight-
forward, we comment on the first two steps. Since the square of the `2-norm is differ-
entiable, we compute

∇f

(
‖Mf − g‖2

2 +
ρ

2

∥∥Sf − v(k) + u(k)
∥∥2

2

)
= 2M>(Mf − g) + ρS>

(
Sf − v(k) + u(k)

)
=
(
2M>M + ρS>S

)
f − 2M>g + ρS>

(
u(k) − v(k)

)
and due to the convexity, the solution for the minimization problem (5.21) is given by
the solution of the symmetric system of linear equations(

M>M +
ρ

2
S>S

)
f (k+1) = M>g +

ρ

2
S>
(
v(k) − u(k)

)
. (5.24)
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Algorithm 9 Inversion of the discrete mean value operator, using ADMM and Shearlet
based regularization.

Input
1: N ∈ 2N, M1 ∈ N, M2 ∈ N . discretization parameters
2: M ∈ RM1M2×N2

. discrete mean value operator
3: g ∈ RM1M2 . mean values
4: η ∈ N . number of scales and shears
5: S ∈ RηN2×N2

. discrete Shearlet operator
6: λ, ρ > 0 . penalty parameters

Output
7: f ∈ RN2

. reconstruction, Mf ≈ g

8: v(0),u(0) ∈ RηN2
. initialization

9: k := 0
10: repeat

11: f (k+1) := argminf∈RN2 ‖Mf − g‖2
2 + ρ

2

∥∥Sf − v(k) + u(k)
∥∥2

2

12: v(k+1) := argminv∈RηN2 λ‖v‖1 + ρ
2

∥∥Sf (k+1) − v + u(k)
∥∥2

2

13: u(k+1) := u(k) + Sf (k+1) − v(k+1)

14: k := k + 1
15: until a convergence criterion is reached
16: f := f (k)

The second step in equation (5.23) can be minimized by

v(k+1) := Tλ
ρ

(
Sf (k+1) + u(k)

)
,

see [19], where the componentwise soft-shrinkage operator Tγ : RηN2 → RηN2
for a

threshold γ > 0 is defined by

(Tγ(x))k :=


xk − γ for xk > γ,

0 for xk ∈ [−γ, γ],

xk + γ for xk < −γ,

with k = 1, 2, . . . , ηN2.

5.2.4 Shearlets on polar frequency grids

The presented Shearlets in the previous section are defined by samples on a Cartesian
Fourier grid. While the appropriate shearing operation leads to deformations of the
wedges, a more natural approach is given by using rotations instead of shearings. Ac-
tually, the continuous theory of Curvelets [9] is based on this fact, but the rotational
invariance is not preserved in the associated discretization [8]. In the following, we
suggest a modification of the Shearlet system [36, 35] for polar frequency grids, where
rotations are also used in the discretization. This approach fits perfectly to the compu-
tation of mean values of functions, which are given by Fourier series with frequencies
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on polar grids, see Section 4.2.2. Analog to [36], we start with auxiliary functions

v : R→ R, v(x) :=


0 for x < 0,

35x4 − 84x5 + 70x6 − 20x7 for 0 ≤ x ≤ 1,

1 for x > 1,

(5.25)

and

b : [0,∞)→ R, b(r) :=


sin
(
π
2
v (r − 1)

)
for 1 ≤ r ≤ 2,

cos
(
π
2
v
(

1
2
r − 1

))
for 2 < r ≤ 4,

0 otherwise,

(5.26)
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Figure 5.3: Auxiliary functions v (left) and b (right) from equations (5.25) and (5.26).

see also Figure 5.3. The radial part is defined by dilations of a Wavelet,

ψ̂1 : [0,∞)→ R, ψ̂1(r) :=
√
b2(2r) + b2(r),

ψ̂1,j : [0,∞)→ R, ψ̂1,j(r) := ψ̂1(4−jr), j ∈ N,
(5.27)

and for the lower frequencies we use

ϕ̂ : R→ R, ϕ̂(r) :=


1 for 0 ≤ r ≤ 1

2
,

cos
(
π
2
v (2r − 1)

)
for 1

2
< r < 1,

0 otherwise.

(5.28)

Figure 5.4 shows this functions and the following Lemma 56 states some remarkable
properties.

Lemma 56. Let a discretization parameter N ∈ 2N be given. For j ∈ N, the functions
ψ̂1,j, see equation (5.27), fulfill

supp ψ̂1,j =
[
22j−1, 22j+2

]
and ψ̂1,j(r) = 1 for r ∈ [22j, 22j+1]



60 5 Inverse problem
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(a) ϕ̂(r) (dashed), ψ̂1(r) = ψ̂1,0(r) (solid), and

ψ̂1,1(r) (dotted).
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(b) ψ̂2,0(θ) = ψ̂2,0,0(θ) (solid) and ψ̂2,0,1(θ)
(dashed).

Figure 5.4: Wavelets for the radial part (left) and splines for the angular part (right)
from equations (5.27), (5.28) and (5.29).

and for r ∈
[
0, N

2

]
it follows

|ϕ̂(r)|2 +

j0−1∑
j=0

∣∣∣ψ̂1,j(r)
∣∣∣2 = 1, j0 :=

1

2
log2N.

Proof. The assertion follows from [36, Theorem 2.2].

