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Introduction

Different imaging modalities are of great interest in various fields of current research.
In the meantime, numerous different techniques were introduced and further improved.
While some of them are still under development, many methods are now widely used in
a variety of applications. Biomedical imaging represents one meaningful area. Topics
like computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography,
and thermography play an important role in medical diagnoses and therapies.

A well-known hybrid biomedical imaging modality is photoacoustic imaging (PAI),
which is based on the photoacoustic effect. Here, delivered electromagnetic energy,
mostly a laser pulse, is absorbed by the tissue and converted into heat and this leads
to the formation of ultrasonic pressure waves.

Typically, the concerning object is located inside of a domain 2 and surrounded by
several ultrasonic detectors, which are arranged on the boundary 02 of the domain
Q2. Due to limitations by certain applications, the detectors might cover the boundary
of the domain only partially. After the stimulation of the tissue by a laser pulse, the
arising ultrasonic signals are measured by the detectors at different points in time.
Under some assumptions, this process can mathematically be modeled by a partial
differential equation, the so-called Cauchy problem of the wave equation. Especially
for a constant speed of sound inside the domain, the measured data can be expressed
by spherical mean values

Mf(y,r) = fy+r§)do(€)

§d-1

of the object f. We interpret y € 02 as the positions of the ultrasonic detectors
and r > 0 as the times of the measurements. This is analog to the concept of x-ray
computed tomography, where the measured data can be modeled by the classical Radon
transform, which assigns functions their averages over lines. Hence, the evaluation of
the above operator M is sometimes called spherical Radon transform.

Relevant applications ask for a nondestructive examination of internal structures of
in vivo entities, for example parts of the body or inner organs. With the previous
mathematical modeling of PAI, this conceptual formulation can be translated into the
inversion of the spherical mean value operator M, in other words, the recovery of
functions f from their mean values Mf.
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In general, the inversion of the mean value operator M is a non well-defined task. For
arbitrary mean values M f, the existence of an underlying function f is actually not
guaranteed. Even in the case of the existence, a unique solution is not ensured. It turns
out, that this issue depends essentially on the properties of the boundary 0 of the
domain (2. For a detailed treatment of this fundamental topic for the two-dimensional
case and for specific three-dimensional geometries, we refer to [18, 5, 4, 44, 57] and the
references therein.

Different concepts for the inversion of the spherical mean value operator M have been
widely studied. For specific geometries of the domain €2, various direct reconstruction
algorithms are discussed for example in [30, 47, 48, 29, 3, 16, 46, 31, 17]. For general
geometries, explicit inversion formulas are not known and do not represent a realistic
goal, see also [55, 28, 32].

We focus on iterative reconstruction methods. Typically, we start with a rough ap-
proximation as initial guess. Each subsequent iteration of the algorithm produces a
reconstruction with an increased quality. This requires the evaluation of the spherical
mean value operator M multiple times per iteration step. Hence, the availability of
fast algorithms for the so-called forward problem, the computation of spherical means,
is crucial for the development of efficient reconstruction methods.

The implementation and application of the algorithms require to work with finite data.
In particular, we have to approximate continuous functions by discrete data sets. This
thesis is based on the application of tools from Fourier analysis, a well-known and
extremely successful field in science and technology, which enables us to develop fast
and accurate discretizations of the considered problems. In particular, we use the fact
[12, eq. (1.5)], that the complex exponential function

eg: R? — C, eg(x) = eImiex £ e RY

is an eigenfunction of the spherical mean value operator M for a fixed time r, more
precise, the relation

r (%) jg_l (2mr[€])

Meg(y,r) =
(wrlg])?

~eg(y) (2.1)

is fulfilled. Especially the spherical mean values of trigonometric polynomials can be
expressed by nonequispaced Fourier transforms, whose efficient evaluation is given by
well-developed algorithms [13, 45].

