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Abstract

Cancer resistance is one of the major issues arising during chemotherapy, reducing
drug efficacy and adversely affecting treatment outcome. One of the main factors al-
lowing cancer cells to acquire anti-cancer drug resistance is exposure to the medication
itself.
Gevertz et al. approached this problem in [9], by creating a hybrid discrete-continuous
mathematical model to describe the behavior of cancer cell population and the arising
of drug resistance when treated with the continuously administrated DNA damaging
drug. The purpose of this thesis is to extend the aforementioned study by introducing
different drug administration protocols into the model and to investigate the impact
they have on the spatial and temporal cancer population dynamics, its clonal diversity
and emergence of anti-cancer drug resistance.
Using a piecewise constant function drug scheduling was modeled by diving the total
treatment time into equal-length fractions of active drug delivery and resting intervals.
Additionally the dose-response curves were presented to analyze the drug potency for
different resistance types.
Careful analysis of simulations results revealed that application of drug administration
protocols with no-drug intervals will benefit patient’s condition by decreasing the over-
all toxicity burden compared to the continuous drug supply. However, if cancer cells
population is not eradicated completely paused drug delivery will lead to increased
tumor heterogeneity, creating further complications for the treatment. Moreover, the
schedules with low drug dose intensity will surely enough lead to the disease progres-
sion and thus, its usage should be avoided.
The obtained results contribute to the future research when modeling specific treatment
protocols.
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Zusammenfassung

Die Krebsresistenz ist eines der wesentlichen Probleme, die bei der Chemotherapie
auftaucht. Sie reduziert die Wirksamkeit der Medikamente und benachteiligt das Be-
handlungsergebnis. Einer der wichtigsten Faktoren der die Krebszellen ermöglicht die
Anti-Krebs-Medikamentenresistenz zu erwerben, ist der Kontakt mit dem Arzneimittel
selbst.
Gevertz et al. setzten sich mit dieser Problematik in [9] auseinander, indem sie ein hy-
brides diskret-kontinuierliches mathematisches Modell erstellten um das Verhalten der
Krebszellenpopulation und die Entstehung der Medikamentenresistenz bei Behand-
lung von fortlaufend ausgeführten, DNA zerstörenden Medikamenten zu beschreiben.
Die Zielsetzung dieser Masterarbeit ist es, die obengenannte Forschung auszuweiten
indem man unterschiedliche Therapieschemen in das Modell hinein vorstellt. Darüber
hinaus die Auswirkung zu untersuchen, die sie auf die räumliche und zeitliche Dy-
namik von Krebszellpopulation, ihrer klonalen Vielfalt haben und die Entstehung der
Anti-Krebs-Medikamentenresistenz zu erforschen.
Stückweise konstante Funktionen verwendend wurde eine Medikamentenlieferungs-
planung erstellt, indem die ganze Behandlungszeit in gleich lange Phasen von aktiver
Medikamentenverabreichung und Ruheintervall getaucht wurde. Zusätzlich wurden
die Dosis-Wirkungs-Kurven präsentiert um die Medikamentenwirksamkeit von ver-
schiedenen Resistenztypen zu analysieren.
Die sorgfältige Auswertung der Simulationsergebnisse machte deutlich, dass die An-
wendung von Therapieschemen mit den Intervallen ohne Medikamentenzufuhr posi-
tive Auswirkungen auf die Verfassung des Patienten bei Verminderung der gesamten
Toxizität Belastung hat, im Vergleich zur kontinuierlichen Medikamentenverabreichung.
Doch wenn die Population der Krebszellen nicht komplett ausgerottet wird, wird die
pausierte Medikamentenzufuhr zu einer Steigerung der Tumorheterogenität führen,
die weitere Komplikationen der Behandlung erzeugt. Zudem werden die Pläne mit
niedriger Intensität der Medikamentendosis mit Sicherheit zum Fortschritt der Krankheit
führen und daher sollte die Behandlung vermieden werden.
Die erzielten Ergebnisse trägt zur zukünftigen Forschung bei wenn spezifische Thera-
pieschemen entwickelt werden.
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1 Introduction

Chemotherapy, being one of the conventional cancer treatment options, might be used
as first-line cancer therapy, neoadjuvant or adjuvant treatment as well as be combined
with other therapeutic modalities, depending on the malignancy type, stage and pa-
tient’s health condition. Since, traditionally used anti-cancer drugs are cytotoxic, chemo-
therapy is usually accompanied by their negative side effects. Therefore, while plan-
ning treatment protocols no-drug intervals must be introduced between active admin-
istration of the medication to grant normal cells time to recover. However, also the
remaining tumor cells will proliferate during the resting intervals which may further
lead to the therapy failure[20]. Another issue that adversely affects treatment success is
tumor resistance. Anti-cancer drug resistance might exist prior to the treatment course
or might be induced by medication use as well as by the cell interaction with microen-
vironment or other conditions (acquired resistance)[45, 50, 49].
A hybrid discrete-continuous model describing a tumor, growing in the small tissue
slice, supplied with oxygen from the vasculature and treated with DNA damaging
drug, was presented in [9, Gevertz et al. 2015]. The model regards oxygen and drug
concentrations as continuous variables determining their dynamics through reaction-
diffusion equations. Tumor is described using agent-based approach, with a particle-
spring system depicting cancer cells as particles with assigned elastic springs generat-
ing forces whenever displaced from the equilibrium. The characteristics of the model
enable the monitoring of each cell separately, thus, revealing its individual properties
and cell life history. However, [9, Gevertz et al. 2015] assume constant drug supply
throughout the treatment course what differ from clinical practice. Thus in continua-
tion to the presented analysis of numerical simulations for the stated model this thesis
incorporates the idea of resting intervals, dividing the whole treatment time into frac-
tions and alternating active drug therapy with no-drug periods.
Chemotherapy protocols are tumor-specific and designed taking into consideration pa-
tient’s health condition and cancer response to the treatment. Medical doctors prepare
chemotherapy plans for patients according to the existing practice guidelines and clini-
cal trials. Depending on cancer type they select an appropriate schedule, with specified
duration, frequency and number of drug administration cycles. However, in this thesis
a simplifying assumption was made by considering a generalized chemotherapy regi-
men with equal-length intervals and fixed dose intensities in active drug administration
periods. Tumor cell population behavior treated with pulsed drug supply is compared
with the ones that receive medication continuously. Further, the modifications of drug
dose intensity for some protocols were provided in order to adjust the schedule to the
tumor response as it is frequently done in the clinical practice.
Chemotherapeutic agents considered in the thesis are DNA damaging drugs including

1



1 Introduction

alkylating agents, platinum-based anti-cancer drugs, antimetabolites, anthracyclines
and topoisomerase poisons. The exposure to DNA damaging drugs induces drug re-
sistance in cancer cells, as some mid-repaired lesions will be replicated, due to the
increased DNA damage tolerance, thus, potentially accumulating mutations [37, 4].
Chemotherapeutic agents are traditionally considered to be the most effective at high
concentrations, however, due to the narrow therapeutic window, the unwanted drug
side-effects are inevitable. Thus, conventional chemotherapy regimens delivering cy-
totoxic drug at maximum tolerated dose are accompanied by a high toxic burden for
a patient. Dose-response plots, provided in this thesis, give insight into medication’s
characteristics suggesting reasonable drug dosages for the treatment.
As mentioned before, anti-cancer drug resistance is a great obstacle in the way of suc-
cessful treatment outcome, decreasing the effect of anti-cancer drugs [3, 7, 51]. This
thesis focuses on the secondary resistance neglecting the pre-existing one as to simplify
the analysis of model’s numerical simulations. Conditions that might trigger drug re-
sistance remain of particular scientific interest [6, 36, 5, 13, 48, 11], however, the analysis
targets mainly micronvironment and drug exposure.
Human cancers are heterogeneous by their nature, differing not only between patients
but also within a single cancer site (intratumoral heterogeneity)[2].Treatment of hetero-
geneous tumors is much more complex compared to the homogeneous ones as only
some of the clones respond to the drug. Moreover they are considered to be yet another
cause of anti-cancer drug resistance [23, 21, 25]. Failed treatment is inevitably followed
by the resistant clones’ expansion after drug administration, due to ”selective pressure”
enforced on cancer cell population by drug exposure [10, 30]. Therefore, this thesis ex-
amines, inter alia, tumor clonal evolution induced by the different drug administration
schedules.
A comparison of the different drug administrating regimens under the same initial con-
ditions was presented in this thesis. The results obtained from numerical simulations
analysis revealed that disease development for all tumor resistance types is indeed af-
fected by the choice of particular treatment protocol, showing distinct behavioral pat-
terns depending on dose intensity and number of fractions.
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2 Literature Review

2.1 Cancer Biology

2.1.1 Cancer definition

Presently cancer is the most common disease all over the world, affecting people of all
ethnic and racial groups, social classes and age. Although cancer researchers world-
wide are investigating new treatment methods and improving the existing ones, cancer
remains one of the leading morbidity and mortality causes [12]. According to [43] there
were around 14.1 million of new cancer cases and 8.2 million cancer deaths registered in
2012 and these numbers are expected to increase in following years owing to ”growth
and aging of the world population”.
The origin of the word cancer is attributed to the terms carcinos and carcinoma used
by Hippocrates (460-370 BC) to describe non-ulcer- and ulcer-forming tumors because
of their resemblance to a crab although it is known that human beings suffered from it
long time before [42]. Thus some of the earliest evidences of bone cancer were found
in the mummies from ancient Egypt and there are cases reported ancient manuscripts
(1600 BC)[1]. Cancers are a broad range of diseases manifesting in a similar clinical pic-
ture of a cell group in an uncontrolled division which ultimately invades neighboring
tissues and causes systematic breakdown of the whole organism [22]. Being a disease of
chaotic disruption in nature, cancers are sometimes ironically referred to as an univer-
sal way of dying should the organism manage to live long enough. The vulnerability to
cancers is inherent to all multicellular life and in order to gain insight into what gives
rise to cancer it is necessary to outline the basic principles of organism development.

2.1.2 Cell cycle and multicellular ontogenesis

Most multicellular organisms are made up from cells having the identical genetic mate-
rial. As the need of cell replacement arises, cells divide and specialize into distinct types
in order to accomplish a certain predefined function. This process is tightly regulated
by the interaction between cell’s genetic material and organisms signalling pathways or
other means to influence cell fate. Although some taxa evolved to have their specialized
cells discard the portion of genetic material they don’t directly need thus ensuring ir-
reversibility of specialization process, such practice is relatively uncommon. Generally,
the cells retain all of the genome, but have an elaborate biochemical reaction network
that is used to switch certain parts on and off during the normal cell operation [39].
Not only the specialization is thus regulated, but the very division itself can not be al-
lowed to occur at random lest the cell and tissue state is thrown out of balance. Cells in
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an organism undergo a special division cell cycle (Figure 2.1) and, unlike bacteria and

Figure 2.1: Cell Cycle [40, Color Atlas of Pathophysiology]

unicellulars, the process is not continuous, but instead has points in which the cell is
restricted and is forced into a certain state until allowed to go further. In addition to
cell birth, the death of existing cells is also programmed. As a stage of division, the
cell has to replicate its DNA, a process that is known to be erroneous producing errors
called mutations. Should the cell detect an inconsistency whilst copying the genome, it
either attempts to fix the mistake by proofreading mechanism, or aborts the division
altogether usually resulting in dividing cell dying. Not only the cell itself can initiate
the self destruction process, but a normally functioning cell can also be induced to do
so by immune system, which is crucial for early stage cancer prevention. This ensures
a hight cell turnover, a typical human body contains about 1013 cells at the time while
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2.1 Cancer Biology

the total amount of the individual cells formed during the lifetime on average is as high
as 1016 [39].
Sometimes, as a result of the regulatory disruption or mutations, groups cells tend to
break away from the regulatory processes and start functioning with varying degrees
of autonomy. This means that such malfunctioning cells in general ignore the self-
destruction command coming from the organism and typically reproduce quite quickly
in their own rhythm without any stimulation for doing so. A practical result of such
malfunction manifests in a tumor, which is a collection of uncontrollably dividing cells.
Formally not all tumors are leading to cancer as a disease, in some cases the control
over the cells is only partially broken and the tumor is called benign. Such tumors are
easily operable most of the time and lack the invasive abilities, therefore staying local-
ized. Malignant tumors in contrast have the ability to invade neighboring tissues and
produce secondary tumors called metastasis. Such tumors are what is generally con-
sidered to be cancer, and metastasis are the factor that causes body damage and most
likely death [33].
As the organism complexity increases, the regulatory networks tend to grow over-
loaded and fragile. As the result, more advanced populations in general have bigger
risks of cancer, compared to less developed ones. In particular, while invertebrate tu-
mors have been reported, it is noted that those are seldom cancerous. Furthermore,
invertebrates have strikingly lesser rate of virally-induced tumor formation even com-
pared to other species of the same habitat. There is an opinion that the vertebrate adap-
tive immune system offered an additional selective pressure that ultimately gave rise
to the deadlier malignant tumors which were able to escape its action [17].