We build the angular part with the splines

ψ̂2,j : πT→ R, ψ̂2,j(θ) :=


√
v
(
1 + 2j+2θ

π

)
for θ ≤ 0,√

v
(
1− 2j+2θ

π

)
for θ > 0,

and

ψ̂2,j,k : πT→ R, ψ̂2,j,k(θ) := ψ̂2

(
θ − kπ

2j+2

)
+ ψ̂2

(
θ + π − kπ

2j+2

)
, (5.29)

where j ∈ N0 and k ∈ Z. Similar to Lemma 56, we obtain the following statement.

Lemma 57. For j ∈ N0 and θ ∈ πT, the functions ψ̂2,j,k, see equation (5.29), fulfill

2j+2−1∑
k=0

|ψ̂2,j,k(θ)|2 = 1.

Proof. The assertion follows from [36, Theorem 2.5].

Merging the radial and the angular parts leads to

ψ̂j,k : πT× [0,∞)→ R, ψ̂j,k(θ, r) := ψ̂1,j(r)ψ̂2,j,k(θ) (5.30)
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and

φ̂ : πT× [0,∞)→ R, φ̂(θ, r) := ϕ̂(r),

which produces again a partition of unity.

Corollary 58. For a discretization parameter N ∈ 2N and (r, θ) ∈
[
0, N

2

]
× πT it

follows∣∣∣φ̂(θ, r)
∣∣∣2 +

j0−1∑
j=0

2j+2−1∑
k=0

∣∣∣ψ̂j,k(θ, r)∣∣∣2 = 1, j0 =
1

2
log2N.

Proof. The assertion is a direct consequence of Lemmas 56 and 57.

Summing up, with equation (5.30), we obtain a function system, which is similar to
the Shearlets system in [36], see also Figure 5.5 for a visualization. The use of polar
coordinates causes the replacement of the shearing operations by rotations, which are
more natural. Since the design of Curvelets [9] is based on this concept, we can also
interpret the following procedure as an alternative discretization of Curvelets with polar
frequencies. A straightforward discretization of (5.30) leads to the following definition.

Definition 59. Let discretization parameters N ∈ 2N and M1,M3 ∈ N be given.
Analog to equation (4.11), for s ∈ {0, . . . ,M1 − 1} and l ∈ {0, . . . ,M3 − 1} we denote

θs := cos
2πs

M1

, rl :=
lN

2M3

, and ξs,l := rl

(
cos θs
sin θs

)
,

and define the system of discrete polar Curvelets by

Φ̂m :=
(
φ̂ (θs, rl) e−2πiξs,l·(m

N
+ 1

2N )
)
s∈{0,...,M1−1},l∈{0,...,M3−1}

∈ CM1×M3 ,

and

Ψ̂j,k,m :=
(
ψ̂j,k (θs, rl) e−2πiξs,l·(m

N
+ 1

2N )
)
s∈{0,...,M1−1},l∈{0,...,M3−1}

∈ CM1×M3

with

j ∈
{

0, . . . ,
1

2
log2N − 1

}
, k ∈

{
0, . . . , 2j+2 − 1

}
, and m ∈ JN .

Finally, the discrete polar Curvelet coefficients of a vector f̂ ∈ CM1M3 are given by

cm

(
f̂
)

:=
〈
f̂ , Φ̂m

〉
and cj,k,m

(
f̂
)

:=
〈
f̂ , Ψ̂j,k,m

〉
.

For the implementation of the polar Curvelet transform from Definition 59 we fix
m ∈ JN and consider〈

f̂ , Φ̂m

〉
=

M1−1∑
s=0

M3−1∑
l=0

f̂s,l

(
Φ̂m

)
s,l

=

M1−1∑
s=0

M3−1∑
l=0

f̂s,l

(
Φ̂0

)
s,l

e−
2πi
N
ξs,l·(m+ 1

2)

=

M1−1∑
s=0

M3−1∑
l=0

(
f̂s,l

(
Φ̂0

)
s,l

e−
πi
N
ξs,l·1

)
e

2πi
(
−

ξk,l
N

)
·m
.
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For all m ∈ JN , this can efficiently be computed by an adjoint nonequispaced fast
Fourier transform [43]. For the remaining Curvelets Ψj,k,m, exactly the same procedure
leads to an adjoint NFFT for each (j, k). For fixed (s, l) ∈ {0, . . . ,M1−1}×{0, . . . ,M3−
1}, the transpose operator is given by

âs,l :=
∑

m∈JN

cm

(
Φ̂m

)
s,l

=
∑

m∈JN

cm

(
Φ̂0

)
s,l

e−
2πi
N
ξs,l·(m+ 1

2)

=
(
Φ̂0

)
s,l

e−
πi
N
ξs,l·1

∑
m

cme
−2πi

(
−

ξs,l
N

)
·m

and the application of a NFFT produces the entire vector a ∈ RM1M3 . If we perform a
NFFT for the remaining blocks cj,k,: and denote the output by aj,k, then the transpose
Curvelet transform of coefficients c is given by

a +

j0−1∑
j=0

2j+2−1∑
k=0

aj,k.

