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Zusammenfassung

In der beiligenden Arbeit wird das Gram-negative Bakterium Pseudomonas aeruginosa

vorgestellt, welches schwere Infektionen im Menschen auslösen kann. Diese Bakterien-

art verwendet eine Strategie, die Quorum sensing bezeichnet wird. Bakterien die diese

Strategie nutzen senden Signalmoleküle, die Autoinducer genannt werden, in ihre Umge-

bung aus, was bei einer großen Autoinducerkonzentration zu einer gezielten Genexpression

führen kann. Die Bakterien agieren hierbei ähnlich einem mehrzelligen Organismus und

produzieren Produkte, die von anderen Zellen mitgenutzt werden. Dieses kooperative Ver-

halten wird durch sogenannte Cheaterzellen ausgenutzt, indem diese von den Produkten

profitieren, ohne eigene Produkte für die Gemeinschaft herzustellen. Auf die Frage, warum

sich Quorum sensing als Strategie halten konnte, wird in der Arbeit noch näher eingegan-

gen. Weiterhin werden mathematische Modelle vorgestellt, die die Dynamik von Cheater-

und Wildtypzellen beschreiben, welche zusammen unter verschiedenen Startverhältnissen

wachsen, um zu untersuchen wie diese miteinander interagieren. Daraufhin führen wir

eine Modellselektion durch, die auf den zu verfügbaren Daten beruht. Weiterhin können

wir einige Parameter von biologischer Signifikanz bestimmen, wie etwa Wachstumsraten.

Abstract

In the following work, mathematical models for the cooperative dynamics of the Gram-

negative bacterium Pseudomonas aeruginosa will be presented, which is a pathogen that

can cause severe infections. This bacterium uses a strategy called quorum sensing. Bac-

teria using this strategy emit signal molecules, called autoinducers, to their environment,

which lead to the expression of specific genes at high autoinducer density. Bacteria, in this

way, act similar to a multicellular organism and produce products, which other cells can

use. This cooperative behavior can be exploited by so called cheater cells, which profit

from those products without producing own products for the community. The question

arises, why quorum sensing exists as a strategy, which will be discussed in the work later.

Furthermore we present mathematical models of the dynamics of cheater and wildtype

cells, growing together under diverse initial proportions, to explore how they interact. We

then perform a model selection based on the experimental data available. We are further

able to estimate some parameters of biological significance such as growth rates.
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1. Introduction

Bacteria that develop resistance to antibiotics have been a big risk for humanity since

years. Britain’s chief medical officer Sally Davies for example stated that this problem

should be added to the list of national emergencies and mentioned: ”there are few public

health issues of potentially greater importance for society than antibiotic resistance” [25].

Margaret Chan, the director-general of the WHO, stated: ”In terms of new replacement

antibiotics, the pipeline is virtually dry, especially for Gram-negative bacteria”. [13]. She

also noted that we are fast approaching a post-antibiotic era and ”an end to modern

medicine, when things as common as a strep throat or a child’s scratched knee could

once again kill”. It is, therefore, of great importance to develop alternative methods to

inhibit bacterial virulence. The development of drugs interfering with quorum sensing, a

process that bacteria use to communicate, is a promising new research area. This could

be of considerable medical value given the continuing increase in resistance to antibiotics

exhibited by many pathogenic species, including Pseudomonas aeruginosa [11].

Quorum sensing can be exploited by mutated cells benefiting from products segregated by

the cooperating cells without producing so called ”public goods” on their own, and thus

exploiting this cooperative behavior [21]. In the following we focus on this exploitative

behavior in the Pseudomonas aeruginosa bacteria, which is one of the top three causes

of infections in which bacteria take advantage of their host having a weakened immune

system [5]. We focus on the dynamics of the PA14 wildtype cells and mutated cells that

exploit the cooperative behavior of the wildtype cells. We develop models to explore

the dynamics of both populations, i. e. wildtype (PA14) and cheater cells based on

standard models of interacting populations and fit data to several models to find an

appropriate description of this interaction. In the biological background part (see chapter

2) we introduce the process of quorum sensing, and in particular quorum sensing in

Pseudomonas aeruginosa. We also explain the exploitation of quorum sensing by cells,

such as the mutated cells mentioned above. In chapter 3, we introduce some well-known

mathematical models. Moreover we introduce some mathematical basics that we need

for the fitting procedure of the models and for the analysis. In chapter 4, we formulate

models that we base on theory and existing models and that are analyzed in chapter 5.

In chapter 6 some future work is mentioned that can be done on this topic.
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2. Biological Background

In the following we introduce the process of quorum sensing and in particular describe

the underlying quorum sensing systems in Pseudomonas aeruginosa. We describe the

exploitative behavior of cells that benefit from the public goods produced by cells par-

ticipating in quorum sensing. Afterwards, we introduce some mathematical models and

mathematical techniques that we use for the analysis.

2.1. Quorum Sensing in Pseudomonas Aeruginosa

Quorum sensing is a communication process between bacterial cells that includes the pro-

duction, detection and response to extracellular signaling molecules called autoinducers

[29]. The autoinducer concentration increases in the environment of bacteria with an

increasing number of bacterial cells, which produce them and send them out in the envi-

ronment [24]. Surrounding cells can monitor the concentration of autoinducers and when

a specific threshold of autoinducer concentration is reached, the bacterial cells express

specific genes, which lead to the formation of biofilms and virulence factor emission [19].

All known bacterial cells using quorum sensing follow three basic behaviors: First, the

cells participating in quorum sensing produce autoinducers. When the cell density in the

environment is low, the autoinducers are present at concentrations that the bacterial cells

cannot detect [2]. At high cell density, the bacterial cells can identify the autoinducers.

Secondly, the autoinducers can be detected by receptors that are present in the cytoplasm

or in the cell membrane. Thirdly, the detection of autoinducers results in the activation

of autoinducer production, leading to a feed-forward loop [29].

In this work we study the Gram-negative bacterium Pseudomonas aeruginosa. Pseu-

domonas aeruginosa can cause acute and chronic infections in humans [16]. Typically,

infections with Pseudomonas aeruginosa depend on the host having a compromised im-

mune system. The bacterium is responsible for a considerable amount of urinary tract

infections, and also one of the most common lethal pathogens in intubated patients [10].

Up to 10% of the genome is controlled by quorum sensing [17]. There are three known

quorum sensing systems that appear in the Gram-negative bacterium Pseudomonas aerug-

inosa, two quorum sensing circuits that control the expression of virulence factors as well
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2.1. Quorum Sensing in Pseudomonas Aeruginosa

Figure 2.1.: The synthase LasI synthesizes the autoinducer 3-oxo-C12-homoserine lactone,
represented by the small red triangles. Those autoinducers form a complex
with LasR. Since lasI is also a target, this leads to an autoinducing feed-
forward loop. The rhlI region is also a target, leading to a feed-forward loop
in the second quorum sensing circuit. The blue triangles represent butanoyl
homoserine lactone. The picture is adopted from Waters and Bassler [6].

as a third system called the Pseudomonas quinolone signal system [29]. In the first one,

the autoinducer synthase LasI synthesizes 3-oxo-C12-homoserine lactone [31]. When the

concentration of cells reaches a specific threshold, this autoinducer forms a complex with

a protein called LasR [18]. This complex leads to a transcription of specific genes that

encode virulence factors [28]. One of the LasR-3-oxo-C12-homoserine lactone targets is

lasI, resulting in an autoinducing feed-forward loop [20]. Another target of the lasR-3-oxo-

C12-homoserine lactone complex is called rhlI, and the according autoinducer synthase

RhlI synthesizes the autoinducer called butanoyl homoserine lactone [4]. Since rhlI is a

target of this complex as well, the result is again an autoinduction [22]. In figure 2.1,

the mechanism we described is depicted. We do not explain the Pseudomonas quinolone

signal system in detail, however, further information can be found in Rutherford and

Bassler [29].
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2. Biological Background

2.2. Exploitation of Quorum Sensing by Social Cheater

Cells

The cooperative behavior of bacteria participating in quorum sensing is susceptible to

exploitation by social cheaters. Those cheaters benefit from the products secreted by the

cooperators without producing the same amount of ”public goods” for the community

[21]. In the tragedy of the commons, something similar happens. When an area gets

used by a group of herdsmen, the best strategy for an individual herdsmen is to hold

as many animals as possible, even if this leads to a destructed ground. The dilemma is,

that the prize for renewing the ground is shared among all of the herdsmen. Thus, the

individual herdsman has an advantage, but the disadvantage is shared among all of them.