Since the spherical mean value operator M is an integral operator, it is also a smooth-
ing operator, which implies, that its inversion is an ill-posed problem. With noisy
or incomplete data in addition, this issue causes inappropriate results in most cases.
Therefore, the utilization of regularization techniques is a necessary element in recon-
struction algorithms. The basic idea is to force the solutions to fulfill some a-priori
characteristics. In medical imaging, piecewise smoothness is a suitable assumption on
the objects. However, even if the smooth parts can be well reconstructed, the accurate
handling of edges and other structures remains a challenging task. To overcome these
difficulties, we make use of two different regularizing techniques. In one variant, we
force a small total variation of the reconstruction, and in another approach, we prefer
results with sparse Shearlet coefficients [52, 24].
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2.1 Outline of the thesis

This thesis is organized as follows. To make it self-contained, we depict in Chapter 3
some related basic knowledge. We start with the used notations and list some funda-
mental concepts for dealing with spherical integrals. Afterwards, we introduce basic
tools from Fourier analysis, including the approximation of functions by trigonometric
polynomials and associated error estimates. The chapter finishes with the definition
of the considered mean value operators and the proof of the fundamental statement in
equation (2.1), the application of the mean value operators to the complex exponential
function.

Chapter 4 treats different discretizations of the forward problem and thus the efficient
computation of mean values. As a first variant, we consider the numerical evaluation
of integrals by quadrature rules. While this approach is used for comparison, the thesis
focuses on a Fourier based approach, obtained fundamentally from equation (2.1). Here
we consider different frequency grids and several algorithms for the evaluation of the
appearing Fourier sums. In addition, we analyze also the computational complexities
of these concepts.

For cartesian frequency grids, a fast computation of mean values is proven by Theo-
rems 26 and 27. The implementations are realized by using d-dimensional nonequi-
spaced fast Fourier transforms (NFFT, [13]) and are given by Algorithms 4 and 5.
Based on Theorem 28, we formulate with Algorithm 6 an efficient computation of
mean values for large problem sizes. In particular the computation of mean values
for O (N d_l) center points, located on a smooth (d — 1)-dimensional submanifold,
and O (N) radii can be realized with a (d + 1)-dimensional butterfly sparse Fourier
transform [15] and ends up in an almost linear runtime complexity.

To obtain better rotational invariance, it is more natural to use polar frequency grids.
Theorem 34 and Algorithm 7 provide the efficient computation of mean values for
this setting. We complete this chapter by proving error bounds and giving stability
arguments.

The inverse problem, the reconstruction of function samples from given mean values,
is the topic of Chapter 5. We present two approaches, which are suitable for piecewise
smooth functions. Firstly, we consider a regularization technique, where we force the
reconstructions to have a small total variation. We solve the appearing system of
equations with the semismooth Newton method and summarize the implementation
in Algorithm 8. Another promising approach is to favor reconstructions with sparse
Shearlet coefficients [52, 21]. We derive a realization with the alternating direction
method of multipliers (ADMM, [7]) and summarize the whole procedure in Algorithm 9.
This chapter concludes with the construction of a Shearlet system on polar frequencies,
where we follow the approach from [36, 35].

All derived algorithms are implemented and published as a Matlab toolbox [27]. To
make the large amount of code maintainable and extensible for several developers, we
use an object-oriented design, illustrated in Figure 6.1. Additionally, some thematically
related work is also included in this toolbox [17]. Chapter 6 presents the concept and
the handling of the software. We start with a brief introduction to object-oriented
programming in Matlab and afterwards, we explain the structure of the code and
comment on the features of all the different classes.

Finally, in Chapter 7, we analyze the results of numerous numerical experiments. We
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consider the behavior of the running times as well as of the approximation error. The
chapter finishes with a combination of all essential parts of this thesis by demonstrating
the reconstruction capabilities of our algorithms in Figures 7.6 and 7.8.
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Basics

This chapter is a collection of some basic knowledge for this thesis. We start with
the used notations, list some fundamental concepts for dealing with spherical integrals.
Afterwards, we summarize some basic tools from Fourier analysis and finish this chapter
with the definition of the mean value operators and the formulation of some useful
properties.

3.1 Notations

We denote in the usual manner by N := {1,2,...} the natural numbers, by Z the
integers, by R the real numbers, and by C the complex numbers. We use abbreviatory
2N := {2,4,...} for the even natural numbers and I¢ := [—%, %]d, d € N, for the
d-dimensional unit cube.

Matrices and vectors are labeled with bold symbols, in particular, we use

1 ... 1 1
1=1: - and I:= .

1 ... 1 1
for a matrix with ones at every position and the identity matrix, where the dimensions
are apparent from the context. We define the inner product of vectors a,b € R*, n € N,
by a-b := a1b; +- - - +a,b, and the according Euclidean norm by ||al|; := |a| := y/a - a.
Moreover, the {P-norm || - ||,: C* — [0,00) of a vector a € C", p € [1,00], n € N, is
defined by

B =

lall, := (Z |ak]p) forpe[l,o0) and |aw:=  Jax lag|.