2.1.3 Causes of cancer

Typically cancers arise from a prolonged contact with the specific class of agents called
carcinogens for this property. While the events of tumor appearance are random in na-
ture and constantly occur in normal body state, it is the carcinogen overexposure that
makes them statistically more likely to develop into actual cancers. While some of
carcinogenic chemicals such as tobacco smoke, alcohol, various tars and soot are well
known, carcinogens are surprisingly widespread in nature and typical human environ-
ment [47]. Many cooking methods in particular give rise to carcinogenic species al-
though many raw foods counter-intuitively also are an abundant source of compounds
that are able to cause cancers.
Virtually all substances that are known to induce genetic mutations have shown to
cause cancers. The reverse is not true however, as there are verified carcinogens that
posses no observable mutagenic activity whatsoever. It is thought that those com-
pounds interact with the cell metabolic network without directly influencing the cell’s
genetic material itself. A carcinogen is not bound to be a chemical compound, physical
effect of environment are also able to share the carcinogenic effect. A classical example
of a non-chemical carcinogenic effect is the radiation, including sunlight. It was also
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shown that certain bacteria may also be responsible for tumor formation, as such many
stomach cancers are linked to Helicobacter pylori bacterium which infects the stomach
walls mucous layer. Virii [22] also present another substantial cause or at least a facili-
tation factor for cancers development attributed to as high as 15% of cases worldwide.
Despite the relative abundance, viral cancers can be potentially treated more easily due
to the ability to distinguish between normal and infected cells on the basis of viral ge-
netic and protein material presence [18].
Different cancer types are spread unequally across the world. While some have no
direct cause associated with them and occur at the comparable rate in most human
populations, others show regional or ethnic specificity. Hereditary predisposition can
explain some of cancers, although it is not uncommon for the migrant populations to
have a wastly different cancer statistics than those of the home population hinting at
the fact that the lifestyle and the environment indeed is also a substantial factor [33].

2.1.4 Classification of cancers

Cancers can be classified by the location in the body where tumor originated or by
the tissue from which it developed (histological type). There are four major groups of
cancers from histological point of view:

• Carcinomas

• Sarcomas

• Hematopoietic malignancies

• Neuroectodermal malignancies

Carcinomas are the most common human cancers and they have epithelial origin. There
are two major groups of carcimonas:

• Squamous cell carcinomas - tumors that originate from epithelial cells forming
protective cell layers. They appear on skin, in lungs, nasal cavity, oropharynx,
larynx, esophagus, cervix.

• Adenocarcinomas - tumors that originate from duct or cavity lining substance se-
creting cells the ducts or cavities. This carcinomas arise in lungs, breast, stomach,
pancreas, esophagus, colon, prostate, endometrium, ovary.

Sarcomas origin from the connective tissues of mesenchymal cell types. Commonly
they can develop from the cells that are forming bones (osteoblasts), fat cells (adipocytes),
smooth and striated muscle cells, connective tissue cells (fibroblasts), cells that lean
blood vessels (endothelial cells) and cells that form cartilages (chondrocytes).
Hematopoietic malignancies represent the group of other nonephitelial cancers that
originate from blood-forming tissues. This group includes leukemias, lymphomas and
myelomas.
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2.1 Cancer Biology

Neuroectodermal malignancies (glioblastoma, astrocytoma, meningiomas, schwannoma,
retinoblastoma, neuroblastoma, ependymoma, oligodendroglioma, medulloblastoma)
arise in the tissues that originated from the outer cell layer of the early embryo [33].
Malignant tumors’ histological classification and clinical description plays significant
role in the treatment planning, prognosis, estimation of the treatment results, informa-
tion exchange between medical centers and in future research. Classification approach
in medical practice is particularly based on subdivision of tumors by the stage of their
development. The Classification of Malignant Tumors (TNM) [41] is developed to har-
monize the presentation of clinical data. The TNM consists of three main components
which are accompanied by numbers which indicate the degree of incidence:

• T (tumor) - expansion of the primary tumor

• N (nodes) - presence or absence of the metastases in regional lymph nodes and
the degree of their damage

• M (metastases) - presence or absence of the remote metastases

This kind of classification gives a pretty accurate description of the tumor’s anatomic
distribution.

2.1.5 Diagnostics

Nowadays cancer is a one of the major health problems in the world and the treatment
efficiency mostly depends on its early detection and diagnosis. Cancer screening is
used to detect cancer on predominantly healthy persons who have no symptoms of the
disease [16]. The methods of screening are different depending on a cancer type and
usually they are age-dependent. Among them the most effective in the terms of death
reduction are mammogram (the x-ray breast examination) for the breast cancer [27],
Pap test (detection of the cell changes on the cervix) and HPV test (detection of human
pappilomavirus, which is known to cause changes of the cervix cells) for the cervical
cancer [28], low-dose helical computed tomography for lung cancer, colonoscopy, sig-
moidoscopy and high-sensitivity fecal occult blood tests (FOBTs) were shown to reduce
deaths from colorectal cancer [15].
Usually cancer is diagnosed using cells (cytology or cytopathology) or tissue samples
(biopsy). In the most cases it is enough to proceed microscopic examination of collected
samples for abnormalities (like size and shape of cells and their nucleus, arrangement
of the cells etc.) to detect the cancer, its type and to grade it, but in some situations
there is a necessity to perform a specific test for proper diagnosis (histochemical and
immunohistochemical stains, electron microscopy, flow and image cytometry, various
genetic tests) [44].
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2.2 Chemotherapy

2.2.1 History of chemotherapy

The use of chemotherapy to treat cancer began at the start of the 20th century with
attempts to narrow the universe of chemicals that might affect the disease by develop-
ing methods to screen chemicals using transplantable tumors in rodents. In the early
1900s, the famous German chemist Paul Ehrlich set about developing drugs to treat in-
fectious diseases. He was the one who coined the term ”chemotherapy” and defined it
as the use of chemicals to treat disease. He was also the first person to document the
effectiveness of animal models to screen a series of chemicals for their potential activ-
ity against diseases, an accomplishment that had major ramifications for cancer drug
development. In 1908, his use of the rabbit model for syphilis led to the development
of arsenicals to treat this disease. Ehrlich was also interested in drugs to treat cancer,
including aniline dyes and the first primitive alkylating agents, but apparently was not
optimistic about the chance for success [8].
Surgery and radiotherapy dominated the field of cancer therapy into the 1960s until
it became clear that cure rates after ever more radical local treatments had plateaued
at about 33% due to the presence of heretofore-unappreciated micrometastases and
new data showed that combination chemotherapy could cure patients with various
advanced cancers. The latter observation opened up the opportunity to apply drugs
in conjunction with surgery and/or radiation treatments to deal with the issue of mi-
crometastases, initially in breast cancer patients, and the field of adjuvant chemother-
apy was born. It was four World War II-related programs, and the effects of drugs that
evolved from them, that provided the impetus to establish in 1955 the national drug
development effort known as the Cancer Chemotherapy National Service Center. The
ability of combination chemotherapy to cure acute childhood leukemia and advanced
Hodgkin’s disease in the 1960s and early 1970s overcame the prevailing pessimism
about the ability of drugs to cure advanced cancers, facilitated the study of adjuvant
chemotherapy, and helped foster the national cancer program. Combined modality
treatment, the tailoring of each of the three modalities so their antitumor effect could
be maximized with minimal toxicity to normal tissues, then became standard clinical
practice [35].
Today, chemotherapy has changed as important molecular abnormalities are being used
to screen for potential new drugs as well as for targeted treatments.

2.2.2 Cancer treatment

Chemotherapy has three major roles in cancer: as the primary treatment, as an adjuvant
to the primary treatment (to prevent or delay relapse), or as palliative therapy to im-
prove symptoms and prolong survival following primary treatment failure. Traditional
chemotherapeutic agents are cytotoxic, that is to say they act by killing cells that divide
rapidly, one of the main properties of most cancer cells. This means that chemother-
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apy also harms cells that divide rapidly under normal circumstances: cells in the bone
marrow, digestive tract, and hair follicles. This results in the most common side-effects
of chemotherapy: myelosuppression (decreased production of blood cells, hence also
immunosuppression), mucositis (inflammation of the lining of the digestive tract), and
alopecia (hair loss). Some newer anticancer drugs (for example, various monoclonal
antibodies) are not indiscriminately cytotoxic, but rather target proteins that are abnor-
mally expressed in cancer cells and that are essential for their growth. Such treatments
are often referred to as targeted therapy (as distinct from classic chemotherapy) and
are often used alongside traditional chemotherapeutic agents in antineoplastic treat-
ment regimens. Chemotherapy may use one drug at a time (single-agent chemother-
apy) or several drugs at once (combination chemotherapy or polychemotherapy). The
combination of chemotherapy and radiotherapy is chemoradiotherapy. Chemotherapy
using drugs that convert to cytotoxic activity only upon light exposure is called pho-
tochemotherapy or photodynamic therapy [31].
The application of chemotherapy to different types of cancer has different efficiency.
Some rare neurological conditions such as primary CNS lymphoma, germ cell tumours,
and primitive neuroectodermal tumours are chemo-responsive and chemotherapy plays
a central role in their management. However, the majority of brain tumours have
been considered chemo-resistant and the use of chemotherapy, particularly as adjuvant
treatment, is controversial. With the availability of newer drugs and a better under-
standing of the biology of brain tumours this situation is changing, even for high grade
gliomas. For any chemotherapy agent to be effective it must first penetrate to the can-
cer and the selective permeability of the blood-brain barrier (BBB) poses a particular
problem for brain tumours. Some drugs, because of their small molecular size or high
lipid solubility, naturally achieve good BBB penetration (nitrosoureas, temozolomide)
and high concentrations in tumour. This can be improved by bypassing the BBB us-
ing biodegradable wafers, BBB disruption, or continuous infusion methods. A limited
number of drugs, such as methotrexate and cytosine arabinoside, can be given safely by
the direct intrathecal route. However, apart from special circumstances, such as child-
hood acute lymphoblastic leukaemia, they have shown no efficacy in brain tumours
[34].

2.2.3 Chemotherapeutic agents - mechanism of action

The following review of chemotherapeutic agents is based on [29].

Alkylating agents

The alkylating agents act by introducing alkylation over the important biopolymers
thus inhibiting their normal function. Since DNA is a favored alkylation target, the
alkylation drugs depend on cell proliferation for their activity, although they are mostly
not cell-cycle-phase-specific. It is possible for th tumors to be resistant against this class
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of drugs by enchancing the biopolymer repair mechanisms efficiency thus outperform-
ing the rate at which the damage is caused. Notable classes of alkylating agents include:

Nitrogen mustards Having been developed in the chemotherapeutic capacity after
WWII and related toxic gas research [8], such substances as mechlorethamine (Mustar-
gen), cyclophosphamide, isosfamide(Ifex), chlorambucil (Leukeran) are highly active
alkylating moiety in aqueous solution, particularly effective against hematopoietic sys-
tem tumors.

Nitrosoureas Nitrosoureas are very useful for crossing cell membranes thanks to their
high lipid solubility. This is particularly important for crossing blood-brain barrier and
reach brain tumors. Nitrosoureas act by spontaneously decomposing into chloroethyl
diazohydroxide and isocyanate which in turn provide the drug’s functional activity.

Platinum agents This class of compounds comprises platinum-containing metal com-
plexes that are able to indroduce inter- and intra-strand DNA cross-links that prevent
the biopolymer pathways from functioning.

Antimetabolites

Antimetabolites are analogs of the compounds which are normally involved in cells
pathways which have the ability to compete with or substitute their natural counterpart
thus resulting in a bogus biopolymer being formed. Because they are most commonly
targeting the nuclear acid synthesis pathways, they are most effective during the S
phase of the cell cycle during which DNA replication happens and relatively useless
against the cell restricted at G0 phase. Therefore the key target of antimetabolyte drugs
are rapidly growing tumors that has a high ratio of cells in active replication. Because
the metabolite (and consequently the antimetabolite) uptake is limited by cell metabolic
rates, this class of drugs’ efficiency is saturated after certain dosage is reached.

Natural substances

Throughout the history, a wide array of naturally ocurring drugs have been docu-
mented to have antitumor activity. Some of the important classes of such compounds
are presented below:

Antitumor antibiotics Certain antibiotics such as bleomycin (Blenoxane) specifically
target DNA at GC/GT sequnces resulting in free radical strand damange and are func-
tional for human cells, therefore enabling their use against tumors. Anthracycline an-
tibiotics produced by Streptomyces percetus fungus also have anti-tumor properties, act-
ing both by intercalating the DNA base pairs and inhibiting topoisomerases I and II.
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Epipodophyllotoxins Extracted from mandrake (Podophyllum peltatum) root, a class
of toxins stabilise DNA-topoisomerase complex thus preventing DNA replication and
rendering the cell unable to proceed from G1 phase. Camptothecin analogs which are
found in Chinese ornamental tree (Camptotheca acumiata) manifest similar action and
also are able to interrupt DNA elongation.

Vinca alkaloids The alkaloid compounds foundin periwinkle (Vinca rosea) bind the
microtubules while the cell is passing the S phase. Their activity becomes apparent
only at laterM phase when the affected microtubules fail to be recruited and assembled
for mitotic spindle formation, therefore rendering the cell unable to complete mitosis.

Taxanes Paclitaxel and docetaxel (Taxotere) are derived from the needles of yew plants
(Taxus baccata). They attack the similar target as the vinca alkaloids, however instead
of disassembling the microtubules, they instead stabilise them locking the cell in the M
phase.
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The hybrid discrete-continuous mathematical model, used in this thesis, was devel-
oped and presented by Gevertz et al. in [9]. It reconstructs a two-dimensional tissue
slice with a cancer cell population located there. The model enables to simulate tumor
dynamics while being treated with DNA damaging chemotherapeutic agent and inter-
acting with other cells and microenvironment. The novel part of the model presented
in this thesis is introduction of different drug administration schedules, which enable
taking into account the resting intervals for normal cell to recover.
The introduced model was classified by Gevertz et al. as a hybrid, since it combines
an agent-based approach to model cancer cell population dynamics and continuous
reaction-diffusion partial differential equations to depict oxygen and drug kinetics in
the tissue slice. In the model each cell is treated as individual object, which interacts
with other cells and microenvironment. This allows to monitor the specific cell proper-
ties, among them cell ”clonal evolution”, at the individual cell level.
Microenvironmental conditions are known to influence tumor development. Cancer
cells that are located near the blood vessels are optimally supplied with oxygen, how-
ever, they are also exposed to the higher drug concentrations. A small tissue slice,
considered in the model, is provided with 4 blood vessels that deliver oxygen as well
as drug to the cancer cells. The geometry of the vasculature, which remains unchanged,
was designed by by Gevertz et al. as to create the hypoxic regions where tumor cells
are deprived from oxygen supply making them switch to the quiescent state. These hy-
poxic niches and one normoxic region additionally create pharmacological sanctuaries,
where drug can not diffuse properly, and are illustrated in Figure 3.1(a). To simplify the
modeling, ”stromal cells or other extracellular components” were not included in the
microenvironment.
Figure 3.1 (c),(d) illustrates model components. Tumor cells are represented by the 65
distinct phenotypes. All simulations observed in the thesis are using the same initial
configuration of these 65 cell clones Figure 3.1(b). Further, let x = (x, y) determine the
location of continuous variables, whereas (X,Y ) define positions of discrete objects.