Therefore, although cooperation would be advantageous for the whole group, the outcome

is a breakdown of the cooperation [30]. The interesting fact about the strategy of quorum

sensing is that those social cheaters arise, which exploit this cooperative behavior, but

unlike in the tragedy of the commons, this strategy still exists and is used by bacteria.

We discuss this evidence further in in section 2.3, and we also discuss this in the model

analysis in chapter 5.

There are different mutations that can appear in Pseudomonas aeruginosa cells. As first

there can appear signal-negative strains, which do not produce 3-oxo-C12-homoserine

lactone autoinducers but still respond to signals. This mutant has the advantage that it

does not produce autoinducers, but it still has the effort for the gene response. The second

strain is called signal-blind strain, which does not respond to signals [27]. In the following

we analyzed data with lasR rhlR mutants. These are double mutants that neither produce

nor respond to quorum sensing signals [33]. We study how those lasR rhlR cheater cells

exploit PA14 cells, based on theory and on data.

2.3. Evolutionary Stability of Quorum Sensing

In the section above we introduced the exploitation of the cooperative behavior in cells

like Pseudomonas aeruginosa that use quorum sensing. The question arises, why quorum

sensing is evolutionary stable, when cheating cells exploit the cooperative behavior. There

have been found different explanations for this fact. At first, there can be a so called kin

selection, where cheater cells cannot really exploit PA14 cells, since PA14 cells only share

public goods with relatives. When cells are highly related, an exchange of products with

cheater cells is much more likely than for a lower relatedness [12]. Moreover, there has

been shown that cheating cells can get punished by PA14 cells with cyanide, since these

cooperating PA14 cells were less susceptible to cyanide than the cheater cells [15]. It
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2.4. Experimental Setup and Data Generation

Figure 2.2.: Picture of the experimental setup. From left to right: PA14 (wildtype cells)
lasR rhlR (cheater cells) 10% lasR rhlR 50% lasR rhlR 90% lasR rhlR.

has also been found that oxidative stress selects for cells with an active quorum sensing

system, and reduces the amount of cheater cells [21]. Another interesting phenomenon is

the mechanism of metabolic prudence. This mechanism takes care, that public-goods only

get exchanged when it is most beneficial for the cooperating cells [14]. Spatial structuring

of populations has also been shown to contribute to stability of cooperation [23].

2.4. Experimental Setup and Data Generation

In this section, we want to introduce the data we used for our analysis. We had dif-

ferent measurements of lasR rhlR mutants and PA14 cells growing together in different

conditions, as depicted in figure 2.2. In the left vessel, PA14 cells were growing without

lasR rhlR mutants for 24 hours. In the second vessel (from left), lasR rhlR mutants were

growing without PA14 cells. In the other vessels, a mixture of 10%, 50% and 90% lasR

rhlR mutants were growing together with PA14 cells. There were eleven measurement

time-points (after hour 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24) where the cell density was measured

for all of the five scenarios. The cell density was converted to the number of cells, which

we used for our fitting procedures. Additionally, at 5 time-points (after hour 0, 4, 6, 10, 24)

the proportions of lasR rhlR and PA14 cells were measured. In Garćıa-Contreras et al.

[21], there was already some similar work done on this topic. There, PA14 cells were

growing alone, but social cheater cells could be detected after 48 hours. In our case, we

already had a percentage of lasR rhlR cells growing with the PA14 cells at the beginning.

We wanted to study the dynamics of lasR rhlR and PA14 cells depending on the starting

conditions and were interested in exploring the interaction of both populations in all these

cases. Therefore we used our modeling approaches and evaluated them afterwards.
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3. Mathematical Background

In the following we start with mathematical basics and introduce notations that we follow

throughout this thesis. We also present some models that are already well-known and

that we adapt for the case we are studying.

3.1. Mathematical Models

Using standard tools (see for example Kuttler [3]), we consider a population where mem-

bers are growing with a constant rate r and dying with a constant rate d. We define a

function x(t) describing the number of cells of a population x at time t. From now on we

use the abbreviated form x. The rate of change of the population x over time t is written

as dx
dt

. Dividing the rate of change with the number of cells in the population 1
x
dx
dt

yields

the per capita rate of change. We can define the intrinsic rate of growth f = r− d, which

leaves us with the differential equation

1

x

dx

dt
= f.

Reformulation this equation we get:

dx

dt
= fx. (3.1)

With an initial condition x(0) = k, where k is the number of cells, we can get the explicit

solution of this equation as x(t) = keft, and we can distinguish three different cases.

If f > 0, the population has an unlimited growth whereas for f < 0, the population

decays exponentially. If f = 0, the population size is constant. We can directly see,

that we cannot model bacterial growth with this model, since a bacterial population does

typically not decay or grow exponentially. Bacterial populations do not grow unlimited,

since there is always some competition for resources and space. As an improved model,

we consider the deterministic logistic model in continuous time.
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3.1. Mathematical Models

3.1.1. Logistic Model (Model 1)

The logistic model is a simple approach to model the growth of microorganisms, for exam-

ple of bacteria. Instead of defining an intrinsic rate of growth, we now define the function

f(x) = r − dx being the difference of a growth rate r and a death function dx, where dx

is increasing in the number of bacteria. This leads to the fact that the population does

not grow unlimited. We can again formulate a differential equation

dx

dt
= f(x)x, f(x) = r − dx, r > 0, d > 0,

which can be reformulated as

dx

dt
= f(x)x = (r − dx)x = rx(1− dx

r
).

Defining d := r
K

, where K is referred to as the so called carrying capacity, we get

dx

dt
= rx(1− x

K
). (3.2)

For two populations x1 and x2 this reads

dx1
dt

= r1x1(1−
x1
K1

) (3.3a)

dx2
dt

= r2x2(1−
x2
K2

). (3.3b)

For populations growing independently of each other, the logistic model can be a good

approach, but it is likely that models with an interaction term that accounts for com-

petition between two populations are more appropriate to explain the dynamics of lasR

rhlR mutants and wildtype cells growing together. In figure 3.1, a logistic growth curve

of yeast in a sugar solution is depicted.
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3. Mathematical Background

Figure 3.1.: Logistic growth curve of yeast in a sugar solution, with a carrying capacity
K=8.70. The amount of yeast is depicted as a function of time. The picture
is taken from Müller [9].

3.1.2. Competitive Lotka Volterra Model (Model 2)

The following model takes interaction among two populations into account. It can explain

the dynamics of two populations that compete for example for nutrients and space. The

model looks similar to the logistic model, but a new term is included, which accounts for

the negative interaction (i. e. the presence of one population impacts the numbers of

the other, denoted by the - term) between the two populations. It looks as follows (see

Müller [9])

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (3.4a)

dx2
dt

= r2x2(1−
x2 + α21x1

K2

). (3.4b)

We can derive the model by defining f1 and f2 as functions that have an additional

interaction term included representing the competition effect between the populations.

The symbol α12 represents the negative effect that population x2 has on population x1

whereas the symbol α21 represents the negative effect that population x1 has on population

x2. Defining d1 := r1
K1

and d2 := r2
K2

and setting

dx1
dt

= f1(x1, x2)x1 (3.5a)

dx2
dt

= f2(x1, x2)x2 (3.5b)
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3.2. Tools for Stability Analysis

with

f1(x1, x2) = r1 − α12d1x2 − d1x1
f2(x1, x2) = r2 − α21d2x1 − d2x2,

we get the differential equations as introduced above. This model might be helpful to

better explain the dynamics in our case, since the lasR rhlR mutants are likely to have

a negative effect on the PA14 cells due to the exploitation of public goods. But this

model might still not be sufficient, since in this case, a negative interaction between the

populations is assumed. In our case however, there might not be a negative interaction

term for the lasR rhlR mutants, they might rather profit from the appearance of PA14

cells. In chapter 4, we take this idea into account in our modeling approaches.