Remark 60. Since Parseval’s identity does not hold for the polar frequencies, the
derived Curvelet system provides no Parseval frame and consequently, in contrast to
the Shearlet system in [36, section 3.3], the inverse transform is not given by the
transpose operator and requires a more sophisticated approach.
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(a) ψ̂0,0(ω) (b) ψ0,0(x)

(c) ψ̂1,0(ω) (d) ψ1,0(x)

(e) ψ̂1,3(ω) (f) ψ1,3(x)

Figure 5.5: The mother Curvelet (first row) and scaled and rotated versions (second
and third row). The left column shows the Fourier transforms and on the
right are the appropriate functions in the spatial domain.





6
Implementation

In the previous chapters we presented different algorithms for an efficient computation
and inversion of mean value operators. The implementation of these methods is an
essential part of this thesis and the result is a Matlab toolbox, that contains the derived
algorithms as well as thematically related work. The software is designed to enable the
improvement and extension potentially by multiple developers, realized by thematically
splitting of the code and organizing of the files in clear structured directories. Further
features are the verification of input data and the output of meaningful error messages.
Since the considered operators are linear, a theoretically realization of the algorithms
is given by the creation of full matrices. This concept involves a well-known handling
of the operators with the built-in capabilities of matrix operations in Matlab, but is
also limited by the amount of the main memory and therefore not qualified for typical
applications. Indeed, the previous algorithms are formulated with other techniques, but
in order to provide a simple usage of the toolbox, the implementation is designed to
support relevant methods from Matlab for working with matrices, for example mtimes,
mldivide, and transpose. As consequence, many commands are similar to the matrix
operations in Matlab and independent of the specific realization.
The developed toolbox is implemented by object-oriented programming in Matlab,
which is based on structuring the code into classes and complies perfectly with the
desired concept. Figure 6.1 shows the hierarchical structured division of the algorithms
into classes. The file names are chosen to be as much as possible self-explanatory and
numbers indicates the spatial dimension. Many examples for the different settings are
given by the included scripts starting with test, and documentation can be obtained
with the help or doc command.
Due to the object-oriented design, other existing projects with compatible licenses can
efficiently be integrated into the toolbox with the possibility for continuing develop-
ments. Our toolbox [27] is currently available on

http://torstengoerner.de/software/

under the GNU General Public License version 3 as published by the Free Software
Foundation [20].
We proceed with a short overview to object-oriented programming, and describe the
main concepts of the different classes in the toolbox afterwards.

http://torstengoerner.de/software/


66 6 Implementation

util

admm

dpct

ffst

geometry

phantom

phantom2ellipse

phantom2quarteredhat

phantom2shepplogan

phantom2smiley

phantom3balls

phantomhat

polfreq

smv

smv2fourier

smv2pp

smv3fourier

smv3pp

smv reco summethods

wave2

wave2fourier

wave2pp

tviter

Figure 6.1: Hierarchical structure of the implemented classes in the Matlab toolbox.
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6.1 Object-oriented programming in Matlab

Object-oriented programming is a model, which describes the connections between the
algorithms and the data by objects, in most popular languages so-called instances of
classes. This approach confirms basically with the human mind and produces a clear
structured code with an improved readability. It allows for a manageable realization of
complex problems and provides simplified maintenance and extension of projects. This
structured framework leads also to a consistent modelling of the problems and implies
a higher independence of the specific hardware and software environment. However,
the overhead from the organization of the complete data structure can cause some
additional computational effort and might result in a lower performance.
We continue with a short introduction to the workflow of object-oriented programming
in Matlab and give some examples from our toolbox. The basis builds the definition
of classes, which specifies mainly the properties, the constructor, the destructor and
further methods. For utilizing a class, we have to create an instance, also called ob-
ject, by invoking the constructor, which has the same name as the class. Each data
structure, which results from this procedure, is characterized by the assigned values
in the properties. Afterwards, we can work with these objects by applying methods
from the class definition. Here, the specific processing and output depends on the set
properties in the object. In order to delete objects, in some cases it is necessary to
execute additional commands. For this purpose, we can define a destructor, which is
automatically called during the delete process and implemented by the method delete

in Matlab.
For instance, an object of the geometry class for spatial dimension d = 2 with dis-
cretization parameter N = 64 is generated by

obj=geometry(2,’N’,64).

We can retrieve the properties for the spatial dimension d or the discretization param-
eter N by calling

d=obj.d or N=obj.N

and the current grid can be obtained by invoking the method

[X1,X2]=mk grid(obj).

Finally, we point out concepts in Matlab, which improve the organization of the code
and are also used in the developed toolbox.
For complex projects, it is advantageous to split the code into files and folders, which
can be realized by using @-folders. This allows to put all files for a class into an own
folder, which has the same name as the class starting with the symbol @, and offers
the possibility to save methods in separate files. Instead of adding all needed @-folders
to the Matlab path, we have only to ensure, that their parent folders are on the path.
It is also possible to generate a hierarchy of classes to avoid duplicating code. The main
idea is to define a superclass as root and further subclasses for a more specific modelling
of the process. A subclass inherits all properties and methods from the superclass, but
can also have some extra features. This procedure can recursively be continued, such
that a subclass can also act as a superclass for deeper subclasses. In the example of our
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toolbox, we implemented a phantom superclass with general functionalities for all test
functions and the details for each particular test functions, mainly specific properties,
are implemented by appropriate subclasses.

