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Abstract

During differentiation, a stem cell and its progeny cascade through a number of lineage
decisions from a multipotent state over progenitor states to mature functional cells. Within
the current paradigm of cell fate choice, many decisions are assumed to be binary and
realized by a genetic toggle switch, a simple cellular memory device consisting of two genes
that inhibit each others expression. In each differentiating cell, one gene will eventually
win this biomolecular battle, inhibiting the other gene and subsequently activating its
lineage-determining downstream targets. In hematopoiesis, the generation of blood cells,
a series of gene switches has been found along the differentiation path of hematopoietic
stem cells, potentially directing the ratio of mature blood cells. The most prominent
example in this context is the mutual inhibition of Gata1 and PU.1, two transcription
factors responsible for the development of erythroid and myeloid blood cells from common
myeloid progenitors.

While being an intriguing and simple mechanism of cell fate choice, no definite ex-
perimental proof of the toggle switch paradigm exists: It is still unclear whether a toggle
switch actively determines the cell fate choice through its dynamics or merely locks down
a previously chosen fate. With the advent of new single cell technology, which allows
to monitor cell fate decisions in single cells continuously over time, these questions are
now being addressed. However, when observing populations of dividing cells on a single
cell level, one is confronted with two challenges: cellular heterogeneity due to stochastic
fluctuations and inherent genealogical structure of the data due to cell division. In this
thesis, these two challenges will be addressed using stochastic, single cell models of stem
cell differentiation.

We start with a theoretical investigation of the toggle switch motif as a cell-intrinsic
mechanism of cell fate choice in the presence of stochastic fluctuations. Specifically, we
show how the dynamics of the system are altered compared to previous studies when
accounting for small mRNA numbers in the gene expression process. We find that the
switching process can be regarded as a point process with a fixed rate and provide an-
alytical expressions for the switching rates of the system. Using Approximate Bayesian
Computation we show that a stochastic toggle switch model is capable of explaining the
differentiation dynamics in the granulocyte/monocyte cell fate decision.

Next, we present a method based on generalized linear models to infer potential cell-
extrinsic features (e.g. local cell density) causing differentiation events observed in cellular
genealogies. We analyze the required sample sizes and the influence of cell tracking error
on the results. Furthermore, we utilize the genealogical information to validate our model,
i.e. to test whether the model is able to explain the correlation structure observed in sister
cells.

Finally, we combine the ideas of cell-intrinsic and cell-extrinsic processes impacting
on cell fate choice into a single model to explain correlated cell fate marker onsets in
genealogies. Motivated by our findings in the stochastic toggle switch, we assume that
differentiation is a point process potentially modulated by external factors while the onset
of the cell fate marker in response to differentiation is delayed due to an intrinsic stochastic
gene expression process. We develop an inference method tailored to this model which
allows us to predict the timepoint of differentiation from the observed correlations of
marker onsets in the genealogies. After testing the method on various synthetic datasets,
it is applied to the myeloid/erythroid fate choice in order to investigate the role of the
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PU.1/Gata1 toggle switch. Utilizing available timecourse information on PU.1 expression
levels, we find that PU.1 dynamics at the predicted timepoints of differentiation deviate
significantly from the standard PU.1/Gata1 toggle switch model.

Summarizing, in this thesis we develop methods and models to analyze differentiation
in cellular genealogies and give insight into cell fate choice in hematopoiesis.
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Zusammenfassung

Während der Differenzierung durchlaufen eine Zelle und ihre Nachkommen eine Hierarchie
aus Zellzuständen. An der Spitze dieser Hierarchie steht das Stammzellstadium, gefolgt
von diversen Vorläufterzelltypen auf den darauf folgenden Ebenen bis hin zu final ausdif-
ferenzierten, funktionellen Zelltypen am unteren Ende der Hierarchie. Mit jedem Schritt
muss die Zelle sich für einen der typischerweise zwei möglichen nachfolgenden Zelltypen
entscheiden. Derzeit nimmt man an, dass diese binären Differenzierungsentscheidungen
auf molekularer Ebene durch sogenannte genetische Schalter realisiert sind. Unter einem
genetischen Schalter versteht man ein Paar von Transkriptionsfaktoren, die gegenseitig
ihre Expression inhibieren. Weiterhin nimmt man an, dass in der sich entscheidenden Zelle
einer der beiden Transkriptionsfaktoren dieses molekulare Kräftemessen für sich entschei-
det, damit die für seinen Zelltyp charakteristischen Gene aktiviert und so die Zelle in einen
der beiden möglichen Zustände treibt.

Das meist untersuchte Beispiel für solch einen genetischen Schalter stammt aus der Hä-
matopoese: Hier glaubt man, dass ein genetischer Schalter aus den beiden Transkriptions-
faktoren PU.1 und Gata1 die Entscheidung zwischen der myeloiden und der erythroiden
Linie der Blutzellen bestimmt. Diese Vermutung konnte bislang allerdings nicht experi-
mentell bestätigt werden: Es ist unbekannt ob die Dynamik dieser beiden Faktoren aktiv
die Entscheidung beeinflusst, oder ob der genetische Schalter aus PU.1 und Gata1 lediglich
als Konsequenz einer Entscheidung, die an anderer Stelle getroffen wurde, umgelegt wird.

Durch die Entwicklung neuer Technologien, im Besonderen der “time-lapse” Mikrosko-
pie, ist es möglich Zellentscheidungen auf Einzelzellebene kontinuierlich über die Zeit zu
beobachten und somit dieses Fragen zu addressieren. Aus diesen Einzelzelldaten ergeben
sich jedoch neben zahlreichen technischen auch neue theoretische Herausforderungen: Zum
einen wird auf Einzelzellebene die Heterogenität der individuellen Zellen sichtbar, die sich
z.B. aus den inhärent stochastischen Genexpressionsprozessen innerhalb der Zellen ergibt.
Zum anderen erhält man aufgrund der Zellteilungen Daten, denen eine Baumstruktur
zugrunde liegt, sogenannte zelluläre Genealogien. Im Verlauf dieser Arbeit werden wir
diese beiden Aspekte untersuchen.

Wir beginnen mit einer theoretischen Analyse der stochastischen Dynamik eines gene-
tischen Schalters. Im Unterschied zu vorherigen Arbeiten untersuchen wir den Einfluss von
kleinen mRNA Zahlen und finden, dass die Dynamik des Systems sich dadurch grundle-
gend verändert. Weiterhin untersuchen wir Zustandsübergänge im System und kommen
zu dem Ergebnis, dass das Schalten des Systems zwischen zwei Zuständen durch einen
Punktprozess angenähert werden kann, dessen Rate wir also Funktion der Systempara-
meter herleiten. Unter Anwendung von Approximate Bayesian Computation wird gezeigt,
dass die beobachtete Dynamik der Differenzierungsentscheidung zwischen Granulocyten
und Monocyten durch ein stochastisches Modell eines genetischen Schalters erklärt werden
kann.

Im Anschluss entwickeln wir eine Methode basierend auf generalisierten linearen Mo-
dellen, um externe Einflussgrößen, wie z.B. lokale Zelldichte, auf Zelldifferenzierung zu
identifizieren. Die erforderliche Stichprobengröße sowie der zulässige Fehler im Tracking
der Zellen wird analysiert. Weiterhin zeigen wir, wie die Baumstruktur der Daten benutzt
werden kann um das gelernte Modell zu validieren.
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Im letzten Teil dieser Arbeit werden die zuvor entwickelten zell-intrinsischen und zell-
extrinsischen Differenzierungsmodelle zu einem einzigen Modell kombiniert. Hier nehmen
wir an, dass die Zelldifferenzierung durch einen Punktprozess dargestellt werden kann, je-
doch die Beobachtung dieser Differenzierung verzögert erfolgt, wodurch sich Korrelations-
strukturen in den zellulären Genealogien ergeben. Wir entwickeln eine Inferenzmethode,
welche die Parameter des Modells anhand der beobachteten Genealogien schätzt, und be-
nutzen dieses Modell um Differenzierungszeitpunkte in Genealogien vorherzusagen. Ange-
wandt auf zelluläre Genealogien der Hämatopoese finden wir signifikante Unterschiede
in der Dynamik von PU.1 an den vom Modell vorhergesagten Zeitpunkt der Differen-
zierung im Vergleich zu den Erwartungen unter Annahme eines genetischen Schalters.
Somit können wir eine aktive Rolle von PU.1 in der Differenzierungsentscheidung zwischen
myeloiden und erytroiden Zelltypen ausschließen.
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Chapter 1

Introduction

Mathematical models are an integral part of science. It represents an abstraction and
approximation of a real world phenomenon and allows formal treatment thereof. The
model helps to explain and understand observations but can also be used to predict yet
unknown situations.

Mathematical models are particularly prominent in physics. Newton’s equations of
classical mechanics not only explain equally well the deterministic motion of baseballs,
planets and galaxies, but also allow to make predictions: For example, discrepancies be-
tween predicted and observed trajectories of Uranus led to the discovery of Neptune.
While it was long thought that Newton’s equations are universal, at the beginning of the
20th century two limitations were discovered. Newton’s equations must be augmented by
the laws of relativity when velocities approach the speed of light, and fail entirely when
looking at atomic levels, where the character of physics changes fundamentally due to the
quantum nature of matter: While in classical mechanics the world is deterministic and
perfectly predictable, on small scales, the world is inherently probabilistic. Predictions of
experimental outcomes can only be phrased in terms of probability distributions. On this
scale, classical mechanics is then replaced by the theory of quantum mechanics, which does
account for the inherent randomness on atomic and subatomic scales. However, it emerges
from quantum mechanics as the probabilistic behavior of individual atoms is averaged out
when considering large numbers of atoms. While quantum mechanical models, such as the
standard model of particle physics are highly abstract, their predictions are nonetheless
powerful (e.g. the prediction of the Higgs boson) and the insight these models gave is now
used to exploit the quantum nature of matter in every day life, e.g. in lasers or transistors.

Mathematical models are not constrained to describing inanimate matter only, but are
equally powerful when used to investigate living systems. In a seminal study, Luria and
Delbrück (1943) investigated the resistance of bacteria to virus infections and from their
mathematical model and experimental data could conclude that resistance in a bacterial
population arises due to random mutations instead of acquired immunity when exposed to
the virus. The prevalence of mathematical models in biology has increased tremendously
with the advent of Systems Biology during the last decade with the goal to gain quantita-
tive insight biological systems. Here, an interesting parallel to physics is found: Classical
mathematical models in biology, e.g. the Lotka-Voltera model of predator and prey pop-
ulations (Lotka, 1925), are deterministic as they describe large numbers of entities, e.g.
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cells or molecules. However it has been realized recently, that when looking at biological
systems on smaller scales, e.g. on single cells rather the populations, stochastic fluctua-
tions become significant and one has to treat these systems probabilistically. In analogy
to classical mechanics, the “classical” deterministic system is recovered when looking at
large numbers of entities. However, the source of randomness is not due to the quantum
nature of matter itself, but is rather a manifestation of the large number of degrees of
freedom (in the same way the movement of a heavy particle in a gas seems random, but
is the result of deterministic collisions) as well as the complex interactions within a cell.

While decades of research in physics have taught us how to cope and even exploit the
probabilistic nature of matter, e.g. resulting in the dawn of quantum computing, in biology
we have only started to understand the implications of stochasticity and resulting cellular
heterogeneity on organisms, e.g. in the context of development and cell differentiation.

1.1 Stem cell biology

Stem cells form the backbone of development, tissue homeostasis and regeneration in
higher organisms ranging from primitive flatworms (Wagner et al., 2011) and Hydra
(Boehm et al., 2012) to mice (Becker et al., 1963) and humans (Thomson et al., 1998).
A whole organism develops from a single stem cell, the zygote, giving rise to over 200
different cell types in the human body (Shevde, 2012). Homeostasis in the blood system
is maintained by hematopoietic stem cells which are able to sustain the rapid turnover
of 1012 mature blood cells per day in an adult human (Kaushansky et al., 2010). Stem
cells in Axolotls, a Mexican salamander species, are capable of regenerating entire limbs
or parts of the spinal cord after injury (Roy and Lévesque, 2006; Sandoval-Guzmán et al.,
2014). These amazing capabilities emerge from the two defining properties of stem cells:
1) Self-renewal, which is the ability to maintain their stem cell identity across infinitely
many cell division, and 2) pluripotency, the ability to give rise to multiple differentiated
cell types.

One distinguishes between embryonic stem cells and adult, somatic stem cells. Em-
bryonic stem cells are derived from the inner cell mass of a developing embryo and are
capable of differentiating into all three germ layers, endoderm, mesoderm and ectoderm
(Evans and Kaufman, 1981; Martin, 1981). Their pluripotency and the possibility to keep
them in culture indefinitely have made them an indispensable model system for stem cell
and developmental biology. However, the use of embryonic stem cells is controversial be-
cause they are derived by sacrificing a living embryo. During normal development, the
once pluripotent cells of the inner cell mass start to loose this property quickly there-
after. With gastrulation, each cell has assumed one of three germlayer identities and their
progeny will be restricted to this germlayer. With further development most cells in the
organism will at some point differentiate terminally into a mature cell type. Only a few
cells retain their stem cell property in the adult organism. These cells are called adult
or somatic stem cells and are responsible for tissue repair and homeostasis in the adult
organism. Opposed to embryonic stem cells, their potential is limited, i.e. they can give
rise only to certain cell types, a property called multipotency. A specific type of adult
stem cell has been identified for many tissue types, e.g. the brain (Temple, 1989), the
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blood system (Becker et al., 1963), skin (Alonso and Fuchs, 2003), and the small intestine
(Barker et al., 2007).

Whereas embryonic and somatic stem cells have been known since the 1960s, recently, a
third class of stem cells emerged: In 2006, Takahashi and Yamanaka discovered that mouse
fibroblasts can be reprogrammed by ectopic expression of four genes (Oct3/4, Sox2, c-Myc,
and Klf4) to an embryonic stem cell like state, which they termed induced pluripotent
stem (iPS) cells. Similar results were obtained in humans (Takahashi et al., 2007) and
recently the efficiency of reprogramming could be increased tremendously (Rais et al.,
2013), making them an attractive alternative to embryonic stem cells. While iPS cells are
less controversial than embryonic stem cells, their increased potential to form tumors due
to the forced expression of oncogenes (e.g. Klf4) and recent evidence of transcriptional
abnormalities (Ma et al., 2014) have precluded iPS cells from fully replacing embryonic
stem cells as a stem cell source.

All three stem cell types hold great promise for regenerative medicine due to their
self-renewal and lineage potential properties (Daley, 2012a; Shevde, 2012), especially for
diseases where no conventional drug treatment is available (Daley, 2012b). Bone marrow
transplantation, first performed by Thomas et al. in 1957 is oldest and currently most
successful form of stem cell therapy and can be used to treat e.g. leukemia or anemia. Most
recently, new stem cell therapies were tested in experimental studies: Human embryonic
stem cells were used to treat patients with retinal blindness (Schwartz et al., 2012) and
embryonic stem cells were suggested as a cell source to replace degenerate neurons in
the striatum of patients with Huntington’s disease (Nicoleau et al., 2011), for which no
effective drug treatment exists. Stem cells are also readily used in tissue engineering,
e.g. to form tracheae (Macchiarini et al., 2008), or to create kidney structures (Taguchi
et al., 2014), which eventually could provide a source for organ transplantation without the
complications of transplant rejection or graft-versus-host-disease. In another application,
patient derived stem cells are used as a realistic disease model that can be used for a more
efficient drug screening than the classical target-centric drug discovery (for a review, see
Grskovic et al., 2011).

Even though tremendous advancement and breakthroughs in stem cell biology have
been achieved in the last decades, our understanding of the mechanisms underlying self-
renewal, pluripotency, cell fate choice, differentiation and regeneration remains surprisingly
small and many questions remain unanswered: Why is the forced expression of only four
out of 20000 genes (the “Yamanaka genes”) enough to dedifferentiate fibroblasts into
pluripotent cells? How does a stem cell decide what cell type it will differentiate into?
Why do success rates for HSC transplantations remain low (50% survival after 5 years,
see Jenq and van den Brink, 2010; Passweg et al., 2012) that these are only administered
to the sickest patients, who lack other alternatives, even though hematopoiesis is the most
well studied stem cell system and HSC transplantations have been performed for more
than 50 years?

Here, a deeper understanding of the underlying mechanisms of cell fate choice is needed
(Roeder and Radtke, 2009). This will not only help to reduce the risk of clinical applica-
tions of stem cells (e.g. the formation of stem cell derived tumors, Amariglio et al., 2009),
but also increase our understanding about the origins of disease (Huang, 2013).
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Figure 1.1: Population averages can obscure heterogeneous cellular response. A)
A population of cells homogeneously expresses a protein of interest (mean and distribution
are shown). B) Upon stimulus, a small fraction of cells responses by strongly upregulating
the protein, while the other cells remain unchanged in their protein expression. The
population average (black line) changes only slightly. The pre-stimulus distribution is
indicated as dashed line.

1.2 Single cell experiments and cellular heterogeneity

A first step towards gaining more insight into the various phenomena of stem cell biology
is to focus on the analysis of single cells instead of population measurements.

Classical tools of molecular biology need to be fueled by huge amounts of cellular
material: To detect a specific proteins in a cell by western blotting, cells are lysed, and
the lysate is separated via gel-electrophoresis. To detect proteins of interest, the proteins
have to be transferred from the gel onto a membrane where they can then be detected
by antibodies. Due to its limited sensitivity1, typically 105 cells are required to perform
western blotting (Ciaccio et al., 2010). DNA-microarrays are used to quantify the mRNAs
contained in the cell by reverse transcribing mRNA into cDNA and amplifying the cDNA
via PCR. Finally, amplified material is put on oligonucleotide-chips where it hybridizes
with complementary oligonucleotides and is detected via fluorescence probes. To keep
the amplification step at a minimum and to reduce the amplification bias, one must start
with genetic material from several thousands of cells. As a consequence, only averages of
cell populations can be measured with these methods. Also, due to the large amounts of
material required, the analysis of rare cell types, such as adult stem cells, is challenging if
not impossible with those methods (Chattopadhyay et al., 2014).

Within the old but flawed paradigm of “genetic determinism” (Strohman, 1997), where
genotype maps linearly to phenotype (e.g. protein expression), the measurement of an av-
erage quantity seemed reasonable (in a clonal population): The average of the population
would be a good representative of the individual cells and not much variation is expected.
However, with new technology came new insight, showing that often the population aver-
age is not a good description of individual cells.

1Much of the material is already lost on the way to the final blot due to the various preprocessing steps.
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Let us consider a simple example where a population averaged measurement yields
misleading conclusion about the underlying phenomenon: A cell population is homoge-
neously expressing a certain marker protein (Fig. 1.1A) and is subjected to an external
stimulus. As a response to the stimulus, a small fraction of cells upregulates the protein
whereas the remaining cells does not respond and their protein levels remain unchanged
(Fig. 1.1B). When analyzed e.g. with western blotting, which reports the mean protein
expression in the population (black solid line in Fig. 1.1A,B), we observe a slight shift in
the mean protein expression level after the stimulus. From that, one might falsely con-
clude that the entire cell population responded by a small upregulation of the marker, as
the population mean obscures the underlying heterogeneous response.

This simple example illustrates the need for experimental techniques that allow to look
beyond the mean behavior of a population and analyze single cells individually. However,
note that also bulk experiments, when carefully designed and interpreted, harbor certain
benefits: They are cheaper and easier to perform, more established and hence widely
accepted. Intermediate approaches can also be beneficial: Instead of taking single cells,
Bajikar et al. (2014) performed transcriptional profiling on aggregates of up to ten cells,
reducing technical variability while single cell information was reconstructed by deconvo-
lution.

1.2.1 Single cell technology

Over the last decade, several single-cell techniques for molecular biology have been devel-
oped. The workhorse of modern single cell biology is arguably flow cytometry (fluores-
cence-activated cell sorting, FACS), which allows to quantify up to 18 different fluorescence
characteristics of single cells at the same time. Either by staining proteins of interest with
antibodies or utilizing fluorescent reporters and fusion proteins, which are excited by sev-
eral lasers inside the machine, FACS quantifies their fluorescence intensity and hence their
abundance in millions of individual cells. Thus, one can assess the full protein distribu-
tions across a cell population instead of only looking at their mean value (see Fig. 1.2).
Furthermore, FACS is routinely used as a purification step to sort cells according to their
surface marker expression profile in order to get more homogeneous cell populations. Flow
cytometry is not limited to measuring only fluorescence characteristics of single cells, but
can also be used to acquire digital images of cells passing through the instrument (imaging
cytometer, Basiji et al., 2007). This can for example be used to quantify the morphology
of the cells (Carpenter et al., 2006) and to predict cell cycle phase (Blasi et al., submitted).

Single-cell quantitative polymerase chain reaction (qPCR) was already performed in
the 1990s (Lambolez et al., 1992), but only the integration with microfluidics (Liu et al.,
2003) provided the degree of automation, which is required to study the expression of
many genes in several hundreds of single cells, e.g. analyzing expression changes in early
embryo development (Guo et al., 2010), or characterizing regulatory networks in blood
cells (Moignard et al., 2013). mRNA of selected genes are reverse transcribed into cDNA,
which is then amplified in PCR cycles. The number of cycles required to yield a detectable
amount of cDNA then informs about the abundance of the original mRNA template
(larger cycle times mean less mRNA). Whereas single-cell qPCR yields relative transcript
abundance (in terms of cycles), a modification termed digital RT-PCR produces absolute
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Figure 1.2: Beyond the population average. Instead of measuring only the population
average protein expression over time (black line), single cell technology allows to observe
the evolution of the entire protein distribution, e.g. via FACS snapshots, (gray areas) and
the continuous observation of single-cell protein timecourses via time-lapse microscopy
(colored lines).

numbers of transcripts in single cells (Warren et al., 2006). Single-cell qPCR can currently
quantify the expression of 96 genes in parallel, but to quantify the whole transcriptome of
a single cell, different methods must be used.

DNA-Sequencing technology has improved greatly in terms of throughput and preci-
sion, but also reduced the amount of DNA-material needed for the analysis, enabling ap-
plication to single cells. Using reverse-transcriptase to create cDNA from mRNA, one can
cast the problem of quantifying the transcriptome of a single cell into a DNA-sequencing
problem, which can efficiently be solved with next-generation sequencing technology. Var-
ious protocols for single cell RNA-sequencing are available (Tang et al., 2009; Islam et al.,
2011; Ramsköld et al., 2012; Sasagawa et al., 2013; Hashimshony et al., 2012), differing in
their ways of amplification, multiplexing and sequencing (for a review of current protocols,
see Shapiro et al., 2013). Again, these methods provide no absolute numbers of transcripts
in the cell per se, but only read counts which have to be mapped to absolute numbers.
Furthermore, technical noise is large (Brennecke et al., 2013) and only highly expressed
mRNA can reliably quantified. However, recently Islam et al. (2014) tagged each indi-
vidual mRNA molecule in a single cell with a different barcode before sequencing, which
allows to measure directly absolute numbers of mRNAs across the whole transcriptome
and reduces technical noise substantially allowing also reliable quantification of lowly ex-
pressed genes (on the order of ten mRNAs) in single cells.
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Figure 1.3: Heterogeneity revealed by time-lapse microscopy. A bimodal protein
distribution can be generated by two separated, stable subpopulations (A) or the rapid
transitions between the two modes of expression. Single-cell timecourses are shown in red
and orange. C) An experiment starting with four cells with low expression and stopping
with four cells with high expression can be interpreted in several ways, which can be
distinguished by time-lapse microscopy.

Time-lapse microscopy

All the above methods provide only a static snapshot of the system under investigation,
i.e. a measurement of the gene expression profile at a single timepoint2. Although being
much more informative than population averages, these methods cannot elucidate how the
individual cells within a population evolve over time. However this dynamic information
is crucial to ultimately understand the nature of cell population heterogeneity: A bimodal
distribution in a protein could result from two distinct and separated subpopulations of
cells or from rapid transitions between the two peaks (Fig. 1.3A,B). Additionally, one
has to consider the fact that cells can divide or die in the course of the experiment. For
example, an experiment that starts with 4 cells from one peak of the protein distribution
and stops with 4 cells in the the other peak of the distribution at some later timepoint
can be interpreted in several ways (Fig. 1.3C): i) Either all 4 cells switched from one peak
to the other, or ii) one cell switched, divided twice while the other three cells died, or iii)
two cells switched, divided once while the other two died, etc... This ambiguity makes
interpretation of snapshot data difficult (Schroeder, 2008).

Time-lapse microscopy is a powerful tool to dissect the ambiguities arising form snap-
shot data (Coutu and Schroeder, 2013; Schroeder, 2011). Here, cells are first purified by

2To some extent, FACS can be iteratively applied to the same set of cells, yielding snapshots of the same
cells at different times. However, cell identity is lost from one iteration to the next.
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FACS, put under an optical microscope and continuously imaged for the desired period
of time ranging from a few hours to several days. Brightfield images provide information
about the position and morphology of the cells while fluorescence images can be used
to quantify surface marker expression (via in-culture-antibodies) or intracellular protein
expression (via reporter constructs or fusion proteins). Additionally, the spatial arrange-
ment of cells can be read out directly from the images, which is of interest when studying
e.g. cell-cell communication and cell-niche interaction (Wang and Wagers, 2011; Rompolas
et al., 2013).

In order to follow individual cells over time, single cell tracking has to be applied to the
microscopy data, i.e. each cell in the current image must be identified in the consecutive
image for all images of the experiment. Depending on the cell system analyzed, either
automatic tracking algorithms can be applied (for a comparison of current cell tracking
algorithms, see Maska et al., 2014) or cells have to be tracked manually (Rieger et al.,
2009; Schwarzfischer et al., submitted). Upon cell division, both daughter cells have to
be tracked, leading to entire genealogies of cells. Hence, time-lapse microscopy not only
allows to observe the time evolution of e.g. proteins in single cells, but it also reveals
how similar the offspring of the same common ancestor cell behaves. When combined
with quantification of fluorescence-tagged proteins (Schwarzfischer et al., 2011; Schwarz-
fischer et al., submitted), single-cell trajectories of protein expression can be obtained (see
Fig. 1.2).

Although powerful, time-lapse microscopy faces certain challenges. Imaging cells and
keeping them alive over long periods of time requires optimal experimental setup, often
at the expense of lower image quality (Schroeder, 2011). Tracking cells in experiments
where cell density grows fast (e.g. mouse embryonic stem cells) or cells move quickly (e.g.
hematopoietic stem cells) renders automatic tracking impossible and manual tracking be-
comes a major bottleneck in data analysis. The biggest challenge of time lapse microscopy
is, similar to FACS, its limitation to just a few factors that can simultaneously be quan-
tified. Even though the number of different fluorescence dyes is increasing, for each and
every protein of interest a new genetic modification has to be introduced into the cells, be
it a reporter construct or a fusion protein. While it is feasible to construct multicolored
bacterial strains or yeast, and to some extend mammalian cell lines, creating a two color
mouse strain is a long and costly endeavor. Hence, in the future time-lapse microscopy
has to be combined with other single cell technologies to unravel the full complexity of
cellular heterogeneities.

1.2.2 Examples of cellular heterogeneity

All of the mentioned single cell methods provide measurements of certain quantities
(mRNA or protein expression) not as a population mean, but show how it is distributed
across the entire population. Each of these methods showed that a long standing (Novick
and Weiner, 1957; Spudich and Koshland, 1976) but also long neglected idea is indeed
true: A supposedly homogeneous cellular population, e.g. a single cell type, is in fact
often heterogeneous. Heterogeneity of a quantity simply means that its average is not a
good description of the entire distribution.
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For example, using flow cytometry Chambers et al. (2007) established that the pluripo-
tency factor Nanog is heterogeneously expressed in mouse embryonic stem cells, that
Nanog-low cells are more prone to differentiation than Nanog-high cells, and that the
whole Nanog distribution can be reconstituted from subsets of cells. Using single-cell
qPCR, Guo et al. (2010) showed heterogeneity at early stages of embryo development and
Dalerba et al. (2011) analyzed heterogeneous expression profiles of colon cancer cells. Using
RNA-sequencing, it was demonstrated that after triggering immune cells with lipopolysac-
charide, they responded heterogeneously not only in their gene expression profile but even
in which splicing variants were used (Shalek et al., 2013).

Single-cell time-lapse microscopy was used to e.g. delineate the instruction of cell fate
via cytokines (Rieger et al., 2009), the origin of mammalian blood (Eilken et al., 2009), or
the influence of spatial organization on stem cell fate in the hair follicle (Rompolas et al.,
2013). By combining single cell tracking with fluorescence quantification (Schwarzfischer
et al., submitted) and cell segmentation (Buggenthin et al., 2013), one can shed light on
the transcription factor dynamics during cell differentiation (Hoppe et al., in revision).

1.2.3 Origins of heterogeneity

Single cell technology has revealed unprecedented heterogeneity in many different cell
systems ranging from bacteria to mammals. Where does this heterogeneity come from?

Heterogeneity could stem from genetic differences, e.g. somatic mutations (Fig. 1.4A).
In fact, in the past very often any heterogeneity has been attributed to genetic differences
as postulated by genetic determinism (for a critical review and argument against this idea,
see Strohman, 1994). While indeed relevant e.g. in cancer biology, where cancer cells can
acquire different traits due to somatic mutations (Diaz Jr et al., 2012), somatic mutations
are extremely rare in normal cell populations and cells are considered to be clonal. The
fact that all different cell types (with vastly different phenotype) within an organism share
identical genetic material already point out that other non-genetic mechanism must be at
work (Strohman, 1997). Even in cancer cells, it was shown that some acquired resistance
is not due to somatic mutations but caused by non-genetic heterogeneity (Pisco et al.,
2013).

Non-genetic heterogeneity could arise from non-observed, confounding factors (Snijder
and Pelkmans, 2011). An apparently heterogeneous distribution in protein expression
could originate from a difference in cell cycle progression (Buettner et al., 2014) or cell
growth (Blasi et al., in revision). Assuming that cells double their amount of the protein
during cell cycle, and if the population of interest is not synchronized with respect to cell
cycle, a protein distribution will look heterogeneous, even though originating mostly from
the difference in cell cycle progression (Fig. 1.4B). In several studies it was shown that
the apparent phenotypic heterogeneity can be reduced considerably when including other
predetermined factors: Snijder et al. (2009) show that the heterogeneity of virus infection
in E. coli, i.e. whether cells get infected or not, is largely determined by local cell density
and the cell’s position in the colony (termed population context). The upregulation of
the arabinose utilization system in response to an arabinose stimulus is heterogeneous due
to preexisting differences in the number of arabinose transporters (Megerle et al., 2008;
Fritz et al., 2014). Similarly, Spencer et al. (2009) showed that the response of a cell
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Figure 1.4: Origins of cellular heterogeneity. A) Genetic differences cause heterogene-
ity in protein expression. A somatic mutation in the promoter causes increased expression
in a fraction of cells. B) Non-genetic heterogeneity can arise from unaccounted confound-
ing factors that are different within the population. For example, cell growth causes
large differences in protein levels. C) Non-genetic heterogeneity results from intrinsically
stochastic gene expression, which can be observed from single-cell protein timecourses.

to TRAIL induced apoptosis is heterogeneous but can to a large extent be explained by
preexisting differences in protein expression. Whereas phenotypic heterogeneity due to
different population context (i.e. external signals) is sensible, phenotypic heterogeneity
due to heterogeneous protein expression (as found e.g. by Spencer et al., 2009) raises the
question where that internal variability originates from. Furthermore, confounding factors
often explain much but not all of the variability observed.

Ultimately, cellular heterogeneity can be traced back to the process of gene expression
itself (Fig. 1.4C). Gene expression is an intrinsically stochastic process (for a review, see
Kaern et al., 2005). Transcription of a gene is initiated by factors that bind at or upstream
of the gene’s promoter, e.g. core transcription factors and activators. These factors then
facilitate the binding of the RNA-polymerase, which in turn synthesizes mRNA from the
DNA template. These binding events result from random collisions of these molecules,
and thus considered to be inherently stochastic. For the same reasons, the complex pro-
cesses of translation, mRNA and protein decay are stochastic. Due to the potentially low
number of molecules involved (e.g. two DNA molecules containing the gene) these stochas-
tic fluctuations, which often referred to as “gene expression noise”, have to be accounted
for (McAdams and Arkin, 1999). The importance of stochastic fluctuations in genetic
circuits was already appreciated in 1985 by Shea and Ackers in a model of the lysogenic-
lytic switch in the λ-phage and was suggested to contribute to unexplained phenotypic
variation by McAdams and Arkin (1997). However, only the seminal study of Elowitz
et al. (2002) provided experimental prove of intrinsic fluctuations of proteins due to gene
expression in E. coli : Using two fluorescence reporters of different color but controlled by
identical regulatory sequences, the authors could show that within the same cell, the ex-
pression of these two genes was indeed intrinsically noisy. However, some variation in the
overall protein level could not be attributed to intrinsic noise, since it affected both genes
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in the same way. It was suggested to originate from upstream factors, such as the amount
of RNA-polymerase per cell and was termed extrinsic noise. Using the same two color
reporter assay, the similar results were obtained also for yeast (Raser and O’Shea, 2004).
Whereas these studies were limited to single genes, genome wide measurements of yeast
(Newman et al., 2006) and E. coli (Taniguchi et al., 2010) protein distributions showed
that gene expression noise is not an isolated incident but a genome-wide phenomenon.

With these experimental confirmations of gene expression noise, new theories of gene
expression were required that account for the inherent stochasticity as classical determin-
istic models could no longer describe the observed data (for an introduction to stochastic
systems, see chapter 2). For example, Thattai and van Oudenaarden (2001) showed that
the variance in protein expression of a single unregulated gene mainly depended on the
“translational burst size”, that is, the number of proteins translated per mRNA. Addi-
tionally, it was discovered that also “transcriptional bursts” contributed strongly to the
variance in protein expression (Raj et al., 2006). These studies showed how fluctuations
in low copy number species (DNA, mRNA) can propagate to the protein level and cause
large variability, even in the regime of large protein numbers.

To describe the observed distributions, analytic expressions for the protein distribution
were derived for many small gene expression circuits, for example a two or three stage
model of gene expression (Shahrezaei and Swain, 2008; Bokes et al., 2011; Elgart et al.,
2011; for a review of stochastic gene expression models, see Paulsson, 2005), a model
including cell division (Friedman et al., 2006), self-regulating genes (Ramos et al., 2011;
Hornos et al., 2005; Grima et al., 2012) and cascades (Walczak et al., 2009). However,
analytical expression for the distributions of more complicated gene expression networks
are not available. Here, one has to resort to Monte Carlo methods to approximate the
underlying distribution of the system (see chapter 2, section 2.2.3).