{1,...,n}
k=1
The summation of a matrix A with a scalar A € R is given as A + X := A + A1, where
1 has the same dimensions as A. For matrices A, B € C"™*", m,n € N, we denote by
AinBig .. A1nBig
AOB:= : : e cm
Am,le,l o Am,an,n
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the element-wise product and for matrices A € C™*" and B € CP*", m,n,p,r € N, we
denote by

AB ... A,B
A®B:= : : e Ccmpxnr
AnB ... A,.B

the Kronecker product. For a spatial dimension d € N and a discretization parameter
N € 2N, the following sets are frequently used in this thesis,

N N
Iy = {z:(zl,...,zd)TGZd:zl,...,sz{—5,...,5—1}}, (3.1)

N = {z:(zl,...,zd)TEZd:zl,...,sz {—5,...75}}, (32)

and

PO (NN IV SO DR N (3.3)
N — X—N 2NZ N 2,2 . .

Let a set Q C R? d € N, be given. We use the notation C(Q2) for the set of all
continuous functions f: Q@ — R, and C(Q2,C) for the set of all continuous functions
f: Q — C. For a measure space (£, A, ) with a nonempty set Q C R?, a o-algebra A
over (2 and a measure p: A — [0, 00], the function space L (2, i), p € [1, 0], contains
all measurable functions f: Q — R with a finite norm || - || Lr(,p),

1l = (/ |f<x>|pdu<x>)” for p € [Loo) and [|f]lp=(oy = esssup | f(x)].

x€eN

Unless otherwise stated, u is the Lebesgue measure A: A — [0, oo], which is the unique
measure on RY, that assigns d-dimensional cuboids their volumes,

A ([CLl, bl] X [ad, bd]) = (b1 — CLl) s (bd — CLd).

Abbreviatory, we set LP () := L? (2, \). For sets Q, Q5 and 23, we denote the set
of all linear functions f: ; — Qo by L£(€;,€Qs) and the product fg: Q3 — Qo of
functions f: Q; — Qs and g: Q3 — € is defined by the composition fg(x) := f(g(x)).

3.2 Spherical coordinates

The elements of R? can be represented by different coordinate systems. The well-
known Cartesian coordinates are in some cases unqualified for dealing with spherical
geometries and hence, polar and spherical coordinates in Figure 3.1 are typically used
for two and three dimensions. For higher dimensions, we use a generalization of this
concept [33, Sec. 21.2.1].
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X1

(a) Polar coordinates. (b) Spherical coordinates.
Figure 3.1: Spherical coordinate systems for spatial dimensions d = 2 (left) and d = 3
(right).

Definition 1. We define the operator P;, which maps generalized d-dimensional spher-
ical coordinates to Cartesian coordinates, d € N\ {1}, recursively by

Py [0,00) x [0,271) — R, (;) — (TCOS¢> :

7 sin
for d = 2 and
Py: [0,00) x [0,27) x [0, 7]*% = R?,
sin¥g_oPy1 (r, 0,91, . .. ,19d_3)) |

rcosVg_s

<T7 P, 0) = (Ta @, 1917 cee 7f&d—2)T = (

for d € N, d > 3. Since the restriction of the operator P, to (0, 00) x [0,27) x (0, 7)4~2
is bijective, the inverse operator

PR\ ({0} x R*?) — (0,00) x [0,27) x (0,7)%?
is well-defined. n

We proceed with some basic transformations for spherical integrals and start with the
substitution between Cartesian and spherical coordinates.

Lemma 2. Let a spatial dimension d € N\ {1}, an open set
Q C (0,00) x [0,27) x (0,7)"2,
and an integrable function f € C (PyQ) be given. With
Dy: (0,00) % (0,71)42 5 R, Dy(r,9) :=r? " sind, (sinvy)®. .. (sindy_s)* >, (3.4)

it follows

f(x)dx = / [ (Pa(r,,9)) Dy(r,¥)dddedr.
Paf Q
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Proof. With the notation w := (r, ¢, 1) and the Jacobian matrix

Ip, = (825”) ),

.....

complete induction shows
det Jp, (r,9) = (—1)*Dy(r, ).

The substitution formula for integrals finishes the proof.