6.2 Utility and geometry class

All classes of the toolbox are derived from the superclass util, which collects some
auxiliary tools, that are needed by almost all components of the library. For exam-
ple the implemented size acts as an analogon to the Matlab built-in and provides a
similar interface. There are also other equivalents to basic Matlab operations such as
transpose, ctranspose and conj included.

Another fundamental part of the toolbox represents the geometry class, which orga-
nizes all information about the specific setting, for example discretization parameters,
grid types, arrangement of the center points and radii, and visualization options. Such
a geometry object is used to create efficiently instances of the other classes and avoids
the repeated specification of the used setting. One useful method is mk grid, which
outputs the coordinates of the points in the current grid.

6.3 Test functions

The Matlab toolbox contains multiple test functions, shown in Figure 6.2. They are
suitable in particular for medical imaging and implemented as subclasses of the super-
class phantom. The hat function, which is shown in Figure 6.2f and defined in equation
(7.1), is a radial function with controllable smoothness and the quarteredhat phantom
in Figure 6.2b is a modification with added singularities. Another variant is given by
the balls phantom for spatial dimension d = 3 in Figure 6.2e, created by a composition
of piecewise constant hat functions.

The ellipse test function represents a constant function with support inside of an ellipse
and the summation of ten such objects with specified parameters [61, Table B.1] leads
to the Shepp-Logan phantom in Figure 6.2c.

Figure 6.2d shows a further piecewise constant test function, the laughing Smiley phan-
tom. In addition to smooth edges, it contains also some singularities at corners, whose
reconstruction is a challenging task.

The phantom class provides mainly three methods. The function samples on the current
grid in the geometry object can be computed by the method full and the method
visualise produces a graphical output. In addition, the method means implements for
some test functions the analytically computation of mean values. This is realized by the
solution of quartic equations for the class phantom2ellipse and by the considerations
in Examples 62 and 63 for the class phantomhat.

Depending on the test function, there are also other methods available or can be
implemented at a later time. For instance, the class phantomhat provides also methods
for the computation of the Fourier coefficients and of mean values from the Fourier
partial sum, which is based on equation (7.2).
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(a) phantom2ellipse (b) phantom2quarteredhat

(c) phantom2shepplogan (d) phantom2smiley

(e) phantom3balls (f) phantomhat (d = 2)

Figure 6.2: Available test functions of the Matlab toolbox, implemented as subclasses
of the superclass phantom.
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6.4 Forward operators

In Chapter 4, we introduced discretizations of mean value operators. The algorithms
are implemented as the superclasses smv for the spherical mean value operator M
and wave2 for the mean value operator N , where the different variants are realized
by all the subclasses. An appropriate object behaves like a matrix, in particular the
Matlab functions conj, ctranspose, transpose and size can be used in the usual
way, full outputs the matrix and the evaluation of the operator is provided by the
mtimes method.
Since the Fourier based approaches make use of specific fast Fourier transforms, non-
equispaced fast Fourier transform [43] and butterfly sparse fast Fourier transforms [45],
it is neccessary for these discretization variants to install further software libraries and
assign the according directories to the property libdir.

6.5 Reconstructions

Currently, the toolbox contains in addition to a simple least squares method three vari-
ants for the reconstruction of function samples from mean values. The code is organized
in three classes, tviter for the generalized Newton method with total variation based
regularization, see Section 5.1, admm for the alternating direction method of multipliers
with Shearlet based regularization, see Section 5.2, and smv reco summethods for the
summability methods, see [60, 17]. In fact, the user has not to deal with these classes
directly. The implementation is motivated by the procedure for the solution of systems
of linear equations and can be invoked by the mldivide method from instances of the
classes for the forward operators in Section 6.4. These instances have also properties
for specifying the particular setting. More precise, the property rec method manages
the reconstruction method and specific parameters, for example regularization parame-
ters or error tolerances, are assigned by structure arrays in the properties param lsqr,
param tv iter, param summethods, and param admm shear respectively. The class
dpct implements the Curvelet system, which we proposed in Section 5.2.4.

6.6 Auxiliary classes

To complete this description of the toolbox, we give also some remarks to the remaining
classes. They are needed by other classes and were originally not intended to be used
directly, but they are also applicable for related problems.
The ffst class forms an object-oriented interface to the FFST library [36, 35], which
is consistent with the concept of our toolbox. However, the code is not reimplemented
and we still use the original code, which requires the additional installation of the
FFST library and the declaration of the according directory in the property ffstdir.
Currently, our toolbox supports version 2.0 of the FFST library.
Another auxiliary tool is the polfreq class. This part of the library represents the
operator for the evaluation of a Fourier sum with polar frequencies, realized by non-
equispaced fast Fourier transforms [43]. As for the ffst class, this requires also an
additional installation of the NFFT library and the specification of the according di-
rectory in the property nfftdir.
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Numerical experiments

After the derivation and theoretical analysis of the discretization and reconstruction
algorithms in the previous chapters, we examine in the following their numerical proper-
ties. All algorithms were implemented in Matlab and the experiments were performed
on a Dell PowerEdge R900-rack-server, equipped with Intel Xeon E7450 processors
(2.40 GHz) and 94 GByte main memory.
The numerical experiments are grouped into three parts. For spatial dimensions d = 2
and d = 3, we start with the analysis of the discretizations from Chapter 4. We
consider for the mean value operator M the error behavior and measure the increase
of the running times for a typical setting afterwards. The experiments regarding the
running times are also done for the mean value operator N in spatial dimension d = 2.
Since we are currently not aware of a suitable test function, whose mean values for the
operator N are known analytically, there are no error tests for this operator. Finally,
we demonstrate the capabilities of the reconstruction methods from Chapter 5. The
presented numerical experiments in Sections 7.1 and 7.2 are published in [25, 26].