While the stochasticity of the process complicates theoretical analysis, it must be
stressed that the fluctuations also harbor additional information which can be exploited
(Munsky and Neuert, 2012). For example, one can identify additional parameters of the
gene expression model (Munsky et al., 2009), infer the transcriptional dynamics (Suter
et al., 2011; Harper et al., 2011), distinguish different promoter models (Neuert et al.,
2013), determine the influence of cytokines on the frequency and magnitude of transcrip-
tional bursts (Molina et al., 2013) and even use these fluctuations for network inference
(Dunlop et al., 2008).

Apart from being an interesting subject of study for the theoretician, however, one has
to raise the question how the cell handles these noisy signals. Does a cell merely cope with
the fluctuations, or does noise have a function that a cell benefits from (for a review, see
Eldar and Elowitz, 2010). Indeed, evidence was found that yeast cells utilize stochasticity
to coordinate the expression of many genes in response to calcium signaling (Cai et al.,
2008). In bacteria, random switching of cell fate caused by fluctuating protein levels can
provide a fitness advantage: due to random switching, a small portion of the population
remains in a persister state, which is not susceptible to antibiotic and can repopulate after
antibiotic treatment, a phenomenon called “bet hedging” (Lewis, 2007; Veening et al.,
2008). Furthermore, noise enables probabilistic differentiation, a simple mechanism to
determine cell fate: Identical cells choose their fate randomly due to the fluctuations in
important key regulators, as for example observed at the first differentiation decision in the
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inner cell mass (Morris et al., 2010; Dietrich and Hiiragi, 2007). Without noise, external
signals would be needed to instruct the otherwise identical cells into different fates.

Random cell fate choices at first seem to contradict the observed precise development
of an organism. Note however, that these fluctuations could simply be used to break the
symmetry and start differentiation in otherwise identical cells, whereas cell-cell communi-
cation creates feedback mechanisms to ensure precise development. For example, in the
Drosophila epidermis, one cell in a proneural cluster stochastically differentiates into a
neuroblast and in turn inhibits all other cells in the cluster from becoming neuroblasts via
Delta-Notch signaling, a mechanism called lateral inhibition (Skeath and Carroll, 1992;
Losick and Desplan, 2008).

In conclusion, there is strong evidence that noisy gene expression is not just an unavoid-
able physical phenomenon that has to be controlled, but it can be exploited by organism
to gain evolutionary benefits.

1.3 Stem cells in the epigenetic landscape

To gain a deeper understanding about the mechanisms of pluripotency, differentiation, self
renewal and cell state transitions in general in the presence of stochastic fluctuations, one
has to define what constitutes the “state of a cell”. Clearly, the state of the cell is not solely
determined by its nucleotide sequence, as all cells within a single organism carry the same
genetic material. It is rather determined by the composition of transcripts, proteins (most
importantly transcription factors), metabolites and also the state of the DNA itself such as
DNA-methylation, chromatin/histone modifications and transcription factor occupation.
This is called the epigenetic state of the cell, because it determines the cell’s identity (the
phenotype) beyond its genetic material (the genotype) and can be inherited from one cell
to its offspring3. In simpler words, in the epigenetic state of an enterocyte, an intestinal
cell type, certain genes e.g. important for the digestion and uptake of food are expressed,
whereas proteins required for the formation of neural synapses are repressed. The same
genes are of course present in neurons, but enterocyte-specific genes are suppressed in this
epigenetic state, whereas neuron-specific genes are upregulated.

However, a cell cannot reach all possible epigenetic states4 simply because of the regula-
tory interactions encoded in the genome (Davidson and Erwin, 2006): Genes influence the
expression of other genes through an intricate network of molecular interactions, known as
the gene regulatory network (GRN, Kauffman, 1969). For example, a transcription factor
can bind to the promoter of another gene and repress its expression. Due to this interac-
tion, an epigenetic state where both the transcription factor and its target are expressed
is not reachable for the cells. The GRN not only imposes constraints on the epigenetic
states but also determines how the epigenetic state of a cell changes over time. Here it is
important to clarify that the network topology and hence the regulatory links are fixed on
the timescale of cell lifespan and only the state of the cell changes. The topology of the

3Note that there is an unfortunate redefinition of the term “epigenetics” in molecular biology, where it only
describes the recently discovered phenomena of DNA-methylation and covalent modifications of histones.

4Assuming the epigenetic state is just composed of on/off states of 25000 genes in a human cell, this results
in 225000 possible states, far more than there are atoms in the observable universe.
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Figure 1.5: The epigenetic landscape as originally depicted by C. Waddington
(Waddington, 1957).

network only changes on much longer timescale due to mutations (for a detailed argument,
see Huang, 2012).

One can then analyze the dynamics of such GRN’s using mathematical tools (see
chapter 2, section 2.1.2) to find attractor states of the network, i.e. states towards which
the systems tends to move and returns to after small perturbations (Beuter, 2003). These
states are associated with stable cell types (Huang et al., 2005). One GRN can give rise
to multiple attractor states and cell state transitions, such as differentiation and apoptosis
occur if the state of the system moves from one attractor to another.

To gain a more intuitive understanding of this abstract concept, it is illustrative to
take a detour in history into the 1950’s, when Conrad Waddington put forward his idea
of the epigenetic landscape (Waddington, 1957). He describes cell differentiation during
embryogenesis as a marble rolling down a hilly landscape. Starting at high elevation,
the cell is pluripotent and as it starts to descend, it encounters several branching points,
where it has to decide its future path. After several of those branching points, the cell will
come to rest a one of several possible valleys, corresponding to different mature cell fates.
This is the famous picture of the epigenetic landscape (Fig. 1.5A) which has recently been
revived and is used as a metaphor in modern stem cell biology (Graf and Enver, 2009;
Fisher and Merkenschlager, 2010; Furusawa and Kaneko, 2011; Sisan et al., 2012; Wang
et al., 2011; Qiu et al., 2012; Wang et al., 2010). Waddington also gave a hint on what
determines the shape of this landscape in a less famous picture (Fig. 1.5B), showing the
bottom side of the landscape which is supported by a network of wires anchored by genes.
This is a surprisingly accurate description of our current understanding that the GRN
constrains the possible epigenetic states (hilltops in the landscapes are not reachable) and
the network determines how the cell’s state changes over time by shaping this landscape
(Huang, 2012). Attractor states correspond to local minima in the landscape, into which
the system will eventually settle. However, the motion is not a continuous downward flow
in the landscape until the cell reaches its final attractor as depicted by Waddington, but
the cell can temporarily get trapped in local minima (attractors) in the landscape, which
correspond to intermediate cell types.
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What is still missing to close the gap between the GRN and the epigenetic landscape,
is how to translate the wiring of the GRN into a landscape, such that state changes
allowed by the network correspond to downhill movements in the landscape. In physics
terminology: how to find a potential such that the forces acting on the system due to
the GRN correspond to the potential gradient? Note that this is not only useful for
visualization, but also defines the relative stability of the states (that is, which states
correspond to mature cells and which to stem cells) and allows to judge the height of
barriers between states. Unfortunately this construction is not possible in general5, but
several approximations were proposed (Zhou et al., 2012; Bhattacharya et al., 2011; Wang
et al., 2011), resulting in “quasi-potentials”, i.e. potentials whose gradient most accurately
reflects the dynamics of the GRN.

Here it is noteworthy that, even though these quasi-potential landscapes offer a in-
tuitive visual link to Waddington’s epigenetic landscape, interpretation can be difficult.
First, being only an approximation to a true potential, path independence in a quasi-
potential is not fulfilled, i.e. the action of a certain path does not only depend on the value
of the potential at the start and endpoint, but on the actual path. Second, the state of
the system (the marble in Waddington’s picture) does not have inertia. Third and most
important: The state does not strictly move down the gradient for two reasons: Addi-
tionally to the force along gradient, there is a remainder force in the system, which can
be for example perpendicular to the gradient (depending on the chosen approximation as
reviewed by Zhou et al., 2012). Apart from these deterministic components, there is also
a stochastic component to the time-evolution of the state due to gene expression noise.
Fluctuation in protein levels can move the system against the gradient and eventually lead
to barrier crossings, i.e. cell state transitions such as differentiation.

1.4 Toggle switches in binary cell fate choice

Since studying cell state transitions within the entire regulatory network is still difficult6,
it is useful to study smaller regulatory motifs of just a few genes.

A simple motif of cell fate choice was suggested by discoveries in the blood system
(for a review, see Graf and Enver, 2009): Forced expression of the myeloid-associated
transcription factor PU.1 in a erythroid-megakaryocytic cell lineage led to activation of
myeloid lineage markers and also downregulated erythroid genes, effectively converting
them into myeloid cells (Nerlov and Graf, 1998). On the other hand, myeloid cells could
also be converted into erythroid cells by forced expression of the erythroid transcription
factor Gata1 (Kulessa et al., 1995; Visvader and Elefanty, 1992; Heyworth et al., 2002).
In combination with the finding that both factors mutually inhibit each other’s expression
(Zhang et al., 1999; Stopka et al., 2005) and autoactivate (Okuno et al., 2005; Yu et al.,
2002), this established the idea of transcription factor cross-antagonism in binary cell
fate choice (Graf and Enver, 2009; Zhou and Huang, 2011) (Fig. 1.6A): The cell fate
choice is implemented molecularly by two mutually inhibiting transcription factors and

5The driving force from the GRN can contain curl, which cannot be represented by a gradient, as it is
non-integrable.

6The epigenetic landscape is hard or impossible to obtain mathematically for large networks and the
network structure might not be known completely.
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Figure 1.6: Toggle switches implement binary lineage choice via cross antag-
onism. A) PU.1 and Gata1 autoactivate their expression and mutually inhibit their
expression. Additionally, PU.1 (Gata1) activates myeloid (erythroid) genes and inhibits
erythroid (myeloid) genes. B) Hematopoietic differentiation hierarchy. Hematopoiesis
is currently viewed as a hierarchy of differentiation processes (Orkin and Zon, 2008).
From a hematopoietic stem cell (HSC), mature blood cells are replenished via a series
of progenitor cells with limited potential. Abbreviations: MPP, multipotent progenitor;
CMP, common myeloid progenitors; MEP, megakaryocyte-erythrocyte progenitor; GMP,
granulocyte-monocyte progenitor; CLP, common lymphoid progenitor.

their balance determines the outcome of the lineage choice. Initially, in a phase called
“priming”, both transcription factors are balanced, such that none overwhelms the other
and the cell is not yet committed to either lineage. If at some point the balance is tilted in
favor of PU.1, it will repress Gata1, activate the myeloid-specific genes and lead to myeloid
commitment. If the balance is shifted towards Gata1, erythroid genes are activated, PU.1
is repressed and the cell will commit to the erythroid lineage. Due to their switch like
behavior, these regulatory motifs are called genetic “toggle switches”.

Many other cross-antagonistic transcription factors and their involvement in binary
lineage decisions have been identified lately (Graf and Enver, 2009; Zhou and Huang,
2011), either in individual experiments (e.g. granulocytes against macrophages (Laslo
et al., 2006), or trophectoderm against inner cell mass (Niwa et al., 2005)) or compu-
tational studies (Heinäniemi and Nykter, 2013). By combining multiple toggle switches,
one can recapitulate the hierarchical branching of different cell types (Foster et al., 2009).
For example, Krumsiek et al. (2011) showed how a network of 11 transcription factors,
including several toggle switches, can give rise to the experimentally observed hierarchy
of blood cell progenitors.

The PU.1/Gata1 motif still serves as the leading paradigm of cross antagonism and
cell fate choice, also because of the multitude of theoretical work: To gain more in-
sight into the experimental findings, several theoretical studies analyzed the properties
of the PU.1/Gata1 toggle switch in detail (Roeder and Glauche, 2006; Huang et al., 2007;
Chickarmane et al., 2009; Bokes et al., 2009; Duff et al., 2011; Foster et al., 2009), assum-
ing deterministic dynamics. Of main interest in those studies is if indeed two mutually
inhibiting transcription factors can generate multi-stable dynamics (in terms of the epige-
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netic landscape, multiple attractors) which give rise to the observed progenitor-, myeloid-
and erythroid-states. For example, Roeder and Glauche (2006) investigate different mecha-
nisms of mutual inhibition, apply bifurcation analysis to determine under which conditions
the system is multi-stable, and show in silico how the forced expression of one or the other
factor leads to lineage conversion, recovering experimental results. While this study does
not explain how the toggle switch actively carries out a lineage decision, but only how it
is stabilized, Huang et al. (2007) proposed that a change in autoactivation strength leads
to the loss of the progenitor state, thereby forcing cells to differentiate into either lineage.
Furthermore, the authors analyze the details of transition dynamics following the loss of
the progenitor state and conclude that the transition dynamics recapitulate microarray
measurements.

However, these studies are based on deterministic models, neglecting low copy numbers
of e.g. PU.1 mRNA (Warren et al., 2006) and hence the possibility of stochastic cell fate
transitions. Furthermore population-averaged measurements were used, hindering clear
interpretation on the single cell level. Whereas is is undoubted that the transcription
factors PU.1 and Gata1 are involved in the myeloid/erythroid lineage decision, no evidence
is yet available whether these two factors indeed actively “make” the decision or if they
just implement and lock down an upstream signal. Recent experiments using single cell
time-lapse microscopy have questioned the active decision making function of PU.1/Gata1
and provide the necessary data to study the stochastic dynamics of this switch (Hoppe et
al., in revision).

1.5 Research questions

The main goal of this thesis is to investigate cell fate decisions in time-lapse data at the
single cell level using mathematical models and to assess the role of stochasticity on cell
fate choice, with a focus on genetic toggle switches as a molecular implementation of cell
fate choice.

First, we ask how stochasticity impacts on cell fate choice and whether it is compatible
with observed data. As cell fate choice is implemented molecularly in the gene regulatory
network, e.g. via a toggle switches, which itself is subject to fluctuations from gene ex-
pression, the process of cell fate choice itself has a stochastic component. However, to
which extent this stochasticity plays a role in cell fate choice is still being discussed: Cell
differentiation might be entirely stochastic and cell intrinsic (Gomes et al., 2011; Till et al.,
1964; Roeder et al., 2005; Abkowitz et al., 1996), regulated by external stimuli (Rieger
et al., 2009; Moore and Lemischka, 2006), or even be predetermined to a large degree
(Müller-Sieburg et al., 2002). In this thesis, we develop methods that allow to analyze the
mechanisms behind cell fate choice, show that simple stochastic models can recapitulate
seemingly complex phenomena such as lineage priming or lineage bias, and that these
models can explain observed data.

Second, we ask how one can incorporate and utilize the genealogical structure inher-
ently emerging from a growing and dividing cell population. On the one hand, these
cellular genealogies present an obstacle to standard statistical analysis, as related cells do
not qualify as independent samples. On the other hand, genealogies also provide valuable
information. This is for example utilized in “paired daughter cell assays” (Suda et al.,
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1984), where the two daughter cells arising from a cell division are separated via microma-
nipulation and individual experiments are performed on these cells, e.g. colony assays to
quantify how variable these daughter cells are in terms of their lineage potential (Takano
et al., 2004). However, it is yet unclear how to exploit this information systematically on
a larger scale, i.e. not only on pairs of daughter cells, but whole genealogies. Hence, new
methods and models have to be developed which account for, and utilize this genealogical
information.

Finally, we investigate the current paradigm of the PU.1/Gata1 toggle switch governing
the hematopoietic cell fate decision between myeloid and erythroid lineages applying the
methods developed in this thesis to hematopoietic stem cell genealogies generated by
Hoppe et al., in revision. Specifically, we assess whether the PU.1/Gata1 toggle switch
actively determines the cell fate choice via its dynamics, or if PU.1 and Gata1 merely
serve as a memory device that is linked to an unobserved upstream decisions (e.g. via
mechanisms proposed by Fritz et al., 2007; Hillenbrand et al., 2013).

1.6 Overview of this thesis

In chapter 2 we briefly introduce the formalism of dynamical stochastic systems, show
how the deterministic reaction rate equations are derived from the stochastic system, and
review Approximate Bayesian Computation as a tool to perform inference for stochastic
systems.

In chapter 3, we study the dynamics of a two stage toggle switch as a potential inter-
nal mechanism of binary cell fate decisions. We investigate the system’s quasi-potential
landscape and find that using a two stage gene expression model induces four attractor
states as opposed to using a one stage expression model, where transcription and transla-
tion are lumped together. We analyze the dynamics of the system in the quasi-potential
and associate two attractors with differentiated cell types and two attractors with undiffer-
entiated cell types, which are however already biased in their lineage choice. Furthermore,
we provide analytical expressions of the attractors residence times. Finally, we fit a toggle
switch model to single cell data from GMP differentiation using Approximate Bayesian
Computation. The presented methods, figures and results have been published in Strasser
et al. (2012) and Marr et al. (2012). We thus contribute to the current understanding of
stochastic toggle switch models and their dynamics and furthermore show how stochastic,
mechanistic models can be linked to experimental observation of cell fate choice.

In chapter 4, we study different coarse grained models of cell fate decision, where the
cell fate decision does not depend on internal dynamics but is governed by global, exter-
nal influences, such as local cell density. We present an inference framework based on
regularized linear models, which identifies the relevant external influences impacting on
differentiation from cellular genealogies with annotated differentiation events. We use the
framework to predict the required sample size for the analysis and explore the impact of
tracking errors within the genealogies on our results. Here, our contribution is the adap-
tation of available statistical methods to tree-structured data.
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In chapter 5 we consider models where cell fate decisions depend both on external in-
fluences and cell internal dynamics and present an algorithm that estimates parameters
of this model from cellular genealogies. We show that the model can accurately detect
differentiation events when the underlying dynamics are governed by a toggle switch. Ap-
plying the method to genealogies of differentiating blood stem cells, we present evidence
against the long standing paradigm of the PU.1/Gata1 toggle switch in hematopoietic
lineage decisions. We contribute a novel model and inference method for genealogies that
allows to infer unobserved state changes (e.g. cell differentiation) from correlated fate of
genealogically related cells.

In chapter 6, we summarize the thesis and present an outlook on future research directions.



Chapter 2

Methods

In this chapter, we introduce the basic mathematical methods used in chapters 3–5. The
first part revolves around chemical reaction networks and their associated deterministic
and stochastic dynamics. In the second part, we briefly review likelihood-based inference
in general and outline Approximate Bayesian Computation as a likelihood free inference
method. In the last part of this chapter, we introduce graphical models as well as inference
in graphical models via the sum-product algorithm.

2.1 Chemical reaction kinetics

Throughout this thesis, dynamical systems are modeled as chemical reaction networks and
in the following, we briefly introduce the basic notations and concepts.

Typically, biochemical processes are modeled as chemical reactions (Wilkinson, 2011;
Alon, 2006). Here, the model consists of N species X1, . . . , XN and a set of M reactions
µ1, . . . , µM . The reaction µ can be written in stoichiometric form as

eµ1X1 + eµ2X2 . . .
kµ−→ pµ1X1 + pµ2X2 . . . , (2.1)

where eµi ∈ N0 (pµi ∈ N0) is the number of molecules Xi consumed (produced) by reaction
µ. Arranging these coefficients as matrices

(E)ij = eij , E ∈ NM×N0

(P )ij = pij , P ∈ NM×N0 ,

we can obtain the stoichiometric matrix V of the system as V = −E+P . Each row vector
νµ = [Vµ,1, . . . , Vµ,N ] corresponds to the change in species numbers upon one occurrence
of reaction µ. The order of reaction µ is defined as

oµ =

N∑
i=1

eµi .

The reaction rate constants kµ quantify the reaction’s speed and are related to its activa-
tion energy via the Arrhenius equation

k = A · e−
Ea
kBT ,
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where Ea is the activation energy, kB is Boltzmann’s constant, T is the temperature, and
A is a reaction specific prefactor. The units of the reaction rate constant depend on the
reaction’s order: For a reaction of order oµ the rate constant kµ has units of

[
s−1M1−oµ

]
,

where M = mol
liter is molarity. For example, for second order reactions (oµ = 2), the reaction

rate has units of
[
M−1s−1

]
.

2.1.1 Reaction rate equations

Up to now, for a given system we only have specified how reactions change the number of
molecules, but not the rules that determine the dynamics of the reactions. The traditional
method for modeling cellular dynamics is based on ordinary differential equations, which
are called reaction rate equations and describe macroscopic dynamics:

∂x

∂t
= f(x, t) (2.2)

with x ∈ RN0 and f : RN0 × R → RN0 . This equation describes the deterministic time
evolution of continuous species concentrations x(t). Typical choices for the function f
include mass action (Guldberg and Waage, 1879) or Michaelis-Menten kinetics (Michaelis
and Menten, 1913). Applying the law of mass action, one obtains:

fi(x, t) =
∑
µ

νµi · kµ · N∏
j=1

x
eµj
j

 , (2.3)

with i = 1 . . . N . The rate of change in concentration of species Xi is the sum of contri-
butions from the individual reactions µ, where each reaction changes the amount of Xi

by νµi. The product over j derives from the mass action assumption, where one assumes
that the reaction rate is proportional to the possible number of educt molecule collisions,
and hence proportional to powers of the educt concentrations.

In section 2.2.4, we derive the macroscopic reaction rate equations from a more accu-
rate, microscopic and stochastic description of the dynamics and the required assumptions
are discussed.

2.1.2 Steady state solutions and stability analysis

Given the set of reaction rate equations of the underlying dynamical system, one is typi-
cally interested in the asymptotic behavior of the system, i.e. t→∞. In the reaction rate
equations of the form shown in Eq. (2.2) one sets ∂tx(t) = 0 and solves for x, yielding
steady state solutions {x∗|f(x∗) = 0}.

Linear stability analysis can be applied to characterize the steady states further (Mur-
ray, 2002; Beuter, 2003). Here one studies how the system behaves upon infinitesimal
perturbations from the steady state and classifies the steady states as either “stable”,
“unstable”, or “saddle point”. In the following, this procedure is shortly reviewed.

We start by considering the time evolution of a small perturbation x−x∗ from a steady
state x∗ and linearize f at x∗:

∂t(x− x∗) = f(x− x∗, t)
≈ J · (x− x∗) ,
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where

J =


∂f1

∂x1
. . . ∂f1

∂xN
...

...
∂fN
∂x1

. . . ∂fN
∂xN

 ,

is the Jacobian of the system. Performing eigendecomposition of J one obtains

∂t(x− x∗) ≈ J · (x− x∗)
= ADA−1 · (x− x∗) ,

with D as a diagonal matrix of eigenvalues and A the matrix of eigenvectors. Multiplying
both sides by A−1 from the left yields

∂tA
−1 · (x− x∗)︸ ︷︷ ︸

y

= DA−1 · (x− x∗)︸ ︷︷ ︸
y

∂ty = D · y .

Since D is diagonal, we obtain decoupled differential equations for each transformed vari-
able yj ∈ R0 (j = 1, . . . , N) with solution

yj(t) = eλjt · yj(0),

where λi is the j-th eigenvalue of the Jacobian. In general λj = aj + ıbj is complex and
therefore

yj(t) = eajt [cos(bjt) + ı sin(bjt)]︸ ︷︷ ︸
eıbjt

·yj(0) .

The imaginary part of the eigenvalue induces oscillations (second term), whereas the real
part determines the stability of x∗: For t → ∞ and if all aj < 0, we see that all yi → 0
and therefore also x − x∗ → 0. The perturbation vanishes and the system returns to its
former steady state. The steady state x∗ is stable and often referred to as an attractor
since systems near that state evolve towards it. On the other hand, if any aj > 0, the
perturbation will not vanish for t→∞ and the system will leave the former steady state
x∗. The steady state x∗ is called unstable (or saddle point if its eigenvalues have both
positive and negative real parts). If all aj = 0 and any bj 6= 0, the system will oscillate
around the center x∗ (Murray, 2002).

To conclude the analysis, one classifies the dynamical system (Eq. 2.2), depending on
the number of distinct stable steady states x∗ as “monostable”, “bistable”, etc... Note
that the number of stable states in general depends on the parameters of the system (e.g.
the reaction rates), which is studied in the field of bifurcation theory. Furthermore, for
each stable state x∗, one can determine the set of states A(x∗) which evolve towards x∗

as t→∞:
A(x∗) = {x0 ∈ RN0 |x(0) = x0 ∧ lim

t→∞
x(t) = x∗}

This set A(x∗) is called the basin of attraction of stable state (or attractor) x∗.
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2.2 Stochastic systems

As discussed in section 1.2.3, the dynamics of gene expression processes have to be consid-
ered stochastic rather than deterministic owing to small molecule numbers of e.g. mRNAs.
In the following, we recapitulate the formalism to describe these stochastic dynamical sys-
tems.

2.2.1 Stochastic chemical kinetics

We assume a well stirred system in a volume Ω, such that positions and velocities of
individual molecules can be considered random. This allows to represent the entire state
of the system at time t by the vector

x(t) = [x1(t), . . . , xN (t)] ,

where xi(t) denotes the number of molecules of species Xi at time t. The vector x(t) ∈ S
is called the state vector of the system where S ⊆ NN0 is called the state space of the
system. Note that the state x(t) of the system is discrete as opposed to the reaction rate
equations considered in section 2.1.1.

Next, we define the propensity function aµ of a reaction µ as

aµ(x)dt :=Probability that reaction µ occurs in the infinitesimal (2.4)

interval [t, t+ dt] given the system is in state x at time t

The form of the function aµ is derived from molecular physics taking into account collision
probabilities and reaction probabilities (Gillespie, 1992):

aµ(x) = cµ ·
N∏
i=1

(
xi
eµi

)
, (2.5)

where cµ is a constant. For unimolecular reactions (oµ = 1), cµ is the probability per unit
time of a spontaneous quantum-mechanical transition from educt to product. The second
term in Eq. (2.5) accounts for the number of molecules that can undergo this conversion.
In case of bimolecular reactions (oµ = 2), cµ is the probability per unit time that a collision
of educt molecules results in a successful reaction. The potential number of educt collisions
is specified by the second term of Eq. (2.5).

Note that in general cµ 6= kµ, where the latter is the familiar chemical reaction rate
constant. In fact they are related via (Gillespie, 2007)

cµ =


kµ for unimolecular reactions

kµΩ−1 for bimolecular reactions with different educts

2kµΩ−1 for bimolecular reactions with same educts .

Higher order (e.g. trimolecular) reactions are neglected because these are approximations
to sequences of bimolecular reactions. In section 2.2.4 we will see the connection between
the propensities and the mass-action rates from Eq (2.3).
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Ultimately, one is interested in the time evolution of the state vector x(t) through
a series of reactions. However, as the timing and order of reaction firings is inherently
stochastic (the propensities are formulated as probabilities and x(t) is a Markov Jump
process), one can only derive an equation that describes the time evolution of the proba-
bility distribution of the state vector x(t) (Gillespie, 1992). This equation is known as the
Chemical Master Equation (CME):

∂P(x, t)

∂t
=

M∑
µ=1

[aµ(x− νµ, t)P(x− νµ, t)− aµ(x, t)P(x, t)] . (2.6)

It describes how the probability P(x, t) of being in a certain state x at time t changes in
an infinitesimal time interval due to reactions into and out of the state x. The first term
accounts for reactions leading into x from adjacent states (states that are one reaction
away from x), which therefore increase the probability of state x. Similarly, the second
term accounts for reactions leading away from the current state x, thereby decreasing the
probability to be in x.

Let us briefly characterize Eq. (2.6). First, we find that it is not a single ordinary
differential equation, but a system of coupled differential equations, one for each possible
state x of the system. Even if our system comprises only a single species, the state space
S is potentially infinite, e.g. if the number of molecules is unbounded (S = N0). If the
number of molecules is bounded, the size of the statespace is growing exponentially in the
number of species. Second, we observe that Eq. (2.6) is linear in P(x, t). Note that the
propensities can nevertheless be nonlinear in x. If we choose some arbitrary enumeration
X of the state space, one can rewrite Eq. (2.6) as

∂P(X, t)

∂t
= Q · P(X, t) , (2.7)

where the matrix Q is defined via its elements as

(Q)xy =


−
∑M

µ=1 aµ(x) x = y

aµ(x) y = x+ νµ

0 otherwise .

x and y are elements of the state space, thus the dimension of Q is equal to the size of the
possibly infinite state space.

We conclude that the CME is a system of coupled linear differential equations and the
size of the equation system corresponds to the size of the state space.

2.2.2 Analytic solutions to the CME

Analytic solutions to the CME are only available for certain simple systems (Jahnke and
Huisinga, 2007; Ramos et al., 2011; Pendar et al., 2013) restricted to steady state distribu-
tions (Raj et al., 2006; Friedman et al., 2006; Paulsson and Ehrenberg, 2000; Bokes et al.,
2011; Hornos et al., 2005) or are valid only in certain regimes (Shahrezaei and Swain,
2008).
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Instead, numerical methods have been applied. Finite state projection (Munsky and
Khammash, 2006) tries to find suitable small truncations of the statespace S, allowing for
a direct numerical solution of Eq. (2.7). Spectral methods (Walczak et al., 2009; Mugler
et al., 2009) exploit the linearity of Eq. (2.7) by solving it in terms of its eigenfunctions
without state space truncation. Moment equations methods consider not the time evo-
lution of the whole distribution but of its moments (Lee et al., 2009; Engblom, 2006;
Hasenauer et al., 2013).

2.2.3 Stochastic simulation

The above methods cannot be applied if either the relevant state space of the system
is to large or if the system itself is too complicated (e.g. because of multiple feedback
loops), eluding any sophisticated mathematical treatment. However, one can apply a
simple algorithm to draw samples from the stochastic process x(t) governed by the CME,
which is known as Gillespie’s algorithm or stochastic simulation algorithm (Kendall, 1950;
Gillespie, 1976). Drawing sufficiently many samples, one can then approximate P(x, t),
the solution of the CME.

The core algorithm is based on the “reaction probability density function” (Gillespie,
1976):

p(τ, µ|x, t)dτ :=Probability at time t that the next reaction to happen is of type (2.8)

µ and it occurs in the infinitesimal interval [t+ τ, t+ τ + dτ ]

given the system is in state x at time t.

Note the difference to the definition of the propensity in Eq. (2.4): The propensity is the
instantaneous probability of a certain reaction, whereas p(τ, µ|x, t) informs also about the
waiting time.

One can easily derive the form of Eq. (2.8) (Gillespie, 1976, 1992): It is the product
of the probability p1(τ |t, x) that no reaction happens in [t, t + τ ] and the probability
p2(τ |t, x)dτ of reaction µ happening in [t+ τ, t+ τ + dτ ]:

p(τ, µ|x, t)dτ = p1(τ |t, x) · p2(τ |t, x)dτ

= e−
∑
i ai(x)τ · aµ(x) . (2.9)

The first factor is derived from the density of a Poisson distribution with rate
∑

i ai(x)τ
evaluated at 0, and the second factor follows from the definition of the propensity (Eq. 2.4).

Defining a(x) =
∑

i ai(x) and rewriting the above as

p(τ, µ|x, t)dτ =
[
e−a(x)τa(x)

]
·
[

1

a(x)
aµ(x)

]
,

it is apparent that p(τ, µ|x, t)dτ is the joint density of two independent random variables:
An exponential random variable with mean a−1(x) (first bracket) and a categorical random

variable with probability vector
[
a1(x)
a(x) , . . . ,

aM (x)
a(x)

]
(second bracket).

Hence, one can easily draw samples from Eq. (2.9) and thereby determine the timing
and type of the next reaction given the current state x. With that, we can construct the
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Algorithm 1: The stochastic simulation algorithm (SSA).

Input: Initial condition x0, maximal simulation time tmax, propensity functions ai
and stoichiometric matrix V

Output: Timecourse of species abundances x(t)
j = 0;
t0 = 0;
while t < tmax do

a =
∑

µ aµ(xj);

τ ∼ Exp(a) ; // Exponential random variable

µ ∼ Cat
([

a1(x)
a(x) , . . . ,

aM (x)
a(x)

])
; // Categorical random variable

tj+1 = tj + τ ;
xj+1 = xj + νµ;
j = j + 1

end

stochastic simulation algorithm (Algorithm 1), which starts from an initial state x0 and
initial time t0 and iteratively updates time and state by executing reactions in accordance
to Eq. (2.9). This extremely simple algorithm allows one to obtain samples (i.e. time-
courses) and hence to approximate the solution of the CME even if it is infeasible to solve
the CME directly.

However, two complications arise: Being a Monte Carlo method, the rate of conver-
gence of this sampling approximation to the solution of the CME is only of order 1/

√
N ,

where N is the number of samples1. Hence, a huge number of samples (typically > 103) is
required to achieve acceptable accuracy. Furthermore, the computation of a single sample
becomes time-consuming if the number of reactions taking place in the desired time inter-
val [t0, tmax] is large, as each reaction is simulated individually. This happens, for example,
if overall molecule numbers in the system or reaction constants are large. Therefore, the
reaction propensities aµ(x) and the factor a(x) become large. This in turn leads to small
time steps τ by which the algorithm advances, thereby requiring much more iterations to
completely simulate the desired time interval [t0, tmax].

Various exact variations the stochastic simulation algorithm have been developed in
the last decades, which are devoted to improve the algorithm’s scaling in terms of species
number N and number of reactions (Ramaswamy et al., 2009; McCollum et al., 2006;
Gibson and Bruck, 2000; Slepoy et al., 2008; Cao et al., 2004). However, all these methods
are still subject to the above mentioned problems, as they create exact samples of the
underlying stochastic process.

To overcome the issue of computational complexity, numerous approximate algorithms
have been developed. They all evolve around the idea that under certain circumstances,
it is valid to simulate not every reaction, but lump together many individual reactions
into a single simulation step. The idea of τ -leaping (Gillespie, 2001) was proposed first,

1Suppose you want to estimate µ = E[f(Y )] where Y is a random variable and f is some function. Drawing
samples y1, . . . , yn, we find µ̂ = n−1∑

i f(yi). The variance of the estimator is σ2(µ̂) = n−2 · n · σ2(Y )

and the standard deviation σ(µ̂) = n−1/2 · σ(Y )
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where one assumes that within a certain time interval the propensities ai(x) are effectively
constant. Therefore the numbers of reactions of each type happening in this interval can
be approximated as Poisson random variables and all these reaction are executed in a
single simulation step simultaneously. Based on this idea, many modifications of τ -leaping
have been derived (Mjolsness et al., 2009; Cai and Xu, 2007; Auger et al., 2006; Peng
and Wang, 2007). The state space simulated by τ -leaping methods is still discrete. If the
state space is approximated by continuous variables (e.g. because the molecule numbers are
large) one naturally arrives at a stochastic differential equation approximation of the CME
(Gillespie, 2000). With any of these approximations, one trades accuracy for speed: For
example, by leaping over larger time intervals and executing many reactions in parallel,
τ -leaping can considerably reduce computational time compared to standard stochastic
simulation. However, the larger these intervals, the more the assumption of constant
propensity will be violated, resulting in a larger error of τ -leaping compared to the exact
stochastic simulation algorithm. In general, these methods perform well if species numbers
in the system are large, but can introduce large errors if some species numbers are close
to zero. Unfortunately it is often these low species numbers that induce the characteristic
behavior of the system (for an example, see Schultz et al., 2008).