3.2. Tools for Stability Analysis

We want to analyze the behavior of the models we introduce. Therefore, we calculate

the stationary points and additionally look at the behavior of the dynamical system

near the stationary points. At first, we want to introduce some tools that we need for

the stability analysis. Since we have nonlinear differential equations, we want to use a

linearization to analyze the differential equations at the stationary points. Assume we

have a two-dimensional system of differential equations with a stationary point (x̄, ȳ)

of (f(x, y), g(x, y))T = (ẋ, ẏ)T , meaning that (f(x̄, ȳ), g(x̄, ȳ))T = (0, 0)T . Consider a

perturbation x = x̄+ u, y = ȳ + v, which yields (see Müller [9])

ẋ = (x̄+ u). = f(x̄+ u, ȳ + v) = f(x̄, ȳ) +
∂f(x̄, ȳ)

∂x
u+

∂f(x̄, ȳ)

∂y
v + ...

ẏ = (ȳ + v). = g(x̄+ u, ȳ + v) = g(x̄, ȳ) +
∂g(x̄, ȳ)

∂x
u+

∂g(x̄, ȳ)

∂y
v + ...

Near to the stationary point, we neglect higher order terms and find approximately

u̇ =
∂f

∂x
u+

∂f

∂y
v

v̇ =
∂g

∂x
u+

∂g

∂y
v.

In the following, we introduce two theorems that are helpful to analyze the behavior at

the stationary points of a two-dimensional nonlinear differential equation.

Theorem 1 (Special case of Hartman-Grobman Theorem) Let (x̄, ȳ) be a station-

ary point, and let both eigenvalues λ of the Jacobian evaluated at the stationary point have
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3. Mathematical Background

a real part not equaling zero. Then all solution curves of the nonlinear system

ẋ = f(x, y)

ẏ = g(x, y)

show the same qualitative behaviour at the stationary point (x̄, ȳ) as those of the corre-

sponding linear problem

(
u̇

v̇

)
=

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)(
u

v

)
.

Note that this theorem is only valid if both eigenvalues have a real part not equalling zero.

The Hartman-Grobman theorem and this special case can both be found in Müller [9].

Theorem 2 (Stability) A stationary point (x̄, ȳ) is stable if all of the eigenvalues of

the Jacobian matrix evaluated at (x̄, ȳ) have negative real parts. The stationary point is

unstable if at least one of the eigenvalues has a positive real part.

The proof of this theorem can be found in Arrowsmith [7].

3.3. Tools for Parameter Estimation

In the following, we explain the fitting procedure that we executed with MATLAB, show

how we calculated the profile likelihoods for the best parameter vectors, and introduce

the Akaike Information Criterion that is used for the model selection in chapter 5.

3.3.1. Fitting Procedure

We did parameter estimation for our models via the lsqnonlin method in MATLAB. The

function lsqnonlin requires a function defined as

f(θ) =


f1(θ)

f2(θ)
...

fn(θ)


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3.3. Tools for Parameter Estimation

and then solves the nonlinear-least-squares curve fitting problem of the form

min
θ
||f(θ)||22 = min

θ
(f1(θ)

2 + f2(θ)
2 + ...+ fn(θ)2),

in which optionally lower and upper bounds can be added on the components of θ. In our

case, we wanted to find the best parameter vector θ̂ ∈ Rm of a model with m parameters

that minimizes a function dependent on the observed and estimated values of the model.

The function which needs to be minimized is
n∑
i=1

(yobsi − ypredi(θ))2 , and the minimization

that is required to find the optimal vector θ̂ ∈ Rm with the lsqnonlin method in MATLAB

is therefore

min
θ
||E(θ)||22 = min

θ

n∑
i=1

(yobsi − ypredi(θ))2, (3.6)

where yobsi denotes the ith observation in a time series of data, ypredi(θ) denotes a function

of the parameter value which returns the predicted value of the ith observation. Therefore

E(θ) has to be defined as

E(θ) =


(yobs1 − ypred1(θ))
(yobs2 − ypred2(θ))

...

(yobsn − ypredn(θ))

 .

We used a random number generator that calculated a starting vector θ ∈ Rm and run

the lsqnonlin fitting procedure for numerous starting vectors, since the lsqnonlin method

only finds local minima. The used algorithm is called trust-region-reflective algorithm,

and is based on the interior-reflective Newton method [32].

3.3.2. Profile Likelihood Calculation

Later we want to check if there is evidence that some of the parameters of the best

parameter vector θ̂ are not identifiable. We can use the profile likelihood method to

give evidence for a non-identifiable parameter. Under normally distributed measurement

noise, we get the log-likelihood as

log(L(θ)) = −n
2

log(2πσ)−

n∑
i=1

(yobsi − ypredi(θ))2

2σ
,

11



3. Mathematical Background

where σ = 1
n−1

n∑
i=1

(yobsi − ypredi(θ))2 denotes the sample variance. The profile likelihood

PL(θi) for parameter θi can be derived as

PL(θi) = min
θj 6=i

L(θ), (3.7)

where θi is fixed, and where we minimize over θj 6=i. To calculate a confidence interval I

of the parameters θi to a significance level α, we calculate

I(θi) = {θi|P (θi)− L(θ̂) < ηα}, (3.8)

where ηα = (χ2)−1(θn ≤ α, 1)/2 can be calculated via the chi-squared inverse cumulative

distribution function. In Raue et al. [1], the procedure is explained in more detail.

3.3.3. Akaike Information Criterion

After we find the optimal parameter values for the models, we use the Akaike Information

Criterion (AIC) to evaluate the relative quality of our models. The AIC value can be

calculated via the formula

AIC = 2k − 2 log(L(θ̂)), (3.9)

where L(θ̂) denotes the maximized value of the likelihood function and k the number of

parameters in the model. We can evaluate the goodness of fit of our models with the AIC

value. It takes the number of parameters into account in the form of a penalty for the

number of parameters. Therefore, we can compare the introduced models, although they

do not all have the same number of parameters. The smaller the AIC value, the better

the model fits the data [8].
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4. Modeling

Here we want to show different modeling approaches that we used to analyze the data.

We mainly base the modeling approaches on biological theory and use ideas of the models

introduced in chapter 3. To remind the reader, the wildtype produces public goods which

they use but also the cheaters take advantage of, without producing them. Producing

these goods is costly (energy-wise) for the wildtype. We present modeling approaches with

a profit term included in the growth rate of PA14 cells (x1) and the lasR rhlR mutants

(x2). In Brown et al. [26], approaches with a benefit for both populations of the public

goods produced by the PA14 cells and an included cost term for the PA14 cells were

presented. We do not explicitly model a cost term for the PA14 cells for producing those

public goods. In our models this cost term is included in the independent part of the

growth rate of the wildtype cells indirectly.

In section 4.2., we present models that have an interaction term included, as seen for the

Competitive Lotka Volterra model.

4.1. Logistic Models with Growth Benefit

The following models have a profit term included in their growth rates. This is motivated

by the finding that there is a profit for lasR rhlR mutants that exploit the PA14 wildtype

cells, and there is also an effect on the growth rate for PA14 cells dependent on the amount

of lasR rhlR mutants.

4.1.1. Growth Benefit for Both Populations (Model 3)

The following model has an interaction term included in the growth rate of both popu-

lations which is dependent on the proportion of population x1 and population x2. We

split the growth rates of the two populations in two parts. At first we have a part being

independent of the other population (r1 for population x1 and r2 for population x2) and

secondly a part being dependent on the other population ( p1x2
x1+x2

for population x1 and
p2x1
x1+x2

for population x2). We define
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4. Modeling

dx1
dt

= f1(x1, x2)x1, f1(x1, x2) = (r1 +
p1x2
x1 + x2

)− d1x1, d1 > 0 (4.1a)

dx2
dt

= f2(x1, x2)x2, f2(x1, x2) = (r2 +
p2x1
x1 + x2

)− d2x2, d2 > 0, (4.1b)

with growth functions r̃1(x1, x2) = r1+ p1x2
x1+x2

for equation (4.1a) and r̃2(x1, x2) = r2+ p2x1
x1+x2

for equation (4.1b). Rewriting d1 := r̃1(x1,x2)
K1

and d2 := r̃2(x1,x2)
K2

, we get for population x1

dx1
dt

= (r̃1(x1, x2)− d1x1)x1

= x1(r̃1(x1, x2)−
r̃1(x1, x2)x1

K1

)

= r̃1(x1, x2)x1(1−
x1
K1

)

and for population x2

dx2
dt

= (r̃2(x1, x2)− d2x2)x2

= x2(r̃2(x1, x2)−
r̃2(x1, x2)x2

K2

)

= r̃2(x1, x2)x2(1−
x2
K2

).