Next, we specify the integration over surfaces of spheres.

Definition 3. Let a spatial dimension d € N\ {1} be given. We denote by
S*ti={xeR?: x| =1} CR?

the (d — 1)-dimensional unit sphere, use the notation

0 (Py).
Gd<w27"'7wd) = < awij) (1,?1)2,...,'11)(1),
4k=1,...,d

=1,...,

and define the spherical surface measure do by

potete = [ [ 1 Pu 6.0\ [GTe9)Cu(p 0)d0d

Sd-1

and the surface wy_; of the unit sphere S by

Wg_1:= / 1do(x).
Sd—1

We obtain the following useful representations for spherical integrals.

(3.5)

Corollary 4. Let a spatial dimension d € N\ {1} be given. For an integrable function

f e (s, it follows

Fo = [ [ 5 Pu o D1, 90040

gd—1

with Py from Definition 1 and Dy from equation (3.4). For an integrable function

f € C(RY) and a radius R > 0, it follows

/Ix|<Rf(X)dX: /OR s fré)da(&)ritdr.

Proof. Complete induction shows

\/G;lr((pv 19>Gd<307 /'9) = Dd(L 19)
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and we obtain the first assertion from the definition in equation (3.5). Furthermore,
Lemma 2 and the definition of D, in equation (3.4) leads to

R 27
/|x|§Rf(X)dX - /0 /0 /(Oﬂ)d2 [ (Pa(re,9)) Da(rd)dddedr
R 2
- / / / f <Tpd(1’¢’0))pd(17ﬁ)d’ﬂdgord_ldr,
0 0 (0,7)d—2

and applying of equation (3.5) proves the second assertion. O

With the previous statements, we can state an explicit formula for the surface of the
unit sphere.

Corollary 5. The surface of the unit sphere wq_y for a spatial dimension d € N\ {1}
15 given by

[S]ISW

2
—ar
r'(3)

Proof. The proof is given by complete induction, where the inductive step follows from
[1, eq. 6.2.1, 6.2.2, 6.1.18],

Wg—-1 =

2T %
W1 —/ / (1, 9)dpd? = 2w, 2/ (sinﬁd,g)d_2 ddy_s
OW 0
S TR 2!
L) T3 L(3)

3.3 Fourier analysis

We define the d-dimensional torus T := (R?,+) /Z%, d € N, as quotient group with
the common periodical addition and identify its elements by the unique representatives

in [ ;, 2) We denote with C' (Td) the space of the continuous and periodic functions

f: T% — R and can approximate these functions with their Fourier partial sum.

Definition 6. Let a spatial dimension d € N and a function f € C' (Td) be given. We
define the Fourier coefficients ¢,(f) € C, z € Z4, of the function f by

c(f) = | f(x)e ?™=*dx. (3.6)
Td
Furthermore, we denote by Sy f: T¢ — C, N € 2N,

Swfx) = 3 eu(f)erimx,

zeJn

the N-th Fourier partial sum. In the case of convergence, we call the function

f:T?—C,
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pointwise defined by the limit

f(x):= lim Syf(x),

N—oo

the Fourier series of the function f. O]

If the Fourier coefficients of a function f € C' (T?) fulfill Y, ;. |c,(f)| < oo, then the
Fourier series converges absolutely and thus uniformly to the function f and it follows
f(x) = limy_,00 Sn f(x) for all x € T¢. However, in general it is challenging to evaluate
the integral (3.6) accurately. The numerical integration with a trapezoidal rule leads
to the definition of the trigonometric interpolant.

Definition 7. Let a spatial dimension d € N and a discretization parameter N € 2N
be given. We define the discrete Fourier coefficients f, € C, z € Jy, of a vector f € RY !
by

1

R 1 ) k
J2 =~ Z fue PN g e Iy, Xk = — + = € Xy, (3.7)
N keJn N 2N

and call the map f — f the discrete Fourier transform of the vector f. Moreover, we
define the (complex) trigonometric interpolant Zy f: T — C of a function f € C (T
by

Inf(x) =) f2™, (3.8)

zeJn

where we denote by f, € C, z € Jy, the discrete Fourier coefficients of the vector
(f (Xk)>k€JN' ]

Remark 8. It is also common to define the discrete Fourier coefficients from equa-
tion (3.7) with points X on an asymmetric grid,

(3.9)

- 1 ) k
fz = W Z fke_sz'xk, VAS JN, Xk = N

keJy

If we allow indices z € 72, then the Definitions (3.7) and (3.9) differ slightly in the
periodicity of the discrete Fourier coefficients. For spatial dimension d = 1, it follows

fz—l—N = _fz and fz—i—N = fz
for all z € Z and appropriate relations hold for higher dimensions d € N.