7.1 Error analysis

We start by defining some test functions. Let a size parameter t ∈ (0, 0.5], a smoothness
parameter s ∈ N0, and the radial test function fd,s,t : Rd → R,

fd,s,t(x) :=

{
ϕs,t (|x|2) for |x| ≤ t,

0 otherwise,
ϕs,t : [0, t]→ R, ϕs,t(τ) :=

(
1− τ

t2

)s
, (7.1)

be given, see also Figure 7.1. We compute spherical means of these test functions
analytically by using the following statement for radial functions.

Lemma 61. Let a spatial dimension d ∈ N, d ≥ 2, a center point y ∈ Rd, a ra-
dius r ≥ 0, and a radial function f : Rd → R, f(x) = ϕ (|x|2), for some function
ϕ : [0,∞) → R be given. Then the spherical mean values of the function f can be
computed by

Mf(y, r) =
ωd−2

ωd−1

∫ 1

−1

ϕ
(
|y|2 + r2 + 2r|y|τ

)
(1− τ 2)

d−3
2 dτ.
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Figure 7.1: Test function fd,s,t from equation (7.1) for size parameter t = 1, and differ-
ent smoothness parameters s.

Proof. First, we assume without loss of generality y = |y|ed, where

ed := (0, . . . , 0, 1)> ∈ Rd.

Then

Mf(y, r) =
1

ωd−1

∫
Sd−1

ϕ
(
|y + rξ|2

)
dσ(ξ)

=
1

ωd−1

∫
Sd−1

ϕ
(
|y|2 + r2 + 2r|y|ξ · ed

)
dσ(ξ)

=
1

ωd−1

∫ 1

−1

∫
Sd−2

ϕ
(
|y|2 + r2 + 2r|y|τ

)
dσ
(
ξ̃
)

(1− τ 2)
d−3
2 dτ.

Next we use the above lemma to compute the spherical mean values of some of the
test functions (7.1) explicitly.

Example 62. Let us start with spatial dimension d = 2. Then we have

Mf2,s,t(y, r) =
1

π

∫ ϑ0

0

ϕs,t
(
|y|2 + r2 − 2r|y| cosϑ

)
dϑ,

where

ϑ0 := ϑ0 (|y|, r, t) :=


π for t2 ≥ (|y|+ r)2,

0 for t2 < (|y| − r)2,

arccos |y|
2+r2−t2
2r|y| else.

Fixing the smoothness parameter s ∈ N0 gives an explicit solution of the integral. With
adequate coefficients bs,k := bs,k(y, r, t) ∈ R, k = 0, . . . , s, we have

ϕs,t
(
|y|2 + r2 − 2r|y| cosϑ

)
=

s∑
k=0

bs,k(cosϑ)k
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and it follows

Mf2,s,t(y, r) =
1

π

s∑
k=0

bs,k

∫ ϑ0

0

(cosϑ)kdϑ.

For example s = 0 yields the coefficient b0,0 = 1 and s = 1 yields the coefficients

b1,0 = t2−|y|2−r2
t2

and b1,1 = 2r|y|
t2

. Hence, we obtain

Mf2,0,t(y, r) =
ϑ0

π
and

Mf2,1,t(y, r) =
1

π
(b1,0 · ϑ0 + b1,1 · sinϑ0) =

ϑ0 · (t2 − |y|2 − r2) + 2r|y| sinϑ0

πt2
.

Example 63. Since the weight disappears for dimension d = 3 we define a primitive
Φs,t : R→ R of ϕs,t and an auxiliary quantity τ0 ∈ R+,

Φs,t(τ) := −(t2 − τ)
s+1

t2s (1 + s)
, τ0 :=


(|y|+ r)2 for t2 ≥ (|y|+ r)2 ,

(|y| − r)2 for t2 < (|y| − r)2 ,

t2 otherwise,

and obtain for y 6= 0 and r 6= 0 the closed-form expression

Mf3,s,t(y, r) =
1

4r|y|
·
(
Φs,t(τ0)− Φs,t

(
(|y| − r)2)) .

For example with parameters s = 0 and s = 1 we get the formulas

Mf3,0,t =
τ0 − (|y| − r)2

4r|y|
, Mf3,1,t =

(
t2 − (|y| − r)2)2 − (t2 − τ0)

2

8r|y|t2
.