Another class of approximations is based on the idea of time scale separation (Cao
et al., 2005; Haseltine and Rawlings, 2002), where ones partitions the dynamics of the
system into a fast and a slow set and only simulates the slow set explicitly via stochastic
simulation, but approximates the evolution of the fast set (for example) deterministically.
Huge speedups can be achieved if there is a clear time-scale separation in the system.
However, the degree of time scale separation often changes dynamically with the state of
the system itself (some regions in state space satisfy time scale separation, whereas others
do not) and with the parameters of the system. This renders an automated treatment
of the problem difficult and requires some user-specified prior knowledge of the system.
Often, a separation of time scales is simply not possible, even tough some reactions are
much faster then others (termed the “weakly” adiabatic regime by Walczak et al., 2005a).

2.2.4 Derivation of the reaction rate equation from the CME

In the following, we show how and under what assumptions the classical reaction rate
equations emerge as a limit of the stochastic dynamics described by the CME. Note that
there are different ways of deriving the reaction rate equations from the CME and for
brevity only the approach by Gillespie (2000) will be discussed here (for overviews see e.g.
Grima et al., 2011; Grima, 2010a; Gardiner, 2004).

One starts from the stochastic simulation algorithm, which generates exact samples
and apply the τ -leaping approximation, where the number of reaction per simulation step
follows a Poisson distribution. If this number is large on average it is suitable to approx-
imate the Poisson by a Gaussian distribution. Casting the resulting difference equation
into a differential equation, we obtain the following stochastic differential equation known
as the Chemical Langevin Equation (Gillespie, 2000)

∂x

∂t
=
∑
µ

νµaµ(x)︸ ︷︷ ︸
Drift

+
∑
µ

νµ

√
aµ(x)Γµ(t)︸ ︷︷ ︸

Diffusion

(2.10)
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for the time evolution of the continuous state vector x(t) ∈ RN0 . νµ denotes the row of
the stoichiometric matrix corresponding to reaction µ. The right-hand side of Eq. (2.10)
consists of a deterministic drift term and a stochastic diffusion term driven by indepen-
dent white noise terms Γµ(t). The classical reaction rate equation is recovered in the
thermodynamic limit (i.e. system volume and species numbers approach infinity) where
the propensities aµ(x) become so large that the diffusion term can be neglected due to the
square root scaling:

∂x

∂t
=
∑
µ

νµaµ(x) +O(a1/2) .

Using the definition of the propensities Eq. (2.5) and approximating the numerator of the
binomial coefficient2 we find

aµ(x) = cµ ·
N∏
i=1

(
xi
eµi

)

≈ kµ ·
N∏
i=1

x
eµi
i .

Comparing to Eq. (2.3), we find that, in the thermodynamic limit, we recover the reaction
rate equations and see that the propensities correspond to the mass-action rates.

However, one must keep in mind that this derivation and therefore the reaction rate
equations itself only holds if the system of interest fulfills all the assumptions of the
Langevin Equation and the system size approaches infinity. As most processes of interest
happen within a cell’s volume or a sub-compartment thereof, the validity of the reaction
rate equations in the realm of cell biology is questionable. Several studies indicated the
breakdown of classical reaction rate equations at volumes comparable to cells (Grima,
2009b,a; Ramaswamy et al., 2012). To account for these small volume effects, the effective
mesoscopic rate equations have been proposed, which augment the classical reaction rate
equation by a volume correction (Grima, 2010b).

2.2.5 Stability of states in deterministic and stochastic systems

In section 2.1.2 we calculated the stable states and their stability in the deterministic
system (the reaction rate equations), whereas in section 2.2.1 we applied the CME, which
describes the stochastic dynamics in terms of probability distributions over state space.
What can be concluded from stability analysis of the deterministic system about the
underlying stochastic system from which it was derived?

First, one has to note that there are generally no stable states (attractors) in a stochas-
tic system: Due to the inherent probabilistic nature of the process, no single state x will
be stable. There is always non-zero probability of leaving the state3. Hence, the system
will not converge to a single state in the long term limit, even though its distribution

2For example,
(
n
2

)
= n(n−1)

2
≈ n2

2
if n is large.

3Exceptions are absorbing states where no reaction leads out of the state, i.e. ∀µ aµ(x̃) = 0 for the absorbing
state x̃.
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converges under mild assumptions (Van Kampen, 1992) and one has to come up with a
different definition of stable states in a stochastic system. An intuitive choice for an analog
of a deterministic stable state is a mode of the probability distribution of the stochastic
process. Note that there can be multiple modes, e.g. in the protein number distribution
of a self-activating gene (Hornos et al., 2005). The idea is that a single trajectory will
fluctuate near a mode of the distribution for a long time and a transition to another mode
will happen on a much longer timescale. The region around the mode, the analog to
the deterministic basin of attraction, is at least approximately stable on timescales much
shorter then the escape time. Note that the escape time can be much longer than the
average lifetime of a cell.

Second, the question arises how deterministic stable states and the modes of the
stochastic system relate. Unfortunately, no general correspondence exists: Existence of a
deterministic stable state does not imply that the solution of the master equation has a
mode at this location4. On the other hand, the existence of a mode does not imply the
existence of a stable state in the deterministic system.

An example discussed in this thesis (see chapter 3 and Strasser et al., 2012) is a model
of a two-stage toggle switch without cooperative binding. Stability analysis predicts one
stable state (see supplements of Strasser et al., 2012) whereas the distribution of the
stochastic model shows four distinct peaks (Fig. 3 of Strasser et al., 2012). Additionally,
the deterministic stable state is located in a region of state space where the distribution has
negligible probability mass. Therefore, conclusions drawn from the deterministic systems
can be arbitrarily wrong in context of the (more accurate) stochastic counterpart.

Finally, it has to be noted that these discrepancies are not due to an inherent flaw of the
reaction rate equations. Such discrepancies simply arise because the assumptions needed
to derived the reaction rate equations from the Chemical Master Equation are violated for
the system of interest. Therefore, one should either study the stochastic system directly,
or if complexity does not allow this, one should rigorously check if the assumptions of the
reaction rate equations hold.

2.3 Parameter inference

Having set up a (stochastic or deterministic) model of the system of interest, one has to
fit the model to observed data to infer the unknown parameters of the system, e.g. the
reaction rates. Here, one has to derive the likelihood function L(X|θ) of the system, which
gives the probability of observing the data X given a set of parameters θ.

2.3.1 Likelihood-based inference

To fit the system to the data in a frequentist approach (Sivia and Skilling, 2006), the
maximum likelihood estimate θ̂ is obtained by optimizing the likelihood with respect to
the parameters:

θ̂ = argmax
θ

L(X|θ) (2.11)

4Note that there are certainly systems where this correspondence holds, for example a simple birth death
process.
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Consider the following example: We observe n independent and identically distributed
data points X = (x1, . . . , xn) from a Gaussian distribution, whose mean µ and variance σ2

are unknown and have to be inferred. The likelihood of a single datum xi given parameters
µ, σ2 is a Gaussian density:

L(xi|µ, σ2) =
1√
2πσ

e−
(xi−µ)2

2σ2

Due to the independence and identical distribution of the xi, the likelihood of the whole
dataset X is the product of individual likelihoods:

L(X|µ, σ2) =
n∏
i=1

L(xi|µ, σ2)

=
n∏
i=1

1√
2πσ

e−
(xi−µ)2

2σ2

To obtain e.g. the maximum likelihood estimate µ̂ via Eq. (2.11) we have to find the
maximum of L(X|µ, σ2) with respect to µ. Here, it is more convenient to use the log-
likelihood, which has the same maxima as the likelihood, as the logarithm is a monotone
function, but is easier to handle mathematically:

log(L(X|µ, σ2)) = n log(
√

2πσ)−
n∑
i=1

(xi − µ)2

2σ2
.

To find the maxima, we calculate the derivate with respect to µ and, set it to 0 and solve
for µ:

∂

∂µ
log(L(X|µ, σ2)) = 0

n∑
i=1

(xi − µ)

σ2
= 0

µ̂ =
1

n

n∑
i=1

xi

Here, we found the maximum of the log-likelihood (since ∂2

∂µ2 log(L(X|µ, σ2)) = −n/σ2 <

0) at the sample mean 1
n

∑n
i=1 xi as expected by intuition. As similar calculation for σ̂2

yields

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 ,

which is the sample variance.
Although in this example, the maximum likelihood estimators of the parameters can be

calculated in closed form, this is not possible in general. Then, the maximum likelihood
estimate has to be obtained by numerically minimizing the log-likelihood function via
optimization algorithms (e.g. gradient descend).
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In a Bayesian approach (as reviewed by Bishop, 2006), one is not only interested
in a point estimate, such as the maximum likelihood estimate, but in the full posterior
distribution P (θ|X) of the parameters θ, which is obtained using Bayes’ rule:

P (θ|X) =
L(X|θ)π(θ)∫
dθL(X|θ)π(θ)

(2.12)

Here, π(θ) is a prior distribution over parameters, which can be used to include prior
knowledge about the parameters (e.g. from previous experiments). Except for the simplest
models, the posterior distribution is analytically intractable and Markov Chain Monte
Carlo methods are used to draw samples from the posterior instead (Metropolis et al.,
1953). In analogy to the maximum likelihood estimate, one can use the mode, mean or
median of the posterior as a point estimate of the parameters.

Parameter uncertainty

However, apart from point estimates, one is also interested in their uncertainty, i.e. how
much one can trust the estimate. This uncertainty should then be propagated into e.g.
model predictions.

In the frequentist approach it is assumed that the parameters θ of the model are
unknown but fixed, while the observed data X is considered random sample, and one
reports the maximum likelihood estimate θ̂ as the point estimate of θ. However, this point
estimate will vary depending on the particular sample of data X: If we observe another
dataset X ′ (generated with the same unknown parameters), the estimate θ̂ will now be
different. To account for this uncertainty, one constructs confidence intervals around
the maximum likelihood estimate. These intervals are constructed from the sampling
distribution of θ̂, i.e. the distribution of θ̂ across an infinite number of future datasets.
The sampling distribution can be derived analytically in some cases (e.g. the t-distribution
for the estimator of the mean of a Gaussian) or has to be obtained via bootstrap. The
interpretation of a 95% confidence intervals is as follows: If we happen to obtain new
datasets (but from the same underlying model and the same parameters) and we calculate
the maximum likelihood for each dataset separately, in 95 % of cases the new estimate
will be contained in the confidence interval.

In the Bayesian approach, quantifying the uncertainty of the parameters θ is much
more intuitive. Having obtained the posterior p(θ|X), one can report the posterior mode
as a point estimate (analogous to the frequentist θ̂), and can quantify the uncertainty
in the parameters by calculating credibility intervals (regions) that measure the width
of the posterior distribution, where a small width indicates low uncertainty in θ. Often
the credibility intervals are constructed such that 95% of the posterior mass is contained
within and that equal mass is located in each tail (central intervals). Interpretation of
credibility intervals is simple: They represent our degree of belief given the data X that
the parameter lies within the constructed region.
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Despite their similar usage in quantifying the uncertainty of a parameter, frequentist
confidence intervals and Bayesian credibility intervals are different conceptually and also
numerically5.

2.3.2 Approximate Bayesian Computation

Unfortunately, the exact likelihood function is intractable for most stochastic systems, as
it requires the solution of the underlying CME. Instead, one can approximate the system of
interest, such that the approximate system has a tractable likelihood function. Examples
include moment equations (Lee et al., 2009; Engblom, 2006; Hasenauer et al., 2013; Zechner
et al., 2012), the Linear Noise Approximation (Elf and Ehrenberg, 2003; Komorowski
et al., 2009; Van Kampen, 1992) and diffusion approximations (Fuchs, 2013; Golightly and
Wilkinson, 2005). However, these approximations are not valid in general (e.g. for multi-
stable models) or require additional ad hoc assumptions (e.g. moment closure). Hence,
exact likelihood based inference is not applicable for many stochastic models.

However, as we can easily generate samples from the CME using Gillespie’s algorithm,
we can perform simulation based (likelihood free) inference using Approximate Bayesian
Computation (ABC, Marjoram et al., 2003; Sisson et al., 2007; Toni et al., 2009), which
casts likelihood-free inference into a Bayesian framework. In ABC, the evaluation of the
likelihood is replaced by forward simulation of the model and a comparison of simulated
and observed data via a distance function d : D×D → R+

0 , where D is the domain of the
data. Instead of optimizing the analytical likelihood, one instead minimizes the distance
between observed and simulated data with respect to parameters.

ABC rejection sampling

A simple algorithm reminiscent of rejection sampling (Pritchard et al., 1999) can be formu-
lated (Algorithm 2), which generates a sample θ∗ ∼ π(θ) from the prior distribution π(θ),
simulates data x∗ ∈ D from this parameter, and accepts sample θ∗ based on a distance
function d between x∗ and the observed data x0 ∈ D with a given threshold ε. Thereby,
we obtain an approximation of the posterior distribution π(θ|d(x0, x

∗) < ε). The smaller ε
the better the approximation to the true posterior. However, this procedure is ineffective if
the prior distribution and the posterior are very different as most samples will be rejected.

ABC sequential Monte Carlo sampling

Therefore, one typically performs a sequential Monte Carlo (particle filtering) variant of
ABC (Toni et al., 2009). Sequential Monte Carlo applies multiple rounds of rejection
sampling with decreasing tolerance levels ε1, . . . , εM and proper reweighing of parameters.
The posterior from the last iteration is used as a prior for the next iteration, after applying
small perturbations via a kernel K (Algorithm 3). The algorithm yields a sample from the
approximate posterior π(θ|d(x0, x

∗) < εM ), but is more efficient than rejection sampling

5However, a notable exception is the estimation of the mean of a Gaussian. Here, both sampling distribution
and posterior are identical t-distributions, hence giving the same results for confidence and credibility
intervals.
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Algorithm 2: ABC rejection sampling

Input: Prior π(θ), observed data xo, tolerance level ε, distance function d, number
of samples N

Output: Sample θ from the approximate Posterior π(θ|d(x0, x
∗) < ε)

θ = ∅ ; // set of accepted parameters

i = 0;
while i < N do

θ∗ ∼ π(θ) ; // sample from prior

Simulate data x∗ from θ∗;
d∗ = d(x∗, xo);
if d∗ ≤ ε then

θ = θ ∪ θ∗ ; // Accept θ∗

i = i+ 1;

else
Reject θ∗;

end

end

due to its lower rejection rate. For a detailed derivation and analysis of the algorithm, see
Toni et al. (2009).

To achieve optimal performance several parameters of the algorithm need to be tuned:
First, the number of accepted particles per iterations has to be set so large that the
accepted particles give a good approximation of the distribution, but on the other hand,
so small that it is computationally still tractable. Typical choices are in the order of 103

(Toni et al., 2009). Second, a perturbation kernel K has to be selected. Here, usually a
uniform or Gaussian kernel is selected whose width decreases with decreasing tolerance
level (Lillacci and Khammash, 2013). Last, the number of iterations and the associated
tolerance schedule [ε1, . . . , εM ] has to be defined. Optimally, one chooses a schedule where
the distances between consecutive distributions θm is minimal (high acceptance rates)
but at the same time keeping the number of iterations to a minimum (computational
efficiency). Several methods of automatically determining the tolerance schedule have
been proposed recently (Beaumont et al., 2009; Silk et al., 2012; Moral et al., 2011).

Note that for a stochastic model, it is not enough to create a single simulation from a
parameter set which is compared to the observed data. Due to the inherent randomness
the distance between a single realization of the model and the observed data can be large
even if the true parameters were used. Hence, one has to simulate many realizations for
given parameters, making the method computationally challenging.

Distance function

For applications, it is most crucial to design an appropriate distance function d that deter-
mines if the simulated and observed data are similar. Often it is difficult (and ineffective
due to the curse of dimensionality) to design a distance function between the complete
datasets x0 and x∗. Therefore, the distance function is typically computed on summary
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Algorithm 3: ABC sequential Monte Carlo sampling

Input: Prior π(θ), observed data xo, tolerance levels ε1, . . . , εM , distance function
d, number of samples N , kernel K

Output: Sample θM from the approximate Posterior π(θ|d(x0, x
∗) < εM )

m = 0;
while m ≤M do

n = 0;
θm = ∅ ; // set of accepted parameters

while n ≤ N ; // iterate until N particles accepted

do
if m == 0 then

θ∗∗ ∼ π(θ) ; // sample from prior

else
Sample θ∗ from population θm−1 with weights wm−1;
θ∗∗ ∼ K(θ∗∗|θ∗) ; // perturb θ∗ with kernel K

end
Simulate data x∗∗ from θ∗∗;
d∗∗ = d(x∗∗, xo);
if d∗∗ ≤ εm then

θm = θm ∪ θ∗∗ ; // Accept θ∗∗

w
(n)
m =

1 m = 0
π(θ∗∗)∑

j w
(j)
m−1K(θ∗∗|θ(j)

m−1)
m > 0

; // Calculate weight for θ∗∗

n = n+ 1;

end

end
m = m+ 1;

end

statistics of the datasets, e.g. d(S(x0), S(x∗)), where S(x) ∈ Rk is a vector of k summary
statistics of the data x. Hence, one has to carefully choose these summary statistics to en-
sure that they capture the relevant features of the system. Usually one chooses a distance
function based on the Lp-norm (p ≥ 1)

dLp(S(x0), S(x∗)) = ‖S(x0)− S(x∗)‖p =

(
k∑
i=1

|Si(x0)− Si(x∗)|p
)1/p

,

with e.g. p = 2 (“Euclidean distance”) or p = 1 (“Manhattan distance”). However, it has
been shown that the infinity norm L∞(x) = max(|x1|, . . . , |xk|) is beneficial under certain
circumstances as it allows to derive an upper bound on the number of simulations per
parameter required (Lillacci and Khammash, 2013).
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2.4 Graphical models

In this section, we will briefly introduce graphical models as a concept to represent the
joint probability distribution of various variables, e.g. observed quantities, hidden variables
and unknown parameter. We also discuss inference in tree-structured graphical models via
the sum-product algorithm, which is applied in context of cellular genealogies in chapter 5.
For a comprehensive treatment of graphical models, we refer to Murphy (2012) or Bishop
(2006).

Consider a set of variables X = {X1, . . . , Xn} (sets of variables are denoted in bold).
Generally, any joint probability distribution p(X) of the n variables can be decomposed
into

p(X) = p(X1, . . . , Xn)

= p(X1) · p(X2|X1) · p(X3|X2, X1) · . . . · p(Xn|X1, . . . , Xn−1) . (2.13)

Note that the factorization is not unique, because one can simply relabel the variables.
This representation of the joint distribution is however not very useful, as every variable
depends on all the previous variables.

2.4.1 Conditional independence

The key idea to represent this joint density more compactly is to make some problem-
specific conditional independence assumptions. Two variables X,Y are conditionally in-
dependent given a third variable Z, written as (X ⊥ Y )|Z if and only if

p(X,Y |Z) = p(X|Z) · p(Y |Z) ,

or equivalently
p(X|Y,Z) = p(X|Z) .

These conditional independence assumptions then simplify the right hand side of Eq. (2.13).
For example, consider a Markov chain (X1, X2, X3, X4) of length four, i.e. we assumed
(Xi−1 ⊥ Xi+1)|Xi such that “past and future are independent given the present”. Instead
of the general factorization in Eq. (2.13), we obtain the much simpler expression

p(X1, X2, X3, X4) = p(X4|X3) · p(X3|X2) · p(X2|X1) · p(X1) ,

where every variable is just conditioned on its immediate predecessor.

2.4.2 Directed graphical models

Any given factorization of the joint probability density can be visualized as a directed
acyclic graph G = (V ,E) where the set of nodes V = {X1, . . . , Xn} are the variables in
joint distribution and there exists a directed edge (Xi, Xj) from Xi to Xj if any term of
the factorization has Xj conditioned on Xi. These models are termed directed graphical
models, Bayesian networks or belief networks.

In case of the general factorization of Eq. (2.13), the resulting graph will be fully con-
nected. By applying conditional independence assumptions, some edges will be removed
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A B

Figure 2.1: Directed graphical models. A) A directed graphical model representing
the general factorization of the joint distribution p(X1, X2, X3, X4) = p(X1) · p(X2|X1) ·
p(X3|X2, X1) · p(X4|X3, X2, X1) of Eq. (2.13). The graph is fully connected. B) Ap-
plying particular conditional independence assumptions (in this case the Markov prop-
erty (Xi−1 ⊥ Xi+1)|Xi) simplifies the factorization into p(X1, X2, X3, X4) = p(X4|X3) ·
p(X3|X2) · p(X2|X1) · p(X1) and yields a simpler graphical model.

from the graph (see Fig. 2.1). For a given directed graphical model G = (V ,E) we can
read off the factorization that it encodes via

p(X1, . . . , Xn) =

n∏
i

P (Xi|pa(Xi)) , (2.14)

where pa(Xi) = {Xj ∈ V |(Xj , Xi) ∈ E} denotes the parents of node Xi. To derive the
conditional independence assumptions a directed graphical model encodes, the concept of
d-separation is used (Geiger et al., 1990).

2.4.3 Inference

Given a graphical model G = (V ,E) and observations of a subset of nodes Xv ⊂ V , one
can now perform inference on G, that is, estimate the hidden variables Xh = V \Xv given
the observed variables Xv

6. The task is to calculate the posterior of the hidden variables
via Bayes’ theorem:

p(Xh|Xv) =
p(Xv|Xh)π(Xh)

p(Xv)
=

p(Xv|Xh)π(Xh)∑
X′h

p(Xv|X ′h)π(X ′h)
.

Here, we will introduce the “sum-product” algorithm (also known as belief propagation)
which performs exact inference on trees, i.e. connected graphs where there exists only a
single path between any two nodes. For more general graphs, the “junction tree” algorithm
is an alternative for exact inference, but will not be discussed here (see e.g. Murphy, 2012).

6Unknown parameters can simply be included into Xh and inferred from the observed data together with
the hidden variables.
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A B

C

Figure 2.2: Factor graph representation. A) A directed graphical model representing
the joint distribution p(X1, X2, X3, X4) = p(X1)·p(X2|X1)·p(X3|X2)·p(X4|X2). B) Factor
graph representing the same joint distribution as the model in A), with f1(X1) = p(X1),
f2(X1, X2) = p(X2|X1), f3(X2, X3) = p(X3|X2), and f4(X3, X4) = p(X4|X2). C) Another
factor graph for the model in A) is less explicit about the factorization, with f1(X1) =
p(X1) · p(X2|X1) and f2(X2, X3, X4) = p(X3|X2) · p(X4|X2).

Factor graphs

To derive the sum-product algorithm in a simple form, we first introduce the idea of a factor
graph. Suppose we decompose the joint distribution of over the variables X = {X1, . . . Xn}
into a product of factors fs, such that

p(X) = p(X1, . . . , Xn) =
∏
s

fs(Xs) , (2.15)

where each Xs ⊂ X is a subset of variables (the sets can overlap). Comparing to
Eq. (2.14), we see that the factors fs correspond to the conditional probability distri-
butions P (Xi|pa(Xi)) in directed graphical models.

Eq. (2.15) can be represented as a bipartite graph, which is a graph with two kinds
of nodes and edges exist only between nodes of different kind. In a factor graph, one
set of nodes represents the variables X, the other set of nodes represents the factors fs.
Undirected edges link a factor fs(Xs) to its associated variables Xs. One can now convert
a directed graphical model into a factor graph (see Fig. 2.2). However, multiple factor
graphs correspond to the same directed graphical model, depending how explicit we are
about the factorization (see Fig. 2.2B,C). Note that any tree-structured directed graphical
model will result in a tree-structured factor graph (Bishop, 2006).

The sum-product algorithm

To goal of the sum-product algorithm is to calculate marginal distributions p(Xi) of a single
variable Xi in the model. Note that from now on, we consider only discrete variables Xi

for simplicity. Naively, one can invoke the definition of the marginal distribution,

p(Xi) =
∑
X1

. . .
∑
Xi−1

∑
Xi+1

. . .
∑
Xn

p(X1, . . . , Xn) , (2.16)
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i.e. summing the joint distribution over all other variables. However, the amount of op-
erations required to evaluate the right hand side scales exponentially with the number of
nodes. If the graph has n nodes, each having K possible discrete states, the memory re-
quired to store the joint distribution is Kn. The key idea is to substitute the factorization
of the joint distribution from Eq. (2.15) into Eq. (2.16),

p(Xi) =
∑
X1

. . .
∑
Xi−1

∑
Xi+1

. . .
∑
Xn

∏
s

fs(Xs) , (2.17)

and to rearrange summations and multiplications, since some factors are independent
of certain summation variables. This leads to a more efficient calculation as sums are
performed locally, operating only on functions fs of a subset of variables Xs. While
this algebraic manipulations could be done manually in principle, one can formulate this
calculation more abstractly on the factor graph in terms of message passing, i.e. local
messages being sent between nodes. We refer the interested reader to Bishop (2006) for a
derivation and here present only the resulting algorithm.

The main result is that the calculation of the marginal distribution of a variable Xi

can be expressed in terms of two types of messages: messages being sent from variable
nodes to factor nodes and messages being sent from factor nodes to variable nodes.

First, messages originating at an unobserved variable node Xi ∈Xh and being sent to
an adjacent factor node fs are defined as

µXi→fs(Xi) =
∏

g∈ne(Xi)\fs

µg→Xi(Xi) , (2.18)

where ne(Xi) refers to all factor nodes connected to Xi. The message of sent from Xi to
fs is just the product of messages µg→Xi received from all neighboring factors g except fs.
If Xi is observed (Xi ∈Xv) and has value a the message is

µXi→fs(Xi) = δXi,a
∏

g∈ne(Xi)\fs

µg→Xi(Xi) , (2.19)

where we “clamp” the observed variable to its value via the Kronecker-δ. Second, a
message from a factor node fs to a variable node Xi is defined as

µfs→Xi(Xi) =
∑
X′1

. . .
∑
X′m

fs(Xs)
∏

Y ∈Xs\Xi

µY→fs(Y ) , (2.20)

where we have labeled the neighbors of node fs as Xs = {X ′1, . . . , X ′m, Xi}. The message
sent from factor fs to variable Xi is calculated by multiplying incoming messages, and
marginalizing this product together with fs over all associated variables except Xi.

Consider two special cases of Eqs. (2.18) and (2.20): if a variable node Xi is a leaf of
the factor graph, the message sent from this node via its only edge is µXi→f (Xi) = 1. If a
factor node is a leaf, the message sent by this factor to its variable node is µf→Xi = f(Xi).

With these definitions the calculation of the marginal distribution of variable Xi re-
duces to a multiplication of incoming messages at node Xi in the factor graph

p(Xi) =
∏

f∈ne(Xi)

µf→Xi(Xi) , (2.21)
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which is the main result of the sum-product algorithm. Note that in the presence of
observed variables, the algorithm calculates the joint distribution p(Xi,Xv) between a
single unobserved variable Xi ∈Xh and the set of observed variables Xv) and we obtain
the evidence of the observed data as p(Xv) =

∑
Xi
p(Xi,Xv). In order to calculate the

marginal distribution p(Xi), we proceeds as follows: (i) Consider the node Xi as the root
of the factor graph tree. (ii) Find all leave nodes, which are either factors or variables.
(iii) Propagate messages from the leaves up towards the roots. Nodes can send outgoing
messages once they received incoming messages from all their children in the tree. (iv)
When the root has received all incoming messages from its children, evaluate Eq. (2.21)
to obtain the marginal distribution.

Let us illustrate the procedure with an example shown in Fig. 2.3. We want to calculate
the marginal distribution of X1 and have observed X4 = a. We root the factor graph in
X1 and start propagating messages from the leaves X4, X5.

µX4→f2(X4) = δX4,a

µX5→f3(X5) = 1 ,

where we clamped the value of the observed variable via the Kronecker-δ and used the
definition of a message sent by leaf variables. Next, we propagate a message from f2 to
X2 according to Eq. (2.20)

µf2→X2(X2) =
∑
X4

f2(X2, X4)µX4→f2(X4)

=
∑
X4

f2(X2, X4)δX4,a

= f2(X2, a) ,

where we collapsed the sum over X4 due to the clamping. Similarly for µf3→X3(X3) we
have

µf3→X3(X3) =
∑
X5

f3(X3, X5)µX5→f3(X5)

=
∑
X5

f3(X3, X5) .

Sending messages towards f1 is simple as variable nodes with only two factors associated
just pass through incoming messages according to Eq. (2.18):

µX2→f1(X2) = µf2→X2(X2)

= f2(X2, a)

µX3→f1(X3) = µf3→X3(X3)

=
∑
X5

f3(X3, X5) .
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Root
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Unobserved variable node

Factor node
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Figure 2.3: Message passing on a factor graph. To calculate the marginal distribution
p(X1) via the sum-product algorithm, the tree-structured factor graph is rooted in X1 and
messages are passed from the leaf nodes X4 (observed) and X5 along the factor graph until
they reach the root node X1. Once the root has received messages from all its children
(in this case only f1) the marginal distribution is calculated via Eq. (2.21).

These messages now converge on f1 which sends to X1 the message (Eq. 2.20)

µf1→X1(X1) =
∑
X2

∑
X3

f(X1, X2, X3) · µX2→f1(X2) · µX3→f1(X3)

=
∑
X2

∑
X3

f(X1, X2, X3) · f2(X2, a) · µX3→f1(X3)

=
∑
X2

∑
X3

f(X1, X2, X3) · f2(X2, a) ·

∑
X5

f3(X3, X5)

 .

AsX1 only has one neighboring node (f1) we find via Eq. (2.21) that the marginal evaluates
to

p(X1) = µf1→X1(X1)

=
∑
X2

∑
X3

f(X1, X2, X3) · f2(X2, a) ·

∑
X5

f3(X3, X5)

 ,

where we see how the algorithm pushed the sum over X5 into the product over factors
and clamped X4 to its observed value.

If we wanted to calculate the marginal distribution of another node Xj , we could repeat
the above procedure. However, a more efficient way to calculate all marginal distributions
at once is the following: Choosing an arbitrary node as the root, propagate messages from
leaves to root as before. Once all messages have arrived at the root, send out messages
from the root down towards the leaves. After those two passes, every node will have
received messages from all its neighbors, and one can efficiently evaluate the marginal
distribution of every node in terms of messages via Eq. (2.21). We only have to store
the messages that were generated during the passes. Overall, we have to compute 2 ·m
messages with m the number of edges in the graph, as opposed to m ·n when running the
sum-product algorithm for each of the n nodes individually.
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Variants of the sum-product algorithm

Although only the sum-product algorithm for discrete variables is used in this thesis, for
the sake of completeness, we mention some variants of the sum product algorithm.

A common variant of the sum-product algorithm is the max-product algorithm (for
details, see Bishop, 2006), which allows to calculate the most probable configuration of the
graphical model, or equivalently the mode of the joint distribution p(X). Here, one simply
replaced the sums within the sum-product algorithm with max()-operations. A numeri-
cally stable version replaces probabilities by log-probabilities and is called the max-sum
algorithm. When one departs from discrete to continues variables, summations become
integrals, and generally, no exact algorithms exist for inference, since most integrals cannot
be solved analytically. An important exception are directed Gaussian graphical models7.
While the sum-product and max-product algorithms are exact for tree-structured mod-
els, for general graphs containing cycles, different strategies have to be used. Variable
elimination and the junction tree algorithm (for details, see Murphy, 2012) provide exact
inference, however the computational complexity of both is exponential in the number of
nodes in the worst case. Instead one can resort approximate algorithms, e.g. loopy belief
propagation (standard sum-product applied to non tree-structured graphs), variational
mean field, or Gibbs sampling (all discussed in e.g. Murphy, 2012).

7Each single variable has a Gaussian distribution whose mean is a linear combination of the parent nodes.
Consequently, also the joint distribution is Gaussian.



Chapter 3

Mechanistic models of binary cell
fate choice: genetic toggle switches

As discussed in chapter 1, toggle switches serve as current paradigm of how binary fate de-
cisions are implemented molecularly. In this chapter, we study the dynamics of a stochastic
two stage toggle switch model, which explicitly accounts for mRNA synthesis and degra-
dation. We find that, contrary to the expectation from a deterministic description, this
switch shows complex multi-attractor dynamics even without autoactivation and cooper-
ativity. Other stochastic models of toggle switches studied so far (Lipshtat et al., 2006;
Kepler and Elston, 2001; Schultz et al., 2008; Warren and ten Wolde, 2004) focused on a
one stage model of gene expression without explicitly considering mRNA as an intermedi-
ate stage. Here, we discover that when accounting for mRNA the toggle switch shows novel
attractors which can be identified with committed and primed states in cell differentiation.
Notably, we present a system with high protein abundance that nevertheless requires a
probabilistic description to exhibit multistability and complex switching dynamics. In the
second part of this chapter, we show how a toggle switch model can account for observed
differentiation dynamics in granulocyte/monocyte progenitors by fitting the model using
Approximate Bayesian Computation. Here, the fitted model predicts different timescales
in the dynamics of granulocyte and monocyte differentiation.

Methods, results and figures of this chapter are based on Strasser et al. (2012) and
Marr et al. (2012).