3.1 Oxygen kinetics equation

To describe the change in oxygen concentration ξ at point x = (x, y) in the tumor tissue
Gevertz et al. used the reaction-diffusion equation. Oxygen is being supplied from the
vasculature Vj (i indexes over the number of vessels with positions V (X,Y )

j ) at a con-
stant supply rate Sξ = 1. It diffuses with diffusion coefficient Dξ and is taken up by
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(a) (b)

(c) (d)

Figure 3.1: Visualization of the model components In (a) the landscape of the tissue
slice is shown, two microenvironmental niches are: a low drug/low oxy-
gen(H&low D)and low drug/normal oxygen (low D). (b) shows the initial
configuration of 65 tumor clones. (c) illustrates hypoxic cells, marked with
white circles; oxygen gradient as shades of grey and tumor clones, designed
with unique phenotypes. (d) shows drug gradient; vasculature and cancer
cells, colored with shades of green to present how far from dying the cell is,
where contours, drawn with shades of pink, determine drug uptake of the
cell.
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3.1 Oxygen kinetics equation

neighboring tumor cells Ck (k indexes over the number of tumor cells with positions
C

(X,Y )
k ) at the uptake rate ρξ. Thus, the equation reads as follows:

∂ξ(x, t)

∂t
= Dξ∆ξ(x, t)︸ ︷︷ ︸

diffusion

−min

(
ξ(x, t), ρξ

∑
k

χCk(x, t)

)
︸ ︷︷ ︸

uptake by the cells

+Sξ
∑
j

χVj(x, t)︸ ︷︷ ︸
supply

(3.1)

The characteristic function χ that determines cells and vessels neighborhood is defined
by the fixed cell radius RC and fixed vessel radius RV in this fashion:

χCk(x, t) =

1 if
∥∥∥x− C(X,Y )

k (t)
∥∥∥ < RC

0 otherwise

χVj(x, t) =

1 if
∥∥∥x− V (X,Y )

j (t)
∥∥∥ < RV

0 otherwise

The sink boundary conditions: (∂ξ(x, t)/∂n = −$ξ(x, t)), with n being the inward
pointing normal, are defined for all boundaries of the domain x ∈ ∂Ω.
When defining the initial condition, Gevertz et al. set as a goal to imitate the oxygen
concentration gradient in the healthy tissue Figure 3.2(a); the other stable gradient was
reached for the case of cancer that is not treated with drug (b).

(a) (b)

Figure 3.2: Stable oxygen Here (a) and (b) show the initial oxygen distribution in the
healthy tissue and while being taken up by the not treated cancer cells
respectively.[9]
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3.2 Drug kinetics equation

Also change in the drug concentration γ in tumor tissue at point x = (x, y) was de-
scribed in [9] by the reaction-diffusion equation. Drug is supplied from the vasculature
Vj , diffuses with the diffusion coefficient Dγ , decays at a rate dγ and at the rate ργ is
taken up by neighboring tumor cells Ck. Hence, the equations has the following form:

∂γ(x, t)

∂t
= Dγ∆γ(x, t)︸ ︷︷ ︸

diffusion

− dγγ(x, t)︸ ︷︷ ︸
decay

−min

(
γ(x, t), ργ

∑
k

χCk(x, t)

)
︸ ︷︷ ︸

uptake by the cells

+Sγ
∑
j

χVj(x, t)︸ ︷︷ ︸
supply

(3.2)
In order to simulate different drug administration protocols, in this thesis the drug
supply function Sγ from each vessel was assumed to be a time-dependent piecewise
function:

Sγ =


γ if t < T

n

0 if Tn < t < 2T
n

. . . . . .
(−1)n−1
−2 γ if t > (n−1)T

n

where t ∈ [0, T ]. To imitate the real-life drug administration regimens, the total treat-
ment time T was divided into the same length fractions and the drug administration
intervals were alternated with resting states.
The characteristic function χ and the drug boundary conditions are defined same as for
the oxygen concentrations. The initial conditions for the drug concentration were set
up this way:

γ(x, t0) = 0 for x ∈ Ω \
⋃
Vj and γ(x, t0) = Sγ for all V (X,Y )

j .

The model was calibrated in [9] as to achieve tumor eradication for the no-resistance
case, hence the values for diffusion coefficient Dγ , uptake rate by cancer cells ργ and
death threshold Thrdeath were chosen as to secure this goal.

3.3 Tumor cells dynamics

Owing to the choice of agent-based technique, Gevertz et al. made this model capable
to observe each cell separately with the set of its properties that describe cell individual
characteristics or represent its interaction with microenvironment. Thus the state of the
k-th cell at time t is presented in this fashion:

Ck(t) =
{
C

(X,Y )
k (t), Cagek (t), Cmatk , Cξk(t), Cγk (t), Cexpk (t), Cdamk (t), Cdeathk (t), C

(IDc,IDm)
k

}
(3.3)
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, where C(X,Y ) stands for spatial location, Cage describes current cell age, Cmat cell
maturation age, Cξ level of received oxygen, Cγ level of accumulated drug, Cexp de-
note the time that cell is being exposed to high drug concentration, Cdam is a level of
accumulated DNA damage, Cdeath cell death threshold, upon crossing which, cell will
die, C(IDc,IDm) shows unique indices of the current cell IDc and its mother cell, to en-
able the cell history tracking.
The spatial location C(X,Y ) of each initial cell is predefined. The positions of daughter
cells will be determined upon division and cell-to-cell interaction. The age of each cell
gets incremented by ∆t after each time step: Cagek (t + ∆t) = Cagek (t) + ∆t The ability
of cell to divide depends on its maturity and microenvironmental conditions. Cell pro-
liferation process can start after cell has reached maturation age and there is enough
space in the neighborhood to divide, otherwise it will be suppressed until these con-
ditions are met. Division is modeled by splitting the Ck cell and creating Ck1 and Ck2,
where one cell will inherit the position of the mother cell and the other one will be
placed randomly nearby, using aa random angle θ:

C
(X,Y )
k1 (t) = C

(X,Y )
k (t) and C

(X,Y )
k2 (t) = C

(X,Y )
k (t) +RC(cos(θ), sin(θ)) (3.4)

The age of the newly created cells is set to zero Cagek1 (t) = Cagek2 (t) = 0, whereas the mat-
uration age will be accepted from the mother cell with a gentle noise term: Cmatk1 (t) ,
Cmatk2 (t) = Cmatk ± ω, where ω ∈ [0, Cmatk /20]. Inherited from the mother cell will
be also the DNA damage level Cdamk1 (t) = Cdamk2 (t) = Cdamk (t), as well as the cell
death threshold Cdeathk1 (t) = Cdeathk2 (t) = Cdeathk (t) along with the drug exposure time
Cexpk1 (t) = Cexpk2 (t) = Cexpk (t). While, the level of accumulated drug will be divided
evenly between the daughter cells Cγk1(t) = Cγk2(t) = 0.5 × Cγk (t). Regarding the level
of sensed oxygen, Cξk1(t) and Cξk2(t) will be separately determined based on the oxygen
level in the cell neighborhood. The unique cell index, identifying cell heritage, consists
of the new index for current cell and the mother cell index C(IDc,IDm)

k1 = (k1, C
IDc
k ) and

C
(IDc,IDm)
k2 = (k2, C

IDc
k ). The inheritance routine is illustrated in Figure 3.3. The update

of the cell state, which happens in random cell order, is conditioned by its response to
the microenvironment. Based on the cell location in relation to blood vessels geometry,
it receives a particular amount of drug and oxygen. Depending on the oxygen level
cell may potentially proliferate or will switch to the quiescent state, whereas drug level
determines if cell will survive, acquire resistance or die. Some of the cell properties will
be inherited from mother cell upon cell division. Cell responses to microenvironmetal
conditions are summarized and illustrated in Figure 3.3.
From the vasculature each cell is supplied with oxygen (ξ) and drug (γ). The k-th cell
inspects its local neighborhood, defined as

{
x :
∥∥∥x− C(X,Y )

k

∥∥∥ < RC
}

, and consumes Cξk
and Cγk of sensed oxygen and drug respectively:

Cξk(t+ ∆t) =
∑
x

ξ(x, t)︸ ︷︷ ︸
sensed and used

(3.5)

17



3 Agent-based hybrid model

Figure 3.3: Cell interaction with microenvironment [9]

Cγk (t+ ∆t) = Cγk (t) +

max

�
0,
∑
x

min(γ(x, t), ργ)︸ ︷︷ ︸
uptake

− dγCγk (t)︸ ︷︷ ︸
decay

� , (3.6)

where Cξ determines cell proliferative capabilities, with cell switching to resting state if
level of sensed oxygen is below hypoxia threshold Thrhypo. Being exposed to drug cell
suffers DNA damage, the degree of which depends on the duration of drug exposure
and the drug concentration. However, cancer cells are self-renew and therefore have
an active DNA-repair capacity. Moreover, they can become resistant being subjected to
cytotoxic drug over time. These observations were presented in [7] and adopted in the
model, used in this thesis. Thus, cell damage level is calculated as follows:

Cdamk (t+ ∆t) = Cdamk (t) +

max

�
0,
∑
x

min(γ(x, t), ργ)︸ ︷︷ ︸
uptake

− dγCγk (t)︸ ︷︷ ︸
decay

�∆t− pCdamk (t)︸ ︷︷ ︸
repair

(3.7)
A cell will die if its damage exceeds the death threshold that in its turn depends on
the resistance type (no-resistance, acquired resistance). In no-resistance case, cell death
threshold is a constant Cdeathk = Thrdeath = 0.5. Whereas, the process of acquiring re-
sistance was modeled as an individual ability of each cell to increase its death threshold
independently by increment size parameter value under prolonged drug exposure.
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Cdeathk (t+ ∆t) =

{
Cdeathk (t) + ∆death if Cexpk (t) > texp

Cdeathk (t) otherwise

Hence, death threshold will be incremented if Cexp is above the critical amount of time
texp, where Cexp gets increased if amount of drug taken up in previous time point ex-
ceeds the drug concentration threshold γexp.

Cexpk (t+ ∆t) =

{
Cexpk (t) + ∆t if Cγk (t) > γexp

0 otherwise

Initial conditions of the system are set as follows:

Ck(t0) =

¨
(Xk, Yk), 0,Mk,

∑
x

ξ(x, t0), 0, 0, 0, Tk, (k, 0)

«
(3.8)

All cells have predefined spatial locations (Xk, Yk), as it is shown in Figure 3.1(b). Initial
age is set to zero, while maturation age is set to Mk, where Mk drawn from a uniform
distribution [0.5 × Age, 1.5 × Age] with Age being the average maturation age. As it
was mentioned before, the model was calibrated as to have a numerically stable oxy-
gen gradient in healthy tissue. Thus the initial level of sensed oxygen will be defined
according to its concentration in the cell neighborhood. Since there is no drug in the do-
main, initially the level of sensed drug, as well as the drug exposure time and the cell
damage level are set to zero. The death threshold for both no-resistance and acquired
resistance case is set to Tk = Thrdeath. All the initial cells have unknown mothers,
hence the unique cell index is defined in this fashion: (k, 0), where the first entry will
be inherited by the cell’s daughters as their mother cell index.

3.4 Equations of cell mechanics

As it was mentioned before, changes in cell position are determined by cell division and
the interaction with other cells. Thus in this subsection the equations, which model cell
mechanics are presented. The model has adopted a particle-spring system, which deter-
mine cancer cells as particles with assigned elastic springs generating forces whenever
displaced from the equilibrium. Using the approach by [24, Meineke et al. 2001], each
cell within the tissue slice is represented by the coordinates of the center of its nucleus
and its radius RC . Therefore, each cell is assumed to occupy a predefined volume in
the domain and preserve it throughout its lifetime. Two cells are said to come into
contact with each other if the distance between them is lesser than the cell diameter
2RC . Whenever two cells C(X,Y )

i (t) and C(X,Y )
j (t) interact, two repulsive forces (linear,

Hookean) fi,j and −fi,j will be applied to these cells respectively, pushing them away
from each other while maintaining cells’ volumes:

fi,j =

F(2RC − ‖Xi −Xj‖) Xi−Xj

‖Xi−Xj‖ if ‖Xi −Xj‖ < 2RC

0 otherwise
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,
where Xi = C

(X,Y )
i (t) for simplicity, with F being the constant spring stiffness and

2RC being the spring resting length. In case the cell Xi has more then one cell Xj1, . . . ,XjM

in its neighborhood, then the total force Fi acting on Xj is equal to the sum of all forces
fi,j1, . . . , fi,jM coming from the string of all neighboring cells that are connected to the
cell Xi:

Fi = F(2RC − ‖Xi −Xj1‖)
Xi −Xj1

‖Xi −Xj1‖︸ ︷︷ ︸
fi,j1

+ · · ·+ F(2RC − ‖Xi −XjM‖)
Xi −XjM

‖Xi −XjM‖︸ ︷︷ ︸
fi,jM

(3.9)
Therefore the movement of a cell is determined by the local repelling and attracting
forces that can be modeled by a network of springs connecting adjacent cells, which are
assumed to be overdamped, hence the system will return to the equilibrium without
oscillations. The cell dynamics is controlled by the Newtonian equations, thus the force
and the effective displacement within a small time interval ∆t are given by:

Fi = −ν dXi

dt
and Xi(t+ ∆t) = Xi(t)−

1

ν
∆tFi (3.10)

where Xi is the center of the i-th cell and ν is the damping constant.
Upon division two daughter cells are created. As the distance between them is lesser
than 2RC the repulsive forces are activated. This may end up daughter cell being placed
near other cells, thus again activating the repulsive forces. Consequently, until all cells
are pushed away and the whole tumor population reaches an equilibrium configura-
tion, multiple repulsive forces might be applied. Some of the cells will be thrown out
of the domain, when the population reaches its equilibrium. These cells are not con-
sidered in the analysis. Modeling of cell-to-cell interaction allows tracking the amount
of adjacent cells. Thus, the overcrowding condition can be determined, which will de-
cide the further population growth, as a cell divides only if there is enough space in the
neighborhood. Model parameters defining cell mechanics are presented in Table 3.1.