Moreover, Sonine’s integral [62, Chapter 12.11] yields the Fourier transform of these
test functions

f̂d,s,t(z) =
Γ(s+ 1)t

d
2
−s

πs
·
Js+ d

2
(2π|z|t)

|z|s+ d
2

, (7.2)

which, in conjunction with [62, Sec. 7.21], allows for the estimate∣∣∣f̂d,s,t(z)
∣∣∣ ≤ Cd,s,t · (1 + |z|2)−

1
2(s+ d+1

2 )

and thus fd,s,t ∈ Hs+ 1
2
−ε(Td) for every ε > 0. Theorems 32 and 33 imply error bounds

|Mfd,s,t(y, r)−MINfd,s,t(y, r)| ≤ Cd,s,t,f,ε ·N
d
2
−s− 1

2
+ε

and

|Mfd,s,t(y, r)−MSNfd,s,t(y, r)| ≤ Cd,s,t,f,ε ·N−s+ε,
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which are supported by the following numerical results.
Let the size parameter t = 0.2 be fixed and a set of discretization parameters N ∈ 2N
and smoothness parameters s ∈ N0 be given. For spatial dimensions d ∈ {2, 3},
we consider settings with M1 = Nd−1 center points, which are arranged on a circu-
lar line (d = 2) or a surface of a sphere (d = 3), and M2 = N equispaced radii
r1, . . . , rN ∈ (0.46]. In the numerical experiments, we compute the mean values Mf of
the test function, given by samples

f := (fd,s,t (x))x∈XN ∈ RNd

,

with different discretizations M ∈ RNd×Nd
of the mean value operator M from Sec-

tion 4 and measure the absolute error

εabs := εabs(N, s, d) := max
j∈{1,...,Nd−1}
k∈{1,...,N}

∣∣∣Mfd,s,t (yj, rk)− (Mf)j,k

∣∣∣ .
We utilize the quadrature based approach with piecewise constant ansatz functions and
the application of a simple rectangular rule, see Algorithms 1 (d = 2) and 2 (d = 3),
and Algorithm 4, that computes the mean values of the trigonometric interpolant IN .
Additionally, we consider an approximation with bilinear functions and the applica-
tion of a trapezoidal rule, see Remark 22, and a variant that uses the exact Fourier
coefficients (7.2) of our test functions and implements MSNfd,s,t.
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Piecewise constant (Algorithms 1 and 2), Piecew. bilinear (Remark 22),
Trigonometric interpolant (Algorithm 4), Fourier partial sum

Figure 7.2: Accuracy with respect to the discretization parameter N for spatial dimen-
sion d = 2 (left) and d = 3 (right), and test functions fd,s,t with smoothness
parameter s = 3.

For fixed smoothness parameter s = 3, Figure 7.2 illustrates the behavior of the error
εabs with respect to the discretization parameter N . We observe, that the convergence
rate for the considered test function is even better than the theoretical bound proven in
Theorem 33. We suspect that this is related to the fact, that the Fourier coefficients of
fs,t,d oscillate. Table 7.1 summarizes for further smoothness parameters s ∈ {0, . . . , 6}
the estimates of the convergence rates obtained from a least squares fit.
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d = 2 d = 3

s p. const. p. bil. IN SN p. const. IN SN
0 0.76 0.60 0.83 0.88 1.10 1.12 1.37
1 1.25 1.55 1.79 1.97 1.10 2.03 2.45
2 1.34 2.04 2.86 3.03 1.06 3.23 3.29
3 1.42 2.06 3.78 3.89 1.10 4.21 4.49
4 1.37 2.00 4.84 5.02 1.14 5.40 5.41
5 1.32 1.96 5.75 5.91 1.18 6.42 6.57
6 1.30 1.95 6.68 6.92 1.24 7.40 7.49

conjecture 1 2 s+ 1 s+ 1 1 s+ 1.5 s+ 1.5
theory – – s− 0.5 s – s− 1 s

Table 7.1: Estimated orders − log εabs/ logN of convergence with respect to the
smoothness parameter s. These are derived by a least square fit of the
computed errors in Figure 7.2.

7.2 Running times

For comparing the running times, we consider analog to Section 7.1 for different dis-
cretization parameters N ∈ 2N and a spatial dimensions d ∈ {2, 3} a setting with
M1 = Nd−1 center points and M2 = N radii. We measure the computation time for
the evaluation of mean values Mf ∈ RN2

from samples f ∈ RN2
with different dis-

cretizations M ∈ RN2×N2
of the mean value operator M from Section 4. Focusing on

the running times, we have the following classification of the discretization variants.
For dimensions d ∈ {2, 3}, the used algorithms are based on applying a simple rect-
angular rule, see Algorithms 1 and 2, and nonequispaced fast Fourier transforms, see
Algorithm 4. Additionally, for spatial dimension d = 2, we utilize an evaluation of the
integral with a trapezoidal rule, see Remark 22, and for spatial dimension d = 3, we
consider a variant, which is based on sparse fast Fourier transforms, see Algorithm 6.

d = 2 d = 3

Input/Output: O (N2) Input/Output: O (N3)

M N M

Rectangular rule O (N3) O (N4) O (N5)
Trapezoidal rule O (N3) – –
NFFT O (N3 logN) O (N3 logN) O (N4 logN)

Sparse FFT – O
(
(logN)5N2

)
O
(
(logN)6N3

)
Polar frequencies – O (N2 logN) –

Table 7.2: Proven rates of the running times for M1 = O
(
Nd−1

)
center points and

M2 = O (N) radii.
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Figure 7.3: Running times for the discretizations of M with respect to the discretiza-
tion parameter N for spatial dimension d = 2 (left) and d = 3 (right).