In applications we are interested in real-valued approximations, which can be obtained
by a modification of the trigonometric interpolant.

Definition 9. Let a spatial dimension d € N and a discretization parameter N € 2N
be given. We define the real trigonometric interpolant 7y f: T¢ — C of a function
fed (Td) by

Tnf(x):= Z by (f)e*m =

ASIAN;
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with the coefficients

<bz<f))z€ZN = Adf S (C(N+1)d7 Ad = Al & Ad*l S (C(N+1)d><Nd7

and
5 0 ...0
0 1
A= e ROVHDXN,
0 1
_% 0

]

The notation “interpolant” in Definitions 7 and 9 is justified, since basic computations
verify for a given function f € C (Td) and a discretization parameter N € 2N the
interpolation property

f(x)=Inf(x) =Tnf(x) forall xe Xy

on the regular Cartesian grid Xy. A relation between the Fourier coefficients ci(f)
and the discrete Fourier coefficients fy of a function f is given by the aliasing formula

fio= Y (1)t gy (f) forall k€ Jy, (3.10)

zeZ4
which implies the following estimates.

Lemma 10. Let a spatial dimension d € N, a discretization parameter N € 2N, and
a function f € C(TY) with an absolutely convergent Fourier series

Fx) =" clf)e™>  of) €C,

zcZ4

be given. Then the estimates

1f = Snfllwera < D lealF)ls I = Infllmn <2 ) lea(f))

z2€ZN\ Iy z€ZN\Jn
and
If =Tl <4 D0 lealf)]
2€ZN\Jn 5
are valid.

Proof. The first inequality follows from the definition and the other two from the
aliasing formula (3.10), see for example [6, Chap. X, Thm. (5.16)]. O

It follows from Lemma 10, that we obtain a high approximation quality by finite
Fourier sums for functions with a fast decrease of the Fourier coefficients. We call such
functions smooth and measure the degree of the smoothness with the following norms.
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Definition 11. For a spatial dimension d € N, a smoothness parameter s > 0, and a
function f € C (T?), we define the following norms,

Ifllsa =Y+ [z lea() 1 llsz = (Zlcz(f)l2(1+|2|2)s> ,

ZGZd ZEZd
and
[1f 15,00 := max(1 4 |z[)*|c,(f)].
VASY/A
]

To prove some error estimates for the finite Fourier sums, we start with the following
statement.

Lemma 12. Let a spatial dimension d € N and parameters ¢ > 0, N € 2N, N > 41/d,
and s > % be given. Then the estimate

S (i) <

ZGZd\JN

2cs—d—1
2 Wd—1 . Ndfcs

cs —d
18 valid.
Proof. We start with
(1+[z[) <[z[™*
for all z € Z% and

> |z|‘“§/

z2€Z8\Jyn Ix

- <|X| - \/E> dx = /;’ /Sdl <7« _ \/Zl> Td_lda(ﬁ)dr

oo

- wdl/ rT(r + \/C_Ddild?" < lewcll/ presta=ldy

y-va ¥
completes the proof. O

We apply Lemma 12 and obtain different error bounds, which explicitly show, that a
higher smoothness of the function, given by a larger smoothness parameter s, leads to
a faster decrease of the approximation error.

Lemma 13. Let a spatial dimension d € N, a discretization parameter N € 2N,
N > 4V/d, and a continuous function f € C(T?) be given. With

2237d71
d Wd—1, S > d7

24570!71 2 d
Ci(s,d) :== (25 _dwd_1> ) 8>3, and Cy(s,d) =

S J—
the following estimates are valid. For s >0 and || f|s1 < oo, it follows
1f = Snflloo <27°\flsaN™* and ||f = Inflloo < 27| flsaN 7%,

for s> % and ||f||s2 < o0, it follows

1f = S fllse < Culs, )| fls2N2 and |f = Inflloo < 201(s, )] flls2N5,
and for s > d and || f||s.co < 00, it follows