Cellular parameters
Cell radius RC = 5µm
Spring stiffness F = 1mg/s2

Mass viscosity ν = 15mg/s
Overcrowding Neighbors = 14cells
Maturation age Age = 360min± noise ∈ [0, Age/20]

Table 3.1: Parameters of cell mechanics

3.5 Parameter space

Since the main goal of the anticancer therapy is to eliminate tumor, the conditions under
which cancer cell apoptosis is induced are of particular interest. Thus, in this subsec-
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tion the parameter regimes for which the level of accumulated damage Cdam by a cell
surpasses its death threshold Cdeath are investigated.
It was assumed that all the cells incurs identical amount of DNA damage. Thus, at any
fixed time point t, all cell carry the same amount of DNA damage x(t) = Cdamk (t). Let
η(t) > 0 be the new amount of the incurred damage in each cell at time t and 0 ≤ p ≤ 1
is defined as the constant fraction of DNA damage that will be repaired. Hence, at any
time point t > 0 for a small h the spatially-constant damage level can be represented as:

x(t) = x(t− h) +

∫ t

t−h
η(s)ds−

∫ t

t−h
px(s)ds (3.11)

Applying the Fundamental Theorem of Calculus one can reduce this equation to:

ẋ(t) = η(t)− px(t) (3.12)

Assuming that there is no damage x(0) = 0 at the beginning t = 0 of the treatment, the
solution of the Equation 3.12:

x = e−ptK(t)

K̇(t) = eptη(t)⇒ K(t) =

∫ t

0
epsη(s)ds

x(t) =

�∫ t

0
epsη(s)ds

�
e−pt (3.13)

The amount of the new incurred damage in each cell is determined by the cell location
and the amount of drug it can sense and uptake, and the drug exposure time. Yet, as the
drug influx from the vessels is constant on each interval the amount of damage will be
bounded from above and thus assumed to be constant η(t) = η. For p 6= 0 Equation 3.13
transforms:

x(t) =
η

p
(1− e−pt) (3.14)

When there is no damage repair p = 0 Equation 3.13 becomes:

x(t) = ηt (3.15)

Numerical simulations revealed that the microenvironmental niches have a great im-
pact on the tumor development and thus treatment outcome. Consider the acquired
resistance case α = ∆death 6= 0 with fixed constant death threshold β = Thrdeath, the
new amount of incurred damage η > 0 and p fraction of damage repaired. Then the
death threshold will be incremented as follows Cdeath(t) = αt+β.In [9] was formulated
and proved a proposition that determines a condition for which, ignoring the spatial
component, tumor eradication x(t) = Cdamk (t) > Cdeath(t) can be achieved.

Proposition 3.5.1. If α < η and 0 < p < η
β , then ∃ α∗ < α, T1(α∗) and T2(α∗) such that ∀

T1(α∗) < t < T2(α∗) the damage level satisfies x(t) > αt+ β and thus, all cells die.
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Proof. Let F (t) := x(t)− αt− β. Substituting this into the Equation 3.14 gives:

F (t) :=
η

p
− αt− β − η

p
e−pt.

Note that F (0) = −β < 0 and F ′(t) = ηe−pt−α. F ′(t) = 0, then e−pt = α
η ⇒ t∗ = −1

p lnαη .
Since α < η:

F ′(t) =


≥ 0 t ≤ t∗
0 t = t∗
≤ 0 t ≥ t∗

Thus the behavior of F (t) depends on the size of parameter α Figure 3.4. If for some

Figure 3.4: Dependence of the F function behavior on the parameter α [9]

α < η, F (t∗) > 0, then there exists an interval (T1, T2), such that for t ∈ (T1, T2),
F (t) > 0, i.e., x(t) > αt + β. Consequently, one should look for such α < η that
F (t∗) > 0. Let F (t∗) = G(α) =: ηp − β

α
p

�
1− lnαη

�
, then

• limα→0+ G(α) = η
p − β =

> 0 p < η
β

< 0 p > η
β

• limα→η− G(α) = −β < 0

• on (0, η), G′(α) = 1
p lnαη < 0

Hence, if p < η
β , by Intermediate Value Theorem, there exists 0 < α∗ < η such that

G(α∗) = 0, and G(α) > 0 for α < α∗, and G(α) < 0 for α > α∗. Thus, if p < η
β ,

and α < α∗, then F (t∗) > 0, and there exist T1, T2 that depend on α∗, such that for
T1 < t < T2, F (t) = x(t)− αt− β > 0.

Therefore from Proposition 3.5.1 it follows that if p < η
0.5 < 6 × 10−4 and if α < η <

3 × 10−4 (both upper bounds fixed using the model parameters) then all tumor cells
will be killed by the drug. For the numerical simulation a value for DNA repair rate
p was chosen from this range p = 1.5 × 10−4. As for the increment sizes parameter,
in simulations three different values were considered for the acquired resistance case:
3.5× 10−5, 4.5× 10−5, 5.9× 10−5. All of them lie in range suggested by the Proposition
3.5.1, however, the simulations for acquired resistance case presented in this thesis not
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3.6 Numerical implementation

always show the complete tumor eradication. This can explained by the assumption
made for the level of incurred damage η in each time point to be a constant for all cells,
despite of η being a function depending on time and space. Substituting the repair rate
value used in the simulations p = 1.5 × 10−4 and considering the condition for tumor
eradication p < η

0.5 one will get the value range for the incurred damage η > 7.5× 10−5

that ensures the successful treatment outcome.
Yet it would be mistake to overlook the fact that cells positioned far away from the
blood vessels will absorb lower amount of drug, and hence will get less damage. Thus
these cells can not fulfill η > 7.5× 10−5 condition, as incurred damage for them will be
smaller. Consequently the numerical simulations for them will not provide the theoret-
ically anticipated result. Hence, it is obvious that spatial component has a great impact
on the tumor development and should not be ignored.
To analyze the impact of microenvironmental niche on the treatment outcome, the in-
vestigation of the acquired resistance case is provided in [9]. It has revealed that mi-
croenvironment greatly affects disease development for small increment sizes select-
ing cells from low-drug normoxic niche to be the persistent clones that will stay longer
in the domain and in some cases eventually survive the treatment course. Whereas for
the large values its role is reduced as cancer cells acquire resistance to the medication
very fast resulting in heterogeneous tumor composed of different clones coming from
all over the tissue slice. The further investigation of this issue is provided in chapter 4.

3.6 Numerical implementation

The implemented in MATLAB software by Gevertz et al. aforementioned model was
extended with updated drug supply function for this thesis purposes. The domain is
discretized into a square grid with mesh width hb. The time is also discrete with a time
step ∆t. Table 3.2 shows the numerical values of the mentioned parameters.
The solutions of the reaction-diffusion partial differential equations describing the oxy-

Domain size [−75, 75]× [−75, 75]µm
Mesh width hb = 2µm
Time step ∆t = 0.5min

Table 3.2: Numerical parameters [9]

gen and drug kinetics are approximated by means of the finite difference method, with
forward-difference approximation (in time) on a square grid (centered in space) using
sink-like boundary conditions. The initial oxygen and drug concentrations ξ(x, t0) and
γ(x, t0) respectively are presented in Table 3.3. Further, at each time step concentrations
ξ(x, t + ∆t) and γ(x, t + ∆t) will be approximated using the values from the previous
step are used ξ(x, t) and γ(x, t). The interaction of a cell with oxygen and drug concen-
trations is modeled at the same discretized time points for which the solutions of partial
differential equations are approximated. Thus, at each time point, every discrete grid
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3 Agent-based hybrid model

Metabolite kinetics (normalized values)
Oxygen Drug

Supply rate Sξ = 1 Sγ varies
Diffusion coefficient Dξ = 0.5 Dγ = 0.5
Decay rate none dγ = 1× 10−4

Boundary outflux rate $ = 0.45 $ = 0.45
Cellular uptake ρξ = 5Sξ × 10−5 ργ = Sγ × 10−4

Threshold value Thrhypo = 0.05 Thrhypo = 0.5

Table 3.3: Non-dimensionalized parameters of oxygen and drug kinetics based on
model calibration [9]

point, which is located within a cell radius distance from the tumor cell center can up-
take drug or oxygen from the environment at an uptake rate ργ or ρξ respectively. In
case the amount of drug (oxygen) in the cell’s neighborhood is not enough to take up
ργ (ρξ) units, then all available drug (oxygen) will be taken up by the cell. The absorbed
oxygen will be right away used by the cell, whereas the drug taken up by the cell will
decay at the same decay rate it does in the microenvironment. The cell-drug interac-
tion parameters are presented in Table 3.4. In case of no-resitance as well as in case of

Death thresh. incr.
No-resistance Acquired resistance
∆death1 = 0 ∆death2 = 3.5× 10−5

∆death3 = 4.5× 10−5

∆death4 = 5.9× 10−5

Death thresh. mult. Thrmulti = 1
Drug exposure level γexp = 0.01
Drug exposure time texp = 5∆t
DNA repair p = 1.5× 10−4

Table 3.4: Cell-drug interaction parameters

acquired resistance cancer cells have the same tolerance to the drug damage Thrmulti.
Cancer cells will also steadily repair their DNA damage at a repair rate p. As the ∆death

parameter value is set to 0 for the no-resistance tumor its death threshold will not in-
crease throughout the treatment course, whereas in acquired resistance case it will be
continuously incremented if prolonged drug exposure conditions are met.
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4 Analysis of Results

This chapter presents the analysis of the data obtained through simulations of differ-
ent DNA damaging drug administration schedules. Since the dynamics of cancer cells
caused by the drug regimens is the focus of interest, a set of conditions should be de-
fined: all simulations have the same initial configuration of the 65 tumor cells and 4
vessels Figure 3.1, no pre-existing resistance present and, to ease the interpretation of
results, emergence of resistance due to a drug exposure only (no random mutations
occur) was considered.The presented analysis investigates the numerical simulations
of tumor behavior under different drug administration protocols for no-resistance and
acquired resistance cases, gives insight into cancer phylogenetic trees and determines
reasonable drug dose by the means of drug response curves.

4.1 Drug Administration Regimens

Here, the tumor dynamics while being subjected to the DNA damaging drug treatment
is considered. As stated in chapter 3 a time-dependent drug supply function is assumed
to be a piecewise constant function reflecting the real-life chemotherapy routine with
drug administration and resting intervals in the cycle of treatment.
It is known, that chemotherapeutic drugs are toxic to cancer cells, but they also dan-
gerous for normal cells. Thus toxicity issue is of the most concern, while designing
treatment protocols. To ensure that patient will be able to tolerate side effects of medi-
cations, constrains on drug dose (maximum tolerable dose) and cumulative drug toxi-
city are usually used. A possible approach to bind drug dose is to examine the overall
amount of drug introduced to the system.
Consider the case of continuous drug supply with the fixed number of iterations (Niter).
Medications are being steadily administrated from the 4 vessels, thus [Niter × 4 ×
DrugIn] units of drug would be introduced. Drug supply concentration ofDrugIn = 1
used in the model, is a normalized value based on the model calibration. Further this
overall drug amount introduced to the tumor being continously delivered would be
compared with the ones obtained through applying different drug regimens.
While planning chemotherapy regimen in the real-life resting intervals and drug ad-
ministration are often adjusted to the cell cycle as to get the highest possible damage to
the cancer cells and give normal cells an opportunity to recuperate. Therefore, in order
to obtain a simulation of a more realistic cancer treatment scenario, it was decided to
include the time for normal cell to recover. The resting intervals were introduced to
the system by dividing the whole treatment time into same length fractions alternating
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4 Analysis of Results

drug delivery with no drug intervals. Cases with 2, 3 and 4 fractions were investigated.
The decision on the drug dose delivered per interval was made in such a way so as not
to exceed the overall amount of drug introduced in the continuous case. The concen-
trations, same for all intervals, were defined as follows: for even number of intervals:

Niter
2n × 4×DrugIn+ Niter

2n × 4× 0 + · · ·+ Niter
2n × 4× 0 ≤ Niter × 4× 1

⇒ nNiter
2n × 4×DrugIn ≤ Niter × 4× 1⇒ DrugIn ≤ 2

for odd number of intervals:

Niter
2n+1 × 4×DrugIn+ Niter

2n+1 × 4× 0 + · · ·+ Niter
2n+1 × 4×DrugIn ≤ Niter × 4× 1

⇒ (n+1)Niter
2n+1 × 4×DrugIn ≤ Niter × 4× 1⇒ DrugIn ≤ 1 + n

n+1

for the special case, when drug is administrated only in the first interval:

Niter
n × 4×DrugIn+ Niter

n × 4× 0 + · · ·+ Niter
n × 4× 0 ≤ Niter × 4× 1

⇒ DrugIn ≤ n

Thus maximal concentrations are set. Struggling to reduce toxicity, lower drug doses
were also considered. As mentioned before, little is still known about the best possi-
ble DrugIn value to be used in the model, although it might be estimated through the
analysis of the numerical simulations. Furthermore in this section, through comparing
continuous case with other drug regimens, the investigation on the minimal overall
amount of drug needed to eradicate the tumor is presented .