3.1 Dynamics of a genetic toggle switch based on a two-
stage model of gene expression

Probabilistic models of the toggle switch account for low copy numbers and intrinsic fluc-
tuations. Kepler and Elston (2001) discussed the dynamics of an exclusive switch, where
two genes share the same promoter within a probabilistic framework. A comparison of
simple switch circuitries is given by Warren and ten Wolde (2004). Contrary to determin-
istic models, transitions between the two macroscopic regimes where one of the two genes
dominates are possible due to the inherently noisy gene transcription (Schultz et al., 2008;
Walczak et al., 2005a), even without cooperative binding of transcription factors (Lipshtat
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Figure 3.1: Scheme of the two-stage switch. Species associated with gene A are shown
in gray, species associated with B are shown in white. Solid arrows indicate synthesis and
binding, jagged arrows indicate degradation. mRNAA is transcribed from DNAA with
rate αA. It decays with rate γA and is translated into ProteinA with rate βA. ProteinA

decays with rate δA and can bind (unbind) DNAB with rate τ+
A (τ−A ). Protein-bound DNA

leads to transcriptional arrest. The topology is symmetric with respect to the genes A
and B, thus, the same reactions exist for B.

et al., 2006). More recent contributions focused on analytic descriptions (Walczak et al.,
2005b; Schultz et al., 2007), the switching time between macroscopic regimes for different
regulatory realizations (Loinger et al., 2007; Barzel and Biham, 2008; Schultz et al., 2008)
or parameter regimes (Walczak et al., 2005a), boundaries for the switching time (Bialek,
2001), or delay effects (Zhu et al., 2007). Notably, all of these approaches are based on a
one-stage model of gene expression, where DNA is directly processed into functional pro-
teins. However, it has been shown that the characteristics of protein noise strongly depend
on the underlying expression model (Thattai and van Oudenaarden, 2001; Shahrezaei and
Swain, 2008).

In this section, we abstract the regulatory details of the prominent myeloid PU.1/Gata1
mutual inhibition. Contrary to common belief, which advocates the lumping of the two
stages of expression, we show that the inclusion of both mRNA and protein leads to an
interesting change in system dynamics. The probabilistic two-stage description exhibits
complex multi-attractor dynamics without autoactivation and cooperativity.

Remarkably, a recent study reported low numbers of mRNAs in single murine blood
cells: Warren et al. (2006) found around 10 transcripts of the PU.1 gene per cell in
common myeloid progenitors. Furthermore, Schwanhäusser et al. (2011) measured mRNA
abundances for 5000 genes in mouse fibroblasts and showed that the median number of
mRNAs per gene per cell is 17. Filtering these 5000 genes for transcription factors (Gene
ontology ID GO:0006355, Ashburner et al., 2000) results in 722 candidate genes and a
median of 17 mRNAs per transcription factor per cell.

Based on these findings we study a probabilistic description of a toggle switch with
low mRNA numbers, high protein abundance and in accordance with the known role of
PU.1, monomeric transcription factor binding. We deliberately choose the simplest toggle
switch model and neglect autoactivation due to our ignorance of the logic of activation and
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inhibition at the promoter. However our results can easily be extended and are discussed
for the case of dimeric regulation and exclusive autoactivation.

3.1.1 A toggle switch based on a two-stage model of gene expression

We describe the mutual inhibition of two genes, further on called A and B, using a two-
stage model of gene expression (Thattai and van Oudenaarden, 2001; Shahrezaei and
Swain, 2008) with mutual inhibition being realized as DNA-protein binding (see Fig. 3.1).
This kind of switch has been implemented in vivo by Gardner et al. (2000). The model
can be represented as a set of biochemical reactions for A and B, respectively, and a set
of reaction rates α, β, etc. (see chapter 2):

DNAA
αA−−→ DNAA + mRNAA

mRNAA
γA−→ ∅

mRNAA
βA−−→ mRNAA + ProteinA

ProteinA
δA−→ ∅

ProteinA + DNAB
τ+
A−−→ DNAbound

B

DNAbound
B

τ−A−−→ ProteinA + DNAB

DNAB
αB−−→ DNAB + mRNAB (3.1)

mRNAB
γB−→ ∅ (3.2)

mRNAB
βB−→ mRNAB + ProteinB (3.3)

ProteinB
δB−→ ∅ (3.4)

ProteinB + DNAA
τ+
B−−→ DNAbound

A (3.5)

DNAbound
A

τ−B−−→ ProteinB + DNAA (3.6)

Reactions (3.1) and (3.2) correspond to mRNA transcription from an unbound promoter
and mRNA degradation, respectively. Reactions (3.3) and (3.4) resemble protein transla-
tion and degradation. The reactions (3.5) and (3.6) describe the binding and unbinding of
a protein to the antagonistic gene and thereby the transition from an active to an inactive
promoter and vice versa. Bound DNA lacks the ability to be transcribed. These two
reactions subsume a more intricate mechanism of transcription-factor-DNA interaction
(Gerland et al., 2002). Note that we assume monomeric transcription factor binding as
the simplest of regulatory interaction (which can induce bimodal gene expression, Lipshtat
et al., 2006). Our system’s topology is symmetric with regard to the two genes, and so
are the two columns of reactions (3.1)–(3.6) upon the exchange of gene labels A and B.

This model of gene expression is a highly simplified abstraction of the complex processes
in the cell. Condensing transcription into a single biochemical reaction does not account
for the various steps required to transcribe a gene, e.g. the assembly of the transcription
initiation complex, unwinding of DNA or transition of the polymerase to elongation phase.
Postprocessing and transport mechanisms are also neglected. However, simplified models
of gene expression have successfully been applied to experimental data, supporting the
validity of these simplifications (Harper et al., 2011; Raj et al., 2006; Huang et al., 2007).

3.1.2 Deterministic model

Most commonly one will study the properties of the system in a deterministic framework
using ordinary differential equations (ODEs) that describe the time-evolution of species



44 CHAPTER 3. STOCHASTIC TOGGLE SWITCH MODELS

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

n
A

n
B

Figure 3.2: Phase portrait of the deterministic two-stage toggle switch model
projected onto the NA and NB dimensions. The same parameters were used as in
the probabilistic model of Fig. 3.3 and Fig. 3.4. The ODE was solved for different initial
protein concentrations nA, nB and the mRNA concentrations where set to mA = 0.01 · nA

and mB = 0.01 · nB, resembling the fact that for the given parameters each mRNA will
correspond to approximately 100 proteins. Trajectories are arbitrarily colored to improve
readability. Note that trajectories can intersect as this in only a projection of the full
system. Inspection of the phase portrait reveals the single steady state (red dot) as
predicted by Eqs. (3.19)–(3.20). No limit cycles are visible in the phase portrait.

concentrations (Roeder and Glauche, 2006; Huang et al., 2007; Chickarmane et al., 2009;
Cherry and Adler, 2000). The ODEs can directly be inferred from reactions (3.1)–(3.6)
assuming mass action kinetics:

d

dt
dA = τ−B · (1− dA)− τ+

B · dA · nB (3.7)

d

dt
dB = τ−A · (1− dB)− τ+

A · dB · nA (3.8)

d

dt
mA = αA · dA − γA ·mA (3.9)

d

dt
mB = αB · dB − γB ·mB (3.10)

d

dt
nA = βA ·mA − δA · nA + τ−A · (1− dB)− τ+

A · dB · nA (3.11)

d

dt
nB = βB ·mB − δB · nB + τ−B · (1− dA)− τ+

B · dA · nB , (3.12)

where d∗ is the abundance of unbound DNA∗, m∗ is the abundance of mRNA∗ and n∗ is
the abundance of Protein∗ for ∗ ∈ {A,B}. Bound DNA is expressed in terms of unbound
DNA due to mass conservation. Note that these quantities are now continuous and have
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to be interpreted as an average over a population of cells, i.e. with dA = 0.5, in half of the
cells in the population, DNAA is unbound.

We now solve Eqs. (3.7)–(3.12) at steady state by setting all time derivatives to zero.
Using symmetric parameters for simplicity1 we obtain the two following steady state so-
lutions of Eqs. (3.7)–(3.12):

mA
(1) = mB

(1) = − δτ−

2βτ+
(1− η) (3.13)

nA
(1) = nB

(1) = − τ−

2τ+
(1− η) (3.14)

dA
(1) = dB

(1) =
2

1 + η
(3.15)

mA
(2) = mB

(2) = − δτ−

2βτ+
(1 + η) (3.16)

nA
(2) = nB

(2) = − τ−

2τ+
(1 + η) (3.17)

dA
(2) = dB

(2) =
2

1− η
(3.18)

with η =
√

4αβτ+

γδτ− + 1. The first solution is positive, the second is negative (given all

parameters are positive). Only the positive solution is of interest in biological systems,
and given non-negative initial conditions the system will always converge towards the
positive steady state solution (Müller-Herold, 1975).

Note that for small τ+, Eqs. (3.13) and (3.14) reduce to the steady state solution of a
simple two stage expression model (Thattai and van Oudenaarden, 2001)

nA
(1) = nB

(1) =
αβ

γδ

mA
(1) = mB

(1) =
α

γ
,

because

η ≈ 1 +
2αβτ+

γδτ−

for small τ+ through the Taylor approximation

(1 + x)n ≈ 1 + nx for |x| � 1 .

This is expected since setting τ+ to 0 removes the interaction between both players, which
will then evolve independently according to a two-stage expression model.

For decreasing τ− the solution of the system approaches the origin

nA
(1) = nB

(1) = 0

mA
(1) = mB

(1) = 0

1α = αA = αB, β = βA = βB, γ = γA = γB, δ = δA = δB, τ+ = τ+
A = τ+

B and τ− = τ−A = τ−B
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because η ≈ const√
τ−

and therefore the right hand sides of Eqs. (3.13) and (3.14) reduce to

const · τ−√
τ−

. For decreasing τ− this term will approach 0. Hence, if proteins never unbind

the promoter, the system will be locked forever yielding 0 protein and mRNA levels in
steady state.

We now assess the stability of the positive solution Eqs. (3.13)–(3.15) using stan-
dard linear stability analysis (see chapter 2). To reduce the complexity of our system
for the stability analysis, we apply a quasi steady state approximation to the DNA bind-
ing/dissociation process (ḋA = ḋB = 0), reducing the dimensionality of our system to four
equations:

d

dt
mA = αψ(nB)− γmA

d

dt
mB = αψ(nA)− γmB

d

dt
nA = βmA − δnA + τ−(1− ψ(nA))− τ+ψ(nA)nA

d

dt
nB = βmB − δnB + τ−(1− ψ(nB))− τ+ψ(nB)nB ,

with ψ(x) = τ−

τ−+x·τ+ . The reduced system has the positive steady state solution

mA
(ss) = mB

(ss) = − δτ−

2βτ+
(1− η) (3.19)

nA
(ss) = nB

(ss) = − τ−

2τ+
(1− η) (3.20)

with η =
√

4αβτ+

γδτ− + 1. Notice that this is the same as the solution for mRNA and protein

of the full system (Eqs. 3.13 and 3.14). We calculate the Jacobian matrix of the reduced
system as

J =


−γ 0 0 ατ+

τ− · ψ
2(nB)

0 −γ ατ+

τ− · ψ
2(nA) 0

β 0 −δ + τ+ψ2(nA)[1 + τ+nA − ψ−1(nA)] 0
0 β 0 −δ + τ+ψ2(nB)[1 + τ+nB − ψ−1(nB)]

 .

We evaluate the Jacobian at the steady state solution of the reduced system (Eqs. 3.19–
3.20) and use the Hurwitz criterion to verify that all its eigenvalues have negative real
part. We conclude that the system has one stable positive fixed point but we cannot
analytically exclude the existence of limit cycles. However, inspection of the system’s
phase portrait (see Fig. 3.2) indicates that no limit cycles exist. Summarizing, we showed
that the deterministic model has only one steady state solution and is thus monostable.

3.1.3 Stochastic model

Since the deterministic approach is only valid in the limit of large numbers, small molecule
numbers of DNA, mRNA, and possibly proteins advocate a discrete probabilistic descrip-
tion of the toggle switch. We define the state of the system at time t as a vector x(t),
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where xi(t) ∈ N0 is the abundance of species i at time t. Note that the state space is
discrete as opposed to the deterministic model. To emphasize this difference we use the
uppercase notation DA, DB, MA, MB, NA, NB for the number of molecules of the re-
spective species. In particular, there is only one copy of DNA present which is either
bound or unbound, such that DA ∈ {0, 1} and DB ∈ {0, 1} and the DNA state changes
via reactions (3.5)–(3.6).

We can describe how the probability P(x, t) of being in a certain state x changes over
time by using the Chemical Master Equation of the system (see chapter 2). We define
Pij(MA,MB, NA, NB, t) as the probability at time t to have MA copies of mRNAA, MB

copies of mRNAB, NA copies of ProteinA, NB copies of ProteinB, and the correspond-
ing promoter configuration ij where 0 (1) means an unbound (bound) promoter. The
master equation of the reaction system (3.1)–(3.6) splits up into four coupled equations
corresponding to the four promoter states and takes the explicit form:

d

dt
P00(MA,MB, NA, NB, t) = τ−AE

−
NA
P01(MA,MB, NA, NB, t)

+ τ−BE
−
NB
P10(MA,MB, NA, NB, t)

+ [−τ+
BNB − τ+

ANA + αA(E−MA
− 1)

+ αB(E−MB
− 1) + γA(E+

MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB

+ δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P00(MA,MB, NA, NB, t)

d

dt
P11(MA,MB, NA, NB, t) = τ+

AE
+
NA
NAP10(MA,MB, NA, NB, t)

+ τ+
BE

+
NB
NBP01(MA,MB, NA, NB, t)]

+ [−τ−A − τ
−
B + γA(E+

MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB

+ δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P11(MA,MB, NA, NB, t)

d

dt
P10(MA,MB, NA, NB, t) = τ−AE

−
NA
P11(MA,MB, NA, NB, t)

+ τ+
BE

+
NB
NBP00(MA,MB, NA, NB, t)

+ [−τ−B − τ
+
ANA + αB(E−MB

− 1)

+ γA(E+
MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB

+ δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P10(MA,MB, NA, NB, t)
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d

dt
P01(MA,MB, NA, NB, t) = τ+

AE
+
NA
NAP00(MA,MB, NA, NB, t)

+ τ−BE
−
NB
P11(MA,MB, NA, NB, t)

+ [−τ+
BNB − τ−A + αA(E−MA

− 1)

+ γA(E+
MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB

+ δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P01(MA,MB, NA, NB, t) .

The shift operators E+
x and E−x increase or decrease the function argument x by one, i.e.

E±x f(x) = f(x± 1). To our knowledge no results have yet been published on the solution
of stochastic two-stage switches.

Since the master equation for the switch is analytically solvable only for a number
of approximations (see e.g. Walczak et al., 2010) and not integrable for large molecule
abundances, we simulate the system trajectories using Gillespie’s algorithm (see chapter 2
and Gillespie, 1976). Each trajectory follows the master equation, and the set of infinite
trajectories constitutes the distribution that solves the master equation.

3.1.4 Choice of parameters

To obtain appropriate parameters values for stochastic simulation, we delineate upper
bounds for synthesis parameters from biophysical arguments and adapt degradation pa-
rameters to fit desired molecular levels. Table 3.1 lists the set of used parameter values.

First we derive upper boundaries for the transcription and translation rates. Tran-
scription of DNA into mRNA is accomplished by the RNA-polymerase. One polymerase
can process about 10-20 nucleotides (nt) per second in eukaryotes (Alberts et al., 2002;
Dahlberg and Benkovic, 1991; Singh et al., 2007). As described by Alberts et al. (2002)
the newly elongated RNA fragment is immediately released from the DNA, which enables
other polymerases to follow up even before the first mRNA has been completed. The
distance d between polymerases is estimated to be around 100 nt (Kennell and Riezman,
1977). The rate of transcription is independent of the sequence length l, since the longer
the gene, the more polymerases can process it in parallel. Altogether we find the maximal
transcription rate α by dividing the speed of transcription v with the sequence length l,
multiplied with the number of transcribing polymerases,

α =
v

l
· n
d
≈ 10 nt/s

l
· l

100 nt
= 0.1s−1

required that enough polymerases and nucleotides are present.

The maximal translation rate can be inferred in a similar way: Ribosomes, large
complexes of proteins and rRNAs that translate mRNA into polypeptides, proceed with
a speed v of 2 codons (= 6 nt = 2 amino acids) per second in eucaryotes (Alberts et al.,
2002). One mRNA can be processed by many ribosomes (polyribosomes) at the same time
(Alberts et al., 2002). The average space between two ribosomes is 80 nt or ≈ 27 amino



3.1. DYNAMICS OF A STOCHASTIC TWO-STAGE TOGGLE SWITCH 49

acids (AA) (Alberts et al., 2002). Therefore the overall translation rate for an mRNA of
length n is

β ≈ 2AA/s

l

l

27AA
= 0.074s−1 ,

again independent of the mRNA length l. This corresponds to the maximally possible
translation rate. The actual rate will be smaller when not enough ribosomes or other
involved molecules (tRNA, amino acids) are present. We estimate the minimal translation
time as 1/0.074s−1 = 13.5s, which is in good agreement with literature, where the time
needed for one translation is said to be between 20 seconds and several minutes (Alberts
et al., 2002). Notably, these transcription and translation rates only provide rough esti-
mates of the relevant timescale. Throughout the manuscript, we use a transcription and
translation rate of α = β = 0.05 s−1, corresponding to an average time of 20 seconds per
product, which seems to be reasonable in the context of the above considerations. The
fact that both rates are equal is not expected to have influences on the results.

Interactions between proteins and DNA are mediated by specific regions of the pro-
teins, called DNA-binding domains, which on the one hand can recognize specific DNA
sequences and on the other hand maintain the interaction between DNA and protein.
Zinc Fingers, Leucine Zippers or Helix-Turn-Helix motifs are prominent examples of DNA
binding domains (Alberts et al., 2002). The binding between DNA and protein is main-
tained by hydrogen bonds, ionic bonds, and hydrophobic interactions. Single interactions
are weak, but as many bonds are formed, the binding between DNA and protein becomes
stronger. The binding rates are very fast compared to transcription and translation pro-
cesses and according to Alon (2006) in the range of 1s−1Protein−1 in Eschericia coli. The
unbinding rate depends on the strength of the interaction and is assumed to be 10 times
smaller (0.1s−1) in our model, leading to strong binding of the protein to the DNA. All
reaction rates of the models used in this work are summarized in Table 3.1.

As we showed above, the transcription and translation rates have upper bounds. The
only way for a cellular system to further increase the abundance of proteins is to modulate
the degradation rates of mRNA or proteins, giving longer lifetimes to mRNA and proteins.
Thus, during this work we manipulate the degradations rates to adjust the system’s protein
level to a desired steady state. Notably, following the report of Warren et al. (2006), mRNA
levels are set to 10 by adjusting the decay rate.

Reaction Parameter value

Transcription α 0.05s−1

Translation β 0.05 s−1mRNA−1

mRNA degradation γ 0.005 s−1

Protein degradation δ 5 · 10−3 to 5 · 10−6s−1

DNA binding τ+ 1 s−1Protein−1

DNA dissociation τ− 0.1 s−1

Table 3.1: Parameters of the switch model used throughout this work. Protein degrada-
tion is chosen according to the desired protein level n. If not mentioned otherwise, all
simulations and plots are based on this set of parameters.
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Figure 3.3: Dynamics and quasi-potential of the switch showing the different
attractors of the system. A) The timecourse of NA(t) − NB(t) clearly shows the
dominating attractors, which can be separated in state space via the thresholds χA and
χB. Either A dominates (attractor SA), or B dominates (attractor SB), or the system is
temporarily locked by two bound promoters with only marginal protein expression of A
or B (attractors S∗A and S∗B). A histogram of NA(t) − NB(t) is shown on the right. B)
The quasi-potential, defined as Ũ(x) = −logP(ss)(x), includes the mRNA dimension of
the system. It shows the four possible attractors as basins in a probability landscape. SA

and SB are visible as basins at the lower left and upper right corners, whereas S∗A and S∗B
are located around the origin ( NA−NB = MA−MB = 0) of the landscape. Additionally,
the outflux J(x) acting on the system at the state x in state space are indicated as lines
(circles correspond the the origin of the vector). Note that the outflux is different from
concept of deterministic field lines. These vectors show that there are different paths for
entering and leaving the dominating attractors. Parameters for the simulation are given
in Table 3.1.

3.1.5 Quasi-potential

In this section we discuss the main features of the switch dynamics. Contrary to the
deterministic model, time courses of the stochastic toggle switch model show multistable
behavior (Fig. 3.3A). Given the parameters in Table 3.1 our toggle switch can adopt



3.1. DYNAMICS OF A STOCHASTIC TWO-STAGE TOGGLE SWITCH 51

different attractors (for an informal definition of a stochastic attractor, see section 2.2.5):
The two attractors where one player dominates the other (called SA and SB depending
on which player dominates) are clearly visible in Fig. 3.3A. A careful inspection of the
timecourse and the probability distribution in Fig. 3.3A shows that there also exist two
intermediate attractors where protein numbers are similar (NA−NB ≈ 0). These attractors
are called S∗A and S∗B from now on. In the timecourses of the system (Fig. 3.3A) one
observes that the system frequently switches between the dominating and the intermediate
attractors.

To get a deeper understanding of the complex dynamics of the system the notion of
a quasi-potential can be used. Usually, one defines a potential U(x) such that the forces
F (x) acting on the system correspond to the gradient of U(x):

F = −∇U .

However, such a potential does not exist in general (if the curl ∇ × F is non-zero) and
hence, one has to approximate it by a quasi-potential Ũ(x) such that

F = −∇Ũ + Fr , (3.21)

where F has been decomposed into a gradient of a potential and a remainder force Fr. De-
pending on the choice of Fr, different quasi-potentials can be constructed (for an overview,
see Zhou et al., 2012). In the following, we pursue the construction proposed by Wang
et al. (2011) such that Ũ(x) = − logP(ss)(x), where P(ss)(x) is the steady state distri-
bution of the system. Note that for our purpose, the particular choice of quasi-potential
is not important as it is used only as a visualization and no quantitative arguments are
made.

The number of dimensions of the state space where the quasi-potential is defined
equals the number of species in the system. Here the probability P(ss)(x) of a state x in
steady state is estimated from 15000 stochastic simulation runs obtained by the Stochkit
software toolkit (Sanft et al., 2011). In Fig. 3.3B the projection of the quasi-potential on
the NA −NB, MA −MB plane is shown. The four attractors SA, SB, S∗A and S∗B can be
seen clearly in the quasi-potential of the system. The two attractors SA and SB appear
as basins at the lower left and upper right corner of Fig. 3.3 whereas the intermediate
attractors S∗A and S∗B are located at the center and are not well separated.

The dominating attractors can easily be distinguished from the intermediate attractors
via parameter dependent thresholds χA, χB in the protein dimension, which we derive in
the following: We approximate the protein number distribution in the attractors SA and
SB using results from Thattai and van Oudenaarden (2001), who showed that for a simple
two-state expression model, the mean and variance of protein numbers obey

N̄ =
αβ

γδ
and σ2 =

β2α

γ2δ + δ2γ
,

respectively. Thereby, we assume that in the dominating attractors, the presence of the
antagonist can be neglected due to its marginal transcription. We define the boundary χx
of attractor Sx using a normal approximation of the dominating protein’s distribution as

χx = N̄x − Zq · σx , (3.22)
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where Zq is the q% quantile of the standard normal distribution of the protein number
with mean 〈n〉x and standard deviation σx. Using q = 0.1 throughout our study assures
that 99.9% percent probability mass of the distribution lies beyond the lower boundary.
Therefore we are certain to capture all relevant protein numbers belonging to SA and SB.
Using these boundaries, we can define the attractors SA and SB accordingly:

SA = {s ∈ S|NA > χA ∧NB < χB}
SB = {s ∈ S|NA < χA ∧NB > χB} .

Importantly, one has to keep in mind that the system considered is out of equilibrium
and that the dynamics of a non-equilibrium system are not entirely determined by the
gradient of the quasi-potential Ũ but by the additional remainder force Fr stemming from
the non-integrability of the system (see Eq. 3.21 and Wang et al., 2008). As a consequence
barrier heights in the quasi-potential do not necessarily correlate with the probability of
crossing the barrier.

To understand the dynamics of the switch in more detail we therefore consider for each
state x in the state space the outflux J(x) acting on the the system at this point (Schultz
et al., 2008). We calculate the outflux as:

J(x) = P(ss)(x)
∑
y

P(y|x)(y − x) ,

where the probability P(y|x) of state y succeeding state x and the probability P(ss)(x) are
calculated from stochastic simulations. Note that the outflux is different from the concept
of field lines used in phase portraits of ordinary differential equations. The outflux J(x)
is plotted as small arrows in Fig. 3.3 (vectors are normalized and circles correspond the
origin of the vectors) for all states x with P(ss)(x) > 2.5 · 10−7. This indicates where
the system will move from the current state on average. Due to this outflux the system
enters and leaves the attractors SA and SB through different paths. This phenomenon has
been described by Wang et al. (2010) and linked to the emergence of time directionality
in non-equilibrium systems. In order to move from high (SA or SB) to low (S0) protein
numbers, at first the corresponding mRNA number has to drop. On the contrary, moving
from low to high protein numbers requires the rise of mRNA numbers first.

A different view on the system’s dynamics is provided by the quasi-potential landscape
and outflux in the N total

A , N total
B plane (Fig. 3.4), where N total

A = (1−DB)+NA is the total
number of ProteinA in the system, bound to DNA (first term) or free (second term).
Choosing N total

A and N total
B as projected dimensions shows four distinct basins in the

quasi-potential landscape. Two basins correspond to the attractors SA and SB. These are
characterized by high amounts of the dominating protein and zero proteins of the repressed
species. The attractors S∗A and S∗B are now clearly separated. In these two basins a single
protein of one species is present and only a moderate protein number of the other species.
In the following we show why these basins emerge and how the system moves between the
attractors.

3.1.6 Dynamics in the quasi-potential

We explain the dynamics of the system with a typical trajectory of the system: Let us start
with the trajectory in the attractor SA (lower right) where ProteinA dominates ProteinB.
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Figure 3.4: Quasi-potential of the system projected onto the N total
A and N total

B

dimensions. Note that both axis are on logarithmic scale and are shifted by 1 in order
to include N total

A = 0 and N total
B = 0. Therefore the lowest row in the plot corresponds

to the case N total
B = 0. The quasi-potential Ũ(x) = − logP(ss)(x) is color coded where

red areas reflect minima of the landscape. Visible are four minima corresponding to SA

(lower right), SB (upper left), S∗A (lower middle) and S∗B (middle left). The vectors of the
outflux at each point in state space are drawn as lines (circles correspond the the origin of
the vector). Note that the outflux is different from concept of deterministic field lines. In
contrast to Fig. 3.3 the vectors are normalized and therefore show only the direction, not
the magnitude of the field. Bold arrows reflect typical trajectories (I-VI) of the system.
For a discussion, see the main text.

Due to stochastic fluctuations in the promoter status, eventually a burst of proteins of
B will occur and inhibit the promoter of A, whose protein numbers will drop (Fig. 3.4,
trajectory I). While the formerly dominating ProteinA’s are degraded, also the newly
created ProteinB quickly decreases in numbers and only one bound ProteinB is saved from
degradation. This drives the system towards the origin in the quasi-potential of Fig. 3.4.
However, a single ProteinB cannot completely suppress the promoter of DNAA, leading to
a small but constant synthesis of ProteinA. The system settles into an intermediate state
(S∗A) defined by the presence of one ProteinB and an intermediate amount of ProteinA

originating from the leaky inhibition of DNAA and bursting. In order to leave this basin
the system has two options: Either the single ProteinB is degraded when it momentarily is
not bound to the promoter. Consequently the levels of ProteinA rise again and the system
reaches SA. The system is moved to the lower border of the quasi-potential where a strong
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outflux pushes it towards SA (Fig. 3.4, trajectory II). Alternatively, a burst of ProteinB

displaces the system from S∗A into regions where the vector field points strongly towards
the diagonal NA

total = NB
total (Fig. 3.4, trajectory III). However this burst is typically not

strong enough to move the system onto the diagonal and it will fall back into the basin
S∗A. In order to enable a change from S∗A to S∗B the system has to reach the diagonal.
This is accomplished if, while the system is moving towards the diagonal after the burst,
additional bursts of ProteinB move it onto the diagonal (Fig. 3.4, trajectory IV). Once the
system has hit the diagonal both protein levels will drop to very low numbers since non
of the players has any significant advantage. Here by chance the system will move to any
side of the diagonal and either towards S∗A or S∗B (Fig. 3.4, trajectories V, VI).

We find that leaving S∗A towards SA (Fig. 3.4, trajectory II) is much more probable than
hitting the diagonal from S∗A (Fig. 3.4, trajectory IV), which would provide the chance of
switching. This is obvious from the mechanism described above: Even though the events
triggering the two alternatives (degradation of ProteinB and an initial burst of ProteinB)
have similar probabilities, the diagonal crossing requires additional events and is therefore
much less probable. This cannot be deduced from the quasi-potential landscape alone:
From Fig. 3.4 it can visually be inferred that the barrier separating SA and S∗A is higher
than the barrier separating S∗A and S∗B. This wrongly suggests that moving between S∗A
and S∗B occurs more frequently than moving between SA and S∗A.

Comparing the system dynamics of our switch with other descriptions we find that (i)
deterministic one-stage and two-stage models show no bistability while (ii) a probabilistic
one-stage model exhibits tristability with only one intermediate attractor (Lipshtat et al.,
2006). We speculate that translational bursting destabilizes the intermediate attractor of
the one-stage model, where none of the two players can overwhelm the other. Bursting
provides an easy mechanism to escape this deadlock situation: It gives the player whichever
bursts first a huge advantage over the other, giving rise not only to one protein (as in the
one-stage model) but several proteins. As a result, the two-stage system is always quickly
pushed away from the diagonal and stabilizes in the attractors S∗A or S∗B. Thus, only the
combination of a probabilistic description with a two-stage model of gene expression leads
to the complex multi-attractor dynamics described above.

3.1.7 Residence times

Genetic toggle switches are thought to be involved in the differentiation process of cells.
A common idea is that different cell fates correspond to the different attractors of the
system (Huang et al., 2005). Therefore it is of interest how long the system will stay in
one of these attractors.

Residence time in SA and SB

Here , we focus on the time the system will stay in the attractors SA or SB. We assume
that only in these two attractors the concentration of either player is sufficiently high to
carry out a downstream biological function which resembles the switch’s decision.

In previous contributions, such quantities have been calculated or determined by
stochastic simulation for simpler switch models and were called spontaneous switching
time (Bialek, 2001), switch lifetime (Warren and ten Wolde, 2004), mean first-passage
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Figure 3.5: Residence time ts in the two-stage toggle switch. A) The distribution for
ts obtained by stochastic simulation is in good agreement with the geometric distribution
derived from our mean-field approximation. The mean of the distribution is indicated by
a dashed line. The protein decay rate was set to δ = 8 · 10−4s−1. B) Mean residence
time ts versus mean protein level N̄ derived from stochastic simulation (symbols) and
our analytical approximation (lines) for four different parameter settings. Note that the
analytical approximations as well as the simulation results of the first and fourth parameter
set coincide. The exponent in the relation ts ∝ (N̄A)ν is ν = 1, in accordance with
Eq. (3.24).

time (Kepler and Elston, 2001), or switching time (Barzel and Biham, 2008). Since the
switch may flip from a dominating to an intermediate attractor, we choose residence time
as the appropriate term for the quantity calculated below. In the following, we derive an
analytical approximation for the time the switch stays in a dominating attractor, SA or
SB, called the residence time ts.

Let us assume that the system is in attractor SA. Hence, the promoter of DNAB

is bound by ProteinA while the promoter of DNAA is unbound. We assume that the
protein levels in this attractor can be described with the simple two-stage model (Thattai
and van Oudenaarden, 2001), resulting in a mean ProteinA level of N̄A = (αAβA)/(γAδA).
Consequently, the protein level of ProteinB is NB = 0 as it is inhibited by the high levels of
ProteinA. In order to leave SA it is crucial that one ProteinB is synthesized, which then can
bind the promoter of DNAA and shut down the synthesis of ProteinA, ultimately driving
the system out of SA and into S∗A. This trajectory (called trajectory I in Fig. 3.4) involves
the following events: (i) unbinding of ProteinA from DNAB, (ii) synthesis of ProteinB

during the unbound phase, and (iii) binding of ProteinB to the promoter of DNAA before
ProteinB is degraded.

First we describe the unbinding of ProteinA from DNAB. While the system is in SA,
ProteinA dissociates various times, leaving the promoter of DNAB unbound. The average
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time the promoter remains unbound, tu, is equal to the average time until a binding
reaction occurs, which is

tu =
1

τ+
A · N̄A

.

The time the promoter stays unbound is a random variable itself, but for simplicity we
approximate it with its mean value. Note that tu depends, somewhat counterintuitively,
on τ+ and not on τ−, with τ+

A N̄A being the propensity for a binding reaction.
To ultimately synthesize a ProteinB, at least one mRNAB has to be transcribed during

tu and translated before degradation. The probability of k transcription reactions to
happen during tu is

PPoisson(K = k) =
(αB · tu)k

k!
· exp(−αB · tu) ,

as the number of transcription reactions K during tu is Poisson-distributed with mean
αB · tu. Thus, the probability of at least one transcription during the unbound phase is

qs = 1− P (K = 0) = 1− exp

(
− αB

τ+
A · N̄A

)
.

The probability of translation during an average mRNA lifetime 1/γB is accordingly qt =
1 − exp (−βB/γB). Finally the probability for a binding reaction during average protein
lifetime 1/δB is qb = 1− exp

(
−τ+

B /δB

)
.

However, not only one but several unbound phases may occur before ProteinB is suc-
cessfully synthesized. The number L of unbound phases until and including successful syn-
thesis follows a geometric distribution, P (L = l) = (1−q)l−1q with parameter q = qs ·qt ·qb.
The average number of unbound phases during a time interval ∆t is τ−A · ∆t. Thus, we
can convert the random variable L into T = L/τ−A via a linear transformation of a ran-
dom variable, giving the actual time until successful synthesis of ProteinB. Notably, the
derivation of the distribution for residence times goes beyond previous mean-field approx-
imations. Using the properties of the geometric distribution for the random variable T ,
we end up with the mean and the variance of the residence time:

ts =
1

τ−A · qsqtqb
and σ2

ts =
1

(τ−A )2
· 1− qsqtqb

(qsqtqb)2
. (3.23)

An important approximation for the residence time can be derived under the assump-
tion of rapid translation and slow mRNA degradation, β � γ, leading to qt ≈ 1. This
implies that it is quite certain that an mRNA will be translated at least once before degra-
dation. In the regime of rapid transcription factor binding (τ+ � δ, α) the probability for
a binding reaction is close to one, qb ≈ 1, while the probability for at least one transcrip-
tion can be approximated with qs ≈ αB/(τ

+
A N̄A). Taken together, this leads to a linear

dependence of the residence time on the protein number,

ts ≈ (τ+
A /τ

−
A ) · (N̄A/αB) . (3.24)

We now compare our analytical approximation with the residence time derived from
simulations. To that end, we have to infer the dominating attractors from the simulated
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time courses. Recall that we can identify the dominating attractors via thresholds χA, χB

at protein levels. The residence time of attractor SA (SB) is estimated as the consec-
utive time in a trajectory where NA > χA (NB > χB). We compare the analytically
derived geometric distribution for the residence times (see Eq. 3.23) with numerical re-
sults by simulating the switch with a given parameter set and estimating the residence
times from 10000 stochastic simulations. Fig. 3.5A shows excellent agreement between the
geometric distributed residence time and the simulations for a protein degradation rate of
δ = 8 ·10−4s−1. This legitimates the approximations and assumptions made above for the
parameter regime of rapid transcription factor binding. From the analysis of the mean
residence time for different protein half-lives, we find again a good agreement between
the simulation and the approximation (see Fig. 3.5B). Moreover, the slope of the log-log
curve of the simulation is 1 – confirming a linear dependence of the residence time from
the mean protein level.