1 = Snflloo < Cols, DI flls, N and  ||f = ZInflloo < 2Ca(s, )| flls,0 N7
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Proof. We give the proof only for the Fourier partial sum Sy; the estimates for the
trigonometric interpolant can be shown in the same way. Lemma 10 yields

1f = Snflloo <D leal I+ |2])*(1+ |2])

z€Z4

N*S
< (1 (Nl s< (2 "
< (s @+ 1a)) Sl + ) < (5) 15l

zeZ4

Again Lemma 10, the Cauchy-Schwarz inequality, and Lemma 12 lead to

D=

1
2

1f =Snflle < | D leal NP+ 2P > (L+lz)

ZEZd\JN ZEZd\JN

< Ci(s,d)||f 2N
Finally, Lemma 10, Lemma 12, and
I = Sufll < ( max |, (f)I(1+ |z|>5) S (14l
€ZNJIn
ZEZd\JN
show the last inequality. O

The Fourier coefficients of periodic functions are given by Definition 6. For functions
on RY, a generalization is given in the following way.

Definition 14. Let a spatial dimension d € N and an absolute integrable function
fecC (]Rd) be given. We define the Fourier transform f: R? — C of the function f by

f(v) = f(x)e *™V*dx,
R

3.4 Mean value operators

The fundamental subject of this thesis, the spherical mean value operator, is given by
the following Definition 15.

Definition 15. Let a spatial dimension d € N\ {1} be given. The spherical mean
value operator M: C' (R?) — C (R? x R),

Mf(y,r) = fly +r§)do(€),

Wd—1 Jsgd—1

assigns to functions f € C (R?) mean values over (d — 1)-dimensional spheres with
center points y € R? and radii r € R. O

To make sure, that the previous Definition 15 of the spherical mean value operator is
correct, it remains to show the continuity of Mf: R? x R — R.
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Lemma 16. Let a spatial dimension d € N\ {1} and a continuous function f € C' (R?)
be given. Then, it follows M f € C (]Rd X R).

Proof. We choose a center point y € R?, a radius r € R, and a sequence
(ye,m:) €ER? xR, k€N,

with im0 (Y, 7x) = (y,7) arbitrarily and define the set
A={yr+r&:€£€S" " and k € N}.

The function f is continuous and hence bounded on A and it follows

s = sup |f(x)] < o0.
x€A

Furthermore, each element f; of the function sequence

fo: ST R, fiul€) = f(ye+ 1), keEN,

is continuous and thus integrable on S¢~!. Since
Ife(€)|<s forall k€N and £eS%!

is fulfilled, we can apply Lebesgue’s dominated convergence theorem, obtain

lim fe(§)do(€)

Wg—1 k=00 Jgd—1

;}LHQO Mf (Y, ) =

_ ! /S lim f(€)do(€) = Mf(y,r)

Wd—1 Jgd—1 k—oo
and this proves the assertion. O

It is well known [11, §VI.13, eq. 13-15], that the solution of the Cauchy problem for
the d-dimensional wave equation, d € N\ {1},

Pply,r) — Ap(y,r) =0 for (y,r) € R? x (0,00),
p(y,0) = f(y) foryeR (3.11)
0p(y,0) =0 fory e R
is given as

d—2
2

1 o (T d—2
F(% zarfo ﬁ(ﬂ@p) p"*Mf (y,p)dp for even d,

paly,r) = P (lﬁ) g3 (d 2Mf(y )) for odd d
F( 87" r Or ’ .

In particular, for spatial dimension d = 3, we obtain the representation

poly. ) = - (PM(y.7)

and spatial dimension d = 2 leads to

pdp
r2 — p?

My (y.p dp——r/ My (y.rp)

P2y, 7 87’/\/7

([ [ (s (52)) o)

which motivates the introduction of a further mean value operator.
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Definition 17. The mean value operator N': C(R?) — C(R? x R) is defined by

1 dx
Nf(y,r):= o lx‘glf(Y‘WX)\/l?‘XP

1 [t cos go)) dypdp
=— +rp( Rl
27T/0 /0 f(y p<sm9‘7 V1—p?
]

Remark 18. To be complete, we have to show the continuity of N f: R2 x R — R for
a continuous function f € C (R?). The substitution p = sin« leads to

1 5 2w
/\/’f(}’ﬂ“):%/o /0 f(y—krsinoz((;iosz))sinadgpda

and this motivates the definition of the function sequence
_ T o . Cos .
fr 1 10,27] % [O, 2} =R, filp,a):=f (yk + 1 sin a (sin 80)) sin av,

for a given sequence (yg,7x) € R?* x R, k € N. The arguments from the proof of
Lemma 16 show the continuity of N f.