4.1.1 No Tumor Resistance

The observations of the no resistance case are presented here. Since the initial tolerance
to drug damage Thrmulti (multiply death=1) cannot increase during treatment, as the
increment sizes parameter is set to 0, it is ensured that no anti-cancer drug resistance
may occur. All simulations differ only in the way the drug is administrated, initial con-
ditions and the parameter values are the same. The original death threshold for cells
(Thrdeath = 0.5) is constant here and DNA repair rate is (p = 1.5× 10−4).
Firstly, consider the case of continuous drug supply with dose intensity DrugIn set to
1. Owing to the model being calibrated accordingly, this case is an example of suc-
cessful tumor eradication. The behavior of the cancer cell population is shown in the
Figure 4.1(a), in the onset of the treatment (i), though cells are accumulating damage
Figure 4.1(b), the effect of drug is not enough to eradicate the tumor. Hence, the cell
population increases in size (ii), however, at this time the accumulated damage of the
most of the cells reaches threshold and the greater part of the population dies, with
only small part of it (iii), located in the low drug niche, being able to survive. These
remaining cells manage to increase the cell population size (vi). But, even so, one can
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4.1 Drug Administration Regimens

see from the snapshots Figure 4.1(c), that the majority of cells through the time interval
(iii-vi) is colored with the dark shade of green indicating its high level of damage, thus
they die out eventually. The amount of iterations needed to eradicate the tumor, while
administrating drug continuously with DrugIn = 1, is 6607. Thus the overall amount
of drug introduced to the system is 6607× 4× 1 = 26428 units of drug.

Next, examine the impact of including the time for normal cells to recover. How-

(a) Cancer size (b) Damage curve (c) Cell dynamics for (iii)

Figure 4.1: Continuous no-resistance case. Cancer cells population dynamics and dam-
age accumulation curves are shown in (a) and (b) respectively. In (c) the
snapshots of phases of cancer size increase and eventual eradication corre-
sponding to (iii) and (iv) are shown. Figure 4.1(b) shows the mean value
of accumulated damage of all cells with vertical lines, representing standard
deviation, and an average death threshold of all cancer cells (constant in this
case).

ever, prior to introducing the resting intervals, the amount of iterations should be fixed.
Based on the outcome for the continuous case, it seems reasonable, therefore, to decide
on number that is at least satisfies: Niter

2 < 6607, otherwise one would fail to see the
effect on applying different drug protocols. As, in case Niter > 6607, the result of di-
vision into 2 fractions will duplicate the outcome for the continuous case. Thus, the
iteration number was set to 8000. Then the overall drug amount should not exceed
8000 × 4 × 1 = 32000. Like it was mentioned before, in this thesis investigated was
the division into 2, 3 and 4 fractions. The results of simulations performed for the no-
resistance case are summarized in Table 4.1.

In Table 4.1 successful drug administration regimens with complete tumor eradica-
tion are marked with green color. Cases, marked with blue font, are the cases where
the overall toxicity level is lesser than the expected one 32000, be it due to the low
drug dose or tumor eradication faster than planned. Failed treatment cases have the
amount of iterations 8000 and the total amount of drug equals to the planned one
8000
n × 4×DrugIn+ 8000

n × 4× 0 + . . . , therefore omitted in Table 4.1.
Successful treatment schedules, with the exception of the case 1-0, follow the same sce-
nario. Cell evolution curves and damage plots will be quite similar for all these cases
Figure 4.2. The cancer cell population being exposed to the drug will at first increase
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4 Analysis of Results

DrugIn
Intervals 1 2 3 3 4

D D-0 D-0-0 D-0-D D-0-D-0

0.5
587 350 423
9 13 19

1

0 0 94 128
6607 7563
26428 16000

0 0 1 1

1.5

0 0 0
3368 3368 4281
20208 16000 13686

0 0 0

2

0 0
3214 3214
25712 16000

0 0

3

0
3157

32000
0

Table 4.1: No-resistance case. The cases of successful tumor eradication and cases with
overall amount of drug lesser than 32000 are marked with green background
color and blue font color respectively. Table entries: number of survived cells,
number of iterations (omitted in case of failed treatment), overall amount of
drug (omitted in case of failed treatment), number of survived clones.

in size, however, owing to the relatively high dose intensity DrugIn > 1, it fast accu-
mulate enough damage to reach the death threshold and consequently die out. Thus,
comparing cell evolution curve for these cases Figure 4.2(a) with the one for continuous
treatment Figure 4.1(a), one can see that even that cell subpopulation, which was able to
temporally escape death and regrow thanks to the low drug niche (iii-vi) in continuous
case, now due to the higher drug concentration is nowhere to be found.

As for the case 1-0, the cell population behavior replicates the continuous case with
all 4 phases of cancer cells population dynamics curve Figure 4.1(a), although this time
tumor gets eradicated a bit later, after 7563 iterations. This is already promising result
as the overall toxicity was reduced while maintaining the same drug dosage.
Of particular interest are the failed treatment cases, they are 0.5 and 1 dose intensity

”families”. Firstly, consider the DrugIn = 1-family of drug administration regimens
Figure 4.3. In both protocols one clone, initially located in the low drug niche survives.
Compared to the continuous case Figure 4.1(a) both populations Figure 4.3(a) and Fig-
ure 4.3(c) have similar dynamics with regrowing subpopulation (i-iv), but due to the
continuous DNA damage repair and zero drug supply in the resting intervals, tumor
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4.1 Drug Administration Regimens

(a) Cancer size (b) Damage curve

Figure 4.2: Successful treatment Cancer cells population dynamics and damage accumu-
lation curves are shown in (a) and (b) respectively. Figure 4.2(b) shows the
mean value of accumulated damage of all cells with vertical lines, represent-
ing standard deviation, and an average death threshold of all cancer cells
(constant in this case).

(a) 1-0-1 (b) 1-0-1 (c) 1-0-1-0 (d) 1-0-1-0

Figure 4.3: DrugIn = 1 family, failed treatment. Cancer cells population dynamics and
damage accumulation curves for the drug regimens 1-0-1 and 1-0-1-0 are
shown in (a,c) and (b,d)respectively. Figure 4.3(b) and Figure 4.3(d) show
the mean value of accumulated damage of all cells with vertical lines, rep-
resenting standard deviation, and an average death threshold of all cancer
cells (constant in this case). Drug administration and resting intervals are
colored green and red respectively.

doesn’t accumulate enough damage to be eradicated at the iteration 8000. In case of
1-0-1-0 regimen, repopulation of cancer cells (iv) and then decrease in size is again fol-
lowed by the escape in the low drug niche (v) and potential regrow further.
As for the DrugIn = 0.5-family, poor treatment results can be explained by the too
low dose intensity. In either of cases cancer cells fail to accumulate enough damage to
exceed the death threshold as shown in Figure 4.4. Cancer population size curves show
different behavior based on the protocol. One can notice, that each resting interval is
accompanied by the tumor regrow.
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4 Analysis of Results

Analysis revealed that DrugIn > 1 protocols show better results compared to those

(a) 0.5-0 (b) 0.5-0-0.5 (c) 0.5-0-0.5-0

(d) 0.5-0 (e) 0.5-0-0.5 (f) 0.5-0-0.5-0

Figure 4.4: DrugIn = 0.5 family, failed treatment. Cancer cells population dynamics and
damage accumulation curves for 0.5-0, 0.5-0-0.5 and 0.5-0-0.5-0 are shown
in (a,b,c) and (d,e,f) respectively. (d), (e) and (f) show the mean value of
accumulated damage of all cells with vertical lines, representing standard
deviation, and an average death threshold of all cancer cells (constant in
this case). Drug administration and resting intervals are colored green and
red respectively.

with lower dose intensity. And indeed in clinical trials maximum-tolerated dose (MTD)
protocols are often used to treat cancer. However, it means also the higher overall toxic-
ity to endure for the patient, and so rather long resting intervals to recover are essential.
But again, there is then a risk for the tumor to regrow demolishing the chemotherapy ef-
fect. Hence, presently, often the alternative drug administration scheme is used, the so-
called chemo-switch (C-S) schedule (MTD chemotherapy followed by the metronomic
chemotherapy (MET), a low-dose frequently given therapy).This drug administration
protocol is proved to be an effective anti-cancer therapy [46], [32].
As in the successful treatment protocols tumor is eradicated before second drug admin-
istration is started (or soon after in case 1.5-0-1.5-0)), it was decided to try reverse C-S
therapy by increasing a dose intensity in the second drug administration interval. Per-
formed simulations of this protocol showed no complete tumor eradication, but tumor
was shrinked to the very small population. Schedules with 3 fraction turned out to be
less effective than those with 4 intervals Figure 4.5.
To sum up, in no-resistance case the simulation results improve with division of treat-

ment time into more fractions. It is a very important observation as taking such a drug
protocol will reduce the overall toxicity and benefit the patient’s condition. However,
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4.1 Drug Administration Regimens

(a) 0.5-0-2-0 (b) 0.5-0-2-0 (c) 1-0-2-0 (d) 1-0-2-0

Figure 4.5: Increasing dose intensity in second drug administration interval Cancer cells pop-
ulation dynamics and damage accumulation curves for the drug regimens
0.5-0-2-0 and 1-0-2-0 are shown in (a,c) and (b,d)respectively. (b),(d) show
the mean value of accumulated damage of all cells with vertical lines, rep-
resenting standard deviation, and an average death threshold of all cancer
cells (constant in this case). Drug administration and resting intervals are
colored green and red respectively.

the choice of the particular drug protocol will depend on one’s objective: killing tumor
”by all means” as fast as possible or killing tumor, while minimizing total drug amount,
does not matter how long it takes. Alternatively one can try to minimize drug exposure
time and overall toxicity.
The fastest way to kill the tumor is the 3-0-0 protocol, however, dose intensity and total
the toxicity are both high in this case. Better option is to select 2-0-2-0 protocol as the
time does not differ that much from 3-0-0 case, but the total toxicity is reduced signifi-
cantly, the dose intensity stays high though. Compromising some time one can choose
1.5-0-1.5-0 protocol, as the overall amount of drug introduced to the system is lowest
for this case. If the objective is to not exceed the DrugIn = 1, the case with two frac-
tions 1-0 might be a good option, although the treatment time is relative long and the
overall toxicity is slightly higher then that of 1.5-0-1.5-0 case.

4.1.2 Acquired Resistance

Here considered is the case of acquired resistance, when initially no-resistant tumor de-
velop an anti-cancer drug resistance in the course of treatment. The emergence of resis-
tant phenotype can be triggered by the exposure to cytotoxic drug, microenvironment,
like intrinsic tumor hypoxia (vasculature geometry), pharmacological sanctuaries that
hinder drug diffusion, or other factors [3],[6].
As it was stated in chapter 3 acquired resistance is defined as an individual ability
of each cancer cell to increase the level of damage it can withstand if the prolonged
drug exposure criterion is met. The death threshold of the cell that is being faced with
high drug concentration long enough, will be increased by increment sizes param-
eter. Thus, increment sizes value will determine the qualitative behavior of popu-
lation dynamics. And indeed, as it was revealed in [9] varying increment sizes one
can observe for 0 ≤ increment sizes < 3 × 10−5 the case of successful treatment, for
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3 × 10−5 ≤ increment sizes < 4 × 10−5 almost successful treatment, for 4 × 10−5 ≤
increment sizes < 7×10−5 the emergence of a drug-resistant tumor, increment sizes ≥
7× 10−5 complete treatment failure. Further is considered the impact of different drug
administration protocols on the cases of almost successful treatment and the emergence
of resistant tumor. The maximum amount of iterations is set to 25000 as it was in
[9] and the DNA damage repair remains constant same as for the no resistant case
p = 1.5× 10−4.

Almost successful treatment, increment sizes 3.5× 10−5

(a) Cancer size (b) Damage curve (c) Remaining cells, iteration
25000

Figure 4.6: Continuous case, increment sizes = 3.5 × 10−5 Cancer cells population dy-
namics and damage accumulation curve for the continuous drug supply is
shown in (a) and (b) respectively. (c) shows the remaining cells at the end
of the treatment course, where the white circles indicate the hypoxic niche.
(b) shows the mean value of accumulated damage of all cells with vertical
lines, representing standard deviation, and an average death threshold of all
cancer cells.

In this subsection analyzed is the impact different drug administration schedules
have on the case resulting in almost successful treatment for continuous drug supply.
The value for the increment sizes = 3.5 × 10−5 parameter was selected from the ap-
propriate range 3× 10−5 < increment sizes < 4× 10−5.
Once again, consider first the case of continuous drug supply DrugIn=1 (Figure 4.6).
The cancer cell population dynamics resembles that of no-resistance case with (i-iv)
phases. However, starting from iteration 16000, there are only 8 remaining cells located
in the hypoxic region (v), which will not proliferate till the end of the treatment course
being in quiescent state due to the oxygen deprivation Figure 4.6(c). The hypoxic niche
has also low drug concentration resulting in poor drug accumulation by the remaining
cells, they are still perform DNA repair though. Thus, the average damage level curve
decreases, while, thanks to the acquiring resistance, the average death threshold curve
increases.
Following the same logic as in the no-resistance case, the overall amount of drug con-
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DrugIn
Intervals 1 2 3 3 4

D D-0 D-0-0 D-0-D D-0-D-0

0.5
934 939 941
8 8 8

1
8 8 840 944
3 3 2 1

1.5

0 0 0
7525 7525 7525
45150 45150 37500

0 0 0

2

0 0
4732 4732
37856 37856

0 0

3

0
4595
55140

0

Table 4.2: Acquired resistance (increment sizes = 3.5 × 10−5). The cases of successful
tumor eradication and cases with overall amount of drug lesser than 100000
are marked with green background color and blue font color respectively. Ta-
ble entries: number of survived cells, number of iterations (omitted in case of
failed treatment), overall amount of drug (omitted in case of failed treatment),
number of survived clones.

tinuously supplied to the system 25000× 4× 1 = 100000, was taken as an upper bound
for the different drug protocols. The simulation results for different treatment regi-
mens are presented in Table 4.2. The drug administration regimens with DrugIn > 1
achieved a complete cancer response to the treatment. Although, in these cases it has
required more time for the tumor eradication, the cell evolution curves and damage
plots are rather similar to those of no-resistance case Figure 4.2. The tumor dynamics
shows only two phases (i-ii): cells that still have not encountered enough drug will in-
crease the population size and then die out due to the accumulated damage.
Now, consider ”families” of the failed treatment cases: DrugIn = 1 and DrugIn = 0.5.
Just as it was observed in the case of no-resistance, also in case of acquired resistance
1-0 protocol duplicates the outcome for continuous drug supply (see Figure 4.6) with
its partial treatment response. 1-0 regimen shows 8 persistent cancer cells stuck in the
hypoxic region at the end of the treatment, however, now, this result is obtained using
50000 units of drug lesser.
1-0-1 and 1-0-1-0 in their turn are examples of resistant tumor taking over the domain.