With the result from Eq. (3.23) we can compare the mean residence time of different
switch models. First we consider a gene expression model where transcription and trans-
lation are condensed into a single protein synthesis reaction. In analogy to the two-stage
model of gene expression (Shahrezaei and Swain, 2008), this can be called a one-stage
model of gene expression. To achieve the same amount of proteins at similar degradation
rates, the synthesis rate in the one-stage model needs to be larger compared to the tran-
scription and translation rates in the two-stage model. The probability qt which accounts
for translation during mRNA lifetime can be set to 1, since there is no mRNA stage and
proteins are produced immediately. The binding probability qb remains unchanged. How-
ever, because of the increased synthesis rate, the probability qs of synthesis during the
unbound phase will be larger than in the two-stage model. Therefore, the mean residence
time will be decreased in the one-stage model as compared to the two-stage model, lead-
ing to more frequent attractor changes. This finding is in accordance with the previously
reported stabilizing effect of bursts in an exclusive switch (Schultz et al., 2008).

A second modification of the switch includes not only mutual inhibition but also au-
toactivation of both genes. If the promoter of the gene is unbound it will be transcribed
with a small basal rate κ. If the promoter is bound by its own protein product the gene
will be transcribed with full rate α � κ. Repressor bound promoters are inactive. For
simplicity we assume that either activators or repressors are bound but not both at the
same time. Note that in this case also the deterministic ODE model is bistable (Siegal-
Gaskins et al., 2011). Considering the mean residence time in a two-stage switch with
autoactivation, we find that the probability qs of mRNA synthesis during the unbound
phase is smaller than in the ordinary two-stage model. Since no activator is present in this
attractor, mRNA has to be transcribed with the small basal rate κ, making the transcrip-
tion more improbable. The probability qt for translation remains unchanged. However,
the probability qb of protein binding to the antagonistic promoter is also decreased since
this promoter is occupied by the abundant activator most of the time. Therefore, repres-
sor binding to this promoter requires an additional dissociation reaction of the activator
during repressor lifetime. As both qs and qb are decreased the mean residence time in
switch models with autoactivation will be strongly increased compared to the ordinary
two-stage model.

Summarizing, we find that the residence time is (i) geometrically distributed, (ii) the
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Figure 3.6: Residence time of the system in the intermediate attractors (S∗A or
S∗B). A) The histogram of the residence times in S∗A obtained from stochastic simulation
suggests that the residence time in the intermediate attractors follows a geometric distri-
bution. The solid line corresponds to the distribution predicted by Eq. (3.26). B) Similar
to Fig. 3.5 one observes a linear scaling of the mean residence time and the protein abun-
dance. The solid line corresponds to the mean residence time predicted by Eq. (3.26),
whereas crosses correspond to mean residence time derived from stochastic simulation.
The prediction fits well to the simulated data for protein levels beyond 103 but deviates
at low protein levels. This deviation is due to the fact that at low protein levels the at-
tractors S∗A and S∗B are indistinguishable from SA and SB in simulated data because of
strong intrinsic noise.

mean of the distribution grows linearly with the number of proteins for slow mRNA degra-
dation, and (iii) both the intermediate step of mRNA production and the autoactivation
of transcription factors increase the residence time.

Residence time in S∗A and S∗B

Analogous to the residence times in SA and SB we derive an analytical expression for the
residence time in the intermediate attractors S∗A and S∗B. Two mechanisms to escape from
S∗A are possible: Degradation of the single ProteinB when it is not bound to the promoter
(Trajectory II in Fig. 3.4) or a burst of ProteinB (Trajectory III in Fig. 3.4). We find that
the probability of degradation of ProteinB while unbound is:

pdeg = 1− exp

(
− δB

τ+
B

)

The probability for a burst of ProteinB is:

pburst = 1− exp

(
− αB

τ+
A · N̄∗A

)
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where N̄∗A is the average amount of ProteinA in the attractor S∗A
2:

N̄∗A =
τ−

τ− + τ+
· αβ
γδ

. (3.25)

As delineated before, the above probabilities are the parameters of the geometric random
variables describing the time until such an event happens. We are interested in the resi-
dence time in the attractor and therefore have to take the minimum of the two geometric
random variables, since whichever event happens first leads to an escape from the attrac-
tor. The minimum of the two geometric random variables is again a geometric random
variable but with an adjusted parameter

pmin = 1− (1− pdeg) · (1− pburst) .

Finally we calculate the mean and variance of the residence time in S∗A as:

ts =
1

τ− · pmin
(3.26)

σ2
ts =

1

(τ−)2
· 1− pmin

(pmin)2
. (3.27)

A simulation study for S∗A/S∗B confirms this calculations (see Fig. 3.6). Again, the residence
time in the attractor is exponentially distributed and scales with the number of proteins
in the system.

What is still missing to describe the entire dynamics of the system, but remains elusive
at this point is an analytical expression for the ratio of probabilities of the transitions
S∗A → SA and S∗A → S∗B.

3.1.8 Discussion

Implications for cell differentiation We now discuss the implications of our findings
in the context of cell differentiation driven by the toggle switch. We find that the residence
time in SA and SB, a key property of the system, is geometrically distributed. Previous
contributions (Bialek, 2001; Warren and ten Wolde, 2005; Barzel and Biham, 2008) focused
only on the mean residence time and did not consider its underlying distribution. What
does a geometric distribution for the residence time imply for the differentiation process
dependent on the state of a genetic switch? To discuss this question, let us first reason on
how a differentiation decision could be established with the toggle switch lined out in the
previous sections.

We discriminate two scenarios for the differentiation of a cell: In the first scenario,
the state of the switch completely determines the cell fate. Starting in the progenitor
attractors S∗A or S∗B, after a certain amount of time, the switch will move to a committed
attractor. We assume that the high numbers of proteins of the dominating player will
trigger the differentiation program of the associated lineage and establish the mature cell
type. However due to stochasticity, the switch will drop out of the committed attractors

2The promoter of the dominating player A is free only 100 · τ−

τ++τ− % of the time, because of the presence
of one protein of B, leading to reduced mRNA synthesis.



60 CHAPTER 3. STOCHASTIC TOGGLE SWITCH MODELS

T2

T1
> td

Figure 3.7: A: Scheme of the differentiation mechanism. The system changes the domi-
nating attractor twice before it settles into SA for a time greater than td, which induces
differentiation. The residence times in SA and SB follow a (truncated) geometric dis-
tribution. The overall time until differentiation is therefore (neglecting the intermediate
attractors) the sum of these geometric random variables. B: Distribution of the differen-
tiation time Tp for a residence time of 1h and td = 5h. Small differentiation times are
more probable than higher bigger differentiation times. Note the strong peak at t = 0
indicating that it is most probable for a cell to differentiate immediately .

and the cell will not only lose the current lineage decision, but possibly even switch to
the opposing cell fate. In order to establish stable lineages in this scenario, the cell has
to assure that the residence time of the switch is much longer than all relevant biological
processes of the cell, especially cell lifetime. This guarantees that the cell will keep a
lineage decision once it has obtained one. Yet the geometric distribution of the residence
time imposes difficulties in this scenario: Even if the mean residence time is high, short
residence times will always be more probable than longer residence times. The toggle
switch could either be stabilized with the aforementioned autoactivation of the players, or
with very high protein numbers so that the geometric distribution flattens and transforms
to an almost uniform distribution. Both means would assure that only a very small
percentage of a population of cells forgets its lineage decision during lifetime.

In the second scenario we assume that the cell gets locked in one fate by changing the
shape of the underlying potential so that further transitions between attractors become
less possible. Such a change of the potential could for example be facilitated by chromatin
changes, as proposed by Akashi et al. (2003). In the following, we assume that only if one
state dominates the other for a long enough fixation time td, downstream genes necessary
for the decision process are activated (e.g. leading to chromatin remodeling), and the
cell differentiates. Such a time depending property could be implemented with low-pass
filters (see (Narula et al., 2010) for an example in hematopoietic stem cells) and would
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allow for an integration of external signals (see Rieger et al. (2009) for the instructive
power of hematopoietic cytokines). In this scenario, the residence time determines when
differentiation will occur: The switch will constantly move into and out of the dominating
attractors, until the residence time is finally long enough so that the dominating player
can activate the downstream differentiation machinery (Fig. 3.7A). Ignoring the time the
system spends in the intermediate attractors and just summing up the residence times in
SA and SB until a long enough residence time for differentiation occurs, we find that this
time follows a geometric-like distribution (see Fig. 3.7B and Supplementary Information
of Strasser et al., 2012). Under this differentiation mechanism, most cells will differentiate
very fast and only few cells will take more time. Experiments that measure the time for
single cells needed to go from the primed to the committed state (as an extension to the
2-day threshold reported by Heyworth et al., 2002 for GM-CTC cells) in order to support
or reject these hypotheses remain to be done.

In previous studies (Roeder and Glauche, 2006; Huang et al., 2007; Wang et al., 2010),
attractors where either one or the other player is dominating, thereby repressing the antag-
onist (SA, SB) corresponded to committed cells. We also find analogs for the intermediate
states S∗A and S∗B. In these attractors the system has a strong preference towards one
specific dominating attractor, but is not fully committed yet. A similar behavior is known
as lineage priming in stem cell biology (Graf and Stadtfeld, 2008). Two different studies
(Müller-Sieburg et al., 2002; Chang et al., 2008) showed that a population of stem and
progenitor cells, respectively, can be divided into subpopulations that mainly give rise to
only one of two possible cell types. In our simple model this would correspond to stem
cells that reside either in S∗A or S∗B. These stem cells can still give rise to both cell fates
but have a strong tendency towards one of them.

Remarkably only a two-stage probabilistic model of the toggle switch shows dynamics
reminiscent of lineage priming. Although a progenitor state exists in one-stage models of
the toggle switch, cells in this state will move to either the one or the other committed
state with equal probability.

Comparison to previous work Finally we discuss how our findings relate to previous
studies on the toggle switch. We found that the mean of the residence time distribution
scales linearly with the number of proteins in the system. The more proteins are present,
the longer the average residence time in SA or SB. However, shorter residence times are
still most probable due to the geometric distribution. This holds for the one-stage, the
two-stage, and the auto-activating scenario.

This linear scaling differs from the exponential (Bialek, 2001) or near exponential
(Warren and ten Wolde, 2005) scaling described previously in the one-stage scenario. In
contrast to our model, the model of Warren and ten Wolde (2005) considers dimerization
of the transcription factors, motivated by the fact that cooperative binding is necessary to
achieve bistability in a deterministic framework (Chickarmane et al., 2009). We showed
that, as soon as stochastic fluctuations are introduced, a system with multiple attractors
is achieved that can act as a proper switch with additional states of low co-expression.
Including dimerization as a prerequisite for inhibition in a one-stage model will strongly
increase the stability of the attractors SA/B (Warren and ten Wolde, 2005). This is con-
sistent with our findings: Instead of requiring translation of one protein of the suppressed
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species, we now require this rare event to happen twice during a short time frame, which
is much less probable. However, the inclusion of dimerization will have less effect on the
two-stage switch: Since proteins are typically synthesized in bursts (in our model the av-
erage burst size is β/γ = 10) and dimerization is a fast process (Warren and ten Wolde,
2005), as soon as one burst occurs almost certainly a dimer is formed and can inhibit the
currently dominating player. Therefore the probability of leaving the attractors SA/B is
similar to a non-dimeric inhibition.

Contrary to our results, Warren and ten Wolde (2005) report that introduction of
mRNAs reduces the stability of the switch. This discrepancy can be understood in the
light of dimerization. In their one-stage model dimerization is a key ingredient of stability,
which is lost when introducing translational bursts (“shot noise”). As we considered
monomeric transcription factor binding, stability does not rely on dimerization. Therefore
mRNAs increase the stability of the system, because they introduce additional conditions
required for switching.

Due to these differences in the model it is hard to resolve the discrepancy between our
linear and the exponential scaling of residence time found by Bialek (2001) and Warren
and ten Wolde (2005). However we want to emphasize that the theoretical results shown
by Warren and ten Wolde (2005) only consider protein numbers up to 30. In this region our
simulation results show slight deviations from the analytical linear dependence (Fig. 3.5).
At such low protein numbers the system does not only leave the dominating attractor
according to the mechanism described in our results. It is also likely that just due to
fluctuations in the gene expression (not fluctuations in the promoter) the dominating
attractor is left. This mechanism operates only at very small protein numbers and its
probability rapidly decreases with rising protein numbers. Therefore our results do not
contradict the findings of Warren and ten Wolde (2005), but consider a different parameter
regime with higher protein numbers. Interestingly, the noise-driven attractor changes are
also described by Kashiwagi et al. (2006) where the authors link this mechanism to the
selection of a favorable, less noisy attractor in E. Coli populations.

In another contribution, Morelli et al. (2008) use the forward flux sampling algorithm
to assess the stability of a one-stage genetic toggle switch with dimeric transcription fac-
tor binding. They find a similar mechanism of attractor flipping which is based on the
synthesis of the suppressed species due to promoter fluctuations. Using the forward flux
sampling, they obtain estimates of the switching rate (the inverse of the mean residence
time) for different amounts of fluctuations in DNA-protein interaction and dimerization.
Morelli et al. (2008) modulate the size of fluctuations at the promoter by varying the ratio
of binding rate and synthesis rate, the adiabaticity parameter ω = τ+/α (τ− is adjusted to
keep τ+/τ− constant). Small ω leads to strong fluctuations, whereas large ω reduces fluc-
tuations. They find that increasing ω decreases the average switching rate and therefore
stabilizes the switch. This dependency vanishes for ω > 5, where the average switching
rate remains constant. The latter is in accordance with our results in Eq. (3.24), where
the mean residence time depends only on the ratio of τ+ and τ−, not on the absolute
values and is therefore independent of ω. The dependency of the average switching rate
for ω < 5 is not predicted by Eqs. (3.23) and (3.24). It is also not visible in the stochastic
simulations, where mean residence times of systems with ω = 1 and ω = 20 coincide
(Fig. 3.5). The results of Morelli et al. (2008) were simulated for an average number of
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proteins N̄A = N̄B = 27. As mentioned above, in regions of very small protein numbers the
system might leave the dominating attractor by a mechanism not captured by Eqs. (3.23)
and (3.24), probably causing the difference of the results of Morelli et al. (2008) and our
results for small ω.
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3.2 GMP differentiation dynamics explained by a toggle
switch

In the previous section, we analyzed the dynamics of a toggle switch model and focused
on the residence times of the system in the attractors and their dependence on parame-
ters, such as protein degradation rates. In this section, we analyze single-cell time-lapse
microscopy data of differentiating granulocyte/monocyte progenitors (Rieger et al., 2009),
which report the timing of differentiation in individual cells. Assuming that this cell fate
decision is implemented as a toggle switch, we fit a toggle switch model to the observed
differentiation dynamics and infer the parameters of this switch.

Following the current paradigm, hematopoiesis can be pictured as a tree, made up from
a concatenation of branching decisions (Orkin and Zon, 2008). Starting from a hematopoi-
etic stem cell (HSC), all mature blood cell types are generated via progenitor states, where
the lineage potential is reduced in each differentiation step. To replenish e.g. granulocytes
(G) and monocytes (M) – blood cells with important function in immune response and
phagocytosis (Dahl, 2009) – a HSC differentiates to a multipotent progenitor (MPP), to
a common myeloid progenitor (CMP), and to a granulocyte-monocyte progenitor (GMP),
before the final lineage decision between G and M is made (see Fig. 3.8). While details of
the hierarchical differentiation have been revealed along with the increasing specificity of
cell state markers, the tight balance between blood cell numbers and the inter-regulation
of the involved processes is far from understood.

GMP
Monocytes (M)

Granulocytes (G)

HSC MPP

CMP

MEP

CLP

Erythrocytes

Megakaryocytes

Lymphoid cells

Other myeloid cells

LysM::GFP
-

LysM::GFP
+

Figure 3.8: The G/M lineage decision within hematopoiesis. Granulocyte-
monocyte progenitors (GMP) are bipotent and can differentiate into granulocytes (G)
and monocytes (M). The LysM::GFP reporter indicates the loss of bipotency, i.e. GMPs
are LysM::GFP negative, whereas both granulocytes and monocytes are LysM::GFP pos-
itive.

3.2.1 GMP differentiation probability from time-lapse microscopy data

In previous experiments (Rieger et al., 2009), GMPs have been sorted with a purity of
over 95%. Sorted cells have been imaged, tracked, and analyzed for up to five days under
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Figure 3.9: Analysis of GMP genealogies from single-cell time-lapse microscopy.
A) LysM::GFP marks the loss of bi-potency. We show the onset time in days for 100
trees under permissive (IL3, IL6, SCF) culture conditions, allowing the differentiation
of both G and M cells (data from Rieger et al., 2009). In each tree, multiple marker
onsets can be observed, depending on the number of leaves. We observe more late and
synchronous onsets than expected from the branching process with the parameters inferred
from the colony assay data. In the three tree examples shown on the right, marker onset
is indicated by the change from gray to black lines. Each tree is identified by its position
in the movie and its tree number. B) We assume that LysM::GFP is an instant marker of
differentiation. The differentiation probability λ(g) from the genealogy data (open discs)
depends on the generation within a tree. Error bars denote 95% confidence intervals and
have been determined with the Clopper-Pearson method (Clopper and Pearson, 1934).
C) The probability density for a cell to differentiate exactly in generation g, P (g). For
calculating the errors, we propagate the larger of the two confidence intervals. Note that
cells in generation 0 have not been tracked from birth and a bias towards undifferentiated
cells might apply. Thus, this data point is disregarded.
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permissive conditions (IL3, IL6, SCF), allowing for both granulocytes and monocytes.
To monitor the loss of the GMP state (see trees in Fig. 3.9), LysM::GFP mice (Faust
et al., 2000), which express enhanced green fluorescent protein (GFP) from the lysozymeM
gene locus as a marker for unilineage commitment, have been used in the experiments.
The onset of a fluorescent signal in a cell is annotated in the movie data and marks its
irreversible loss of bi-potency. All cells are tracked until marker onset, if they have not
died or been lost during tracking before. After marker onset, tracking is normally stopped
after a couple of timepoints, but occasionally is continued to the next generations (see
Fig. 3.9A for three examples of tracked trees with marker annotation). The marker onset
times for all cells in all trees with fluorescent signal (100 out of 143 trees) are shown in
Fig. 3.9A.

To quantify the dynamics of the LysM::GFP marker and – assuming that LysM::GFP
is an instantaneous marker of differentiation – the dynamics of differentiation, we estimate
the probability of marker onset λ(g) in generation g as

λ(g) =
LysM::GFP onsets in generation g

Total number of cells in generation g
.

We observe an increase of λ with generation g (Fig. 3.9B). If we disregard generation 0
(where cells have not been tracked from birth but from the movie start and thus a bias
towards LysM::GFP negative cells might apply) λ rises from about 35% in generations 1,
2 and 3 to 100% in generation 7, where all cells differentiate (see Fig. 3.9B).

λ(g) is the instantaneous probability to differentiate in generation g. From λ(g), we
can also calculate the overall probability mass function P (g) of observing a differentiating
cell in generation g:

P (g) = λ(g)

g−1∏
g′=0

[1− λ(g′)] .

The observed differentiation probability λ(g) results in a broad probability density P (g)
for a cell to differentiate in g (Fig. 3.9C). For example, the probability to differentiate in
generation 5 is still well above 5%.

The differentiation probability λ(g) defined above describes the probability of a cell
to differentiate in generation g given it reaches generation g. In biomedically motivated
survival analysis and reliability theory in engineering, analogous concepts are called hazard
function and failure rate, respectively (see, e.g. Lee and Go, 1997 for a review). There,
time-dependent hazard functions and failure rates emerge quite naturally from, e.g. aging
or erosion. In the case of GMP differentiation, a time-dependent differentiation probability
can occur for a number of reasons: The medium conditions might change over time, cell-cell
signaling might impact as the cell density grows, or an inherent program might increasingly
force the cells to differentiate. In the following we study a mechanistic, molecular model
of the differentiation process and show that a time-dependent differentiation probability
emerges naturally in this model.

3.2.2 Molecular toggle switch model

The molecular details of GMP differentiation are still under debate. The most detailed
contribution comes, to the best of our knowledge, from Laslo et al. (2006). Here, the



3.2. A TOGGLE SWITCH IN GMP DIFFERENTIATION 67

authors proposed a mutual antagonism between Gfi-1 and the integrated monocytic factor
EgrNab (consisting of the genes Egr-1, Egr-2 and Nab which have redundant molecular
functions) to mediate the lineage choice of GMPs. Previous analyses suggested a pivotal
role of PU.1 and C/EBPα, which are both required for the generation of GMPs (Iwasaki
et al., 2005; Dakic et al., 2005). One hypothesis links the ratio between PU.1 and C/EBPα
to a primary cell fate decision (Dahl et al., 2003), and there is also evidence for other factors
being involved in the differentiation process (see Dahl, 2009 for a comprehensive review
and Krumsiek et al., 2011 for a meso-scale model). While it has been unambiguously
shown that cytokines can instruct the lineage decision (Rieger et al., 2009), the intrinsic
toggle switch seems to be determined by the antagonistic players Gfi-1 and EgrNab (Laslo
et al., 2008).

Assuming that two antagonistic players control the intrinsic GMP lineage decision that
drives differentiation towards granulocytes and monocytes under permissive conditions,
we set up a chemical reaction kinetics model of a toggle switch involving the antagonists
G (potentially Gfi-1) and M (potentially EgrNab), that promote the granulocyte and
monocyte lineage, respectively. We describe the mutual inhibition of these two genes using
a one-stage model of gene expression with mutual inhibition being realized as DNA-protein
binding (see Fig. 3.10A). Analogous to the previous section, the model can be represented
as a set of biochemical reactions for G and M, respectively, and a set of reaction rates.
The seven reactions describing the synthesis and binding of the player G, with symmetric
reactions (but potentially different rates) for the player M are:

DNAG
αG−−→ DNAG + ProteinG (3.28)

ProteinG
δG−→ ∅ (3.29)

2 · ProteinG
κ+

G−−→ DimerG (3.30)

DimerG
κ−G−−→ 2 · ProteinG (3.31)

DimerG
δG−→ ∅ (3.32)

DimerG + DNAM
τ+
G−−→ DNAbound

M (3.33)

DNAbound
M

τ−G−−→ DimerG + DNAM (3.34)

Reaction (3.28) corresponds to protein synthesis from an unbound promoter. Tran-
scription and translation are aggregated into a single reaction. In general, one should
consider extending the above system by explicit transcription and translation reactions,
if no clear separation of time-scales applies. In addition to being more detailed, such a
two-stage gene expression model (Shahrezaei and Swain, 2008) can induce two undecided
and two decided attractors (Strasser et al., 2012). Here, we choose the one-stage model
not only for the sake of simplicity but also because the simpler model reflects the type of
observed data more naturally, where we are unable to discriminate between one or two
undecided GMP states.

Proteins can either degrade (reaction 3.29) or form homodimers (reaction 3.30). Ho-
modimers dissociate into two monomers (reaction 3.31) or are degraded (reaction 3.32).
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Figure 3.10: Molecular toggle switch model. A) We abstract the complex interactions
between monocytic and granulocytic factors to two mutually inhibiting players, in the fol-
lowing referred by the indices G and M. DNAG is transcribed to ProteinG, which can bind
in a dimerized form to the promoter at DNAM and inhibit its transcription. The same
reactions apply for M. B) We plot the resulting state space with three clearly discernible
attractors appearing as regions with high probability (black) for the two parameter sets θ1

and θ2. The eight-dimensional state space is projected onto the NG, NM plane, showing
the total amount of either protein in the system. The central attractor represents the
undifferentiated GMP, while the distant attractors represent differentiated cells. Color
coded is the −Log10 probability of the steady state. C) Probability distributions of the
first-passage time from the central to one of the two decided attractors for the two pa-
rameter sets θ1 and θ2 used in B). Dashed vertical lines represent the average cell cycle
length of GMPs, tcc ≈ 12h, as inferred from the genealogies. D) Generation dependence of
the differentiation probability λ(g) for different parameters of the molecular model. The
protein decay rate δ and the total protein amount of dominating player in the decided
attractor, Na, determine the position and the slope of the onset of λ. E) Differentiation
bias pG as a function of the binding strength of the granulocytic homodimer G. For read-
ability, Hill-functions were fitted to the data. The sensitivity of the switch to asymmetries
in the binding rates increases with the number of proteins in the system. All parameter
sets used in the figure can be found in Table 3.2.
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Note that we assume that the homodimers are degraded with the same rate as monomers.
The last two reactions (3.33) and (3.34) describe the binding and unbinding of a homod-
imer to the antagonistic gene and thereby the transition from an active to an inactive
promoter and vice versa. Bound DNA lacks the ability to be transcribed and only dimers
can inactivate the promoter. Note that cooperative binding via dimerization is solely
included to stabilize the system: Non-cooperative one-stage switches quickly forget a dif-
ferentiation decision (Loinger et al., 2007), leave the decided attractor and are therefore
inadequate in the context of lineage choice.

The above reactions specify the possible transitions between all states x ∈ (N0)8 in the
state space of species abundances. The master equation (Van Kampen, 1992) describes
the time evolution of the probability for being in state x, P(x) via

dP(x)

dt
=
∑
x′

[
wxx′P(x′)− wx′xP(x)

]
,

with transition rates wxx′ between states x and x′. Again, the master equation corre-
sponding to the reaction system (3.28)–(3.34) cannot be solved analytically, but it can be
simulated using Gillespie’s algorithm (Gillespie, 1976). After a transient time, the sim-
ulation leads to a quasi-steady state, where the probabilities in state space do no longer
change, dP(x)

dt = 0. For appropriate parameters (see Table 3.2), we find that the molecular
model (Fig. 3.10A) induces three regions of high probability in state space, the attractors
of the system (see Fig. 3.10B). In the spirit of Waddington’s landscape (see chapter 1 and
Waddington, 1957) one can associate different cell fates with these attractors. The central
attractor represents the undifferentiated GMP state, as both lineage determining factors
are present only in small amounts, neutralizing each other. The two distant attractors
represent the differentiated granulocyte and monocyte cells fates, where the correspond-
ing lineage determining factor is abundant, whereas its antagonist is completely absent.
Henceforth, these are called decided attractors.

The two parameter sets θ1 and θ2 (Table 3.2) result in different steady state distri-
butions, as shown in Fig. 3.10B, and accordingly different first-passage times, as shown
in Fig. 3.10C. The first-passage time is defined as the time required to leave the central
attractor and reach any of the decided attractors of the system (Walczak et al., 2005a),
and can be calculated from the simulations of the toggle switch model , where the attrac-
tor boundaries are defined analogous to the previous section (see Eq. 3.22). Fig. 3.10C
depicts the first-passage time distribution for the two parameter sets θ1 and θ2, resembling
an exponential distribution and a Γ-distribution, respectively. These are two common dis-
tributions for first-passage times in stochastic systems (Bel et al., 2010). Let us study the
origin of these different distributions with respect to the parameters of the system: For
the parameter set θ1 the central attractor is narrow and the two decided attractors are
close by in terms of protein numbers (see Fig. 3.10C). Through fluctuations in protein
numbers the system is quickly pushed out of the central attractor. Once it has left the
central attractor, only few synthesis reactions are required to settle in one or the other
decided attractor. Therefore, the transition time between attractors is negligible, leading
to an overall exponential first-passage time distribution, whose parameter depends on the
high rate of escape from the central attractor. For parameter set θ2 the central attractor
is wider and therefore more time passes until the system by chance leaves the central
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attractor. Additionally, significant time is needed to bridge the distance to the decided
attractors, which is larger than in parameter set θ1 (note the log-scale in Fig. 3.10B). The
small rate of escape leads to the long tail of the first-passage time distribution of parameter
set θ2 in Fig. 3.10C, whereas the time spent to move in between attractors causes the shift
of the distribution to the right. The distribution in this case resembles a Γ-distribution,
which is characteristic for random walks over long distances with a bias in one direction
(Bel et al., 2010).

Let us interpret the first-passage time distributions observed in Fig. 3.10C in the con-
text of differentiation probability: The exponentially distributed first-passage time cor-
responds to a time-independent differentiation probability λ(g) = λ, as the exponential
distribution is memoryless. If however the first-passage time follows a non-exponential
distribution (as seen in Fig. 3.10C) the differentiation probability is time-dependent and
the simple branching process cannot reflect this property. Our model therefore can in-
duce either time-dependent or independent differentiation probabilities, as determined by
the molecular rates of the switch. It shows how these two very different scenarios of
differentiation can be traced down to the same molecular origin, the first-passage time.

Next we investigate more systematically how the time-dependence of λ relies on the
choice of parameters of the molecular model. Note that in the following we will only
consider symmetric systems, that is, the synthesis, degradation, binding and unbinding
rates for both player are the same (δG = δM = δ, etc.). Fig. 3.10D shows λ(g) for varying
degradation rates δ and Na = α/δ, representing the protein levels of the dominating player
in the decided attractor (see supporting information for a detailed discussion). All curves
show similar characteristics: After some transient time, the curves grow almost linearly
before asymptotically approaching an upper bound. The higher the protein levels, the later
is the onset of growth in the curves. This is intuitive as higher protein levels imply larger
distances between the attractors, which sets a minimal time before the system is able to
reach the decided attractors. The probability to observe a decided system before this time
is 0. The different asymptotics of the curves can be attributed to the degradation rate,
which sets the timescale of the system. For constant protein level Na, a high degradation
rate δ implies a high synthesis rate α as Na = α/δ. This speeds up the dynamics of the
whole system, therefore increasing the fraction of simulations that escape from the central
attractor per unit time, which is in fact λ(g).

Note that we disregard the tree structure of the genealogies in our molecular model,
and instead simulate single branches, corresponding to the time series of a single cell and
its ancestors. However, by calculating the fraction of cells reaching a decided attractor
within the time window of one generation, we can calculate the differentiation probability λ
as a function of the generation g and thus establish a one to one correspondence between
the first-passage time in the molecular model and the probability density P (g) in the
branching process.

By adjusting the parameters of the model, we can also simulate a biased differenti-
ation towards the one or the other lineage. To test this, we systematically changed the
binding strength of the G homodimer (τ+

G /τ
−
G ) while keeping the binding strength of the

M homodimer constant. All remaining parameters are kept symmetric. In Fig. 3.10E, we
show how the probability pG for the granulocyte lineage changes in response to varying
binding strength. Intuitively, since both binding strengths are equal, the system has equal
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probability of differentiating towards the G or the M attractor. Increasing the binding
strength of G leads to stronger repression of M, giving G a slight advantage in the battle
of the two factors. Similarly, a decrease of binding strength leads to a disadvantage of G
and and the probability to commit towards M is increased. Interestingly the response of
pG to binding strength is influenced by the amount of proteins in the decided states N .
For low protein numbers small differences in binding strength of the two players still result
in a balanced decision towards either G or M (pG ≈ 0.5). For higher protein numbers even
small differences in binding strength will destroy the balance between the two factors and
the favored player will prevail almost certainly. This sensitive response is interesting in the
light of lineage instruction: In cytokine medium, G-CSF and M-CSF are able to instruct
differentiation with a high reliability (Rieger et al., 2009).

Parameter αG, αM δG, δM κ+
G, κ+

M κ−G, κ−M τ+
G , τ+

M τ−G , τ−M
Unit s−1 s−1 s−1Protein−1 s−1 s−1Protein−1 s−1

Set θ1 8.0 · 10−3 1.0 · 10−3 1.0 0 1.0 0.1
Set θ2 2.5 · 10−3 5.0 · 10−5 1.0 0 1.0 0.1

Table 3.2: Parameter sets of the molecular model used in Fig. 3.10B,C. Subscripts identify
the respective player (G or M) in the toggle switch model, superscripts specify binding (+)
and unbinding (-) reactions. While the dimerization rates κ and the DNA-protein binding
rates τ are identical in both sets, we varied protein synthesis rates α and protein decay
rates δ. Note that here, all rates are symmetric with regard to the player, e.g. δG = δM.

3.2.3 Bayesian parameter inference identifies a scale separation of decay
rates

Having shown how different first-passage times and probabilities of commitment towards
one or the other lineage emerge from a simple toy model of a toggle switch, one can now
fit the model to observed quantities in order to estimate molecular rates. In the following
we will show what can be learned from these quantities in terms of molecular parameters
in a proof-of-concept way.

Analytic expressions of the first-passage time distribution and the lineage probabilities
for the toggle switch are hard to derive and remain elusive. Therefore, we have to resort to
Approximate Bayesian Computation (see chapter 2 and Toni et al., 2009) to infer molecular
parameters from the observed differentiation and commitment probabilities. Approximate
Bayesian Computation allows parameter inference even though no analytical expression
for the likelihood of the data given the parameters is available. Instead of maximizing the
intractable likelihood, Approximate Bayesian Computation searches for parameters that
minimize a chosen distance function, thereby best fitting the data.

We fit the model parameters θ to the data with respect to the L1 distance function

d((pθG, λ
θ), (pobsG , λobs)) =

1

2

1

7

7∑
g=1

|λθ(g)− λobs(g)|+ |pθG − pobsG |

 (3.35)

where λobs(g) is the observed differentiation probability in generation g = 1 . . . 7 (depicted
in Fig. 3.9B). Similarly, λθ(g) is the differentiation probability obtained from simulations
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with parameters θ. Finally, pobsG is the observed probability to differentiate to granulocytes
and pθG is its simulated counterpart. pobsG was obtained from colony assays (see Marr et al.,
2012 for details) and is estimated as pobsG = 0.67. The first term on the right side of
Eq. (3.35) quantifies how closely the parameter θ can reproduce the observed differentiation
probabilities, whereas the second term quantifies its match to the observed lineage bias.
Note that the factors of 1

2 ,
1
7 in Eq. (3.35) are used to scale the distance to the interval

[0, 1]. We used a standard SMC-ABC algorithm implemented by a customized version of
the abc-sysbio-toolkit (Liepe et al., 2010) to fit the toggle switch model to the observed
data.