Thus, we end up with the following system of differential equations

dx1
dt

= (r1 + p1
x2

x1 + x2
)x1(1−

x1
K1

) (4.2a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2
K2

), (4.2b)

where x1 represents the population of PA14 cells, and x2 the population of lasR rhlR cells.
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4.2. Logistic Models with Growth Benefit and Interaction

4.1.2. Growth Benefit for One Population (Model 4)

In this model (Model 4 (i)), the PA14 cells profit from the lasR rhlR mutants in form of

a higher growth rate, depending on the proportions of cheaters. We define

dx1
dt

= f1(x1, x2)x1, f1(x1, x2) = (r1 +
p1x2
x1 + x2

)− d1x1, d1 > 0 (4.3a)

dx2
dt

= f2(x1, x2)x2, f2(x1, x2) = r2 − d2x2, d2 > 0, (4.3b)

with growth function r̃1(x1, x2) = r1 + p1x2
x1+x2

for equation (4.3a) and growth rate r2 for

equation (4.3b). Setting d1 := r̃1(x1,x2)
K1

and d2 := r2
K2

, we get the according system of

differential equations after similar computations as

dx1
dt

= (r1 + p1
x2

x1 + x2
)x1(1−

x1
K1

) (4.4a)

dx2
dt

= r2x2(1−
x2
K2

), (4.4b)

where x1 represent the PA14 cells, and x2 the lasR rhlR mutants.

The following Model 4 (ii) accounts for the fact that the growth benefit for PA14 cells

might be rather low, possibly even negative, and that rather the lasR rhlR mutant has

a growth benefit of the PA14 cells than the opposite case. The formula can be derived

analogously and reads

dx1
dt

= r1x1(1−
x1
K1

) (4.5a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2
K2

), (4.5b)

with the PA14 cells x1 and lasR rhlR cells x2.

4.2. Logistic Models with Growth Benefit and Interaction

In this section we combine ideas of the models introduced above. We include concepts

from the Competitive Lotka Volterra Model as well as a growth benefit as introduced in

section 4.1. We use an interaction term for the interaction of lasR rhlR mutants with

PA14 cells and vice versa, and additionally, we include a profit term in the growth rates

for the two cell types.
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4. Modeling

4.2.1. Negative Interaction with Growth Benefit for Both

Populations (Model 5)

This model has an interaction term similar to the Competitive Lotka Volterra model

(Model 2), but an additional profit term included in the growth term. In this model we

assume that also PA14 cells may have some benefit from lasR rhlR mutants. We define

dx1
dt

= f1(x1, x2)x1 (4.6a)

dx2
dt

= f2(x1, x2)x2, (4.6b)

with

f1(x1, x2) = (r1 +
p1x2
x1 + x2

)− α12d1x2 − d1x1

f2(x1, x2) = (r2 +
p2x1
x1 + x2

)− α21d2x1 − d2x2,

such that we can formulate the system of differential equations as

dx1
dt

=

[
(r1 +

p1x2
x1 + x2

)− α12d1x2 − d1x1
]
x1 (4.7a)

dx2
dt

=

[
(r2 +

p2x1
x1 + x2

)− α21d2x1 − d2x2
]
x2. (4.7b)

As before, we have growth functions r̃1(x1, x2) = r1 + p1x2
x1+x2

and r̃2(x1, x2) = r2 + p2x1
x1+x2

.

Reformulating for x1 with d1 := r̃1(x1,x2)
K1

and x2 with d2 := r̃2(x1,x2)
K2

, we get

dx1
dt

= (r1 + p1
x2

x1 + x2
)x1(1−

x1 + α12x2
K1

) (4.8a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2 + α21x1
K2

). (4.8b)

4.2.2. Negative Interaction Model with Growth Benefit for One

Population (Model 6)

The following model is very similar to Model 5, but has one parameter less. It has only a

profit term for the lasR rhlR cells included, which might be a more realistic scenario. We

get
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4.2. Logistic Models with Growth Benefit and Interaction

dx1
dt

= f1(x1, x2)x1

dx2
dt

= f2(x1, x2)x2

with f1 and f2 defined as

f1(x1, x2) = r1 − α12d1x2 − d1x1

f2(x1, x2) = (r2 +
p2x1
x1 + x2

)− α21d2x1 − d2x2.

After a similar procedure in deriving the differential equations, we end up with the model

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (4.9a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2 + α21x1
K2

). (4.9b)

4.2.3. Positive Interaction Model (Model 7)

We now consider again a modeling approach, where PA14 cells get punished from the

lasR rhlR mutants. In this approach, the growth rate of the PA14 cells is not directly

influenced by the proportions of lasR rhlR mutants. For the lasR rhlR cells, we take

a positive interaction term instead of a negative one, accounting for the fact, that the

interaction with the PA14 mutants has a positive effect on the lasR rhlR mutants instead

of a negative effect as it is the case for the Competitive Lotka Volterra model. We get

dx1
dt

= f1(x1, x2)x1

dx2
dt

= f2(x1, x2)x2

with f1 and f2 defined as

f1(x1, x2) = r1 − α12d1x2 − d1x1
f2(x1, x2) = r2 + α21d2x1 − d2x2.
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4. Modeling

For the PA14 cells we end up with the Competitive Lotka Volterra Model as introduced

before. After reformulating the equations with d1 := r1
K1

and d2 := r2
K2

we get

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (4.10a)

dx2
dt

= r2x2(1−
x2 − α21x1

K2

), (4.10b)

where x1 describes the PA14 cells and where x2 describes the lasR rhlR mutants.

4.2.4. Positive Interaction Model with Growth Benefit (Model 8)

In this model, we use the idea of a positive interaction for lasR rhlR mutants with PA14

cells, that additionally have a positive interaction with the PA14 cells in the growth rate

included. For the PA14 cells, we assume a negative interaction with the lasR rhlR mu-

tants as seen for the Competitive Lotka Volterra model. We get

dx1
dt

= f1(x1, x2)x1

dx2
dt

= f2(x1, x2)x2

with f1 and f2 defined as

f1(x1, x2) = r1 − α12d1x2 − d1x1

f2(x1, x2) = (r2 +
p2x1
x1 + x2

) + α21d2x1 − d2x2,

resulting in

dx1
dt

= (r1 − α12d1x2 − d1x1)x1 (4.11a)

dx2
dt

= ((r2 +
p2x1
x1 + x2

) + α21d2x1 − d2x2)x2. (4.11b)

After very similar derivations we end up with the equations
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4.2. Logistic Models with Growth Benefit and Interaction

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (4.12a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2 − α21x1
K2

), (4.12b)

where x1 represents the PA14 cells and x2 represents the lasR rhlR mutants.

4.2.5. Symmetrical Approach with Growth Benefit and Negative

Interaction (Model 9)

Here we want to present a symmetrical modeling approach. PA14 cells also profit from

their own produced public goods. If the proportion of PA14 cells is high, the PA14 cells

should be able to use a higher percentage of public goods. We get

dx1
dt

= f1(x1, x2)x1

dx2
dt

= f2(x1, x2)x2

with f1 and f2 defined as

f1(x1, x2) = (r1 +
p1x1
x1 + x2

)− α12d1x2 − d1x1

f2(x1, x2) = (r2 +
p2x1
x1 + x2

)− α21d2x1 − d2x2,

resulting in

dx1
dt

= (r1 +
p1x1
x1 + x2

)− α12d1x2 − d1x1)x1 (4.13a)

dx2
dt

= ((r2 +
p2x1
x1 + x2

)− α21d2x1 − d2x2)x2. (4.13b)
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4. Modeling

After rewriting d1 =
˜r1(x1,x2)
K1

and d2 =
˜r2(x1,x2)
K2

with r̃1(x1, x2) = r1+ p1x1
x1+x2

and r̃2(x1, x2) =

r2 + p2x1
x1+x2

and reformulating, we get

dx1
dt

= (r1 + p1
x1

x1 + x2
)x1(1−

x1 + α12x2
K1

) (4.14a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2 + α21x1
K2

). (4.14b)

4.2.6. Symmetrical Approach with Growth Benefit and Positive

Interaction (Model 10)