In 1-0-1 protocol two periods of tumor shrinkage are followed by tumor expansion
Figure 4.7 (a). In the phase (v) there are only 8 cells remained, however, unlike the
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(a) 1-0-1 (b) 1-0-1-0 (c) 1-0-2

(d) 1-0-1 (e) 1-0-1-0 (f) 1-0-2

Figure 4.7: DrugIn = 1-family, increment sizes = 3.5 × 10−5 Cancer cells population
dynamics and damage accumulation curve for the continuous drug supply
is shown in (a),(b),(c) and (d),(e),(f) respectively. (d),(e),(f) show the mean
value of accumulated damage of all cells with vertical lines, representing
standard deviation, and an average death threshold of all cancer cells.Drug
administration and resting intervals are colored green and red respectively.

continuous case, due to the low amount of cells in the domain, level of oxygen has in-
creased and reached the hypoxic cells, thus allowing them to proliferate again. During
the resting interval, drug is being washed out of the domain(sink boundary conditions)
and taken up by the persistent cells. Thus, cells receive minor damage, while repairing
their DNA and acquiring resistance Figure 4.7 (b). As follows, they became unrespon-
sive to the drug what resulted in disease progression. In case of 1-0-1-0 regimen, cells
escape repeatedly to the low drug normoxic niche, which allows them to keep tumor
population from extinction and ensure the cancer expansion. Due to the intervals short-
ening there is not enough time to kill off the tumor, while drug is administrated, but
sufficient for it regrow in the resting intervals.

Next, considered is DrugIn = 0.5-family of schedules Figure 4.8. One can observe
a complete treatment failure. Prolonged exposure to the low drug doses allows tumor
cells increase of death threshold accompanied by easy DNA repair. In case of 0.5-0,
common tumor behavior prior to damage accumulation (i-ii) is followed by rather pe-
culiar one in the low drug niche (iii), showing small fluctuations of the cell population
size. As long as drug is administrated slight increase of cell amount will be eradicated
not allowing tumor expansion. But soon after resting interval starts, some cells are still
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(a) 0.5-0 (b) 0.5-0-0.5 (c) 0.5-0-0.5-0

(d) 0.5-0 (e) 0.5-0-0.5 (f) 0.5-0-0.5-0

Figure 4.8: DrugIn = 0.5-family, increment sizes = 3.5× 10−5 Cancer cells population
dynamics and damage accumulation curve for the continuous drug supply
is shown in (a),(b),(c) and (d),(e),(f) respectively. (d),(e),(f) show the mean
value of accumulated damage of all cells with vertical lines, representing
standard deviation, and an average death threshold of all cancer cells.Drug
administration and resting intervals are colored green and red respectively.

killed due to the residual drug but then tumor take over the domain. 0.5-0-0.5 shows
same behavior with only difference phase (iii) being shorter. The division into 4 inter-
vals shows the worst outcome as tumor expansion starts much earlier.
Once again in effort to improve results, protocols with mixed dose intensities were
tried, but to no avail. Outcomes of the application of higher dosage in the second drug
administration interval for DrugIn = 0.5 and 1 failed cases mostly have duplicated the
original results. Thus, dose intensity of the first drug administration interval seems to
have more influence on the final outcome. Protocols with 3 fractions performed better
then those with 4 intervals. As in case of 4 fractions at the time point when higher dose
is administrated most of the cancer cells have already acquired resistance, hence, unre-
sponsive to the therapy. The most significant change showed 1-0-2 schedule shrinking
tumor size compared to 1-0-1 from 840 to 306 cells Figure 4.7(c)(vi). Moreover, remain-
ing cancer cells suffering high level of damage Figure 4.7(f), thus, might eventually die
out.
To conclude, in case of acquired resistance with increment sizes3.5 × 10−5 the fastest
tumor eradication can be observed for 3-0-0 protocol. However, the overall toxicity bur-
den as well as drug dosage is high. Thus, it would be reasonable therefore to choose one

35



4 Analysis of Results

of the DrugIn = 2 regimens. These schedules require just about 100 iterations more to
kill off the tumor, yet toxicity level is reduced in almost 1.5 times. DrugIn = 1.5 turned
out to be less effective than DrugIn = 2 needing more time to eradicate tumor with
rather high toxicity level.

Emergence of drug resistance, increment sizes 4.5× 10−5

The case of emergence of drug resistance can be characterized with reduced anti-cancer
drug efficacy in the long-term. The differences in cancer population behavioral pat-
terns for this case are determined by the choice of increment sizes parameter value.
The higher value is, the higher is the average death threshold, thus the more resistant
are the cells, leading eventually to the complete treatment failure case. Here is consid-
ered the case with increment sizes = 4.5×10−5, which shows rather promising results
on the onset of the treatment course, but end up with expansion of resistant tumor in
the domain. Simulation results are presented in Table 4.3.

One should note here that tumor population dynamics in onset of the treatment for

DrugIn
Intervals 1 2 3 3 4

D D-0 D-0-0 D-0-D D-0-D-0

0.5
932 945 952
8 9 11

1
935 930 935 935
1 1 1 1

1.5
327 346 323
1 1 1

2
1 1
1 1

3

0
5335
64020

0

Table 4.3: Acquired resistance (increment sizes = 4.5 × 10−5). The cases of successful
tumor eradication and cases with overall amount of drug lesser than 100000
are marked with green background color and blue font color respectively. Ta-
ble entries: number of survived cells, number of iterations (omitted in case of
failed treatment), overall amount of drug (omitted in case of failed treatment),
number of survived clones.

all DrugIn > 1 protocols follows two phases behavior Figure 4.2 (a), common for all
successful treatment cases. However, complete tumor eradication can be observed only
for 3-0-0 protocol. DrugIn = 2-family of schedules also manages to almost kill off the
tumor, but fails in the end. In Figure 4.9(a) is illustrated cell population dynamics exam-
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4.1 Drug Administration Regimens

(a) DrugIn = 2 (b) DrugIn = 2 (c) DrugIn = 1.5 (d) DrugIn = 1.5

Figure 4.9: DrugIn > 1 plots increment sizes = 4.5 × 10−5 Cancer cells population
dynamics and damage accumulation curves are shown in (a),(c) and (b),(d)
respectively. (b),(d) show the mean value of accumulated damage of all cells
with vertical lines, representing standard deviation, and an average death
threshold of all cancer cells.

ined in both DrugIn = 2 protocols. After iteration 5400, there is only one cell remains
that can not be eradicated being in low drug hypoxic niche. Due to vasculature geom-
etry it suffers strong oxygen deprivation. Even after oxygen, owing to absence of other
cells, restores its healthy tissue gradient Figure 3.2(a) the persistent cell continues being
hypoxic. Albeit, this case can be considered as successful tumor suppression, Figure 4.9
(b) shows that remaining cell is resistant. Hence if it manages to re-enter the cell cycle,
it won’t respond to the treatment, as it was observed in DrugIn = 1.5 case Figure 4.9
(c). ForDrugIn = 1.5 protocols, after iteration 6400 there are two persistent cells in low
drug region that switch to quiescent state, being deprived of oxygen. However, thanks
to the fortunate cells’ location eventually they managed to start proliferation process
again, as oxygen level had increased. This cancer cell population is unresponsive to the
therapy causing disease progression and further treatment complications.
Next is considered DrugIn = 1-family of drug schedules Figure 4.10. Continuous case

as well as 1-0 case shows two periods of cancer cell repopulation (i-iv) followed by the
tumor shrinkage (v) to 27 cells and further disease progression (vi). This survived cell
subpopulation (v) is located in the low drug niche, thus drug level is not enough to kill
off tumor completely. This accompanied with steady DNA repair and death threshold
increase results in resistant tumor expansion, where in case 1-0 tumor is much more re-
sistant. Figure 4.10 (b),(c) show that dividing treatment time into more fractions results
in shortening of tumor shrinkage period as well as increasing of the amount of survived
cells in (v). In case 1-0-1, during resting interval, after increasing its size in (iv), cell pop-
ulation size still decreases due to the sufficient amount of residual drug in the domain.
Whereas in case of 1-0-1-0 protocol tumor size attained in (iv) is poorly affected in (v),
as tissue slice failed to accumulate enough drug. All DrugIn = 1-regimens lead to the
resistant tumor, which takes over the domain.
Cancer behavior, while being treated with DrugIn = 0.5 protocols ended up being
quite similar to the one for DrugIn = 1. There are two cancer grow periods with local
population size minimum at (v). Difference is that the local minimum at (v) attained
by DrugIn = 0.5 protocols is much higher than for DrugIn = 1, as low drug dosage
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(a) Continuous case (b) 1-0 (c) 1-0-1 (d) 1-0-1-0

(e) Continuous case (f) 1-0 (g) 1-0-1 (h) 1-0-1-0

Figure 4.10: DrugIn = 1-family, increment sizes = 4.5 × 10−5 Cancer cells population
dynamics and damage accumulation curves are shown in (a),(b),(c) and
(d),(e),(f),(g) respectively. (d),(e),(f),(g) show the mean value of accumu-
lated damage of all cells with vertical lines, representing standard devia-
tion, and an average death threshold of all cancer cells.Drug administration
and resting intervals are colored green and red respectively.

is less effective against cancer. In case of 0.5-0-0.5-0 similarly to 1-0-1-0 (iv-v) phases
almost completely disappear, presenting the resistant tumor.
Based on the analysis of previous cases, one of major causes of cancer expansion is
tumor repopulation during the drug pause interval. Thus, in order to shorten resting
time, 5 fractions protocol was introduced DrugIn = 12

3 ≈ 1.67. The observed behavior
replicates that for DrugIn = 2 cases with one persistent cell in the hypoxic niche Fig-
ure 4.9 (a),(b).
Applying chemo-switch regimen, administrating lower drug dose after the higher one
haven’t affected population behavior. Same should be mentioned for the reverse chemo-
switch, with higher dose on the second active therapy interval. This once again proves
the crucial impact dose intensity of the first drug administration interval has on the
further disease development.
To sum up, the best treatment protocol and the only successful one is 3-0-0, however,
the overall toxicity is high. One may decide on 2-0-2-0 protocol and just terminate drug
supply soon after 5400 iteration. However in this case there is a possibility of disease
relapse.

Emergence of drug resistance, increment sizes 5.9× 10−5

Similarly to increment sizes = 4.5 × 10−5, this case also illustrates reduced effectivity
of the drug as the time advances, resulting in tumor population that is not responding
to the treatment. However, now, acquiring resistance, due to the high increment sizes
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value, takes much less time. The simulations outcomes are summarized in Table 4.4.
There is no successful treatment protocol observed this time. Moreover, cancer cell

DrugIn
Intervals 1 2 3 3 4

D D-0 D-0-0 D-0-D D-0-D-0

0.5
934 941 934
15 15 26

1
942 927 943 967
4 4 6 6

1.5
938 936 930
15 12 14

2
935 933

9 8

3
937
15

Table 4.4: Acquired resistance (increment sizes = 5.9 × 10−5). The cases of successful
tumor eradication and cases with overall amount of drug lesser than 100000
are marked with green background color and blue font color respectively. Ta-
ble entries: number of survived cells, number of iterations (omitted in case of
failed treatment), overall amount of drug (omitted in case of failed treatment),
number of survived clones.

population dynamics for all drug schedules follows the same behavioral pattern: in-
creasing in the beginning of treatment course(i), attaining its local maximum(ii), dying
due to the accumulated damage and reaching local minimum(iii) and then starting to
repopulate the domain not responding to the drug anymore. However, it still differs in
its max and min values depending on the dose intensity Figure 4.11. Where schedules
with doses DrugIn > 1 reduce tumor size to the lowest minimum value.
Introduction of more fractions to shorten resting time, won’t benefit treatment response
in case of increment sizes = 5.9 × 10−5. 5 fractions schedule with DrugIn = 1.67
showed results similar to DrugIn = 1.5 cases allowing resistant tumor expansion as
well Figure 4.11 (c),(f). Dividing treatment time into 10 intervals (DrugIn = 2), re-
sulted into complete treatment failure, with cancer population behavior similar to Fig-
ure 4.11 (a),(d). Similarly as it was the case in previously examined increment sizes =
4.5× 10−5, applying different dosages in treatment course will not influence treatment
outcome.
In case of increment sizes = 5.9 × 10−5 simulations show complete treatment failure
with evident drug resistance for all observed drug administration regimens. Thus, the
best treatment strategy would be to refrain from high dose intensities as they lead to
the tumor heterogeneity.
In conclusion, treatment schedules with higher dose, with exception of increment sizes =
5.9 × 10−5 case, showed better treatment outcomes. This complies with conventional
chemotherapeutic treatment using maximum tolerated dose. Whereas, reduction of
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(a) DrugIn = 0.5 (b) DrugIn = 1 (c) DrugIn > 1

(d) DrugIn = 0.5 (e) DrugIn = 1 (f) DrugIn > 1

Figure 4.11: Population size and damage accumulation curves, increment sizes = 5.9×10−5

Cancer cells population dynamics for different dose intensities is shown in
(a), (b), (c). (d),(e) and (f) show the mean value of accumulated damage of
all cells with vertical lines, representing standard deviation, and an average
death threshold of all cancer cells.

dose intensity below the value, determined through the model calibration (DrugIn =
1), appeared to be less effective resulting in expansion of resistant tumor. Application
of drug schedules combining different doses showed little improvement, due to the im-
pact the first drug administration interval has on the disease development.
Introducing resting intervals proved to be a good method to reduce overall toxicity,
which will improve patient’s condition. However, long breaks between drug adminis-
tration intervals allow cancer cell population to regrow and develop resistance. Whereas,
shortening of drug pauses in between active therapy for some dose intensities may lead
to the strongly heterogeneous tumor that will eventually not respond to chemotherapy.
Analysis of treatment protocols in this subsection was made based on their efficacy in
tumor eradication, whereas the next one observe them from the clonal perspective.