We made a quasi-steady state assumption for the dimerisation and DNA-protein bind-
ing reactions to reduce the number of parameters. Assuming that dimerisation, protein-
DNA and their respective reverse reactions are much faster than the other reactions of
the system, one can condense the full system consisting of 14 reactions and eight species
(Eqs. 3.28–3.34) into four reactions and two species:

∅ α̂G−−→ ProteinG (3.36)

ProteinG
δG−→ ∅ (3.37)

∅ α̂M−−→ ProteinM (3.38)

ProteinM
δM−−→ ∅ , (3.39)

where the synthesis rates now are state dependent:

α̂G([NG, NM]) =
αG

1 + (NM/KM)2

α̂M([NG, NM]) =
αM

1 + (NG/KG)2

KG and KM are the dissociation constants of the DNA-protein interactions. KG corre-
sponds to the amount of ProteinG where DNAM is bound half of the time (analogously
for KM). This reduces the number of unknown parameters to be estimated to six: two
synthesis rates (αG,αM), two degradation rates (δG,δM) and two dissociation constants
(KG = τ−G /τ

+
G , KM = τ−M/τ

+
M), all assigned with flat prior distributions.

We iterated 10 populations consisting of 200 parameter sets, where λθ and pθG were
estimated from 1000 repeated simulations for each parameter set θ. The last population
contained only parameter sets with d(θ) < 0.1, giving already a good fit to the data (see
Fig. 3.11A). Afterwards, we calculate the probability density P (g) from the simulated λ(g)
and find that apparently, moderate deviations in λ(g) result in considerable deviations in
P (g) (see Fig. 3.11B). Thus, we calculate the distance d(P θ, P obs) =

∑7
g=1 |P θ(g)−P obs(g)|

(bounded to [0, 2])for each parameter set to quantify its goodness of fit within the obtained
posterior distribution.

We find asymmetric protein degradation rates for the best fits to the experimental
data (black dots in Fig. 3.11C): a high δG implies a low δM, and vice versa. In contrast
to the protein degradation, synthesis rates appear mostly correlated (see Fig. 3.11D).
Therefore, the best fits result in systems where the degradation rate of one player might
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Figure 3.11: Inference of model parameters with Approximate Bayesian Com-
puting. A) Fit of the best five parameter sets to the experimentally observed λ(g) (black).
B) The corresponding probability densities P (g) still show larger deviations from the ob-
served data due to their high sensitivity on small errors in the fit to λ. C,D) Scatter plots
of the degradation (C) and synthesis (D) rates present in the last iteration of ABC-SMC
(population size was increased from 200 to 600 via resampling). The distance d(P θ, P obs)
of each particle θ to the observed probability densities P (g) as shown in B) is color coded,
where black corresponds to small distance. Interestingly, best fits show a split of the decay
rates of the two players, implying that one differentiates quickly while the other player
needs more time to reach the decided attractor.
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be c times that of the other player (e.g. δG = c δM). At the same time, the number of
proteins separates in an inverse fashion (Na

G = 1/c Na
M). This separation of scales induces

qualitatively different λ(g) curves for the two players: with regard to the above example,
for player G not only the slope in λ(g) is decreased due to a lower δG, but also the onset
of λ is shifted due to the higher Na

G.
Note that, as shown in Fig. 3.10D , the degradation rate δ but not the synthesis rate α

determines the dynamics of the system, which can also be shown theoretically: Assuming
a simple gene expression system (a birth death process), we want to calculate the time to
reach its protein steady state level given some initial condition p(t = 0) (which corresponds
to the edge of the undecided attractor in the toggle switch).

We ask for the speed of convergence of this process to the decided attractor. The speed
of convergence, r, of a stochastic process X can be measured via (Coolen-Schrijner and
Van Doorn, 2001):

r(X) = inf
{
r > 0 |M − E[X(t)] = O

(
e−

t
r

)}
,

where E[X(t)] is the expectation value of the process at time t and M = limt→∞E[X(t)].
For the simple birth death process considered here:

M = α/γ

E[X(t)] =
α

δ
+
(
E[X(0)]− α

δ

)
· e−δ·t

M − E[X(t)] = (α/δ − E[X(0)]) · exp(−δt) .

Therefore,

r(X) = δ−1 .

Another measure for convergence (Coolen-Schrijner and Van Doorn, 2001) is

m(X) =

∫ ∞
0

(
1− E[X(t)]

M

)
dt ,

which for the simple birth death process evaluates to

m(X) =
1− C · (αδ )−1

δ
.

Since α
δ � C,

m(X) ≈ δ−1 .

Overall, we find that the transition time from a low expression state (undecided attractor)
to steady state expression (decided attractors) scales with the inverse of the decay rate in
a stochastic description of the system.

Summarizing, the differentiation probability λ(g), as observed in the time-lapse data,
is thus best fitted by a system where one player decides quickly, while the other takes
longer to execute the differentiation decision. Interestingly, both players can act as the
slow or the fast species in the system, implying that the asymmetry in degradation rates
is independent of the lineage bias. That is, the preference of one cell fate (pG > pM) does
not induce the separation of scales in the differentiation dynamics, but only the shape of
λ(g).



Chapter 4

Phenomenological models of cell
fate choice

In chapter 3, we studied the regulatory motives of genetic toggle switches as a mechanistic
implementation of cell fate choice in individual cells. Additionally, we observed how the
phenomenon of a time (generation) dependent differentiation probability λ emerges from
these internal mechanisms, thus providing further abstraction of the underlying system.

In the present chapter, we continue at this level of abstraction and thus depart from
mechanistic models of cell fate choice. For many cell fate decisions, regulatory mechanisms
are still unknown. Furthermore, cell fate decisions may not be cell autonomous, but depend
on external signals e.g. the micro-environment (“niche”, Wang and Wagers, 2011), cell-cell
communication (Shalek et al., 2014) or cytokines (Rieger et al., 2009). Hence, it is useful
to study cell fate decisions on a phenomenological level, i.e. without mechanistic details,
and in the context of an entire cell population.

Cell fate decisions, in the following referred to as “cell state transitions” can be observed
in their spatiotemporal context using single cell time-lapse microscopy combined with cell
tracking and image processing. However, the experimental data cannot immediately pro-
vide an explanation why the state transition occurs. For example, the differentiation rate
of a stem cell towards a more mature cell type may depend on time (chapter 3, Marr et al.,
2012), the makeup of surrounding niche cells (Morrison and Spradling, 2008), cell density
(Lorincz, 2006), or on a combination of these features. While it is possible to quantify the
emergence of cellular patterns in colonies (Scherf et al., 2012; Shivanandan et al., 2013), it
is impossible to tell from the mere observation if the simultaneous differentiation of multi-
ple cells is a random event or if it is triggered by, e.g., the increased density in the colony.
The inference of features influencing the differentiation rate requires sufficient statistics
for analysis, and thus a large number of cellular genealogies, which is in particular for
mammalian systems still a challenging and labor intensive task (Schroeder, 2008; Amat
et al., 2014). Thus, careful experimental design is indispensable.

In the following, we present a model and analysis framework that can infer the spa-
tiotemporal features influencing state transitions and also allows to estimate the number of
cellular genealogies required for this analysis. To validate the performance of our frame-
work, we first simulate cellular genealogies from a generative spatiotemporal model for
different scenarios of transition rate dependencies. We then develop an inference method
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based on generalized linear models and feature selection with L1 regularization. We show
that our method is able to correctly identify the differentiation rate as a multi-feature
function and determine the number of required genealogies and allowed tracking errors for
different scenarios. Finally, we use the correlations between cell siblings to validate the
chosen approach and detect shortcomings – either due to non-considered features, or due
to cell-internal effects that drive cell state transitions.

4.1 A generative framework for synthetic spatiotemporal
cellular genealogies

In the following, we present the basic model for cell state transitions and introduce four
different scenarios of transition rate dependencies.

4.1.1 General model

Throughout this chapter, we use a simple model of cell state transition with two cellular
states A and B (Fig. 4.1A). A single cell is defined by its 2D spatial coordinates x ∈ R2,
its state s ∈ [0, 1], where s = 0 (s = 1) if the cell is in state A (B) and its age τ , i.e.
the time since the last division. A single cell in state A (black circle in Fig. 4.1A) can
divide into two cells in state A, or transition into another state B (cyan circle), where it
can only divide. The transition rate λ(t, Fi(t)) of a cell i depends on the features Fi of
the cell. Notably, the features F , like time, cell cycle state, position or local cell density,
can change over time. Specific examples of the function λ(t, Fi(t)) are introduced later on.
Furthermore, the cell moves in 2D space modeled by Brownian motion. The division rate
γ(τ) is age dependent to account for non-exponential lifetime of cells1. Note that these
non-exponential waiting times usually render the system non-Markovian. However, since
we introduced cell age as state variable of our system, the process remains Markovian.

The system evolves probabilistically in time and has to be described by a Master
Equation, whose derivation we now briefly sketch. If there were only a single cell present
and no cell division possible, the probability distribution P(x, s, τ, t) of finding at time t
a cell at location x, state s and age τ evolves as:

Ṗ(x, s, τ, t) = ∇2P(x, s, τ, t) +
∂

∂τ
P(x, s, τ, t)

− δs,0 · λ(x, t, τ) · P(x, s, τ, t)

+ δs,1 · λ(x, t, τ) · P(x, s− 1, τ, t) ,

where δn,m is the Kronecker delta and ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2
. The first term on the right hand

side accounts for spatial diffusion of the cell in and out of location x, the second term
accounts for aging, the third term accounts for cells transitioning out of state A (s = 0)
and the fourth term describes cells transitioning into state B (s = 1). The transition
rate can depend on features of the cell (e.g. its spatial position). As initial conditions we
choose P(x, s, τ, 0) = δx,x0 · δs,0 · δτ,0, i.e. a cell at location x0 in state a and age 0.

1constant γ would yield unrealistic exponential lifetimes



4.1. A GENERATIVE FRAMEWORK FOR GENEALOGIES 77

In order to model a growing population of cells that interact with each other, we
must derive evolution equations not only for a single cell, but for pairs of cells, triples of
cells, etc., resulting in an infinite set of equations if the cell population size is unlimited.
These equations will be coupled: For example, a division event in the single cell equation
will add to the probability of the cell-pair equation (see Appendix A for the single and
pair equations). Although solving these equations is beyond the scope of this thesis, we
note that similar equations arise in Quantum Field Theory and are subject to theoretical
investigation also in biological context (Birch and Young, 2006; Dodd and Ferguson, 2009).

Analogous to the previous chapter, instead of solving the equation, we simulated real-
izations of the underlying stochastic process (Fig. 4.1B): Since the system has continuous
(space) and discrete (cell state) variables, a standard stochastic simulation algorithm can-
not be applied and a hybrid simulation method must be used (see e.g. Haseltine and
Rawlings, 2002). Cell position is treated as Brownian motion (potentially with drift) and
is updated via an Euler-Maruyama scheme (Fuchs, 2013). To evolve the cell state in time
for a single cell in state A, the simulation proceeds in small time steps ∆t, during which
a state transition event takes place with probability

Pi(t) = 1− e−
∫ t+∆t
t λ(t′,Fi(t′))dt′ ≈ 1− e−λ(t,Fi(t))·∆t

for some arbitrary, state and time-dependent transition rate λ (t, Fi(t)). The rate λ is
evaluated at the beginning of each iteration, and the time step ∆t is chosen sufficiently
small2. The cell divides after 12 hours on average, corresponding to the typical lifetime
of mammalian stem and progenitor cells (Buggenthin et al., 2013; Rieger et al., 2009)
(for simplicity, but without loss of generality, we assumed cell lifetime to follow a uniform
distribution: tdiv ∼ Uniform([10h, 14h])). The cell division replaces the dividing cell by
two daughter cells, with positions close to that of the mother cell and with the same cell
state: e.g. a mother cell in state A gives rise to two daughters in state A. These cells are
then simulated in parallel. Over the course of the simulation, a cellular genealogy with
a distinct cell state pattern emerges (Fig. 4.1C). Genealogies are simulated for 100 hours
(8− 9 generations of cells) corresponding to the typical observation periods of long term
time-lapse microscopy (Costa et al., 2011; Eilken et al., 2009; Rieger et al., 2009).

4.1.2 Local cell density

Local cell density is estimated using a kernel f that determines how much each cell con-
tributes to the local density at a certain point x in space as a function of intercellular
distance. We define the local cell density ρfi (t) of cell i at time t with respect to a kernel
f : R→ [0,∞]:

ρfi (t) =
∑
j 6=i

f [d(xi(t), xj(t))] , (4.1)

where xi(t) is the spatial coordinate of cell i at time t and d(xi, xj) denotes Euclidean
distance. In the simulations we use either a tophat kernel (Fig. 4.1E, upper panel) with

f(r) = I(r < R) , (4.2)

2Such that no appreciable change in cell locations occurs and the rate λ is approximately constant.
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Figure 4.1: Spatiotemporal simulation and analysis of cell state transitions. A)
In our model, a cell in state A (black) can divide or transition into state B (cyan). The
transition is governed by the transition rate λ, which can depend on features like time,
position, cell cycle, or the local cell density. B) Visualization of a cellular genealogy in
space and time with cells in state A (black to gray) and state B (cyan to blue). C) Tree
view of the genealogy depicted in B (coloring as in A). D) Local cell density is modeled via
a set of annular basis functions φk with inner radii k∆r and constant thickness ∆r (green
circles). Cells are indicated as crosses. E) Linear combinations of the φk can approximate
any density dependence (e.g. a tophat kernel, upper panel, or a Gaussian kernel, lower
panel). F) The tree structured data is transformed into a data matrix by discretizing time
and creating one sample for each cell at each time interval, simulating a measurement
process.
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where I(. . .) is the indicator function of [0, 1], or a Gaussian kernel (Fig. 4.1E, lower panel)
with

f(r) =
1√
2πσ

e−
r2

2σ2 . (4.3)

For the tophat kernel each cell within distance R contributes equally to the local density
experienced by cell i, whereas cells with distance larger than R do not contribute at all.
For the Gaussian kernel the contribution to the local cell density decreases smoothly with
distance.

4.1.3 Cell state transition scenarios

We create four datasets corresponding to different scenarios of cell state transition:
1. We consider a scenario where the transition rate is constant (λ constant), resembling

spontaneous transitions independent of other effects:

λ(t, Fi(t)) = c , (4.4)

with c = 0.01 h−1. Thus, at state transition in a cell with a 12 h lifetime will occur with
p = 0.11.

2. For a time-dependent scenario (λ ∝ time), the transition rate is chosen as

λ(t, Fi(t)) = a · t , (4.5)

i.e. linearly increasing with time (a = 3 · 10−4 h−2). Note that λ does not depend on any
other feature F of the cell.

3. For a density-dependent scenario (λ ∝ density), the local density of a cell i at time
t is mediated by a tophat kernel (Eq. (4.2)) with R = 300 µm (roughly the distance a cell
moves in its lifetime). The transition rate λ is then defined by

λ(t, ρtophat
i (t)) = b · ρtophat

i (t) , (4.6)

with b = 0.002 h−1.
4. For a time and density-dependent scenario (λ ∝ density + time), the contributions

of the previous two factors are summed, using a Gaussian kernel (Eq. (4.3) with σ = 30)
to define cell density:

λ(t, ρGauss
i (t)) = a · t+ b · ρGauss

i (t) . (4.7)

4.2 Inference framework

In this section, the methods to infer the transition rate from observed genealogies are
presented.

4.2.1 Non-parametric estimation of the transition rate

The transition rate λ can be estimated non-parametrically by considering the definition
of the rate as the probability of a transition in an infinitesimal time dt:

P (t, t+ dt|Fi(t)) = λ(t, Fi(t)) · dt , (4.8)
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where P (t, t + dt|Fi(t)) is the probability for a transition in the interval [t, t + dt] in the
presence of the features F .

We estimate the probability P (t, t+dt|F ) of a state transition in [t, t+dt] given features
F as

P̂ (t, t+ dt|F ) =
Number of transition events|(t, F )

Number of cells in state A|(t, F )
, (4.9)

which is the fraction of candidate cells (in state A) that transit into state B in [t, t + dt]
having features F . After rearranging Eq. (4.8), we obtain

λ̂(t, F ) =
1

∆t
· Number of transition events|(t, F )

Number of cells in state A|(t, F )
(4.10)

To measure the uncertainty of the estimates, we calculate Bayesian credibility intervals.
When estimating the probability P (t, t + dt|F ) in Eq. (4.9), we in fact we estimate the
parameter of a binomial distribution: we observed that k successes (events) occurred out
of n trials and we are interested in the probability p of the success. Clearly, k follows a
binomial distribution with parameters n, p:

k ∼ Binomial(n, p)

Having observed a particular k and n we want to infer the parameter p of the underlying
binomial distribution. In a maximum likelihood setting, one can show that this is just
p̂ = k/n. Confidence intervals for this maximum likelihood estimator can be constructed
according to various methods (Wald-, Wilson-, or Clopper-Pearson confidence intervals,
Kendall and Stuart, 1967).

We invoke a Bayesian approach instead, calculating the posterior distribution P (p|D)
of p given the observed data D = (n, k) which is related to the likelihood L(D|p) via Bayes
theorem:

P (p|D) =
L(D|p) · π(p)

P (D)
, (4.11)

where π(p) is a prior distribution of p and P (D) =
∫
L(D|p) · π(p) dp is the marginal

distribution of the data. Here, the likelihood is the probability mass function of a binomial
distribution:

L((n, k)|p) =

(
n

k

)
pk(1− p)n−k .

We use a Beta-distribution as a prior, such that

π(p) = pα−1(1− p)β−1 1

B(α, β)
,

where B(α, β) is the Beta-function and α, β are parameters that determine the shape of
the prior distribution.

As the Beta-distribution is the conjugate prior of the binomial likelihood, the posterior
in Eq. (4.11) can be calculated in closed form as:

P (p|D) = pα+k−1(1− p)β+n−k−1 1

B(α+ k, β + n− k)
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This is again a Beta-distribution, but with new parameters α′ = k+α and β′ = n−k+β,
which shows how the observed data updates our prior knowledge about p in the posterior.

As no prior information on p is available, we choose an uninformative Jeffreys prior
corresponding to α = β = 1/2 (see Jeffreys, 1939), resulting in the following posterior
distribution of p:

P (p|k, n) = pk−1/2(1− p)n−k−1/2 1

B(k + 1/2, n− k + 1/2)
. (4.12)

If we consider the posterior mean p̄, we find

p̄ =
k + 1/2

n+ 1
,

which is approximately the same as the maximum likelihood estimate (k/n) if k, n are
large. We obtain 95% credibility intervals by calculating the 5% and 95% quantiles of the
posterior in Eq. (4.12).

A particularly appealing property of Bayesian credibility intervals is that they will
strictly be within [0, 1], unlike their frequentist counterparts which are not constrained to
the [0, 1] domain of probabilities. This is especially prevalent if the estimated probability
itself is close to 0 or 1.

4.2.2 Estimating the transition rate via GLMs

Estimating the transition rate via Eq. (4.10) becomes infeasible when the number of con-
sidered features becomes large and the number of observed data is limited: The uncertainty
of the estimator λ̂ in Eq. (4.10) becomes large as only few datapoints will be observed for
each feature combination.

Instead, one can infer the transition rate parametrically using a machine-learning
framework. We consider every timepoint of each cell as an observed sample (F (i), Y (i)),
where F (i) is a set of features measured for this sample (absolute time, time since last
division, absolute spatial coordinates, and different measures of local cell density φk). We
use superscripts to index the samples to clearly distinguish it from the per-cell indexing
via subscripts used previously. Y (i) ∈ {0, 1} denotes the class label of the sample being
either “state A” (Y (i) = 0) or “transition into B” (Y (i) = 1). A sample is considered
as Y (i) = 1 if a state transition occurred in the time interval of the sample. Timepoints
after the state transition (either of the cell itself or its progeny) are discarded (Fig. 4.1F)
since we are interested in what actually triggers the transition of cells, not the state of the
cell itself. Counter-intuitively, all samples (F (i), Y (i)) are independent, even though, e.g.
adjacent samples typically are strongly correlated with respect to their features , as can
be derived as follows:

Consider a single cell that is created at time t0 and undergoes a state transition at
time tN . The likelihood of this whole cell in terms of the transition rate is

L = λ(tN ) · e−
∫ tN
t0

dτλ(τ) . (4.13)
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If we however decide to split up this cell into N individual observations Oi we get the
following likelihood for each observation:

L̃(Oi) =

e
−

∫ ti
ti−1

dτλ(τ)
i 6= N

λ(tN )e
−

∫ tN
tN−1

dτλ(τ)
i = N

Assuming independence, the overall likelihood is

L̃ =
∏
i

L(Oi) = e−
∫ t1
t0
dτλ(τ) · e−

∫ t2
t1
dτλ(τ) · . . .

. . . · e−
∫ tN−1
tN−2

dτλ(τ) · λ(tN )e
−

∫ tN
tN−1

dτλ(τ)

= e
−

∫ t1
t0
dτλ(τ)−...−

∫ tN
tN−1

dτλ(τ) · λ(tN )

= e−
∫ tN
t0

dτλ(τ) · λ(tN )

Comparing this expression to Eq. 4.13, we find that they are actually the same. Therefore
the assumption of independence is correct.

We use generalized linear models (GLMs, (McCullagh, J. Nelder, 1989)) to learn the
relation between features F (i) and class labels Y (i) as

E(Y (i)|F (i), w) = µ(i) = g−1(wTF (i)) ,

where µ(i) is the expected value of an exponential family distribution, g−1 is called the
mean function, and w is the weights vector that has to be learned from the data.

Choosing a Bernoulli distribution and an exponential mean function would exactly
correspond to our data generating process: In our simulations a single sample (Y (i), F (i))
is created according to

Y (i) ∼ Bernoulli(p(i))

p(i) = 1− e−λ(F (i))·∆t

= 1− e−wTF (i)·∆t

If we switch class labels such that

V (i) =

{
1, Y (i) = 0

0, Y (i) = 1

V (i) ∼ Bernoulli(q(i))

q(i) = 1− p(i) = e−w
TF (i)·∆t ,

we see that the generative model corresponds to a GLM with a Bernoulli distribution and
an exponential mean function

E[V (i)] = q(i) = e−w
TF (i)∆t .
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However, this specific GLM (known as logbinomial regression) has unfavorable numerical
properties leading to convergence issues (Zou, 2004). Therefore, we resort to a GLM that
has the desired exponential mean function but a Poisson instead of a Bernoulli distribution
(also known as Poisson regression) and has better numerical properties. Note that Poisson
regression is generally used to model count data (where Y (i) ∈ N0), but is a good approxi-
mation to binary data (Y (i) ∈ {0, 1}) in the case of rare events, since the probability mass
function of Bernoulli and Poisson distribution are very similar if p� 1:

PBer(Y = 0|p) = 1− p
PBer(Y = 1|p) = p

PPoi(Y = 0|p) = e−p ≈ 1− p
PPoi(Y = 1|p) = p · e−p ≈ p(1− p) ≈ p

Thus, we obtain the following log-likelihood from Poisson regression:

log p(Y |F,w) =
∑
i

[
Y (i)wTF (i) − ewTF (i) − log(Y (i)!)

]
.

4.2.3 Feature selection via L1 regularization

To determine the relevant features of the transition rate and to exclude features that only
indirectly influence the state transition (as e.g. for scenario 3 with a density dependent λ,
where however λ also indirectly depends on time; see Fig. 4.2C, D and section 4.3.1), we
apply L1 regularization to the GLM, also known as Lasso (Tibshirani, 1996), where one
minimizes the following function with respect to the weights w:

g(w) = − log p(Y |F,w) + κ · ‖w‖1 (4.14)

=
∑
i

[
Y (i)wTF (i) − ewTF (i) − log(Y (i)!)

]
+ κ · ‖w‖1 ,

with ‖w‖1 =
∑

i |wi|. This regularization is equivalent to placing a Laplace prior with
location parameter m = 0 and scale parameter b = κ−1 on the weights (Murphy, 2012),
resembling our knowledge that most of the weights should be zero and the resulting model
should be sparse.

Note that ideally, one should use L0 regularization, which penalizes only the presence of
a feature, but not the magnitude of its coefficient as does the L1 regularization. However,
L0 regularization is intractable computationally, as the objective function is non-smooth
and hence difficult to minimize. Instead one has to resort to L1 regularization as an
approximation (for a detailed discussion on sparsity, see Murphy, 2012, chapter 13).

Depending on the chosen regularization strength κ, one obtains models of differing
sparsity (Fig. 4.3A). We follow the standard approach to determine the optimal regular-
ization parameter κ∗: for each κ, we perform ten-fold cross validation using the deviance
of the model as the error criterion and choose κ∗ based on the 1SE rule (Hastie et al.,
2009): We select the largest κ (hence the simplest model) that in terms of its deviance is
still within one standard error of the best κ. Optimization and cross validation of Lasso is
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performed using the function lassoglm() from the Matlab Statistics Toolbox, which uses
a coordinate descend algorithm for optimization (Friedman et al., 2010).

Additionally, we have to account for the fact that the classes in our dataset are severely
imbalanced with more non-events than events (at a ratio of 1:200 in our simulations).
Such class imbalance can lead to problems for machine learning algorithms (He and Gar-
cia, 2009). Therefore, we down-sample the majority class (Y (i) = 0) to achieve a ratio of
1:3, yielding a good trade-off between class balance and number of overall samples. Fea-
ture selection using Lasso is applied to this down-sampled dataset via Eq. (4.14). Since
down-sampling intentionally discards data and Lasso feature selection is sensitive to data
perturbation (Murphy, 2012), we repeat the procedure N = 50 times, each time using a
different sample of the majority class, combining it with the minority class and fitting the
Lasso to this dataset. This approach is adapted from rare event logistic regression with
replication (Guns et al., 2012) and is reminiscent of bootstrap Lasso (Bach, 2008). Finally,
for each feature, we record the probability of inclusion in the model (the percentage of
the N iterations that included the feature into the model at the optimal regularization
strength κ∗). We consider those features to be relevant that have an inclusion probability
larger than 90% (Bach, 2008). We now fit this sparse model to the full data without the
L1 penalty (a process called “debiasing”, Murphy, 2012), since L1 regularization is biased
towards too small weights. We thus obtain our final model, its associated weights ŵ and
the corresponding transition rate

λ̂(t, F ) = −ŵTF ·∆t . (4.15)

4.2.4 Local cell density as a linear combination of basis functions

To assess the influence of local cell density upon state transitions, we have to assume a
specific kernel f , which allows us to evaluate the local density ρ via Eq. (4.1), which is
then used as a feature in the GLM. However, this kernel is typically unknown a priori and
has to be inferred in parallel with the GLM.

To that end, we model the unknown (radially symmetric) density kernel f as a linear
combination of basis functions φk, k = 0, 1, . . .

f ≈
∑
k

ωk · φk , (4.16)

where the φk are defined as

φk(r) =
∑
j 6=i

I [k∆r < r ≤ (k + 1)∆r] ,

and I(. . .) is the indicator function. φk resembles a ring of inner radius k∆r and thickness
∆r (Fig. 4.1D). For example, we can approximate the tophat kernel with radius R (Eq. 4.2)
by choosing the coefficients ωk as

ωk =

{
1, k∆r < R

0, k∆r ≥ R
.
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In order to infer the kernel f from the data, the basis functions φk are evaluated for
each sample cell by counting the number of cells within φk (see Fig. 4.1D), and are then
included as individual features into the GLM. By fitting the GLM, the coefficients ωk are
determined and are used to reconstruct the shape of the kernel (see Fig. 4.1E).

4.2.5 Expected frequencies of subtree patterns

Having estimated the transition rate λ̂ via the regularized GLM, we calculate the number
of subtree patterns expected under this transition rate. The expected frequencies of sister
cell pairs where in either both cells, one cell, or none of the two cells state transition
occurs, can be used to validate the inferred transition rate. We define the random variable
Ci to indicate whether cell i underwent a state transition within its lifetime (Ci = 1) or
stayed in state A (Ci = 0). Note that the Ci describe the state of a cell over its entire
lifetime, as opposed to the Y (i) used in the previous section, which denote the state of a
cell at a small time interval ∆t. Using the estimated transition rate λ̂, we calculate the
probability of a state transition in a single cell i as

P (Ci = 1) = pi = 1− e−
∫ ηi
ζi
λ̂(τ,Fi(τ))dτ

(4.17)

where λ̂(τ, Fi(τ)) is the estimate of the transition rate the cell experiences throughout its
lifetime [ζi, ηi] based on its features Fi(τ). Similarly, we derive the probability of a state
transition in its sister cell i′ as P (Ci′ = 1). Considering the whole dataset containing
M pairs of sister cells (i, i′), i = 1 . . .M , the expected number of pairs where both sister
undergo a state transition is:

E2 =

M∑
i=1

P (Ci = 1, Ci′ = 1) ,

where P (Ci = 1, Ci′ = 1) is the joint probability of these events. However, assuming
independence between sisters, this factorizes to

E2 =
M∑
i=1

P (Ci = 1) · P (Ci′ = 1) =
M∑
i=1

pi · pi′ . (4.18)

The expected number of pairs where a state transition occurs in only one sister (E1) and
in none of the sisters (E0) are:

E0 =
M∑
i=1

(1− pi) · (1− pi′) (4.19)

E1 =

M∑
i=1

(1− pi) · pi′ + pi · (1− pi′) . (4.20)

Applying Eq. (4.17), we can evaluate (E0, E1, E2) in terms of the estimated transition rate
λ̂.
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In order to test whether our observed data matches the expected frequencies (E0, E1, E2)
we count the observed frequencies (O0, O1, O2) in the data and perform a χ2 test with two
degrees of freedom and

χ2 =
3∑
j=1

(Ej −Oj)2

Ej
.

4.2.6 Summary of the inference methods

Before applying the proposed methods, let us shortly recapitulate the procedure: For each
data point i in the observed genealogies (for each cell at each timepoint), features F (i)

of interest and the corresponding cellular state Y (i) (state A or transition into B) are
extracted.

Now, an estimate λ̂(t, F ) of the transition rate can be obtained non-parametrically
using Eq. (4.8). Alternatively, one can estimate the transition rate parametrically via
regularized GLMs, where Eq. (4.14) is optimized with respect to the weights w and the
transition rate λ̂(t, F ) is reconstructed from these weights via Eq. (4.15). To counteract
class imbalance, the GLM is trained several times on bootstrapped subsamples of the data.

Finally, after estimation of the transition rate with either of the proposed methods, we
validate the estimate using the tree structure of the data. Plugging in our estimate λ̂(t, F )
into Eq. (4.17) we compare the expected frequencies of subtree patterns (Eqs. 4.18–4.20)
to the observed frequencies via a χ2-test.

4.3 Application to simulated data

In the following, we apply the proposed methods to four different scenarios, show how to
recover the features regulating the transition rate from the data and assess the required
sample size and tolerable tracking error in cellular genealogies for our analysis.

4.3.1 Estimation of constant and time-dependent transition rates from
cellular genealogies

In the simplest scenario the rate λ is constant during the whole time of observation (λ con-
stant, Eq. 4.4). This corresponds to state transitions occurring spontaneously indepen-
dent of other influences. Using the simulation framework for cellular genealogies (see
section 4.1.1), we generate a sample of 100 genealogies with constant rate λ. We then
reconstruct the rate λ̂ from the data via Eq. (4.10) (black curve in Fig. 4.2A) as a function
of time. The underlying true rate λ (red curve in Fig. 4.2A) is well contained within the
Bayesian 95% credibility intervals of our estimate (gray areas in Fig. 4.2A). Additionally,
when reconstructing λ̂ from the data as a function of local cell density ρ, we again observe
a constant transition rate (inset of Fig. 4.2A).

Next, we simulate 100 genealogies with a linear time-dependent transition rate (λ ∝
time, Eq. 4.5). With the same approach we estimate λ̂ (see Fig. 4.2B) and again, we
observe good agreement between the estimated (black curve in Fig. 4.2B) and the true
transition rate (red curve in Fig. 4.2B).
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We now account for cell-cell communication and consider a transition rate depending
on local cell density (λ ∝ density, Eq. 4.6): the more cells present in the vicinity of the
cell of interest, the more likely it is that a state transition occurs. We estimate the density
dependent rate from 100 simulated genealogies, assuming we already know the underlying
density kernel (this assumption will be relaxed later on). The estimated rate λ̂(ρ) (black
curve in Fig. 4.2C) linearly increases with local cell density and the true rate is well
contained within the credibility intervals (gray area in Fig. 4.2C), showing that one can
identify the influence of local cell density on the transition rate.

However, if we instead estimate the rate as a function of time from the same dataset,
we would conclude that the it is time-dependent, since the rate strongly increases over time
(see Fig. 4.2C, inset). This is an indirect influence: as time increases, local cell density
grows exponentially and as a result, cells are more prone to undergo a state transition
(see Fig. 4.2D inset)3. We can resolve this by estimating the rate simultaneously as a
function of time and local density, λ̂(t, ρ) (Fig. 4.2D). For fixed local density ρ, the rate is
almost constant across different times (black arrow in Fig. 4.2D). However, the transition
rate changes considerably if the local density changes. Therefore, we can conclude that the
true transition rate depends only on local cell density. Notice however that this conclusion
relies on having sufficiently many samples, yielding a good coverage of the (t, ρ) space,
and knowledge of the range (R) and nature of the spatial interaction. If R is chosen too
small, any dependence of λ on the local cell density is hidden by the dominating indirect
time-dependence. Moreover, analyzing λ̂ visually becomes infeasible for higher feature
dimensions.

4.3.2 Learning the transition rate with generalized linear models

To approach the aforementioned issues, we infer the transition rate more systematically
using the machine-learning framework of generalized linear models (GLM, see Methods
for details). Instead of considering only one feature at a time, we include all features at
once and apply feature selection to determine the relevant ones. An additional advantage
of this approach is that it is not necessary to assume any density kernel a priori (as in the
previous section). Instead, we use a set of spatial features φk, whose linear combination
can approximate any kernel (Eq. 4.16). We then use the proposed GLM equipped with
L1 regularization to learn the relationship between features and class label and to obtain
those features that directly influence the state transition rate.