Here we again model slightly different, instead of having a negative interaction term for

lasR rhlR mutants, we take a positive interaction term, that accounts for a positive in-

fluence of wildtype cells on lasR rhlR mutants. A profit term for both populations by

the public goods production is again included, and a negative interaction term for the

wildtype cells with the lasR rhlR mutants. We get

dx1
dt

= f1(x1, x2)x1

dx2
dt

= f2(x1, x2)x2

with f1 and f2 defined as

f1(x1, x2) = (r1 +
p1x1
x1 + x2

)− α12d1x2 − d1x1

f2(x1, x2) = (r2 +
p2x1
x1 + x2

) + α21d2x1 − d2x2,

which gives

dx1
dt

= ((r1 +
p1x1
x1 + x2

)− α12d1x2 − d1x1)x1 (4.15a)

dx2
dt

= ((r2 +
p2x1
x1 + x2

) + α21d2x1 − d2x2)x2. (4.15b)

After rewriting d1 =
˜r1(x1,x2)
K1

and d2 =
˜r2(x1,x2)
K2

with r̃1(x1, x2) = r1+ p1x1
x1+x2

and r̃2(x1, x2) =

r2 + p2x1
x1+x2

, we get
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4.3. Summary of Model Properties

dx1
dt

= (r1 + p1
x1

x1 + x2
)x1(1−

x1 + α12x2
K1

) (4.16a)

dx2
dt

= (r2 + p2
x1

x1 + x2
)x2(1−

x2 − α21x1
K2

), (4.16b)

where x1 describes the PA14 cells and x2 describes the lasR rhlR mutants.

4.3. Summary of Model Properties

In this section, we want to sum up the models we introduced in the previous sections. We

list the properties of the different models in a table, to have a better overview (see figure

4.1.).

Figure 4.1.: Depicted are the different properties of the models. g.t. means growth term,
i.t. means interaction term. As an example, g.t. x1 means that a growth
term is included in the differential equation of x1. A minus means, that the
specific model does not include this property, whereas a plus means, that the
model has this property.
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5. Model Analysis

In the following, we perform a stability analysis for the logistic model and for the Com-

petitive Lotka Volterra model. For the other models we introduced above we list the

stationary points.

5.1. Stability Analysis

5.1.1. Logistic Model

To calculate the stationary points, both equations are set to zero. It follows

dx1
dt

= r1x1(1−
x1
K1

) = 0⇔ x1 ∈ {0, K1}

dx2
dt

= r2x2(1−
x2
K2

) = 0⇔ x2 ∈ {0, K2}.

Thus, we get the four stationary points

P1 = (0, 0), P2 = (0, K2), P3 = (K1, 0), P4 = (K1, K2).

According to theorem 1, the nonlinear dynamical system has the same qualitative behav-

ior at the stationary points as the according linear system. We calculate the Jacobian

resulting in

J(x1, x2) =

(
r1 − 2r1x1

K1
0

0 r2 − 2r2x2
K2

)
. (5.1)
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5.1. Stability Analysis

Now, we evaluate the Jacobian at the stationary points. For P1 = (0, 0), we get

J(0, 0) =

(
r1 0

0 r2

)
, (5.2)

with eigenvalues λ1 = r1 and λ2 = r2. Since we assume that r1 > 0 and r2 > 0, the

eigenvalues both are positive, and thus the point P1 = (0, 0) is unstable. We can now

check for the second one. We have P2 = (0, K2), inserting this in the Jacobian we get

J(0, K2) =

(
r1 0

0 −r2

)
, (5.3)

with the eigenvalues λ1 = r1 and λ2 = −r2. We have again an unstable point, since one

of the two eigenvalues is positive.

For the third point P3 = (K1, 0), we get

J(K1, 0) =

(
−r1 0

0 r2

)
, (5.4)

again with the result, that one eigenvalue is positive and the other negative, resulting in

an unstable point.

As the last point to check, P4 = (K1, K2), we get the resulting Jacobian as

J(K1, K2) =

(
−r1 0

0 −r2

)
, (5.5)

meaning that this point is a stable point, since λ1 = −r1 and λ2 = −r2 both are negative.

In figure 5.1 the four stationary points are depicted.

5.1.2. Competitive Lotka Volterra Equations

Recall the model as

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (5.6a)

dx2
dt

= r2x2(1−
x2 + α21x1

K2

). (5.6b)

23



5. Model Analysis

x
1

0 K
1

x 2
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K
2

Figure 5.1.: Stationary points of the logistic model. The filled dot indicates the stable
point, the unfilled dots indicate the unstable points.

We do the analysis according to Müller [9]. We can simplify the model with the definitions

y1 := x1
K1
, y2 := x2

K2
, τ = r1t, ρ := r2

r1
, a1 := α12

K2

K1
, a2 := α21

K1

K2

and end up with the equations

dy1
dτ

= y1(1− y1 − a1y2) (5.7a)

dy2
dτ

= ρy2(1− y2 − a2y1). (5.7b)

The stationary points can be calculated as

P1 := (0, 0), P2 := (1, 0), P3 := (0, 1), P4 := ( a1−1
a1a2−1 ,

a2−1
a1a2−1),

and the Jacobian reads

J(y1, y2) =

(
1− 2y1 − a1y2 −a1y1
−ρa2y2 ρ(1− 2y2 − a2y1)

)
. (5.8)

There are four different cases to consider for the stability analysis:

Case 1: a1 < 1 and 1 < a2. We get the stationary points P1 = (0, 0), P2 = (0, 1), P3 =

(1, 0). The Jacobian matrix in P1 = (0, 0) reads
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5.1. Stability Analysis

J(0, 0) =

(
1 0

0 ρ

)
. (5.9)

Thus, P1 = (0, 0) is an unstable point, cause the eigenvalues both are positive. Note that

ρ is positive, since we were assuming our growth rates to be positive.

For the second point P2 = (0, 1), we get

J(0, 1) =

(
1− a1 0

−ρa2 −ρ

)
. (5.10)

Thus, this point is an unstable point, since there is a positive and a negative eigenvalue.

For the third point, P3 = (1, 0), we get the Jacobian as

J(1, 0) =

(
−1 −a1
0 ρ(1− a2)

)
. (5.11)

Because of the assumption that a2 > 1, the term ρ(1 − a2) is negative, and thus both

eigenvalues are negative, resulting in a stable point.

As a result, the population does not coexist, but y2 takes over where y1 dies out. We have

the condition

a1 = α12
K2

K1

< 1 < α21
K1

K2

= a2, (5.12)

thus either K1 is larger than K2 or α12 is much higher than α21.

Case 2: a1 > 1 and a2 < 1. This case is similar to case 1, only that y1 and y2 switch their

roles.

Case 3: a1, a2 < 1. In this case, a coexistence point is present. Thus, we have four

stationary points, and we get the Jacobian of (0, 0) as

J(0, 0) =

(
1 0

0 ρ

)
. (5.13)

We see that (0, 0) is unstable. For (0, 1), we get
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5. Model Analysis

J(0, 1) =

(
1− a1 0

−ρa2 −ρ

)
, (5.14)

which is also an unstable point since we find a positive and a negative eigenvalue. For

(1, 0) we get

J(1, 0) =

(
−1 −a1
0 ρ(1− a2)

)
. (5.15)

We find a positive and a negative eigenvalue, leading to an unstable point. Calculating

the characteristic polynomial for the fourth point ( a1−1
a1a2−1 ,

a2−1
a1a2−1), we find that this point

is a stable point.

Case 4: a1, a2 > 1. Doing similar calculations as in case 3, we find that (0, 0) and

( a1−1
a1a2−1 ,

a2−1
a1a2−1) are unstable, whereas (1, 0), (0, 1) are stable points.

Depending on the initial condition, one of the two species dies out, such that there will

not be a coexistence.

Summing up, case 3 is the only case where both species coexist. The condition for case 3

to happen is

a1 = α12
K2

K1

< 1, α21
K1

K2

= a2 < 1. (5.16)

That this case happens, α12 and α21 must not be too large, since the upper inequalities

have to hold. This means that a coexistence only happens when the interaction between

the two populations is small. For the case that the interaction is high, only one species

will survive on a continuing basis.

As we saw, it is already challenging to perform a stability analysis for this model. Since

stability analysis is not the main focus of this work, we do not perform a stability analysis

for the other models, however, we list the stationary points in the appendix.