This thesis focuses on Fourier based methods, where we have to deal with complex
exponential functions. Spherical integrals over this basic functions lead to Bessel func-
tions.

Definition 19. For an order v > 0, we define the Bessel functions of the first kind
J,: R — R by the integral representation, see [(2, Sec. 3.3, eq. (6)],

T

T (x) = /eixcosg(sin £)*de. (3.12)

]

We continue with the computation of mean values for the complex exponential function.
This fundamental statement builds the basis of the Fourier based algorithms in this
thesis.

Theorem 20 ([12, eq. (1.5)]). Let a spatial dimension d € N\ {1} and a vector v € R?
be given. The mean values of the function

ey: RT — C, ev(x) = e2mvx.

according to a center pointy € R? and a radius r > 0 can be computed by

Neulyr) = 4 e forr=00rv=0,
vy, % ~ey(y) otherwise,

ford =2, and

ev(y) forr =0 orv =0,
./\/lev(y,r) = F(%)J%_I(QWHVD

ey otherwise,
(eriv) ¥ )

for general dimension d € N\ {1}.
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Proof. The assertions for r = 0 and v = 0 follow directly from the definition of the
mean value operators. Otherwise, let R € R%¢ be a rotation around the origin with

Rv = |vl]es, eq:=(0,...,0, 1)T c R%.

It follows
d

/ e27rirv~x dx / eZ7ri7“V~R’l X
x|<1 V1= |x? R-1x|<1 V1—|R1x/[?
27
/ / 27r17"\v|p51ncpdgo d
J1 =
: d
— 2mir|v|pcos ¢
2/ / e dgo—_l —

d
—27T/ Jo(2mr|v|p) —— pep
I—p

2
2
= 27T/ Jo(27r|v]| sin @) sin ¢dp
0

and Sonine’s first finite integral [62, Sec. 12.11, eq. (1)] yields

/ 2V dx o _ 9. sin (27rr|v|)'
|x|<1

J1(2mr|v])

VI-XE () ® B 277 |v|

Similar computations show

/ e27ri7‘v-§d0_(€) :/ e27rirv~R*1§d0_(£) :/ 627ri7‘|v|§ddo_<£)
Sd-1 RSd—1 Sd-1
2m
:/ / e27rir\v\cos19d,2Dd(17,[9>d19d(p

[0,m]@
d 2 i
/ sin ﬁd e27r17°|v| cosPy_o d0d72
0

TR

_y )2 g, @rriv)
T Qarv)it
() L (27r|v])

= Wd-1 d_
(7”‘|VD2

Finally,

1 iv. do(§) 1 ve do(§)
N (v, _ 2miv-(y+r€) 2nriv-€ ey
) = o /|s<1 ) VI-EE  2m /£|§1 ) VI-EE )

and

1
Wd—1

1
Wd—1

Mey(y,r) = /S | e Ode(g) = /S () - e(y)

complete the proof. O



Efficient discretization

Definitions 15 and 17 introduced mean values for continuous functions. In common ap-
plications, the data is given by discrete values, which motivates the following problem.
Let a spatial dimension d € N\ {1}, samples f of a continuous function f € C (R?),
supp f C I¢, on a regular grid Xy,

f=(f(X)yex, €RY, N e€2N, (4.1)
and sets of center points Y and radii R,
Y ={yi,....,ya} CR? and R={r,...,ra} C (0,00), My, M, €N,
be given. The task is to find an efficient approximation of the mean values
Mf(yjre), j=1,....,My, k=1,...,M,. (4.2)

In the following, we consider different discretizations of the mean value operators.
Excluding Section 4.2.2.1, this part of the thesis has already been published in [25, 26].
For comparison, we start with approximations of integrals by a simple rectangular rule,
which can also be generalized to quadratures of higher orders. The main part of this
thesis is a Fourier based approach, which is based on accurate computation of mean
values for finite Fourier sums. For frequencies on a rectangular Cartesian grid, this
leads to evaluations of nonequispaced discrete Fourier sums. Furthermore, we present
a fast discretization of the two-dimensional mean value operator N for functions, which
are given by its Fourier coefficients on polar frequenci