We apply this approach to the density-dependent dataset (λ ∝ density, Eq. 4.6). Start-
ing with strong regularization (that is, a large κ and consequently a sparse model) only the
most relevant features have non-zero weights and are included (Fig. 4.3A). By decreasing
the regularization parameter, the weights of the features gradually increase, making the
model more complex. The optimal regularization κ∗ (the black line in Fig. 4.3A corre-
sponds to the mean of κ across the 50 bootstraps) is determined by cross validation (see
section 4.2.3). All features with non-zero weights at κ∗ are included in the model. The
ground truth of features used to simulate the dataset is indicated by solid (relevant) and
dashed (irrelevant) lines in Fig. 4.3A.

3A similar effect is observed in the time-dependent scenario (λ ∝ time, Eq. 4.5), where the transition rate
increases with local cell density due to increasing density over time (Fig. 4.2B inset).
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Figure 4.2: Features regulating the transition rate can be estimated non-
parametrically from cellular genealogies with annotated state transition events.
A) The transition rate estimated from 100 genealogies (posterior mean, black line) agrees
well with the true constant transition rate (red line). Gray areas indicate the 95% cred-
ibility region of the estimate. Inset: Estimated transition rate as a function of local cell
density. B) The transition rate estimated from 100 genealogies simulated with linear time-
dependent rate agrees well with the true rate (red solid line). Inset: Estimated transition
rate as a function of local cell density. C) The transition rate as a function of local cell den-
sity ρ for 100 genealogies simulated with density-dependent rate. The estimated transition
rate seems to depend on both local density ρ (in line with the simulated form λ = b · ρ)
and time (see inset). D) The estimated transition rate λ̂ as a function of both density and
time reveals that the time-dependence observed in the inset in C) is an indirect influence
(density increases with time, see inset). Instead, the transition rate depends only on local
cell density ρ (as seen by the mostly uniform pattern of λ̂ in time for fixed ρ, indicated by
arrow).

We estimate the inclusion probability of a feature as the fraction of the 50 bootstraps
that selected the feature (Fig. 4.3B). For example, the features φ2, . . . , φ6 (representing
local cell densities at different radii, see Fig. 4.1D) are present in all bootstraps, φ8 is
present in 70% of the bootstraps, and all other features have low inclusion probabilities.
In particular, time is included in only 18% of the bootstraps and spatial location (x,y)
and time since last division (cell cycle) have zero inclusion probability. Choosing a cutoff
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Figure 4.3: Regularized generalized linear models (GLM) select the relevant
features for cell state transitions. A) Regularization path of the GLMs applied to the
density dependent dataset. The means (lines) and standard deviations (shaded regions)
of the regression weights w are plotted against the regularization strength κ across 50
bootstrap samples (see section 4.2.3). The mean of the optimal regularization strength
κ∗ determined by cross validation is shown as a vertical black line. Solid (dashed) lines
correspond to relevant (irrelevant) features in the respective scenario. B) Percentage of
bootstrap samples that included the respective features. Included features were deter-
mined as those with non zero weights at κ∗. Enforcing a 90% threshold (gray area) on
the inclusion probability for each feature, we select the relevant features of the model.
C) Reconstructed kernel of local cell density (bars) from the selected features in B. The
true underlying tophat kernel shape is shown in black. D-F) Analogous to A-C, but for a
dataset where the transition rate depends on time and local cell density with a Gaussian
kernel. Both features are correctly identified and the density kernel is correctly estimated.

at 90% (gray area in Fig. 4.3B) for a feature to be included in the final model, we recover
all features (except φ0, φ1) that were used to generate that dataset. We miss φ0 and φ1

since their contribution to the overall transition rate is effectively very low: the average
number of cells within φ1 is approximately 0.2, whereas the average number of cells within
e.g. φ7 is approximately 1. Hence, leaving out φ1 will not change the overall result, and
the algorithm chooses to neglect the feature in favor of sparsity.

After feature selection, we can reconstruct the density kernel as a weighted sum of the
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basis functions φk via Eq. (4.16) (shown as green bars in Fig. 4.3C). Here, we observe that
the reconstructed kernel closely resembles the true underlying tophat kernel that was used
to simulate the data (shown as a black curve in Fig. 4.3C).

We extend the set of relevant features and now consider a scenario where the transition
rate depends on time and on local cell density (λ ∝ density + time, Eq. 4.7), modeled via
a Gaussian kernel (with σ = 130 µm) instead of a tophat kernel. The regularization path
and the feature inclusion probabilities (Fig. 4.3D,E) show that the GLM correctly selects
both time and local cell density (φ1, . . . , φ4) with inclusion probabilities close to 1. Finally,
using the weights associated with the selected density features we reconstruct the kernel
of local cell density and find that it indeed matches a Gaussian kernel (Fig. 4.3F). As
before (Fig. 4.3A-C), the feature selection procedure misses φ0 due to its relatively small
contribution to the overall transition rate. We conclude that our proposed method is
capable of identifying the features that directly influence the transition rate and faithfully
filters out indirect influences. Furthermore, we can estimate the shape of the density kernel
from the data.

4.3.3 Sample size estimation

Accurate single-cell identification and tracking in time-lapse movies is still a challenging
task and requires, at least in mammalian systems manual data curation (Schroeder, 2008;
Amat et al., 2014). Thus estimating the required sample size for any given effect size is
necessary for efficient experimental design.

To assess the impact of sample size on the performance of the feature selection, we
systematically reduce the number of observed state transition events (by reducing the
number of genealogies) and calculate the inclusion probabilities as a function of sample
size (Fig. 4.4A,B, averaged across 10 replicates of the respective sample size). Starting
at the original sample size of 3000 onsets (using all 100 genealogies), we find the same
features above the threshold as before (Fig. 4.3B,E). Decreasing the sample size, the
inclusion probability of certain features gradually drops below 0.9 (e.g. φ2 in Fig. 4.4A):
The data no more contains sufficient statistical information to identify the feature as
relevant. At a sample size below 500 events, all features are considered irrelevant. However,
a sample size of 1500 (corresponding to 35 genealogies) is sufficient to faithfully detect
the underlying features influencing the transition rate and to distinguish a direct time-
dependence (Fig. 4.4A) from an indirect one (Fig. 4.4B).

4.3.4 Influence of tracking error

To obtain genealogies from time-lapse microscopy data, manual (Schwarzfischer et al.,
submitted) or automatic tracking (for an overview of current methods, see Maska et al.,
2014) is required. Neither automatic nor manual tracking can produce perfect genealogies,
but will introduce errors especially when local cell density is high or cells move fast as
compared to the time resolution of the imaging. To test the influence of tracking errors
on the our method, we introduce artificial tracking errors into the simulated datasets
by interchanging the identity of randomly selected cells of the same generation and hence
swapping entire subtrees of the genealogies. The amount of tracking error is defined as the
percentage of all cells in the dataset where an artificial tracking error was introduced. We
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Figure 4.4: The method’s performance is robust for different sample sizes and
moderate amount of tracking error. A) Mean inclusion probability for each feature
plotted against sample size. Relevant features are correctly selected (inclusion probability
> 0.9, gray area) when 1500 or more transition events (corresponding to approximately
35 genealogies) are used for the analysis. Solid (dashed) lines correspond to relevant
(irrelevant) features in the respective scenario. B) Analogous to A, but for a dataset used
in Fig. 4.3D-F, where the transition rate depends on time and local cell density with a
Gaussian kernel. C) Mean inclusion probability plotted against the amount of tracking
error for the density dependent scenario from Fig. 4.3A-C (100 genealogies). The correct
features are identified (inclusion probability > 0.9, gray area) up to a tracking error of
5%. For larger tracking error, time (blue curve) is incorrectly identified as a direct instead
of an indirect influence. D) Analogous to C, but for the dataset where the transition rate
depends on time and local cell density with a Gaussian kernel (100 genealogies).

simulate different amounts of tracking error with up to 10% of all cells in the experiment
containing a tracking error. We now evaluate the previous results on these erroneous
datasets.

We find that for both the density dependent (λ ∝ density, Fig. 4.4C) and the time and
density dependent scenarios (λ ∝ density + time, Fig. 4.4D) our method reliable identifies
the underlying features (using the inclusion probability threshold of 0.9 as before) for up
to 5% of tracking error. For higher amounts of tracking error, we erroneously identify time
as a relevant feature in the first scenario (blue line in Fig. 4.4C) and we fail to identify φ4

(Fig. 4.4D) as relevant feature in the second scenario. Note that tracking errors impact
this analysis only by the creation of spurious state transitions (a cell in state A is at some
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Figure 4.5: Expected frequencies of sister pairs reveal if the model can account
for the observed genealogical correlations. A) Comparison of the observed and
expected frequencies of sister pairs (both, one, or none undergoing a state transition) of
the dataset used throughout Fig. 4.3A-C shows no significant difference (p = 0.21, χ2-
test, see section 4.2.5). Fitting the same data, but not accounting for the φ5, φ6 features
causes significant deviations from the expected frequencies (p = 1.3 ·10−6). B) P-values of
the χ2-test (average and standard deviation over 10 replicates) to compare the observed
and expected frequencies of sister pairs against amount of tracking error for the density
dependent scenario. For tracking errors < 5%, the method correctly concludes that the
frequencies of observed sister pairs are in agreement with the model (applying a significance
threshold of α = 0.05, red dashed line).

point accidentally interchanged with a cell in state B) and the method does not rely on
extensive, long trackings.

4.3.5 Model validation using sister correlations

Apparently, our method is able to infer state transition mechanisms by identifying rel-
evant features even in the presence of moderate tracking errors. However, what if we
miss to include relevant features in the GLM, e.g. unobserved influences like nutrient con-
centrations? In this section, we use the tree structure to validate the chosen model by
investigating whether the transition rate λ estimated by the GLM is capable of explaining
the observed correlated transition events within the cellular genealogies. We focus here on
correlations between sister cells, but the approach easily generalizes to higher order rela-
tionships within a genealogy, like cousin-quartets. Suppose that we obtained a reasonable
estimate λ̂ of the transition rate. Then, the state transition of one sister cell is indepen-
dent of the other and just determined by the transition rate that might differ due to the
spatial context in both cells. With this independence assumption, we can calculate the
probability to observe sister subtree patterns (where both, one or none of the sister cells
change state) just as the product of the individual probabilities (see section 4.2.5). Note
that these probabilities are calculated over the entire lifetime of each cell finally resulting
in the expected number of sister subtree patterns for the entire dataset.
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Using these frequencies, we assess if the transition rate learned by the GLM (agnostic
of the tree structure) is capable of explaining the observed correlations in the genealogies
and therefore is an adequate description of the data. For the dataset where the state tran-
sition depends only on local cell density (λ ∝ density, Eq. 4.6), we calculate the expected
frequencies of sister subtrees given the previously estimated transition rate (Fig. 4.5A, gray
bars) and compare these to the observed frequencies in the data (Fig. 4.5A, black bars).
No significant differences are observed (p = 0.21, χ2-test, see section 4.2.5), and hence,
there is no indication of correlations beyond what we expect from the density dependent
transition rate, in agreement with the generative framework.

Next, we show how this idea can be used to determine if all relevant features have
been included in the GLM. To that end, we now deliberately neglect the spatial features
φ5, φ6 when fitting the transition rate via the GLM. Since these two features influence the
transition rate in the chosen scenario, fitting the impaired GLM yields a different λ̂ and
hence also different expected frequencies of sister subtrees (Fig. 4.5A white bars). The
frequencies are significantly different (p = 1.3·10−6), indicating the model is inappropriate,
as there is more correlation in the trees than the model can account for (due to the missing
φ5, φ6).

Our approach to validate the model using sister correlations (Fig. 4.5A) relies on entire
correct trackings of both sister cells, as we integrate over the entire lifetime of these cells
in Eq. (4.17). Analogous to Fig. 4.5A, we evaluate whether we observed frequencies of
sister subtrees match the expectations of the model (which was also fitted to the dataset
containing the tracking errors) via a χ2-test for different amounts of tracking error. For
the density dependent scenario, we find that up to 5% of tracking error, we do not observe
significant differences between observed and expected frequencies (α = 0.05), correctly
indicating that the density dependent transition rate can explain the observed frequencies
(Fig. 4.5B). However, more than 5% of tracking error result in substantial changes of the
sister correlations, which cannot be explained by the model of the transition rate (shown
by the significant differences in frequencies).

4.4 Discussion

In this chapter, we have presented a method to infer the mechanisms driving cell state
transition events from observed cellular genealogies. As two features explicitly regulating
the transition rate, we have here considered time and local cell density. Our method
extends the approach by Snijder et al. (2009) who showed that the response of a cell
to a certain stimulus (in their case, a virus infection) strongly depends on each cell’s
“population context”, that is, its localization within the colony, its cell density and cell
cycle stage. This approach, which has been applied to the analysis of high-content screens
by Knapp et al. (2011), is designed for static data and a single, controlled perturbation.
The cells are subject to a treatment at a defined timepoint and their response is recorded
by a single image. For our purpose a static approach, where the timepoint of the event is
predetermined, is not applicable. Instead, we assume that cells undergo state transitions
spontaneously, and hence transition events can happen at any point in time but their
probability chances over time due to the changing environment the cells experience.
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Methodologically, our method is extendable to detect more general, non-linear de-
pendencies in the data. To that end, we can either explicitly perform a basis function
expansion of the features F , or combine the regularized GLM with kernel methods, e.g.
relevance vector machines (Tipping, 2001). Note that our approach shares certain as-
pects with proportional hazard models (Cox, 1972). However, these models cannot handle
tree-structured data and thus are not applicable to cellular genealogies.

With respect to regulating features, our method can be extended to any other param-
eter that is experimentally accessible. In terms of tumor growth for example, the presence
(or local density) of distinct cancer cell subtypes might influence transitions between states
of different proliferative potential (Stingl and Caldas, 2007). For blood progenitor cells,
including the expression levels of Pu.1 (Kueh et al., 2013), a pivotal fate determining factor
(Krumsiek et al., 2011), as a feature will allow to compare extrinsic and intrinsic (Strasser
et al., 2012) effects on cellular plasticity. For pluripotent murine embryonic stem cells, we
would like to discuss more specifically, how our method can be applied. Embryonic stem
cells transit from a Nanog-high state, where cells are safeguarded from differentiation, to a
Nanog-low state, where cells are more prone to differentiate (Chambers et al., 2007). Sev-
eral models have been proposed to explain the transition from Nanog-high to Nanog-low
states. For some models (Chickarmane and Peterson, 2008; Kalmar et al., 2009; Chickar-
mane et al., 2012), the transition emerges from the entirely intrinsic dynamics of a small
transcription factor network and external signals are neglected. Other models augment
the intrinsic dynamics of a transcription factor network by external differentiation signals
(Glauche et al., 2010; Chickarmane et al., 2006) and autocrine signaling (Herberg et al.,
2014), both of which could depend on other factors, such as local cell density. To study
Nanog-high to Nanog-low state transitions and its potential dependence on e.g. local cell
density with our method, one would first set up our simulation framework to generate
genealogies similar to embryonic stem cell genealogies observed in experiments in terms
of cell lifetime, movement, seeding density, etc. Next one has to implement the hypoth-
esized mechanism either in a simplified way (a simple dependence of the transition on
local density) or in full detail (e.g. taking the proposed model by Herberg et al., 2014, and
modulating the strength of the autocrine feedback with local density). Using our method,
one can then estimate the number of samples and the allowable tracking error required
to discover the hypothesized mechanism in the data. Finally, one can design experiments
and post-processing according to these requirements, and decide e.g. if automatic tracking
algorithms (yielding many but potentially wrong genealogies) or careful manual tracking
(to obtain accurate but fewer genealogies) should be used, what platform and experimental
techniques to use (e.g. microfluidics Blagovic et al., 2011), etc.

Summarizing, our approach is designed for dynamic data provided by time-lapse mi-
croscopy, which allows to observe state transitions in their spatiotemporal and genealog-
ical context. The requirements for an appropriate dataset are (i) single-cell genealogies
obtained from automatic or manual cell tracking, (ii) at least as many annotated state
transitions as determined by our analysis, and (iii) the identification of all cells surround-
ing a transition event in an sufficiently large radius. To the best of our knowledge, no such
dataset exist up to now, but manual and automated tracking tools increase accuracy and
efficiency (Chenouard et al., 2014; Amat et al., 2014; Schwarzfischer et al., submitted).
Moreover, our method relies only on short trackings of one cell cycle to quantify sister
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correlations (Fig. 4.5). Since fluorescent fate markers exist for various systems, morpho-
logical quantification has been shown to be usable for fate recognition (Cohen et al., 2010),
and robust cell segmentation algorithms work on full time-lapse movies (Buggenthin et al.,
2013), we believe that adequate datasets from various cell systems will emerge in the near
future. Due to the method’s generality, many different types of cell state transitions can be
investigated in their spatiotemporal context, from apoptosis over stem cell differentiation
to epithelial-mesenchymal transitions and tumorogenesis.
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Chapter 5

Inferring lineage decisions from
genealogies

Up to now, we have discussed separately mechanistic cell-intrinsic models (chapter 3) as
well as coarse-grained cell-extrinsic models of cell fate decision (chapter 4).

In this chapter, we now combine these two approaches into a single model, which
ameliorates previous limitations, such as the assumption of instantaneous marker onset
after differentiation (chapters 3 and 4) and neglect of the tree structure (chapter 3).
Finally, we apply this method to genealogies of differentiating blood stem cells and assess
whether the long standing paradigm of the PU.1/Gata1 toggle switch in myeloid/erythroid
lineage decisions hold true.

Time-lapse microscopy can not only be used to observe cell state transitions such as
differentiation single cells, but can put these transitions into their genealogical context via
cell tracking. This lead to the striking observations that cells which are descendants of the
same ancestor cell tend to behave similar: For example, in yeast, sister cells switch gene
expression of a simple regulatory circuit in a correlated fashion (Kaufmann et al., 2007).
In hematopoiesis, it has been observed that differentiation events are highly correlated
within trees (Hoppe et al., in revision; Rieger et al., 2009), that is, very often sister cells
show similar timing in fate choice. (see Fig. 5.1).

In chapter 4 we showed how external features, such as local cell density can lead to
correlated differentiation events (see Fig. 4.5A) and proposed a statistical test which de-
termines if those external features are sufficient to explain the observed correlated events.
However, given the rapid movement of blood cells and the extent of correlations across
several generations, common external features as origin of these correlations is unlikely.
Instead, we propose a different mechanism: Differentiation events are typically read out via
the expression of some marker gene. For example, expression of the CD16/32 membrane
receptor (detected by in culture antibody staining) marks differentiation of a early blood
progenitor cell into a granulocyte-monocyte progenitor Hoppe et al., in revision, and ex-
pression of LysM::GFP (fusion protein) marks differentiation of a granulocyte-monocyte
progenitor into either granulocytes or monocytes (Rieger et al., 2009). However, these
markers report the event of differentiation only indirectly, because they are a downstream
consequence of differentiation (e.g. LysM is upregulated because this bacteriolytic enzyme
is essential for the immune action of mature monocytes and granulocytes). Hence, there
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Figure 5.1: Observed marker correlation in genealogies. A genealogy originating
from a single hematopoietic stem cell (only part of the genealogy is shown) is observed to
differentiate into the granulocyte-monocyte lineage as indicated by the onset of CD16/32
expression (cyan). Most marker onsets are observed in a narrow time-window around 130
hours after movie start (gray box). Data taken from Hoppe et al., in revision.

is a cascade from the differentiation decision towards the observed marker expression, re-
sulting in a delay between actual differentiation and the timepoint where it can be read
out experimentally. Here, we propose that the correlations in trees arise due to a delay
between a cellular decision and its observation. We develop at a computational method
that estimates and removes this delay to obtain the true timepoint of decision. We first
study the performance of the method on a simple model of linearly time dependent dif-
ferentiation hazard and a delay caused by gene expression and then apply the method to
a mechanistic toggle switch model of differentiation.

The blood stem cell genealogies used in section 5.3.4 are contained in the manuscript
by Hoppe et al., in revision.

5.1 A differentiation model on genealogies

Time lapse microscopy combined with cell tracking and fluorescence signal quantification
(Schwarzfischer et al., submitted) provides lineage trees of single cells as well as their
corresponding fate. In Fig. 5.2A, we show an example of a lineage tree schematically. Each
tree starts with a single cell at t = 0 (the start of time lapse microscopy). These cells are
assumed to be all equivalent, synchronized and undifferentiated, because they underwent
stringent flow cytometry purification before entering the time-lapse microscopy pipeline.
During the course of the experiment, the cell will eventually divide and give rise to two
daughter cells, which is indicated by the branching events in Fig. 5.2A. The length of the
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segments corresponds to the cell’s lifetime. These cells will eventually also divide, giving
rise to further progeny, but at some point onset of the differentiation marker is observed.
This is annotated in the tree in Fig. 5.2A by gray circles. Note that cells are tracked
and keep dividing after the point of marker onset, but as the tree beyond this point is
irrelevant for our purpose, we terminate it at the points of marker onset.

5.1.1 Genealogies as tree structures

The representation of genealogies shown in Fig. 5.2A is useful to visualize the genealogies,
but now we shall introduce a formal representation of the genealogies as rooted, unordered,
binary and labeled trees. A tree is a acyclic, connected graph, T = (V ,E), where V is
a set of nodes, and E is a set of directed edges between nodes. For each cell in the
genealogy we introduce a single node v. Two nodes v, w ∈ V are connected by a directed
edge e = (v, w) from v to w if v is the parent cell of w. The node w is called the child
of v. Nodes v, w ∈ V are sisters/siblings if they share the same parent node. The node
r ∈ V is called the root of tree T if it has no parent node. The set of nodes L ⊂ V
without children are called leaves of T . A node v is called an ancestor of node w if there
exists a path (e1, . . . , en) that starts at v and stops at w, which is then called a descendant
of v.. The set of ancestors and descendants of a node v are denoted by ac(v) and de(v),
respectively. A tree is termed binary if every node has at most two children and unordered
if no particular ordering is assigned to the two children nodes.

A tree T = (V ,E, σ) is said to be labeled, if we define a function σ : V → Σ which
assigns every node v ∈ V to an element of an alphabet Σ. For cellular genealogies, each
node v ∈ V is labeled by its marker expression mv ∈ B, where B = {0, 1}, i.e. whether the
cell does (mv = 1) or does not (mv = 0) expresses the differentiation marker. Furthermore
each node v is labeled by the time of division ςv ∈ R+ which gave rise to cell v (its “birth
time”) and its observation period τv ∈ R+. Observation of the current cell is terminated
if (i) the cell divides, (ii) it expresses the marker, (iii) the cell is lost in tracking, dies, or
the end of the experiment is reached. As we stop observation at marker expression, we
have mi = 0 for all non-leave nodes vi ∈ V \L. For convenience to enumerate the nodes,
we label the nodes v ∈ V by positive integers cv ∈ N+: The root node r of the tree has
label cr = 1. Children v, w of node u with label cu = i are labeled cv = 2 · i, cw = 2 · i+ 1,
where ordering of v, w is irrelevant. Overall, we obtain the labeling

σ : V → B× R+ × R+ × N+

v 7→
(
mv, ςv, τv, cv

)
.

5.1.2 Latent state transitions: hidden trees

Often, one will observe that, for example, sister cells (but also more distantly related cells)
behave similarly in terms of marker expression: Either both sister cells lack the marker and
are therefore thought to be undifferentiated or in both sisters a marker onset is detected,
often even at similar times (see section 4.3.5 for a statistical test of sister correlations
and section 5.3.1 for an application thereof). We propose that the observed correlations
emerge because of a delay between the differentiation event and the observation of marker
onset.



100 CHAPTER 5. INFERRING LINEAGE DECISIONS FROM GENEALOGIES

A

Differentiation Marker onset

Movie
start

Cell
division

Marker 
onsets

Time

B

C D

Time

Differentiation

Detection 
limit x*

P
ro

te
in

a
m

o
u
n
t

t1 t2

Undifferentiated

Differentiated

Marker onset

Observed tree Set of hidden trees

Division Division

Cell 
lifetime

Figure 5.2: Marker delay causes correlated onsets in lineage trees. A) Tracking
a single cell from movie start gives rise to a lineage tree via multiple cell divisions. Once
the expression of a marker is detected in a specific cell (indicated by gray circles). Fre-
quently, one observes synchronous marker onsets between sister cells in real data (Rieger
et al., 2009; Kaufmann et al., 2007),Hoppe et al., in revision. B) In a simple model of
differentiation and delayed marker onset, an undifferentiated cell (white circle) can either
divide into two undifferentiated cells or differentiate. A differentiated cell (dashed white
circle) can divide into two differentiated cells or become positive for the marker (gray cir-
cle). C) The marker onsets observed in tree T of A) can originate from different possible
scenarios of differentiation, termed hidden trees H(T ), as the underlying dynamics are
unknown. D) One possible realization of the proposed model with outcome A). Cell 2 and
3 independently differentiate at time t1 and t2 and start expressing the marker, but before
reaching the detection threshold (gray line) both cells divide. The offspring inherits the
state of the mother cell and hence sister cells will reach the threshold at similar, but due
to stochasticity in gene expression, not identical times.
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We define the differentiation event as the irreversible commitment of the cell into its
future fate. For example, in the myeloid/erythroid cell fate decision of the CMP into
either GMP or MEP (see Fig. 1.6B), we consider the CMP as undifferentiated, because it
is bipotent, i.e. it can give rise to both GM- and MegE-lineages. As soon as the cell differ-
entiates and commits to one or the other fate, it looses bipotency, which is characteristic
for undifferentiated cells. For simplicity, in the remainder of the chapter we will consider
only one of these two possible cell fate choices. In context of hematopoiesis, we focus only
on CMPs committing towards the GM-lineage. An extension of the method towards to
distinct cell fates is discussed in section 5.4.

In our simply model (Fig. 5.2B), an undifferentiated cell (shown as solid white circle)
can either divide (giving rise to two undifferentiated daughter cells) or progress into the
differentiated state (shown as dashed circle). However, this cell does not immediately show
marker onset, but can still divide several times before it progresses into the final state
where marker onset occurs (gray circle in Fig. 5.2B). According to this generic model,
one observed tree T = (V ,E, σ) can be explained by several scenarios of differentiation
(Fig. 5.2C), that we will call “hidden trees”.

Formally, we define a hidden tree as a rooted, unordered, binary and labeled tree, H =
(V ,E, σ′), which in comparison to the observed tree T has additional labels associated to
each node, such that

σ′ : V → B× R+ × R+ × N+ × B× B
v 7→

(
mv, ςv, τv, cv, uv, dv

)
,

where uv indicates if v is undifferentiated and dv indicates v is differentiated. Note that
labels uv, dv,mv are not mutually exclusive: For a cell v that differentiated uv = dv = 1,
as it is undifferentiated in the beginning but then changes into the differentiated state.
Similarly, for a cell v that starts expressing the marker, dv = mv = 1. Due to the
directionality of the process depicted in Fig. 5.2B, certain constrains are imposed on the
labeling:

∀v:mv=1∀w∈ac(v)mw = 0

∀v:uv=1∀w∈ac(v)uw = 1

∀v:dv=1∀w∈de(v)dw = 1

∀v:mv=1dw = 1 .

That is, ancestors of marker positive cells are marker negative, ancestors of undifferentiated
cells are also undifferentiated, descendants of differentiated cells remain differentiated, and
marker positive cells must be differentiated.

To relate observed and hidden trees, we note that an observed tree T = (V,E, σ) is
obtained from a hidden tree H = (V ,E, σ′) by applying a projection to the labeling σ′,
that is, dropping the labels dv, uv, but conserving the nodes and edges of H. On the other
hand, an observed tree T corresponds to a set of hidden trees denoted by H(T ) (Fig. 5.2C).

Our goal is to judge which of these alternatives H ∈ H(T ) is the most likely one given
experimental data. Therefore, we have to make assumptions about the differentiation
and delay process. Most importantly, we assume that the differentiation decisions are
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independent between cells: No internal (unobserved) information is passed from mother
to daughter cell that has influence on the timing of differentiation. This independence
requirement is a natural definition of a decision event: For example, if one detects any
correlation in differentiation in sister cells, one can argue that the actual decision to
differentiate was initiated previously in the mother cell. Therefore, the probability to
differentiate must only depend on external factors, that are not inherited during cell
division. In the following, we will simply assume that the probability to differentiate is a
function of time.

For the marker delay process, we assume that immediately after the decision to differ-
entiate, the cell starts expressing the marker protein (Fig. 5.2D). Due to a detection limit
of the experimental technique, the expression of the marker cannot be detected instanta-
neously, but only when the amount of protein exceeds this limit x∗ (which is typically at a
few hundred molecules, Schwarzfischer et al., submitted). In Fig. 5.2D, cells 2 and 3 inde-
pendently differentiate at times t2 and t3 and the expression of the marker protein starts.
Before the protein amount in any of the two cells reaches the detection limit, both cells
divide and they daughter cells inherit the state of protein expression from their mother.
Note that without loss of generality, we neglect partitioning of molecules at cell division,
therefore daughters start exactly at the same state. As daughter cells inherit the state
of their mother, they will look correlated with respect to marker onset: If one daughter
reaches the detection limit, the other daughter will likely do the same (their initial distance
to the threshold is very similar), but because gene expression is intrinsically stochastic, the
behavior of both cells will not be exactly identical. However, this statistical correlation is
only mediated via the state of the mother: If we condition on the state of the mother cell,
the behavior of both daughter will be independent.

5.1.3 Differentiation process

Let us define the proposed model of differentiation events more formally. As in chapter 4,
we define a point process with rate λ(t) so that λ(t)dt is the probability that an event
occurs in the interval [t, t + dt], given that the event has not occurred in the interval
[0, t). Furthermore, we can define the overall distribution of event times Φ(t), that is,
the probability to observe an event at time t (analogous to P (g) in chapter 3 but for
continuous time). Both concepts are related via:

Φ(t) = λ(t)e−
∫ t
0 dτλ(τ)

For example, if λ(t) = λ is constant, the above equation yields Φ(t) = λe−λt which is
the probability density of an exponential distribution. Without loss of generality, but
motivated by experimental observation (Marr et al., 2012), from now on, we will assume
that the rate of differentiation is a linear function of time so that

λ(t) = a0 + a1 · t (5.1)

Φ(t) = (a0 + a1 · t)e−
∫ t
0 dτ(a0+a1·τ) (5.2)

= (a0 + a1 · t)e−(a0·t+a1
2
t2) . (5.3)

This represents a first order approximation to a potentially complex but unknown rate
of differentiation. However it allows more flexibility than a zeroth-order approximation
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where a1 = 0 and is sufficient to encompass mechanistic models of cell fate choice (see
section 5.3.3). From now on, we denote the parameters of the differentiation process as
θ = (a0, a1) and write Φ(t|θ) to make the dependence on the parameters explicit.

Note that this differentiation model can be extended to depend on other observable
features than time, e.g. local cell density (see chapter 4).

5.1.4 Delay process

We model the marker delay as a stochastic gene expression process. Lumping together
transcription and translation for simplicity, we obtain a birth-death process with two
reactions, one producing a protein with rate α and the other removing a protein with rate
γ:

∅ α−→ X

X
γ−→ ∅ .

The Chemical Master Equation (see chapter 2) describing how the distribution of protein
numbers x evolves over time is

∂P(x, t)

∂t
= −(α+ γx)P(x, t) + αP(x− 1, t) + γ(x+ 1)P(x+ 1, t). (5.4)

We are only interested in the dynamics of the system until the protein numbers exceed the
detection threshold x∗, where we assume that the marker can be observed, Therefore, we
apply the finite state projection (Munsky and Khammash, 2006) to the master equation,
truncating the statespace at state x∗ − 1 and introducing the absorbing state x∗. This
is readily achieved by extending Eq. (5.4) with separate equations for the states x∗ and
x∗ − 1:

∂P(x∗ − 1, t)

∂t
= α · P(x∗ − 2, t)− [α+ γ(x∗ − 1)] · P(x∗, t)

∂P(x∗, t)

∂t
= α · P(x∗ − 1, t) .

Hence, all probability that leaves the truncated statespace will be collected in the absorbing
state x∗. We are interested in the first passage time distribution Ψx0(t), that is, the
probability that the protein number crosses the threshold x∗ for the first time at time t
starting in state x0:

Ψx0(t) = P (x∗, t, x(s) < x∗|x0) ∀s < t .

In the truncated statespace, this is precisely the probability flow from state x∗ − 1 to x∗

at time t (Van Kampen, 1992):

Ψx0(t) =
∂P(x∗, t)

∂t
= α · P(x∗ − 1, t|x0). (5.5)

Ψx0(t) depends of course on the parameters η = (α, γ, x∗) of the underlying model, but
we have dropped this dependence for readability. To obtain Ψx0(t) we have to solve the
Chemical Master Equation (Eq. 5.4) up to time t with initial condition P(x, 0) = δx,x0
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to calculate P(x∗ − 1, t|x0), which can be done using standard ODE solvers. However,
the system of differential equations grows linearly with the size of the statespace, which
can quickly become infeasible. For this simple stochastic model, an expression for first
passage time distribution can be derived in terms of a renewal equation (see supplement
of Shahrezaei and Swain, 2008). However, when dealing with tree structures in section
5.2, we will see that we have to solve the master equation numerically to also obtain the
propagator Px→x′(t), the probability to start a state x and after time t arrive at state x′.

Note that, as in section 5.1.3, the model described above is only an approximation to
the underlying complex delay process. For example, the underlying process might involve
the upregulation of the marker protein via a cascade of several genes, which is triggered
upon differentiation. However, we will see that this model is sufficient to describe the
dynamics of such complex delay processes in section 5.3.2.

5.2 Statistical inference

Our goal is to estimate the parameters of the model shown in Fig. 5.2 from observed lineage
trees in order to predict the differentiation events in a given tree (Fig. 5.2C). Therefore,
we now derive the likelihood of the observed data given the parameters, which is then
optimized to find the maximum likelihood estimates.

5.2.1 Derivation of the likelihood

We notice that the entire process of differentiation and marker delay on trees has the
Markov property: Given the state of some cell i at time t, the subtree induced by this
cell and time is independent of the remaining tree. This allows us to divide the prob-
lem into smaller subproblems, where we enumerate on a per cell basis all possibilities of
differentiation points in an observed tree.