5.2. Model Fitting and Parameter Estimation

In the following, we show the results of the parameter estimation with the models we

introduced. The lasR rhlR mutants and PA14 cells were growing for twenty-four hours,

and we had eleven measurement points (after hour 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24) where the
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5.2. Model Fitting and Parameter Estimation

cell density was measured, and which we converted to the number of cells for our fitting

procedure. Additionally, at five time-points (after hour 0, 4, 6, 10, 24), the proportion

of lasR rhlR cells and wildtype cells PA14 was measured, which we also converted to

cell numbers for the fitting procedure. Altogether, we had 16 measurement points for

our optimization. There were five different starting conditions. The first two conditions

were lasR rhlR mutants and PA14 cells growing alone for twenty-four hours. The other

conditions were the cases where 10%, 50% and 90% lasR rhlR mutants were growing

together with PA14 cells. The scenario where only lasR rhlR mutants and PA14 cells

were growing on their own are analyzed with the logistic model. These cases do not help

in investigating the interactions between lasR rhlR mutants and PA14 cells. We also

analyze the other scenarios with the logistic model, and look if we find some coherence

between the different cases, according to the estimated values by the optimization with

the logistic model. For the 10%, 50% and 90% we compare the models from chapter 3

and chapter 4 with the AIC.

5.2.1. Logistic Model Analysis

Before analyzing and evaluating the models in detail, we want to have a look at the

logistic model, and see if there is some coherence between the different conditions that

we study. It can help to see common properties shared among the cases, and help to

evaluate and interpret the other models. This model assumes that two populations grow

independently from each other (which is essentially not the case for PA14 and lasR rhlR

mutants growing together). We fit each case (0%, 10%, 50%, 90% and 100% cheater), and

look at the optimal parameter vectors of the fitting procedure. Recall the logistic model as

dx

dt
= rx(1− x

K
). (5.17)

We find for the cases where only lasR rhlR mutants and PA14 cells were growing alone,

that lasR rhlR mutants grow less quickly than PA14 cells, and that the carrying capacity

for the lasR rhlR mutants is lower than the carrying capacity of the PA14 cells. As best

parameter values, we found the values (r̂, K̂) = (0.45, 2.41× 107) for the PA14 cells, and

(r̂, K̂) = (0.13, 1.96×106) for the lasR rhlR mutants. In figure 5.2 we see the two different

growth curves of PA14 and lasR rhlR cells.

Now we want to study the scenarios where 10%, 50% and 90% lasR rhlR mutants were
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5. Model Analysis

Figure 5.2.(a)
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Figure 5.2.(b)
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Figure 5.2.: Depicted are the fits for the logistic model (equation 5.17). The data
points are shown as red crosses, whereas the fit is a blue line. The eleven
data points are the average values of six different measurements (after hour
0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24) where cell density got measured and was converted
to the number of cells. The number of cells is plotted as a function of time.
In figure 5.2.(a) we see the fit where only PA14 cells were growing, in figure
5.2.(b) we see the fit where only lasR rhlR mutants were growing.

growing at the beginning. Recall the logistic model as

dx1
dt

= r1x1(1−
x1
K1

) (5.18a)

dx2
dt

= r2x2(1−
x2
K2

). (5.18b)

10% lasR rhlR. We get the estimated vector P = (r̂1, K̂1, r̂2, K̂2) = (0.37, 10.97 ×
107, 0.48, 10.66× 107). We can see that the growth rate r̂1 of the PA14 cells is now lower

whereas the growth rate r̂2 of the lasR rhlR mutants is higher compared to the case where

only lasR rhlR mutants and PA14 cells were growing alone, and even higher as the growth

rate of PA14 cells. The carrying capacity is also much higher for the lasR rhlR cells in

this scenario, and a bit lower for the PA14 cells. The model predicts a coexistence at the

point (10.96 × 107, 10.66 × 107). We can see the dynamics of the logistic model for the

10% lasR rhlR case depicted in figure 5.3.(a).

50% lasR rhlR. We get the best parameter vector P = (r̂1, K̂1, r̂2, K̂2) = (0.88, 4.00 ×
106, 0.35, 13.79 × 107). What we can directly see, compared to the 10% case, is the

increased growth rate of PA14 cells but a decreased carrying capacity of those cells. The

lasR rhlR mutants have a smaller growth rate than in the case with 10% lasR rhlR cells,

and a carrying capacity that is very similar to before. The dynamics for this case can be

found in figure 5.3.(b).
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5.2. Model Fitting and Parameter Estimation

Figure 5.3.(a)
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Figure 5.3.(b)

t
0 10 20 30 40 50

N
um

be
r 

of
 C

el
ls

#106

5

10

15
50 % lasR rhlR

observed lasR rhlR
observed PA14
predicted lasR rhlR
predicted PA14

Figure 5.3.(c)
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Figure 5.3.: In the three figures we see the dynamics for lasR rhlR mutants and PA14
cells for the best parameter vectors P = (r̂1, K̂1, r̂2, K̂2) = (0.37, 10.97 ×
107, 0.48, 10.66 × 107) for the 10% cheater case, P = (r̂1, K̂1, r̂2, K̂2) =
(0.88, 4.00 × 106, 0.35, 13.79 × 107) for the 50% cheater case and P =
(r̂1, K̂1, r̂2, K̂2) = (1.04, 9.27 × 105, 0.34, 9.81 × 106) for the 90% cheater case
of the logistic model (equations 5.18a and 5.18b). Note that the fits look fine,
but evaluating with the AIC later shows that this model is not appropriate to
explain the dynamics. In figure 5.3.(a), 10% lasR rhlR mutants were growing
with 90% PA14 cells at the beginning, in figure 5.3.(b), 50% lasR rhlR mu-
tants were growing with 50% PA14 cells at the beginning, in figure 5.3.(c),
90% lasR rhlR mutants were growing with 10% PA14 cells at the beginning.
As explained before, at 5 points of time (after hour 0, 4, 6, 10, 24) proportions
of cells got measured. We converted these proportions to cell numbers, these
were average values for several experiments. They are depicted as crosses.
The fitting procedure was done with those values and the eleven measure-
ment points (after hour 0,2,3,4,5,6,7,8,9,10,24), which are not depicted, since
those values were the sum of lasR rhlR mutants and wildtype cells. The lines
show the fits with the optimal parameter vectors found by the optimization
with the logistic model.
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5. Model Analysis

Figure 5.4.(a)
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Figure 5.4.: Depicted is the growth rate (figure 5.4.(a)) and change in the carrying capacity
(figure 5.4.(b)) depending on the starting conditions for the logistic model
(equations 5.18a and 5.18b). We were running five different optimization
with the logistic model, where (0%, 10%, 50%, 90% and 100%) lasR rhlR
cells were growing at the beginning. The 0% case corresponds to the case
where only PA14 was growing, the 100% case corresponds to the case where
only lasR rhlR mutants were growing. The crosses are the optimal values
found by the optimization and the lines illustrate the trend.

90% lasR rhlR. We get the best parameter vector P = (r̂1, K̂1, r̂2, K̂2) = (1.04, 9.27 ×
105, 0.34, 9.81× 106). What attracts attention is that the growth rate for the PA14 cells

even more increases, where the carrying capacity gets lower. The lasR rhlR mutants

have a smaller growth rate and a carrying capacity being more or less the same as in the

scenario before. In figure 5.3.(c) we see the associated plot.

Summing up, we see a trend, that the growth rate of PA14 cells is increasing with a

higher proportion of lasR rhlR mutants (see figure 5.4.(a)). This could for example be a

sign that PA14 cells do not produce many public goods when there is a low proportion of

them, and more focus on cell growth. Also it could be a sign that the cell density of PA14

cells is too low such that the expensive gene expression of quorum sensing does not get

activated, resulting in a higher growth rate. Moreover we see that the growth rate of lasR

rhlR cells decreases in the number of lasR rhlR cells. This effect is not that surprising

since this can be well explained by the fact that lasR rhlR cells profit from the PA14 cells,

and are very much dependent on the presence of those.