4.2 Tumor clonal evolution analysis

In this subsection is analyzed the impact of different drug administration regimens on
the clonal diversity of tumor. This issue is investigated by the means of phylogenetic
trees showing the tumor clonal evolution. The model used in this thesis gives the op-
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portunity to track life history of each individual cell. The tree graph shows all remain-
ing cells at the last iteration as leaves, cells’ mothers as nodes and the initiating cell as
the root.
The analysis of different drug protocols in section 4.1 has revealed that some failed
therapies result in increasing tumor heterogeneity. In this section is investigated what
is rather to cause clonal diversity: dose intensity or introduction of resting intervals
between drug administration.

4.2.1 No resistance

First of all, consider survived clones in the no-resistance case Table 4.1. For the failed
treatment regimens with DrugIn = 1 , there is only one survived clone. Thus tumor
heterogeneity in these cases is caused by the introducing of resting intervals, which
allow cancer cell repopulation. The observations in both cases are quite similar, the
clone wasn’t eradicated due to the favorable spatial location of the initial cell. Clonal
subpopulation has managed to outcompete other clones as it was located in the low
drug niche. In Figure 4.12 (i) there are 3 clones left, where two phenotypes are at disad-
vantage being located in the hypoxic region. (ii), (iii) show yellow and blue diamonds
being thrown out of the domain with red diamond phenotype spread out in the tissue.
The inheritance tree for the 1-0-1 protocol is presented in Figure 4.12(c). One can see
the long division history of the clone, as its initiating cell was located in the low drug
normoxic region and was able to proliferate throughout the treatment course. As for

(a) (b)

Figure 4.12: No-resistance case (1-0-1), clonal evolution The snapshots (a) and (b) show the
location of the survived clone. In (c) the inheritance tree is presented.

the DrugIn = 0.5-family of drug administration regimens, the survival of cell clones
can be explained by the low dose intensity. The insufficient effect of the observed drug
concentration enables tumor to preserve its clonal diversity. After first interval of drug
administration in case of 0.5-0 protocol, the amount of distinct clones is 18, for 0.5-0-0.5
it is 58. Those clones that are located in hypoxic or low drug niches, will proliferate and
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overtake a large part of domain.
The situation for the 0.5-0-0.5-0 protocol is even more problematic as the beginning of

(a) (b) (c)

Figure 4.13: No-resistance case (0.5-0-0.5-0), clonal evolution The snapshots (a) and (b)
show the clonal diversity at iteration 2000 and 6000 respectively. In (c) the
inheritance tree is presented.

the first resting interval coinside with the phase of active cancer cells proliferation, as
they still haven’t got enough damage to exceed the death threshold Figure 4.13. Thus
all the 65 initial clones are still present Figure 4.13(a). At the end of the second drug
administration interval (iteration 6000 Figure 4.13(b)) there are still 32 clones located in
the low drug niches. One can observe in the phylogenetic tree that the cells, which were
located in the hypoxic regions, have shorter life history, as they remained in the quies-
cent state. Whereas, those whose initial cell was located near low drug and haven’t
suffered oxygen deprivation have divided more often.

4.2.2 Aquired resistance

Next, consider the acquired resistance case. Based on the increment sizes parameter
one can observe quite different scenarios, where due to cell’s ability to acquire resis-
tance, tumor clonal diversity got much more affected by the choice of particular drug
administration protocol.

increment sizes = 3.5× 10−5

As it was mentioned in subsection 4.1.2, 1-0 drug protocol duplicates the result for con-
tinuous drug supply case. The 8 surviving cells starting from iteration 11700 are stuck
in the low drug hypoxic niche in resting state not able to proliferate. The initiating cells
of these surviving phenotypes were located near the pharmacological sanctuaries, thus,
allowing them to escape death in hypoxic regions.

The daughter tree report Figure 4.14(b) shows a short cell fate, because 3 presented
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(a) (b)

Figure 4.14: increment sizes = 3.5 × 10−5 (1-0), clonal evolution In (a) the remaining
clones stuck in the hypoxic region are shown. (b) shows the inheritance
tree with values for death threshold and damage.

clones became quiescent already in the first part of the treatment course. At the same
time cells have been repairing their DNA and increasing death their threshold, becom-
ing resistant.
The 1-0-1 protocol resulted in interesting outcome that gives the situation, described
above, a new twist by allowing one of the persistent clones to re-enter the cell cycle Fig-
ure 4.15. As the domain has no other cells to consume oxygen it leads to an increased
oxygen supply to hypoxic regions, thus trigger the proliferation of one of the clones. In
clinical trials it is often the case that during the resting interval between drug adminis-
tration cancer cell repopulation takes place. When the drug is administrated again, the
cells, due to the acquired resistance, do not respond to treatment anymore.

The clone that started the tumor expansion, increases its subpopulation size and

(a) (b) (c) (d) (e) (f)

Figure 4.15: increment sizes = 3.5× 10−5 (1-0-1), clonal evolution The process of tumor
expansion by a persistent clone.

”throws” blue triangle cell phenotype out of the domain. The 1-0-1-0 protocol differs
only by the fact that the persistent clone manages to get rid of both other clones being
the only survivor at the of the treatment course.
The family of DrugIn = 0.5 regimens showed uniform simulation outcomes. At the

end of each treatment protocol there are 8 remaining clones in the domain Figure 4.16.
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(a) 0.5-0 (b) 0.5-0-0.5 (c) 0.5-0-0.5-0

(d) 0.5-0 (e) 0.5-0-0.5 (f) 0.5-0-0.5-0

Figure 4.16: increment sizes = 3.5 × 10−5 (DrugIn = 0.5-family), final clonal configu-
ration The dependence of quantitative ratio of clonal subpopulation on a
drug administration regimen.

Similarly to the case of no resistance, drug concentration is too low to inhibit the cell
growth. However, the amount of cells of each phenotype differs in these cases. This can
be explained with different time point and duration of the resting intervals, allowing
repopulation for those clones that have the most favorable environmental conditions at
this moment.
Figure 4.16 (d,e,f) show the phylogenetic trees of the DrugIn = 0.5 protocols. The
longest cell life histories have blue and yellow ”diamonds”. Their initiating cells are
located near the low drug niche, thus allowing them to increase their subpopulations.
Yet, in 0.5-0-0.5-0, only the blue clone was able to divide freely, while the yellow one had
to compete with other cell clones, which were regrowing due to early resting interval.

increment sizes = 4.5× 10−5

For both protocols of DrugIn = 2-family, cells dynamics simulation outcome can be
described as follows: starting from iteration 5400 there is only one survived hypoxic
cell, which is located in the strongly hypoxic region, thus absolutely deprived of oxy-
gen supply Figure 4.17(a)(i). Even after increase of average oxygen concentration in the
domain (ii), this clone still fails to receive enough nutrient to re-enter the cell cycle.
Consider protocol 1.5-0, there are 2 clones at iteration 5500 represented by 6 hypoxic

cells, later, at iteration 6400, only 1 clone with 2 cells remains Figure 4.17(b). The reason
why yellow diamond phenotype goes extinct is high damage level accumulated by the
cells. Whereas DNA damage burden carried by blue diamonds is lesser and after repair
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(a) DrugIn = 2 (b) DrugIn = 1.5 (c) Damage curves

Figure 4.17: increment sizes = 4.5×10−5 (2-0; 1.5-0), clonal evolution 2-0 protocol result
with remaining cell stuck in the hypoxic region is shown in (a). (b) illus-
trates the process of tumor expansion by a persistent clone in case of 1.5-0
regimen. (c) shows damage curves of the two cells at the iteration 6400
(b)[ii]

at 6400 decreases further. At iteration 10700 blue diamond phenotype representatives
build therapy resistant cancer due to the acquired resistance Figure 4.17(c). Empty do-
main with no cells to uptake the oxygen, allows its concentration increase, and hence
reoxygenation of hypoxic cells. It enables for a hypoxic clone to divide at 10700 and
thus start cancer expansion. As for other protocols of DrugIn = 1.5-family, further di-
vision into fractions won’t affect clonal diversity, but rather amount of surviving cells.

Consider regimens with DrugIn = 1 Figure 4.18. In the course of treatment, when

(a) (b) (c) (d) (e) (f)

Figure 4.18: increment sizes = 4.5 × 10−5 (1-0), clonal evolution The process of tumor
expansion by a persistent clone.

drug concentration is increasing, tumor is shrinked to the small population in hypoxic
regions with 2 clones (one of them not completely quiescent). As a result of lessened
amount of cells in the domain, oxygen level rise, whereas drug concentration is reduced
(no drug supply, cellular uptake and sink boundary conditions). Meantime cells are re-
pairing their DNA and increasing death threshold, hence, when active clone starts to
repopulate domain, it is already resistant to the medication. The other clone remains
hypoxic, until it is thrown outside the boundary, due to the overcrowding. The division
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into fraction does not affect clonal diversity but only the amount of cells present after
the treatment course.
The behavior of cancer cell population being treated with DrugIn = 0.5 protocols is
highly influenced by the low drug concentration. Due to the drug accumulation in tis-
sue, in case of 0.5-0, more distinct clones are killed, whereas in the last case (0.5-0-0.5-0)
due to the only short exposure to the low drug dose , DNA repair and acquired resis-
tance more clones managed to survive. The cell division history depends on the initial
cell location - microenvironmental niches are more favorable for proliferation.

(a) 0.5-0 (b) 0.5-0-0.5 (c) 0.5-0-0.5-0

(d) 0.5-0 (e) 0.5-0-0.5 (f) 0.5-0-0.5-0

Figure 4.19: Clonal evolution, increment sizes = 4.5 × 10−5, DrugIn = 0.5 (a),(b),(c)
show clonal configuration at the end of drug administrating interval and
at the end of the treatment. (d),(e),(f) show phylogenetic trees.

Figure 4.19 shows remaining clones after active drug therapy. However, this num-
ber will be reduced in the further iterations, as some of clones eventually die due out
to the accumulated damage while the other ones, presented by small subpopulations
located in hypoxic niches (not proliferating), will be thrown out of the domain due
to the overcrowding, caused by dividing cell phenotypes located in low drug regions.
The daughter cell tree for 0.5-0 shows long cell history for the 3 clones with largest
subpopulations, the proliferation process of other ones was suppressed because of the
overcrowding. In case of 0.5-0-0.5 schedule, after first drug administration interval, the
most advantageous locations, with free space to proliferate, have yellow and blue di-
amond phenotypes, whereas other clones are squeezed inbetween. Nevertheless, as it
is visible on the phylogenetic tree, the blue diamond subpopulation has activated its
proliferation only at the conclusion of the treatment, being most of the time partially
hypoxic or lacking space to divide. The 0.5-0-0.5-0 protocol with its low drug concen-
tration and short drug administration time allows survival of 21 clones after first inter-
val. However, due to the accumulated damage and competing for space the amount of
clones will decrease. As increment sizes value is relatively high the role of microenvi-
ronmetal niche in selecting the surviving phenotypes is reduced. Therefore, not all of
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the persistent clones originate from the same low-drug normoxic region.
To sum up, apart from heterogeneity that is caused by the low dose intensity, dividing
treatment time into fractions will only increase tumor clonal diversity.

increment sizes = 5.9× 10−5

When the death threshold increment parameter value equals increment sizes = 5.9 ×
10−5 the treatment results in disease progression with resistant heterogeneous tumor
taking over the tissue slice.
Considering the numerical simulations already the continuous case shows 4 persistent
clones in the end of the treatment course. What is more surprising is that the therapy
with the high drug dose intensities DrugIn > 1 caused tumor to become even more
heterogeneous than in DrugIn = 1. As it is the case in clinical trials, cancer treated
with high dose chemotherapy if not eradicated completely will develop resistance and
thus result in much more dangerous malignancies.
After active drug administration in 3-0-0 protocol there are 30 distinct cell phenotypes

(a) 3-0-0 (b) 2-0 (c) 1.5-0

(d) 3-0-0 (e) 2-0 (f) 1.5-0

Figure 4.20: Clonal evolution, increment sizes = 5.9× 10−5, DrugIn > 1 (a),(b),(c) show
clonal configuration at the end of drug administrating interval and at the
end of the treatment. (d),(e),(f) show phylogenetic trees.

left located all over the tissue slice . The clones positioned in the low-drug normoxic
niche being sufficiently oxygenated have better conditions to spread out, whereas those
being quiescent will be eventually thrown out of the domain by the actively proliferat-
ing clones.The situation for other high dose regimens is rather similar. The phylogenetic
show approximately same cell life history length for the most of the clones, with the ex-
ception of being longer for the domineering phenotypes. This can be explained by the
overcrowding condition in the domain when the proliferation process is suppressed
until there are free space to divide. Figure 4.20
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For DrugIn = 1 protocols Figure 4.21 the amount of cells in tumor increases with the

(a) 1-0 (b) 1-0-1-0

(c) 1-0 (d) 1-0-1-0

Figure 4.21: Clonal evolution, increment sizes = 5.9 × 10−5, DrugIn = 1 (a),(c) show
clonal configuration at the end of drug administrating interval and at the
end of the treatment. (b),(d) show phylogenetic trees.

number of fractions showing the highest quantity (967 cells) for the 4 intervals regi-
men. As for the clonal diversity,it was rather low for all DrugIn = 1 regimens. For
1-0 schedule, just as for continuous case, the final tumor configuration shows malig-
nancy composed out of 4 clones, with one being the domineering one. All the persistent
clones originated from the cells located in low-drug normoxic niche. 1-0-1 and 1-0-1-0
show quite similar result with 6 clones tumor. Green diamond cell phenotype in 1-0-1-0
also originated from low-drug normoxic region cell remaining in this favorable location
throughout the treatment, hence, actively proliferating, which could be observed in its
long cell life history.
DrugIn = 0.5-family’s performance Figure 4.22 was rather disappointing with 0.5-

0-0.5-0 protocol showing the worst result out all simulations presented in this thesis
leading to very heterogeneous tumor composed of 26 clones. Since increment sizes
value is quite large, acquiring resistance has a strong influence on cells survival. How-
ever the micronvironamental niches still play significant role in the final tumor clonal
configuration. After first drug administration interval there are cell clones originating
from all over the tissue slice. Yet only those located in pharmacological sanctuaries
eventually will be able to outcompete other cell phenotypes.
Both presented protocols resulted in highly heterogeneous tumor with two leading
components. Notable is the fact that unlike previous cases, the initial cells of some
phenotypes are not from the low-drug normoxic region. For instance, pink triangle
phenotype originates from high drug concentration region, but eventually manage to
escape in the hypoxic niche being not completely quiescent it continues proliferation
until taking over the big part of the domain.
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(a) 0.5-0-0.5 (b) 0.5-0-0.5-0

(c) 0.5-0-0.5 (d) 0.5-0-0.5-0

Figure 4.22: Clonal evolution, increment sizes = 5.9 × 10−5, DrugIn = 0.5 (a),(c) show
clonal configuration at the end of drug administrating interval and at the
end of the treatment. (b),(d) show phylogenetic trees.