Table 7.2 lists the proven rates and Figure 7.3 summarizes the numerically obtained
running times with respect to the discretization parameter N . For spatial dimension
d = 2, the differences are not significant, but for spatial dimension d = 3, the NFFT
based variant outperforms the other algorithms. However, the best increasing rate is
given by Algorithm 6 and consequently, we expect benefits from using this methods
for sufficient large problem sizes.

Let us repeat the same procedure for the discretization of the mean value operator N
with the spatial dimension d = 2. In addition to the algorithms, which are based on a
rectangular rule (Algorithm 3), nonequispaced fast Fourier transforms (Algorithm 5)
and sparse fast Fourier transforms (Corollary 29), we consider the variant with polar
frequencies (Algorithm 7). The results are shown in Figure 7.4. We observe a superior
performance of the Fourier based algorithms. The use of polar frequencies leads to
best running times, but is also restricted to a particular setting. In general situations,
the NFFT based approach is in our experiments optimal regarding the running times,
but similar to the operatorM, we expect advantages for sufficient large problem sizes
from using sparse FFTs.

7.3 Reconstructions

In this section, we demonstrate the reconstruction of objects from their mean values.
We start with a least squares solution as an initial guess and utilize afterwards iterative
algorithms with regularization techniques to improve the reconstruction quality. Here
we use the Fourier based forward operator from Algorithm 4.

We consider two settings, which differ in the arrangement of the center points. Firstly,
the center points lie on a circular line around the object. In a second experiment, we
analyze the situation, where the center points partially surround the object.
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Figure 7.4: Running times for the discretizations ofN with respect to the discretization
parameter N .

7.3.1 Surrounding center points

We start with fixed discretization parameter N = 128 and given mean values g ∈ RN2

according toM1 = N center points y1, . . .yN ∈ R2 andM2 = N radii r1, . . . , rN ∈ [0, 1],

yj :=
1

2

(
cos 2π(j−1)

N

sin 2π(j−1)
N

)
and rk :=

k − 1

N
, j, k ∈ {1, . . . , N}.

The task is to find a solution f ∈ RN2
of equation (5.2). Instead of the exact data g,

we work with noisy data g̃a ∈ RN2
,

g̃a := g + a (−0.5 + η) ·
(

max
n∈{1,...,N2}

|gn|
)
, a > 0,

with uniformly distributed pseudorandom numbers η ∈ [0, 1]N
2
.

Beside visual ratings, we evaluate the quality of the reconstructions by using the peak
signal-to-noise ratio (PSNR) [21], which is a widely used image quality assessment
measure. With the mean squared error εmse ≥ 0 between f ∈ RN2

and f̃ ∈ RN2
,

εmse

(
f , f̃
)

=
1

N2

N2∑
n=1

∣∣∣fn − f̃n∣∣∣2 , f , f̃ ∈ RN2

,

the in decibel measured PSNR value between an exact signal f and a noisy signal f̃ is
defined as

psnr
(
f , f̃
)

:= 10 log10

 (max f)2

εmse

(
f , f̃
)
 .
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In principle, a higher PSNR value indicates a higher reconstruction quality, but it is
advisable to consider also other criterions for a substantial statement.
The used object f : R2 → R in the experiments is a modification of the test function
(7.1) with smoothness parameter s = 1,

f(x) :=
1

1.2

(
f2,1,0.45 + 0.2χ{x∈R2:|x2|<|x1| and ‖x‖22≤0.452}(x)

)
,

such that we obtain a piecewise smooth function, which is shown in Figure 7.5a. We
compute the mean values g = Mf with the Fourier based discretization M of the mean
value operator M, see Figure 7.5b, consider the noise levels a = 10% and a = 20%,
and obtain the data in Figures 7.5c and 7.5d.

(a) Test function f and center points y. (b) Mean values g = Mf .

(c) Noisy mean values g̃0.1, PSNR=30.76 dB. (d) Noisy mean values g̃0.2, PSNR=24.78 dB.

Figure 7.5: Test function with center points on a circular line, according mean values,
and noisy mean values for the noise levels a = 10% and a = 20%.

We start with the solutions from the least squares method, presented in the first row of
Figure 7.6, as an initial guess and apply the derived inversion algorithms from Section 5
to obtain regularized reconstructions. The results in the second row are produced by
the total variation based Algorithm 8, where the biconjugate gradient stabilized method
[59] is utilized to solve the linear system of equations in line 13. The Shearlet based
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Algorithm 9 leads to the third row. Here, we use the symmetric LQ method [6, 56],
available in Matlab as function symmlq, for the implementation of equation (5.24). All
parameters of the experiments are listed in Tables 7.3 and 7.4

noise level α γ Netwon steps

a = 10% 0.0013 2.7826e−05 6

a = 20% 0.0100 2.7826e−05 5

Table 7.3: Used parameters for the total variation based reconstruction Algorithm 8.

noise
λ ρ

ADMM symmlq symmlq

level steps maxit tol

a = 10% 1.7857e−04 0.0721 13 3 1e−3

a = 20% 3.5000e−04 0.0514 13 4 1e−3

Table 7.4: Used parameters for the Shearlet based reconstruction Algorithm 9 with
center points on a circular line.