5.2.2. Analysis with Introduced Models

Here, we want to interpret the results from the fitting procedures. We fitted all introduced

models to the 10%, 50% and 90% cheater conditions and compared those with the AIC
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5.2. Model Fitting and Parameter Estimation

Percentage of lasR rhlR cells 10% 50% 90% Parameter
Model 1 481.37 473.50 477.84 4
Model 2 482.78 468.93 458.8 6
Model 3 478.67 471.40 463.48 6
Model 4 (i) 476.40 475.38 479.84 5
Model 4 (ii) 483.37 469.47 463.09 5
Model 5 482.41 472.87 457.48 8
Model 6 484.90 471.06 456.08 8
Model 7 481.83 477.48 460.48 6
Model 8 537.99 473.43 452.55 7
Model 9 491.15 490.39 462.45 8
Model 10 540.04 475.43 454.56 8

Table 5.1.: AIC values of the models. The best values for the different scenarios are
highlighted in blue color. Note that for the 90% scenario, all models with a
value lower than Model 4(ii) where likely to be overfits.

(see table 5.1). In the following the best models for each of the cases (10% lasR rhlR,

50% lasR rhlR and 90% lasR rhlR) are analyzed and interpreted. First the 10% case is

analyzed, followed by the 50% case and afterwards the 90% case.

10% lasR rhlR. We see that Model 4(i) has the best AIC value. The model writes

dx1
dt

= (r1 + p1
x2

x1 + x2
)x1(1−

x1
K1

) (5.19a)

dx2
dt

= r2x2(1−
x2
K2

), (5.19b)

and has (r̂1, K̂1, p̂1, K̂2, r̂2) = (0.0003, 1.02× 107, 2.33, 1.10× 107, 0.47) as the best param-

eter vector of our fitting procedure.

That this model was chosen by the AIC seems reasonable. As we saw in figure 5.4.(a), the

growth rate for PA14 cells looks like an increasing function in the proportions of lasR rhlR

cells. When there are 10% lasR rhlR cells and 90% PA14 cells growing at the beginning,

there seems to be high exploitation of PA14 cells, and after the proportion of lasR rhlR

cells quickly increases, the growth rate of the PA14 cells also increases. An explanation

for this could be that with an increasing proportion of cheaters, wildtype cells reduce the

production of costly goods, such as autoinducer, and focus on their own growth.

Since the value r1 is near to zero, it might be sensible to evaluate a model without this
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5. Model Analysis

value. We end up with the model

dx1
dt

= (p1
x2

x1 + x2
)x1(1−

x1
K1

) (5.20a)

dx2
dt

= r2x2(1−
x2
K2

). (5.20b)

This model is the best model that we evaluated for the 10% lasR rhlR case, and in

figure 5.5 we see the associated plots. The best parameter vector is (p̂1, K̂1, r̂2, K̂2) =

(2.34, 1.02× 107, 0.47, 1.10× 107).

50% lasR rhlR. The Competitive Lotka Volterra model is the best model for this case.

It writes

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (5.21a)

dx2
dt

= r2x2(1−
x2 + α21x1

K2

), (5.21b)

with the best parameter vector

(r̂1, α̂12, K̂1, r̂2, α̂21, K̂2) = (0.72, 0.0003, 3.71× 106, 0.55, 5.11, 3.34× 107).

When looking at the results, we see that the growth rate for PA14 cells is higher than

the growth rate of lasR rhlR cells, and the carrying capacity of lasR rhlR cells is much

higher than for the PA14 cells. This time, we have a negative interaction term α12 and

α21, which describes the negative interaction of lasR rhlR mutants and PA14 cells. We

can see, that α12 is very near to zero, whereas the value α21 is quite high. The value α21

could stand for example for the production of toxins as introduced in section 2.3, that

PA14 cells produce to eliminate lasR rhlR mutants, leading to a negative interaction term.

Since the value α12 is very low, we fit this model again, without the parameter value α12,

and end up with the model

dx1
dt

= r1x1(1−
x1
K1

) (5.22a)

dx2
dt

= r2x2(1−
x2 + α21x1

K2

). (5.22b)

The best parameter vector reads

(r̂1, K̂1, r̂2, α̂21, K̂2) = (0.71, 3.66 × 106, 0.56, 5.97, 3.65 × 107). This model has the best

AIC value for the 50% lasR rhlR case. In figure 5.6, the results are depicted.
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5.2. Model Fitting and Parameter Estimation

Figure 5.5.(a)
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Figure 5.5.: In figure 5.5.(a), we see the fit of the sum of cells of lasR rhlR mutants
and wildtype cells for the best model in the 10% lasR rhlR case (equa-
tions 5.20a and 5.20b), with the best parameter vector (p̂1, K̂1, r̂2, K̂2) =
(2.34, 1.02 × 107, 0.47, 1.10 × 107). The red crosses are the eleven measure-
ment points where the sum of cheater and wildtype cells was measured (after
hour 0,2,3,4,5,6,7,8,9,10,24).
In figure 5.5.(b), we see the associated dynamics of lasR rhlR mutants and
PA14 cells. The red and blue crosses are the observed proportions which were
converted to cell numbers (after hour 0, 4, 6, 10, 24).
In figure 5.5.(c), we see the development of the lasR rhlR percentage over
time. The red crosses are the observed proportions (after hour 0, 4, 6, 10, 24).
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5. Model Analysis

Figure 5.6.(a)
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Figure 5.6.(b)
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Figure 5.6.(c)
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Figure 5.6.: In figure 5.6.(a), we see the fit of the sum of cells of lasR rhlR mutants
and wildtype cells for the best model in the 50% lasR rhlR case (equa-
tions 5.22a and 5.22b), with the best parameter vector (r̂1, K̂1, r̂2, α̂21, K̂2) =
(0.71, 3.66 × 106, 0.56, 5.97, 3.65 × 107). The red crosses are the eleven mea-
surement points where the sum of cheater and wildtype cells was measured
(after hour 0,2,3,4,5,6,7,8,9,10,24).
In figure 5.6.(b), we see the associated dynamics of lasR rhlR mutants and
PA14 cells. The red and blue crosses are the observed proportions which were
converted to cell numbers (after hour 0, 4, 6, 10, 24).
In figure 5.6.(c), we see the development of the lasR rhlR percentage over
time. The red crosses are the observed proportions (after hour 0, 4, 6, 10, 24).
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5.3. Uncertainty Analysis using the Profile Likelihood

90% lasR rhlR. We get the following model as the best one:

dx1
dt

= r1x1(1−
x1 + α12x2

K1

) (5.23a)

dx2
dt

= (r2 + p
x1

x1 + x2
)x2(1−

x2 − α21x1
K2

). (5.23b)

This model seems to be the best according to the model evaluation. We performed the

fitting procedure for thousands of iterations and got several very similar points, which

indicated identifiablity. But when we look at figure 5.7, we see that this fit is likely to be

an overfit.

Let us look at the models that are fit appropriately, and that have the best model evalu-

ation. As best model of the appropriate fitted models we get the same one as in the 10%

lasR rhlR case, just the reversed model

dx1
dt

= r1x1(1−
x1
K1

) (5.24a)

dx2
dt

= (p2
x1

x1 + x2
)x2(1−

x2
K2

), (5.24b)

with the best parameter vector (r̂1, K̂1, p̂2, K2) = (2.94, 4.34× 105, 1.00, 1.12× 107). Since

the other models were much better according to the AIC but were likely to be overfitted,

we do not interpret this case, but we show the fits of this model in figure 5.8 and show

the profiles in the next section. Note that the percentage was also not fitted properly for

this case.

5.3. Uncertainty Analysis using the Profile Likelihood

In this section, we want to look at the profiles of our best models. To analyze if our

parameters are identifiable, we calculate the confidence intervals for the parameters. We

look at the best models of the different cases, and start again with the 10% lasR rhlR

case, then the 50% case and afterwards the 90% case. If the confidence intervals are finite,

the parameters are identifiable [1].

10% lasR rhlR. We got the best parameter vector as (p̂1, K̂1, r̂2, K̂2) = (2.34, 1.02 ×
107, 0.47, 1.10×107). After calculating the 95% confidence intervals, we get p̂1 ∈ [1.81, 2.93],

K̂1 ∈ [9.06 × 106, 1.14 × 107], r̂2 ∈ [0.44, 0.50], K̂2 ∈ [1.01 × 107, 1.20 × 107], and we see

the associated plots in figure 5.9.