In conclusion, it was shown that dose intensity greatly affect the tumor clonal evolu-
tion. Both too low and high doses may trigger tumor heterogeneity which will strongly
increase the complexity of the further treatment process. For these cases introducing
more fractions will bring more clonal diversity to the tumor, whereas for mid-range
drug concentrations more fractions does not necessary contribute to the tumor hetero-
geneity. Some thoughts about reasonable drug dosage are presented in the next section.
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4.3 Drug Response Plots

In this section, the analysis of dose-response curves for the model is presented. Drug-
response curves are used in clinical pharmacology to evaluate efficacy and potency of
the used drug and define the therapeutic index of the medication. This information is
valuable when making a decision on the required drug dose for a patient.
There are quite a variety of choices for response measurements used in experiments
investigating drug effects. In this thesis, three types of responses were considered: the
amount of killed cells for the efficacy plot; surviving cells to show the inhibition effect;
and the time needed to kill all cancer cells to estimate the drug concentration sufficient
for complete tumor eradication. The measurements of the mentioned responses are
summarized in Table 4.5.
Toxicity in Table 4.5 shows different drug concentrations that will be plotted against
the response. Dose-response curves follow the sigmoidal shape, thus the data obtained
through the simulations were fitted using a 4 parameter logistic nonlinear regression

model [14]: y = Bottom + (Top − Bottom)/(1 +
�

x
Conc50

�−HillCoeff
), where Top and

Bottom are maximum and minimum response respectively, Hill coefficient determines
the slope of the curve and Conc50 an inflection point, where the sigmoid curve changes
it concavity, shows the drug concentration that induce a half-maximum response. These
curves show that at zero or small drug concentrations there is no response to the med-
ication (Bottom), but at some time point increase in drug concentration will trigger the
increase in response until a maximum response is reached (Top), which means that in-
creasing drug dose at this point won’t benefit the patient but rather give unwanted
drug side effects.
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D

rug
R

esponse
Plots

increment size 0
Toxicity 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
Killed Cells till
iter 1400

0 0 0 0 0 0 0 33 121 166 178 177 167 164 150 148 141

Survived
Cells, iter 8000

915 915 650 9 0 0 0 0 0 0 0 0 0 0 0 0 0

Iterations 8000 8000 8000 8000 6607 4004 3279 2666 2459 2208 1936 1876 1789 1683 1605 1553 1458

increment size 3.5× 10−5

Toxicity 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
Killed Cells till
iter 1300

0 0 0 0 0 0 0 0 18 91 149 155 158 159 153 147 145

Survived
Cells, iter
25000

930 930 930 936 8 0 0 0 0 0 0 0 0 0 0 0 0

Iterations 25000 25000 25000 25000 25000 7065 3895 3090 2793 2475 2133 2090 2044 1781 1762 1660 1387

increment size 4.5× 10−5

Toxicity 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
Killed Cells till
iter 1600

0 0 0 0 0 0 0 45 174 212 208 199 178 167 165 159 155

Survived
Cells, iter
25000

930 930 930 930 935 0 0 0 0 0 0 0 0 0 0 0 0

Iterations 25000 25000 25000 25000 25000 8014 4377 3196 3054 2388 2386 2185 2092 1732 1598 1615 1657

increment size 5.9× 10−5

Toxicity 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
Killed Cells till
iter 1600

0 0 0 0 0 0 0 11 147 206 219 201 188 173 165 162 160

Survived
Cells, iter
25000

930 930 930 930 942 2 0 0 0 0 0 0 0 0 0 0 0

Iterations 25000 25000 25000 25000 25000 25000 5304 3225 2839 2573 2295 2274 1854 1811 1815 1680 1609

Table 4.5: Drug concentrations and response measurements for different resistance types (no-resistance, acquired resistance). The amounts of killed
and survived cells are computed for fixed treatment time and Iterations show the time needed to eradicate tumor.
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Firstly, consider the half-maximal effective concentration EC50 of the drug. As the
goal of anti-cancer therapy is to kill tumor, the number of killed cells in fixed time in-
terval was considered as a desired drug effect. The number of iterations was fixed for
both no-resistance and acquired resistance cases, taking the minimal time needed to
eradicate the tumor completely (see Table 4.5 Iterations), thus it is 1400 iterations for
no-resistance case, 1300 - for the case with increment sizes = 3.5 × 10−5 and 1600 it-
erations for other cases. Dose-response curves with log of agonist-drug concentration
plotted against drug effect are presented in Figure 4.23.
Curves have rather steep slopes with high absolute values of positive Hill coefficients,

(a) EC50 HillSlope=19.96 (b) EC50 HillSlope=22.56

(c) EC50 HillSlope=34.69 (d) EC50 HillSlope=33.42

Figure 4.23: EC50 curves for different resistance types (no-resistance, acquired resistance). In
(a) the no-resistance case is shown, increment sizes = 0. The acquired re-
sistance with increment sizes parameter values 3.5 × 10−5, 4.5 × 10−5 and
5.9× 10−5 are shown in (b), (c) and (d) respectively.
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curves for acquired resistance are steeper though. Steep slopes mean that it will be quite
challenging to determine the right dose to get a particular drug effect without getting
side effects. However, this result was something to be expected, as chemotherapeutic
drugs are known for their narrow therapeutic window.
The drug potency lies around 2 for all the cases. However, drug is slightly more potent

(a) IC50 HillSlope=-13.58 (b) IC50 HillSlope∼ -86.3

(c) IC50 HillSlope∼ -229.8 (d) IC50 HillSlope∼ -123.8

Figure 4.24: IC50 curves for different resistance types (no-resistance, acquired resistance). In
(a) the no-resistance case is shown, increment sizes = 0. The acquired re-
sistance with increment sizes parameter values 3.5 × 10−5, 4.5 × 10−5 and
5.9× 10−5 are shown in (b),(c) and (d) respectively.

in the case of no-resistance and acquired resistance with increment sizes = 4.5× 10−5,
having the lowestEC50 values 1.882 and 1.806 respectively. As for the efficacy, the max-
imum response equals 184 for the case with increment sizes = 5.9×10−5. Thus for this
case the drug was the most efficacious. Quite dispersed response data at the top plateau
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4 Analysis of Results

can explained with the drug concentration itself. Lower drug concentrations need more
time to eradicate tumor, thus there is still plenty of cells at the observed fixed iteration,
while for the higher concentrations the tumor is already almost killed off at the ob-
served time point.

Next, the investigation of half-maximum inhibitory drug concentration is provided.

(a) TC50 HillSlope=-5.3881 (b) TC50 HillSlope=-24.78

(c) TC50HillSlope=-21.36 (d) TC50 HillSlope=-40.92

Figure 4.25: TC50 curves for different resistance types (no-resistance, acquired resistance).
In (a) the no-resistance case is shown, increment sizes = 0. The acquired
resistance with increment sizes parameter values 3.5×10−5, 4.5×10−5 and
5.9× 10−5 are shown in (b),(c) and (d) respectively.

DNA damaging chemotherapeutic drugs like antimetabolites, alkylating and platinum-
based agents, which are considered in this thesis, inhibit the cancer cells growth. Thus,
IC50 plots are often used as a measure of effectiveness for these types of drugs, where
IC50 represents the concentration of an anti-cancer drug needed for 50% inhibition.
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4.3 Drug Response Plots

This time the antagonist-drug concentration is plotted against the inhibition effect,
which means a sigmoid has a descending form with negative Hill coefficient Figure 4.24.
One can see that the acquired resistance cases have very steep slopes, where Hill coef-
ficients were not estimated well, as a result of Jacobian matrix being ill-conditioned at
the solution.
As for the obtained IC50 values, they illustrate how the inhibition capacity of the drug
is reduced as the cancer cells acquire resistance, the higher the increment sizes the
higher is IC50 value. Thus for the no-resistance case with IC50 = 0.534 drug is the
strongest inhibitor that is active even at low drug dose.
Now, the investigation on the time at which cells are eradicated is presented Figure 4.25.
In this case TC50 determines the drug concentration at which it takes half of the time
to eradicate tumor, comparing to the case with no treatment. The drug appears to be
less potent for the case with incremet sizes = 5.9× 10−5 with TC50 = 1.434. For other
cases the drug concentration value at which it take half of the allowed time to eradicate
tumor lies around 1.2. The slope fo no-resistance case is somewhat shallow compared
to those of acquired resistance, it implies that there are possibility to overlap between
desired effects and unwanted side effects of the drug.
In conclusion, as expected, one can see that drug appears to more potent for the no-
resistance case, thus allowing to slightly reduce dosage. However, in more realistic set-
ting with cancer that is capable to acquire resistance, especially for high increment sizes
parameter values, the Hill coefficients have high absolute values, hence, slight changes
in drug concentrations may cause unwanted toxic effects. Dose-response curves showed
the drug concentrations for half-maximum response, which can help to determine min-
imal effective dose of the drug. However, to define a pharmaceutical window of ob-
served medication one has to investigate TD50 (toxic dose), considering the negative
effects drug causes to patient.
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This thesis investigated the impact that the introduction of different drug administra-
tion schedules has on the spatial and temporal cancer population dynamics, its clonal
diversity and emergence of anti-cancer drug resistance. The analysis was done utiliz-
ing a hybrid discrete-continuous mathematical model developed by Gevertz et al. in
[9]. To replicate the idea of clinical chemotherapy, drug delivery was modeled by a
piecewise constant function that alternates drug administration periods with resting
intervals. Tumor behavior under treatment with different chemotherapy regimens for
both no-resistance and acquired resistance cases is examined in the thesis.
Several interesting outcomes were obtained through careful analysis of model’s nu-
merical simulations: 1). acceptance of no-drug intervals into the treatment schedule,
as expected, proved to be beneficial for the patient’s condition, through reducing the
overall toxicity, however, it also increases time needed for successful tumor eradica-
tion; 2). low dose intensity protocols show inferior performance compared to those
with high dosages and lead to the tumor heterogeneity; 3). for strongly resistant tu-
mors (increment sizes high enough) the effect of particular schedule on the treatment
outcome is reduced; 4). dose intensity turned out to have more influence on the therapy
result than the number of fractions, which has more impact on the tumor clonal diver-
sity; 5). dose intensity of the first active drug administration interval treatment greatly
influences further cancer population behavior; 6). drug concentrations producing half-
maximum response correlate with the dose intensities of the optimal protocols.
In clinical practice incorporation of resting intervals in treatment plan is essential as cy-
totoxicity of DNA damaging chemotherapeutic agents leads to the severe side effects.
However, tumor cells repopulation during no-drug periods postpones the cancer cure
[20]. All simulations of low drug dose intensity protocols resulted in failed treatment
with high clonal diversity of persistent cancer cell population. Negative impact to the
treatment outcome of low-dose therapy was observed also in clinical practice [26, 38].
The comparison of acquired resistance cases with different increment sizes revealed
decreased influence of the particular protocol on the treatment outcome, resulting in
tumor expansion over the whole domain. However, the heterogeneity of these remain-
ing cancer populations differs, increasing with intervals number in used regimen. For
both resistance types (no-resistance, acquired) the first interval has decided the further
disease development, guiding it in a particular direction to vanishing or progression.
It was mentioned before that the obtained results revealed inevitable negative outcome
when using low-dose therapy. However, presently more and more medicians choose
to lower drug dosage achieving positive treatment results [19]. The reason why the
simulations results presented in this thesis haven’t benefited cancer defeat is the very
objective of metronomic therapy. It observes cancer as chronic disease and is aimed to
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5 Discussion

maintain it in stable size throughout the patient’s lifetime. Metronomic chemotherapy
is accompanied by the imunotherapy and inhibition of angiogenesis. Thus, if one was
to simulate this treatment approach by means of the model presented in this thesis it
would be reasonable to at least change the vasculature geometry to incorporate an extra
oxygen deprivation.
Future perspective of research might include simulations of the clinical routine drug
administration protocols for particular DNA damaging drugs. The initial cell clones
configuration might be adjusted based on patient’s histology samples. Incorporation of
the normal cells into the model might help to determine the therapeutic window of the
modeled drug and further optimize its dosage.
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