Starting with a noisy solution from the least squares method as initial guess, the
regularization techniques in Algorithms 8 and 9 improve the reconstruction quality
significantly. While the PSNR values are of the same magnitude, a visual inspection
indicates the typical properties of each of the two regularization variants. The total
variation based algorithm is well-suited for piecewise constant objects. However, in
our setting with a piecewise smooth object, we obtain images of flat regions separated
by artifact boundaries, which is also known as the staircasing effect. The Shearlet
based approach leads to reconstructions with smoother areas and sharper edges, and
requires less computation time. Altogether, for this particular setting with a piecewise
smooth object, the Shearlet based regularization outperforms the total variation based
approach.

7.3.2 Incomplete data

For various reasons, it is not in every application possible to place measuring points
completely around the object. This fact motivates the following experiment, where we
use mainly the setting from Section 7.3.1. The difference is, that we consider center

points on a mirrored “J”-shape, see Figure 7.7a, and equispaced radii r ∈
[
0, 1+

√
2

2

]
.

The related mean values are presented in Figure 7.7b, and Figures 7.7c and 7.7d show
this input data with added noise. The following procedure is equal to the previous
experiments. We start with the least squares solutions from Figures 7.8a and 7.8b.
Afterwards, we improve this reconstructions with total variation based regularization,
see Figures 7.8c and 7.8d, and Shearlet based regularization, see Figures 7.8e and 7.8f.
The used parameters are listed in the Tables 7.3 and 7.5.
Due to the missing center points on the right side, the reconstructions are imprecise on
the right part of the object. Apart from that, we observe the same characteristics as in
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(a) PSNR=26.04 dB (b) PSNR=19.29 dB

(c) PSNR=34.21 dB, τ = 38:18 (d) PSNR=32.53 dB, τ = 30:21

(e) PSNR=32.92 dB, τ = 7:28 (f) PSNR=30.41 dB, τ = 7:57

Figure 7.6: Reconstructions of the test function for center points on a circular line and
noise levels a = 10% (left) and a = 20% (right) with least squares method
(first row), total variation based regularization (second row), and Shearlet
based regularization (last row). The computation time in minutes:seconds
is denoted by τ .
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Section 7.3.1. In particular, both reconstruction methods from Chapter 5 increase the
reconstruction quality from the least squares solutions significantly. While the total
variation based regularization produces the typical staircasing effects, the Shearlet
based regularization stands out with sharper edges and faster computations.

noise
λ ρ

ADMM symmlq symmlq

level steps maxit tol

a = 10% 1.3053e−04 0.0695 17 3 1e−3

a = 20% 3.5000e−04 0.0514 4 4 1e−3

Table 7.5: Used parameters for the Shearlet based reconstruction Algorithm 9 with
center points on a J-shape.
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(a) Test function f and center points y. (b) Mean values g = Mf .

(c) Noisy mean values g̃0.1, PSNR=30.77 dB. (d) Noisy mean values g̃0.2, PSNR=24.74 dB.

Figure 7.7: Test function with center points on a J-shape, according mean values, and
noisy mean values for the noise levels a = 10% and a = 20%.
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(a) PSNR=24.93 dB (b) PSNR=21.83 dB

(c) PSNR=30.55 dB, τ = 77:12 (d) PSNR=26.93 dB, τ = 49:50

(e) PSNR=30.81 dB, τ = 21:53 (f) PSNR=27.68 dB, τ = 6:07

Figure 7.8: Reconstructions of the test function for center points on a J-shape and
noise levels a = 10% (left) and a = 20% (right) with least squares method
(first row), total variation based regularization (second row), and Shearlet
based regularization (last row). The computation time in minutes:seconds
is denoted by τ .
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Conclusion

In this thesis, we developed efficient and accurate reconstruction methods for photoa-
coustic imaging. Under some assumptions, in particular a constant speed of sound,
this process can be modelled as the inversion of an integral operator, the so-called
spherical mean value operator, which assigns functions their mean values over spheres.
The presented algorithms are iterative methods, which require the fast computation
of mean values, the so-called forward problem. For this purpose, we use finite Fourier
series as approximations of continuous functions. This allows to evaluate the specific
integrals, which are related to the computation of mean values, by multiplications with
Bessel functions in the Fourier domain.
In practice, the reconstruction of objects from given data poses some additional chal-
lenges. Different issues, for example imprecise measurements, lead to undesirable ef-
fects, such as noise or particular artefacts. To avoid this problems, we employ regular-
ization techniques, which are realized by forcing the reconstructions to fulfill certain
properties, which are given by the application. In photoacoustic imaging, piecewise
smooth objects are a suitable assumption. This motivates our approach to prefer re-
constructions with a small total variation or sparse Shearlet coefficients.
The extensive numerical experiments demonstrate the fundamental capabilities of the
derived algorithms. Even in the case of incomplete data, we can produce accurate
reconstructions. For a complete validation of this promising results, it remains to
extend the theoretical background to more precise error bounds and a deeper analysis
of the approximation by Fourier series with polar frequency grids.
In addition, if the detailed setting of the application is known, for example the amount
of data, the examined objects and the necessary accuracy, then the performance of the
algorithms can be further improved. For example the use of customized parameters and
programming techniques can lead to less running times and an increased reconstruction
quality.
This thesis is completed by the implementation and publication of all derived algo-
rithms as a Matlab toolbox [27]. The large amount of code is organized in an object-
oriented design and numerous examples are included, which allows a further develop-
ment by different researchers.
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