50% lasR rhlR. We got the best parameter vector as (r̂1, K̂1, r̂2, α̂21, K̂2) = (0.71, 3.66×
106, 0.56, 5.97, 3.65 × 107). After calculating the 95% confidence intervals, we get r̂1 ∈
[0.57, 0.92], K̂1 ∈ [3.13 × 106, 4.33 × 106], r̂2 ∈ [0.44, 0.65], α̂21 ∈ [1.64, 15.47], K̂2 ∈
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Figure 5.7.(a)
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Figure 5.7.: In figure 5.7.(a), we see the fit of the sum of cells of lasR rhlR mutants and
wildtype cells for the best model in the 90% lasR rhlR case (equations 5.23a
and 5.23b). The red crosses are the eleven measurement points where the sum
of cheater and wildtype cells was measured (after hour 0,2,3,4,5,6,7,8,9,10,24).
In figure 5.7.(b), we see the associated dynamics of lasR rhlR mutants and
PA14 cells. The red and blue crosses are the observed proportions which were
converted to cell numbers (after hour 0, 4, 6, 10, 24).
In figure 5.7.(c), we see the development of the lasR rhlR percentage over
time. The red crosses are the observed proportions (after hour 0, 4, 6, 10, 24).
The dynamics that this model predicts are likely to be overfits.
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5.3. Uncertainty Analysis using the Profile Likelihood

Figure 5.8.(a)

Time [h]
0 10 20 30 40 50

N
um

be
r 

of
 C

el
ls

#106

2

6

10

90% lasR rhlR

observed
predicted

Figure 5.8.(b)
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Figure 5.8.: In figure 5.8.(a), we see the fit of the sum of cells of lasR rhlR mutants
and wildtype cells for the best model in the 90% lasR rhlR case (equa-
tions 5.24a and 5.24b), with the best parameter vector (r̂1, K̂1, p̂2, K2) =
(2.94, 4.34 × 105, 1.00, 1.12 × 107). The red crosses are the eleven measure-
ment points where the sum of cheater and wildtype cells was measured (after
hour 0,2,3,4,5,6,7,8,9,10,24).
In figure 5.8.(b), we see the associated dynamics of lasR rhlR mutants and
PA14 cells. The red and blue crosses are the observed proportions which were
converted to cell numbers (after hour 0, 4, 6, 10, 24).
In figure 5.8.(c), we see the development of the lasR rhlR percentage over
time. The red crosses are the observed proportions (after hour 0, 4, 6, 10, 24).
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Figure 5.9.: We see the profiles for the 10% lasR rhlR scenario. The best parameter vector
was (p̂1, K̂1, r̂2, K̂2) = (2.34, 1.02× 107, 0.47, 1.10× 107) with 95% confidence
intervals as p̂1 ∈ [1.81, 2.93], K̂1 ∈ [9.06 × 106, 1.14 × 107], r̂2 ∈ [0.44, 0.50],
K̂2 ∈ [1.01× 107, 1.20× 107].

[2.01× 107, 5.93× 107]. We can see the associated plots in figure 5.10.

90% lasR rhlR. We got the best parameter vector as (r̂1, K̂1, p̂2, K2) = (2.94, 4.34 ×
105, 1.00, 1.12×107). Calculating the confidence intervals, the results are r̂1 ∈ [1.60, 6.63],

K̂1 ∈ [1.78×105, 8.47×105], p̂2 ∈ [0.45, 1.82], K̂2 ∈ [1.03×107, 1.25×107]. The associated

plots can be seen in figure 5.11.

Since all of the confidence intervals are finite, all of the parameters are identifiable.
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5.3. Uncertainty Analysis using the Profile Likelihood
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Figure 5.10.: We see the profiles for the 50% lasR rhlR scenario. The best parameter
vector was (r̂1, K̂1, r̂2, α̂21, K̂2) = (0.71, 3.66×106, 0.56, 5.97, 3.65×107) with
95% confidence intervals as r̂1 ∈ [0.57, 0.92], K̂1 ∈ [3.13 × 106, 4.33 × 106],
r̂2 ∈ [0.44, 0.65], α̂21 ∈ [1.64, 15.47], K̂2 ∈ [2.01× 107, 5.93× 107].
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Figure 5.11.: We see the profiles for the 90% lasR rhlR scenario. The best parameter
vector was (r̂1, K̂1, p̂2, K2) = (2.94, 4.34 × 105, 1.00, 1.12 × 107) with 95%
confidence intervals as r̂1 ∈ [1.60, 6.63] , K̂1 ∈ [1.78 × 105, 8.47 × 105], p̂2 ∈
[0.45, 1.82], K̂2 ∈ [1.03× 107, 1.25× 107].
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6. Future Work and Discussion

Here we want to discuss our findings and outline further work that can be done on this

topic. In this work we used mathematical modeling to analyze the interaction between

Pseudomonas aeruginosa wildtype cells and quorum sensing cheaters. For the case where

only cheaters and wildtype cells were growing alone, we took the logistic model to explain

the dynamics. Moreover we analyzed cases where cheater cells and wildtype cells were

growing together for different starting conditions. For the 10% cheater case, we saw

that the cheater had a high growth rate, which can be explained by their exploitative

behavior. With an increasing proportion of cheater cells, we found that the growth rate

of PA14 cells increases. This could be explained by the fact that wildtype cells prevent this

exploitative behavior when the amount of cheater increases, for example due to reducing

the production of autoinducers and using more energy for their own growth. For the 50%

cheater case, we saw that a model similar to the Competitive Lotka Volterra equations

fitted the observed data best. We estimated a parameter value α12 for the cheater cells,

which accounts for the interaction with the wildtype cells. This could be due to the

production of toxins by wildtype cells that penalizes the cheater cells. When we analyzed

the 90% lasR rhlR case, we saw that the model with the best AIC evaluation was likely

to be an overfit. It is possible that we picked a model with too many degrees of freedom

in this case.

In our studies, we focused on the case where no stress was added. In this case, under

normal control conditions, the outcome was a coexistence of wildtype and cheater cells,

where the proportion of cheater cells was increasing in time, until the system settled at a

stable point. In reality, however, cells could be exposed to stress from the environment,

such as oxidative stress (e.g. H2O2). As we mentioned before, a stressor selects for cells

with an active quorum sensing system, and cheater cells like lasR rhlR do not have a proper

functioning quorum sensing system. Thus, cheaters are likely to be more vulnerable under

stress. In future, it may be interesting to find mathematical models that can explain the

dynamics of cheater and wildtype cells exposed to stressors, to also incorporate these

additional factors.
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A. Appendix

A.1. Stationary Points

Model 3

P1 = (0, 0), P2 = (−(K2p1+K2r1)
r1

, K2), P3 = (K1,
−(K1p2+K1r2)

r2
),

P4 = (K1, 0), P5 = (0, K2), P6 = (K1, K2)

Model 4 (i)

P1 = (0, 0), P2 = (−(K2p1+K2r1)
r1

, K2), P3 = (K1, 0), P4 = (0, K2), P5 = (K1, K2)

Model 4 (ii)

P1 = (0, 0), P2 = (K1,
−(K1p2+K1r2)

r2
), P3 = (K1, 0), P4 = (0, K2), P5 = (K1, K2)

Model 5

P1 = (−(K1−K2α12)
α12α21−1 , −(K2−K1α21)

α12α21−1 ), P2 = ( K2(p1+r1)
α21p1−r1+α21r1

, −K2r1
α21p1−r1+α21r1

),

P3 = ( −K1r2
α12p2−r2+α1r2

, K1p2+K1r2
α12p2−r2+α12r2

),

P4 = (0, 0), P5 = (K1, 0), P6 = (0, K2)

Model 6

P1 = (−(K1−K2α12)
α12α21−1 , −(K2−K1α21)

α12α21−1 ), P2 = ( −K1r2
α12p2−r2+α12r2

, (K1p2+K1r2)
α12p2−r2+α12r2

), P3 = (0, 0), P4 =

(K1, 0), P5 = (0, K2)

Model 7

P1 = (K1−K2α12

α12α21+1
, K2+K1α21

α12α21+1
), P2 = (0, 0), P3 = (K1, 0), P4 = (0, K2)

Model 8

P1 = (K1−K2α12

α12α21+1
, K2+K1α21

α12α21+1
), P2 = ( −K1r2

α12p2−r2+α12r2
, K1p2+K1r2
α12p2−r2+α12r2
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