Consider the observed tree T in Fig. 5.3A. It has three marker onsets (in cells 3, 4 and
5) and with respect to cells, there are three possible differentiation scenarios leading to
this tree: Either the root of the tree differentiated, or both its children differentiated or
all three leave cells differentiated. Note that in each scenario, the point of differentiation
within the cell is not fixed, just the cells that differentiated (this will be accounted for in
section 5.2.2). The likelihood of the observed tree given parameters θ and η is the sum of
likelihoods of the hidden trees, because these are competing alternatives:

L(T |θ, η) =
∑

H∈H(T )

L(H|θ, η) . (5.6)

Note that the number of hidden trees grows quickly with the number of generations in
the tree (it is doubly exponential in the number of generations, Aho and Sloane, 1973).
However, as we will see later in section 5.2.3, we don’t have to calculate the likelihood
for each hidden tree separately but the calculations overlap substantially, rendering the
calculations tractable even for large trees.

Now we derive the likelihood L(H|θ, η) of a single hidden tree H ∈ H(T ). Let us
partition the hidden tree into the various subtrees Di induced by the differentiating cells
and a single tree U that only contains undifferentiated cells (see Fig. 5.3A). Then, due to
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Figure 5.3: Statistical inference on lineage trees. A) For one observed tree T , several
hidden trees H ∈ H(T ) can be constructed. A particular hidden tree can be decomposed
into a single tree U that contains only undifferentiated cells, and the set of subtrees Di

whose roots are differentiating at unknown timepoints (t′, t′′). To obtain its likelihood,
each subtree Di is represented as a graphical model and message passing is performed.
For details, see main text. B) After estimating the parameters from data, we can predict
the most likely hidden tree for an observed tree, by assigning probabilities to the hidden
trees H(T ).
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the Markov property and our assumption of a point process of differentiation (see above),
the likelihood of a hidden tree H factorizes into the likelihood of the tree U generated by
the differentiation process and the product of likelihoods of the subtrees Di generated by
the delay:

L(H|θ, η) = L(U |θ) ·
∏
i

L(Di|θ, η) . (5.7)

Note that the parameters θ also appear in the likelihoods for Di as the root of these
subtrees is still undifferentiated for some unknown time (see Fig. 5.3A). The first term
is easy to compute because the process generating it has no memory as we assumed a
decision to be a point process (see section 5.1.3). Therefore, we can treat the cells within
the tree U independently. Consider a single cell c in this tree that is born at time ςc
(since movie start) and divides at time ςc + τc. The probability that this cell does not
differentiate in its lifetime [ςc, ςc + τc] is given by:

L(c|θ) = e−
∫ ςc+τc
ςc

λ(t|θ)dt = e−a0·τc−a1
2
·(τ2
c+2ςcτc) , (5.8)

where we have used the assumption that the hazard rate λ is a linear function of t (see
Eq. 5.3). As all cells in U are undifferentiated and independent (point process), we get

L(U |θ) =
∏
c∈U
L(c|θ) , (5.9)

which is straightforward to calculate for any given U .

The factors L(Di|θ, η) in the second term of Eq. (5.7) are more difficult to obtain,
as the delay process has memory and hence the individual cells of the subtree cannot be
treated independently. Also, one has to account for the unknown time interval where the
root of the subtree is still undifferentiated (see Fig. 5.3A).

5.2.2 Factor graph representation

We represent each tree Di as a factor graph (see section 2.4) and obtain the likelihood
L(Di|θ, η) by performing inference via message passing on the factor graph. For each non-
root cell c in Di, we create two variable nodes, one representing the state Xc of the cell
c at its first timepoint, the other representing its state Yc before division (see Fig. 5.3A).
Furthermore, we have to introduce one additional variable node τc per cell representing
the lifetime of that cell (shown as black circles in Fig. 5.3A). These three nodes associated
with cell c are linked via the factor fc (squares in Fig. 5.3A), that expresses the proba-
bility to reach state Yc in time τc starting from state Xc. The factor fc is the transition
matrix or propagator of the associated Markov process: fc(Xc, Yc, τc) = PXc→Yc(τc). It is
obtained by solving the Master Equation (Eq. 5.4) numerically. Individual cells are linked
via cell division factors gc (shown as diamonds in Fig. 5.3A) that couple the last state of
the mother (Yc) to the first states of the daughters (X2c, X2c+1). For simplicity, we ne-
glect partitioning of molecules at cell division and assume that this factor is the identity:
gc(Yc, X2c, X2c+1) = δYc,X2c · δYc,X2c+1 . This ensures that both subtrees inherit the same
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state from the mother cell. Note that this can easily be extended for example by binomial
partitioning of molecules1.

Finally, for the root cell r we have only a node representing the state before division
and couple that to a factor fr that implements the integration over the unknown timepoint
of differentiation:

fr(Yr) =

∫ t0+τr

t0

dt′ Φ(t0 + t′|θ)P0→Yr(t0 + τr − t′) .

The first term in the integral gives the probability that the differentiation occurred at time
t0 + t′ and the second term is the probability to reach protein number Yr in the remaining
cell cycle starting from zero proteins.

In this factor graph, which compactly describes the joint distribution over all variables
P (X1, . . . , Xn, Y1, . . . , Yn, τ1, . . . , τn), certain nodes are observed (filled nodes in Fig. 5.3A):
Let’s assume we know the cell cycle length of all cells and we also know the state of the
leave cells, because we observe the marker in these cells: Yl = x∗, where l denotes any leaf
cell.

To obtain the likelihood L(Di|θ, η), we apply the sum-product algorithm on this factor
graph as introduced in section 2.4.3. Here, the sum-product algorithm is used to obtain
the evidence of the data, i.e. p(Yl1 = x∗, . . . , YlL = x∗) for all L leaves of the hidden tree,
which is equal to the desired likelihood

L(Di|θ, η) = p(Yl1 = x∗, . . . , YlL = x∗) .

For an example of the message passing procedure on a tree, see section 2.4.3.

5.2.3 Resolving the combinatorial complexity

Putting together Eqs. (5.6)–(5.9), we find the likelihood of an observed tree T as:

L(T |θ, η) =
∑

H∈H(T )

 ∏
c∈UH

L(c|θ)

 · ∏
d∈DH

L(d|θ, η)

 . (5.10)

The sum over H in Eq. (5.10) consists of a large number of terms (it is double exponen-
tial in the number of cells (Aho and Sloane, 1973)), but the computationally expensive
calculations take place in the second product term of Eq. (5.10): If a tree T has nT cells,
there are exactly nT different delay trees Di to consider, hence the number of expensive
evaluation of L(Di|θ, η) scales linearly with the number of cells. For each tree T one can
precompute the terms corresponding to all possible Di, i = 1 . . . nT , which then only have
to be added up in many different combinations via the sum over H in Eq. (5.10).

For example, consider a full binary tree with five generations, which has 458330 hidden
trees2. Instead of evaluating L(Di|θ, η) in each of the 458330 hidden trees, we only need
to evaluate it for each of the 25 = 32 cells once.

1For example, by choosing gc(Yc, X2c, X2c+1) =
(
Yc
Xc2

)
pXc2(1− p)Yc−Xc2 · δXc2+Xc2+1,Yc

2For a full binary tree with n generations, the number of hidden trees is equivalent to the number yn of
strongly binary trees with generations ≤ n. This is defined by the quadratic map yn = yn−1 + 1 with
y0 = 1 and evaluates to 458330 for n = 5
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Algorithm 4: Recursive algorithm to calculate LA(i)

Input: Cell i, tree T
Output: Set of ancestor cells LA(i)
Algorithm LA(i,T)

if i /∈ T then
return ∅ ; // if cell does not exist in T

else if mod(i,2) == 1 and (i− 1) ∈ T then
return {c} ; // if c has a left sister cell

else
m = b c2c ; // its mother cell

return {c, LA(m,T )} ; // continue recursion in mother cell

end

However, even the enumeration of all H ∈ H(T ) can be prohibitive and we now present
a dynamic programming approach which avoids the explicit enumeration of hidden trees
H. First we introduce two convenient abbreviations:

• S(i) = L(Di|θ, η).
This is the probability of the subtree rooted in cell i, which we obtain by inference
on the graphical model.

• P̃ (i) =
∏
c∈LA(i) L(c|θ).

Here, LA(i) is defined via Algorithm 4 and denotes a particular set of undifferentiated
ancestor cells, such that every undifferentiated cell in the tree is contained in only
one set LA(i). L(c|θ) denote the probability of cell c being undifferentiated (see
Eq. 5.8).

Now we define a quantify κ(i), which aids us in calculating the value of the overall sum in
Eq. (5.10):

κ(i) =

{
S(i) · P̃ (i) if i ∈ L
S(i) · P̃ (i) + κ(v) · κ(w) if i /∈ L and (i, v) ∈ E, (i, w) ∈ E ,

(5.11)

and L denotes the set of leaves of T and E is the set of edges. If cell i is a leave, the
probability is just the product of the subtree probability and the probability to be still
undifferentiated (corrected for the multiple counting, hence P̃ ). If cell i is not a leave, its
contribution to the combinatorics is the following: Either it differentiates and generates
the subtree below (first term) or it just leads to the combinations of the two subtrees
below (resulting in all possible combinations of the events in the subtree). Finally, we’re
only interested in

L(T |θ, η) = κ(1) (5.12)

and we can use the recursive rule Eq. (5.11) to calculate the likelihood of an observed tree
(Eq. 5.10).
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We can now perform maximum likelihood estimation of the underlying model param-
eters (θ, η) given a set of observed trees T1, . . . , Tn:

(θ̂, η̂) = argmax
θ,η

log

[∏
i

L(Ti|θ, η)

]
= argmax

θ,η

∑
i

log [L(Ti|θ, η)] . (5.13)

To solve the above optimization problem, we apply a standard multiple-restart (Latin
Hypercube (McKay et al., 1979)) optimization routine.

5.2.4 Predicting the timepoint of differentiation

The final goal of our approach once we have learned the parameters (θ̂, η̂) via Eq. (5.13)
is to predict differentiation times and cells. For an observed tree T , we select the most
likely hidden tree Ĥ from the set of all possible hidden trees H(T ) according to

Ĥ = argmax
H∈H(T )

L(H|θ̂, η̂) . (5.14)

This immediately provides us with the information which cells most likely have differ-
entiated (see Fig 5.3B). Note that the probabilities over hidden trees do not sum up to
one. However, another hidden tree H ′ might have an only slightly smaller likelihood(
L(H′|θ̂,η̂)

L(Ĥ|θ̂,η̂)
≈ 1
)

, making it difficult to choose what the “best” hidden tree is. This can

be dealt with by making predictions only if the maximum in Eq. (5.14) is very distinct,
e.g. if there is a five-fold difference in the likelihood of the best and second best hidden
tree. Of course, one could also invoke a fully Bayesian treatment, not deciding on one
“true” hidden tree but taking into account all hidden trees, weighted by their posterior
probabilities.

5.3 Application

In the following, we apply our proposed method to two synthetic datasets testing the
validity of our approach. Finally, we use the method on data from blood stem cell dif-
ferentiation to predict differentiating cells and whether these cells show differential PU.1
transcription factor dynamics.

5.3.1 Proof of principle

We now test the tree inference method on synthetic data. We first choose parameters θ
and η, giving rise to the a particular differentiation and delay distribution via Eq. (5.3)
and Eq. (5.5) (see Fig. 5.4A, solid lines). We generate 50 trees from those distributions as
our observations (Fig. 5.4B shows a subset of 25 trees), so that we do not observe the two
underlying processes directly, but only the marker onset.

To quantify the amount of correlations induced in sister cells due to the delay process,
we apply the statistical test proposed in section 4.2.5, i.e. we fit a generalized linear
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Predicted
differentiating not differentiating

Ground truth differentiating TP=187 FN=42
not differentiating FP=27 TN=792

Table 5.1: Confusion matrix for the predictions of differentiating cells in 100 genealogies
in scenario of linear time-dependent differentiation and a single-gene delay. Training was
performed on an independent set of 50 genealogies. (TP: true positive, FN: false negative,
FP: false positive, TN: true negative)

model that tries to explain observed marker onsets in terms of external influences (in
this case the only external influence is time since movie start). The frequencies of sister
subtrees expected from this model are statistically different (p < 10−15) from the observed
frequencies (Fig. 5.4C). This shows that the correlations observed in the data extend
beyond what can be explained by external variables and indicates the need for the model
proposed in this chapter which can handle these cell intrinsic processes (the marker delay).

We fit our model by solving the optimization problem in Eq. (5.13) numerically (a
single optimization run takes approximately 8 minutes), obtain a maximum likelihood
estimate (θ̂, η̂) and compute the corresponding differentiation (Φ̂), delay (Ψ̂) distributions
(see Fig. 5.4A, dashed lines). The estimated differentiation and delay distributions are
very close but not identical to the true ones due to the finite sample size of n = 50 trees.
As a simple measure to quantify this difference, we calculate the L1-distance between true

Figure 5.4 (facing page): Inference of the differentiation decision from lineage
trees can accurately reconstruct the underlying differentiation and marker de-
lay dynamics. A,B) For a given set of parameters θ, η, the differentiation probability
distribution Φ (solid line, upper panel) and the marker delay probability distribution Ψ
(solid line, lower panel) are shown. We simulate 50 trees (25 shown in B) from these
parameters and apply the tree inference algorithm to obtain estimates θ̂, η̂. The corre-
sponding estimates of the differentiation and delay distributions, Φ̂, Ψ̂ (dashed lines in
both panel) agree well with the true distributions (solid lines in A), as quantified by their
L1 distance (0.03 and 0.14, respectively). C) Comparison of the observed and expected
frequencies of sister pairs (both, one, or none differentiating) of the dataset in A-B). The
differences are statistically significant (p < 10−15, χ2-test, see section 4.2.5). D) Histogram
of the difference in time between predicted and true differentiation timepoints for an in-
dependent test set of 100 trees simulated from the distributions in A). E) Histograms of
L1 distances between true and estimated distributions for 100 randomly chosen parameter
sets. While the tree inference is capable of reconstructing the underlying distributions
accurately, resulting in small L1 distances (black bars) using an algorithm based only on
branches of lineage trees often fails to reconstruct the corresponding distributions (gray
bars).
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distribution (p) and estimated distribution (p̂) as:

L1(p, p̂) =
∑
t

|p(t)− p̂(t)| .

In our toy example, we find a small distance between the estimated and true differentia-
tion(0.03) distributions and a slightly larger distance for the delay (0.14) distributions.

We now test the predictions of our model trained with the 50 genealogies on a inde-
pendent test set of 100 genealogies. For each of the 100 trees in the test set, we obtain its
most likely hidden tree via Eq. (5.14), thereby predicting the differentiating cells. Com-
paring these predictions to the ground truth3, we find that for 77 of 100 observed trees,
we predict the correct hidden tree. In terms of single cells, we correctly recall 184 of
198 differentiating cells, while seven cells are falsely identified as differentiating (for the
confusion matrix, see Table 5.1). Finally, we calculated the distance in time, between true
and predicted timepoints of differentiation to see how accurately we can recover not only
the differentiating cell but also the timepoint of this event. We found that the predicted
timepoint is typically within 5 hours of the true timepoint of differentiation, and only in
two cases was larger than ten hours (Fig. 5.4D). Hence, even if the predicted cell is wrong,
the true differentiation event is within the timescale of a single cell cycle, which is 12 hours
on average.

To systematically validate the algorithm’s performance, we repeat the above analysis
for a set of 100 parameters (θ, η)i, (i = 1, . . . , 100), randomly sampled from the intervals
given in Table 5.2. We simulate 50 trees Ti for each (θ, η)i and perform the maximum

a0 a1 α γ x∗

lower bound 10−15 10−15 10−6 10−15 1
upper bound 10−7 10−7 10−1 10−3 150

Table 5.2: Parameter ranges considered in the optimization.

likelihood estimation using Eq. (5.13). For each set of trees Ti, we obtain estimates
of the underlying differentiation and delay distributions (Φ̂i and Ψ̂i). A histogram of
the L1-distances between estimated and true distributions is shown in Fig. 5.4B (black
bars). The distances in the differentiation distributions are generally small (Quantile0.95 =
0.25), Fig. 5.4B, upper panel). For the delay distributions these distances are sometimes
larger (Quantile0.95 = 0.70, Fig. 5.4B, lower panel), suggesting that it is more difficult
to extract these parameters from the data. As a comparison, we developed a similar
framework for the estimation of the two processes based only on branches of lineage trees
(see Appendix B) and applied it to the same 100 datasets. The resulting L1 distances
(Fig. 5.4B, gray bars) are larger (Quantile0.95 = 1.50 and Quantile0.95 = 1.61) compared
to the L1 distances achieved using the full tree information, indicating that the correlation
structure observed in the trees is critical for inferring the underlying processes. Overall, the
analysis suggests that we can reconstruct the underlying parameter from the observation
with good accuracy.

3The ground truth for the 100 genealogies is available from the data generation process.
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5.3.2 A cascade of genes

Until now we have used the very simple model of gene expression combined with a detection
limit of marker onset to explain correlations in trees. However, taking into account typical
gene expression parameters (Schwanhäusser et al., 2011) and reasonable detection limits
(Schwarzfischer et al., submitted), one expects only short delays (in the range of several
hours) between the start of expression and the marker detection. Short delays might
still cause correlations in sister cells, for example if the expression starts very late in
the cell cycle of the mother and is only completed in the two daughters. Correlations
across multiple generations cannot be explained by this simple mechanism, but are more
likely caused by slow dynamics or long cascades in the underlying gene regulatory network
that trigger differentiation. Because the network dynamics are typically unknown, it is
impossible to model this process and to learn its parameters.

Here, we now assess if our simple model can cope with a more realistic delay process
consisting of a cascade of three genes (Fig. 5.5A):

∅ αA−−→ A
γA−−→ ∅

∅ α̃B(A)−−−−→ B
γB−−→ ∅

∅ α̃C(B)−−−−→ C
γC−−→ ∅ .

Upon differentiation, expression of the first gene in the cascade (gene A in Fig. 5.5A) is
triggered, which in turn activates expression of its downstream target (gene B in Fig. 5.5A).
Gene B in turn activates gene C, whose expression can be detected once crossing a detection
threshold x∗ (Fig. 5.5B).

Activation is governed by a Hill function, such that the production rate α̃B(A) of gene
B is an increasing function of the number of activator molecules4. Degradation rates are
γA = γB = γC = 0.1 h−1, maximal synthesis rates are αA = αC = 100 h−1, αB = 22 h−1,
cooperativity n = 5 and dissociation constants KA = 800,KB = 100. The dynamics of
this stochastic process lead to a long and heterogeneous delay ranging from 35 to 60 hours
after differentiation.

We now simulate 50 genealogies from a time-dependent differentiation process (pa-
rameters as in Fig. 5.4A-D) and the three-gene cascade (a sample of nine genealogies is
shown in Fig. 5.5C). As before, we fit the model to the data via Eq. (5.13). Here, a
single optimization run takes approximately 60 minutes due to the much larger genealo-
gies (computation time scales linearly with the number of cells, see section 5.2.3). Note
that the model still assumes a single gene delay process. Comparing the estimated to the
true distributions, we observe good agreement (Fig. 5.5D). We note a slight deviation for
the delay distribution, which arises due the difference in delay processes (a single gene as
opposed to a cascade).

We evaluate the performance of the fitted model on an independent test set of 100
genealogies. For 91 of 100 genealogies, the mostly likely hidden tree (obtained via Eq. 5.14)
indeed corresponds to the true underlying differentiation scenario. Performance in terms

4α̃B(A) = αA · Kn
A

Kn
A

+An and α̃C(B) = αC · Kn
B

Kn
B

+Bn , where Kx is its dissociation constant of the activator,

n the cooperativity, and αx the maximal synthesis rate.
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Figure 5.5: The model can accurately fit delays arising from cascades of genes.
A) In a three-gene cascade, the upstream gene A (red) is activated by the differentiation
event and activates its downstream target gene B (blue), which then activates the marker
gene C (black) which is detectable. B) Dynamics of the process depicted in A). A single
realization is shown as solid lines and shaded areas represent 5-95% regions across 1000
realizations. Time is relative to the differentiation event at t = 0. The detection threshold
of gene C is indicated a horizontal black line. C) Nine genealogies simulated from a linear
time-dependent differentiation process (parameters as in Fig 5.4) but with a delay arising
from a three-gene cascade. D) Estimated differentiation and marker delay probability
distributions (dashed lines) from 100 simulated observed trees agree well with the true
distributions (solid lines). The true delay distribution is calculated from 1000 stochastic
simulations. E) Histogram of the error in the predicted timepoint of differentiation. All
predicted timepoints in the 100 genealogies from D) are within three hours of the true
differentiation timepoint.
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of single cell prediction is summarized in Table 5.3. Note that due to the much longer delay
compared to Fig. 5.4, many more non-differentiating cells are present, which are mostly
classified correctly. In terms of time difference between predicted and actual timepoint
of differentiation, we find that the predicted timepoint is always within 3 hours of the
true timepoint (Fig. 5.5E) and the misclassifications in Table 5.3 happen close to cell
division: For example, the mother cell might differentiate at the end of its cell cycle, but
the methods predicts that its daughter cells difference at the beginning of their cell cycles.

Predicted
differentiating not differentiating

Ground truth differentiating TP=180 FN=18
not differentiating FP=9 TN=5401

Table 5.3: Confusion matrix for the predictions of differentiating cells in 100 genealogies in
scenario of linear time-dependent differentiation and a three-gene cascade delay. Training
was performed on an independent set of 50 genealogies. (TP: true positive, FN: false
negative, FP: false positive, TN: true negative)

5.3.3 Toggle switch model

Now we ask whether our method can be used to infer the differentiation decision in a
more realistic model of cell fate decisions, deliberately ignoring its mechanistic details.
To address this, we implement a toggle switch composed of two mutually repressing tran-
scription factors as an underlying cell fate decision mechanism (see Fig. 5.6A). This model
was already discussed in chapter 3 (see Eqs. 3.36–3.39).

The model exhibits three stable states that can be seen as wells in the quasi-potential
of the system (see Fig. 5.6B): One state, where both proteins are expressed at similar
levels is associated with an undifferentiated cell. In the two other states, either one
or the other protein is strongly upregulated, thereby repressing the other. These two
states corresponds to mutually exclusive differentiated lineages. Differentiation occurs via
noise driven transitions from the undifferentiated to one of the differentiated states. Using
Gillespie’s algorithm (see chapter 2 and Gillespie, 1976) to obtain sample trajectories from
the associated Chemical Master Equation, we simulate trees from this toggle switch model
(see Fig. 5.6C): The root cell of each tree starts in the undifferentiated state, from where
it evolves over time according to the laws of the underlying toggle switch model until it
divides. The cell cycle time is drawn from a log-normal distribution with a mean cell cycle
time of 12h and a standard deviation of 1h. Upon division, two identical daughter cells
are created that inherit the state of the mother cell. We ignore asymmetric partitioning
of molecules at cell division for simplicity. The daughter cells evolve independently of
each other according to the toggle switch dynamics. Once a cell arrives at one of the
differentiated states (empirically defined as crossing 750 molecules of either protein, gray
lines in Fig. 5.6B,C), we stop its simulation and annotate this cell as being differentiated
(gray circles in Fig. 5.6C). We do not distinguish between the two differentiated states
when annotating the marker, emulating a “loss of bipotency” marker, such as LysM::GFP
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in hematopoiesis (Rieger et al., 2009). It is apparent from Fig. 5.6C that the decision of
differentiation, that is the time when the system leaves the undifferentiated state, occurs
much earlier than the observation of our differentiation marker (gray circles in Fig. 5.6B).
This delay arises because the transition from the undifferentiated to the differentiated
states requires some non-negligible time, in which a cell might divide several times, causing
correlated behavior in terms of marker onset between related cells.

In order to test our method, we assume that we cannot directly observe the process that
drives the differentiation (Fig. 5.6C upper and middle panel), but only observe whether
a cell has finally arrived at one of the differentiated states (Fig. 5.6C bottom panel).
We apply the tree inference method and learn the parameters θ, η of our model from
100 simulated trees. Note that these parameters do not correspond to the parameters
of the toggle switch model itself, but to an abstract description of the differentiation
and delay process. In Fig. 5.6D, we show the distributions Φ and Ψ learned from the
data. The differentiation distribution is almost exponential, indicating that the process of
leaving the undifferentiated state is well described by a point process with constant rate
(in agreement with findings from chapter 3). Intuitively, this rate reflects the frequency
of a large fluctuation that pushes the cell out of the undifferentiated state. Inspecting the
delay distribution Ψ we find an average delay of 15±4 hours which visually coincides with
the typical transition times we observe in Fig. 5.6C.

Now, we look at the underlying timecourses of the toggle switch in context of the

Figure 5.6 (facing page): Inferring the differentiation decision in lineage trees
with an underlying toggle switch model recovers the change in the unobserved
underlying dynamics. A) A symmetric model of two mutually inhibiting transcription
factors X and Y. Proteins X and Y are created with rate f(Y ) and f(X), respectively.
Transcription and translation are lumped together and mutual inhibition is incorporated
in the Hill-type synthesis rates f . Proteins decay with rate γ. B) The model in A) gives
rise to one undifferentiated (central) and two differentiated states (upper left, lower right)
that can be identified as wells in the quasi-potential (− log(P )) of the system. We define
a cell to be differentiated and hence marker positive once it enters the basin of attraction
of a differentiated state (gray lines). C) Genealogies are generated from the toggle switch
model. Shown are the resulting genealogy (top panel) as well as the timecourses of both
factors X and Y (middle panel and lower panel). Individual cells are color coded across
panels. D) Estimated differentiation and marker delay probability distributions from 100
simulated observed trees. The differentiation is close to an exponential and the mean
marker delay is 15h. E) Trajectories of predicted differentiating cells are centered on
the timepoint of differentiation (t = 0). Single trajectories (black lines) as well as the
density across all predicted cells (color map) are shown. The predicted differentiation
event coincides with the branching of the toggle switch dynamics. F) Trajectories of cells
whose progeny differentiates into both fates (see inset). Different fates are indicated by
black and white circles. By definition, these cells are undifferentiated. Parameters used
for simulation are γX = γY = 0.7 h−1 (degradation rate), αX = αY = 700 h−1 (maximal
synthesis rate), n = 2 (cooperativity), and KX = KY = 330 (dissociation constants). See
also Eqs. (3.36)–(3.39).
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predicted differentiation events. For a set of 500 observed trees (independent of the 100
trees used for inferring the parameters), we predict the differentiating cells as well as the
timepoint of differentiation within those cells based on Eq. (5.14).

The timecourses of the two proteins X and Y in these predicted cells are then aligned
at the predicted differentiation point (t = 0 on the x-axis of Fig. 5.6E). In Fig. 5.6E, we
show some example cells and their corresponding aligned trajectories (black lines) as well
as the density over all trajectories of predicted cells. These trajectories show the distinct
pattern of state transitioning. In the beginning (t < 0), cells reside in the undifferentiated
central state. Later, some cells exit this state by increasing the abundance of protein X,
differentiating into one lineage, whereas other cells leave the central state by decreasing the
abundance of X and thereby differentiate into the other lineage. Notice that the predicted
timepoint of differentiation coincides with the point where trajectories split up in the one
or the other direction.

For cells that give rise to both differentiated cell types in their progeny, we definitively
know that they are still undifferentiated, assuming differentiation to be irreversible (see
Fig. 5.6F inset). We use these cells as a further validation of our prediction. In Fig. 5.6F,
we plot the trajectories of those cells. We see that an undifferentiated cell samples all
states X ∈ [350, 450], similar to the predicted cells at t < 0 in Fig. 5.6D. Therefore,
we conclude that the cells in Fig. 5.6E before the predicted differentiation (t < 0) are
indistinguishable from undifferentiated cells.

We performed similar analyses for a different parameter set (see Appendix Fig. C.1)
and for a toggle switch coupled to a three-gene marker cascade (see Appendix Fig. C.2)
and obtained the same results: The predicted cells are the ones where the balance of
the two toggle switch proteins is broken and the system tilts towards one or the other
differentiated state.

Without knowledge of the underlying process, but just from the correlations of onsets
in the trees and assuming a linearly time dependent differentiation hazard, our method has
identified cells where the dynamics of the toggle switch undergo large changes that lead to
a state transition. Therefore, it seems plausible that, even if the underlying dynamics are
much more complicated, our simple model of independent differentiation and a delay due
to marker expression can be applied and useful predictions about the underlying dynamics
can be made.

5.3.4 Blood stem cell differentiation

One decision within the hematopoietic differentiation tree is the choice of hematopoietic
stem and progenitor cells (HSPCs) between the megakaryocytic-erythroid (MegE) and
the granulocyte-macrophage (GM) lineage (see Fig. 3.8A). Based by diverse experimental
indications (see e.g. (Krumsiek et al., 2011) for an overview), the mutual binding of lineage-
specific transcriptions factors PU.1 and Gata1 inspired toggle switch models predicting
TF dynamics during this decision (Roeder and Glauche, 2006; Huang et al., 2007; Bokes
et al., 2009; Strasser et al., 2012).

Here, we test whether PU.1 levels change during the differentiation decision as deter-
mined by our tree inference algorithm. To that end, we use sorted HSPCs (see Hoppe et
al., in revisionfor experimental details) from genetically engineered mice, where PU.1 has
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been tagged with enhanced yellow fluorescent protein (eYFP). PU.1 levels are determined
by tracking single cells, where the definite GM lineage choice is read out via manual an-
notation of CD16/32 expression via antibody staining (Fig. 5.7A), quantifying PU1.eYFP
intensities and mapping intensities to absolute molecule numbers using quantification of
Western blot analysis (for details, see Schwarzfischer et al., submitted). In a typical branch
of a differentiating HSPC tree, both the number of PU.1eYFP proteins, as well as the cel-
lular PU.1eYFP concentration rise before CD16/32 onset (Fig. 5.7B). We use our tree
inference method to predict the most likely differentiation timepoint in each tree, sort
cells accordingly into generations before, at, and after the predicted differentiation and
fit the slope of the PU.1eYFP concentration in all cells to quantify protein production
during differentiation. We find no significant difference in PU.1eYFP production between
cells at predicted differentiation and one generation before (p = 0.87, ranksum test), or
one generation afterwards (p = 0.72, ranksum test). In contrast, PU.1eYFP production
is significantly higher in cells with CD16/32 onset as compared to cells one generation
before, at, and and after the predicted differentiation (p = 0.011, p = 0.009, p = 0.018,
respectively). This is in sharp contrast to the PU.1 dynamics in the toggle switch model
(see Fig. 5.6): Here, PU.1 production clearly changes in cells that are predicted to differ-
entiate (p = 8 · 10−11, ranksum test). This discrepancy rejects the involvement of PU.1 in
the MegE vs GM lineage decision via the proposed toggle switch mechanism.

5.4 Discussion

In this chapter, have developed a computational method to infer cell fate decisions in
genealogies from correlated marker onsets. We showed for a simple toy example, that the
tree information is essential to make reliable predictions about the timepoint of decisions
and also demonstrated the this simple model of independent differentiation and marker
delay is capable to explain data generated from a more complicated differentiation model,
a toggle switch of two mutually inhibiting genes.

Having established that the model can capture the cell fate dynamics of an underlying
toggle switch system, we applied it to genealogies of differentiating hematopoietic stem
and progenitor cells to infer the timepoints of cell fate choice from annotated onsets of

Figure 5.7 (facing page): In contrast to toggle switch model predictions, PU.1
expression does not change in hematopoietic stem cells at the inferred differ-
entiation timepoint. (A) Graphical representation of the 13 trees used to infer differen-
tiation timepoints. Manually annotated CD16/32 onset is labeled in cyan. (B) We linearly
fit the PU.1eYFP expression in each cell before, at, and after the inferred differentiation
timepoint (red lines). (C) PU.1eYFP production is comparable (p-value� 0.05, rank-sum
test) in cells one generation before, at , and one generation after the predicted differentia-
tion decision. In cells with annotated CD16/32 onset, a sub-population markedly increases
PU.1eYFP levels. (D) In contrast to the experimental data, the toggle switch model pre-
dicts a clear change of PU.1 production at the differentiation decision. Here, the fitted
slope of PU.1 concentrations in differentiating cells is significantly higher as compared to
undecided cells one generation before ((p = 8 · 10−11),ranksum test).
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CD16/32. Contrary to the prediction from a toggle switch model including PU.1, the
inferred timepoints of differentiation precede the change in PU.1 expression by several
generations. This suggests that PU.1 is not actively involved in the GM/MegE lineage
decision, but acts after the decision has been made, as suggested also by Hoppe et al., in
revision. Considering the rare occurrence of genealogies where both cell fates (GM and
MegE) are observed (10%, see Hoppe et al., in revision) and the late onset of markers
(approximately 5 generations after moviestart, see Fig. 5.7A), this also argues for an early
lineage choice and a delay observation via markers: Let us assume the each cell individually
decides its fate at the timepoint of marker onset (with probability p it differentiates into
a GMP, with probability 1− p it differentiates into a MegE-progenitor). The probability
of observing both fates with these 32 cells5 is close to 1; even in the extreme case when
p = 0.9 and almost all cells become GMPs, the probability to observe both fates within
the same tree is still 0.97 in stark contrast to the observed 10%. This discrepancy also
argues for a cell fate decision several generations before the marker onset, otherwise the
lack of genealogies containing both fates remains unexplainable.

We focused on the observation of only one cell fate marker, but often two or more
markers can be quantified Hoppe et al., in revision, that can have different delay dynamics.
One can split up the observed trees into the ones that only contain one marker and into
the ones that contain only the other marker and discard the trees that have both markers.
Then, two separate models can be trained for both groups. However, as we showed in
Fig. 5.6F, the trees containing both marker onsets are particularity informative: For some
cells, one can a priori tell that they must be undifferentiated. To include this information,
one has to extend the hidden tree enumeration depicted in Fig. 5.2C to account for both
possible fates and apply the graphical model to a subtree Di (Fig. 5.3) with one of two
sets of parameters, depending on whether Di has the one or other type of marker onsets
in the leaves.

For the differentiation process we assumed that is is a linear function of time. In gen-
eral, differentiation can depend on other external factors, e.g. spatial interactions between
cells. For example, it is well known that in vivo, the blood stem and progenitor cells inter-
act with niche cells, e.g. with osteoblasts, and that this interaction influences the fate of
the progenitor cells (Wang and Wagers, 2011). Therefore, it is likely that also in vitro ex-
periments, spatial dependencies play a role for cell fate decision. As a next step, one has to
extend the proposed method to account for these spatial interactions, such as cell-density
dependent differentiation. This is straight forward to incorporate, because spatial location
and cellular density can easily be quantified from time lapse microscopy data. However,
this introduces more unknown parameters and the benefit of these more complex models
has to be rigorously evaluated using model comparison techniques to avoid overfitting.

We modeled the marker delay as a simple stochastic gene expression. This is certainly
a simplification but due to a lack of knowledge about the internal processes more complex
models are only speculative. In fact, this simple gene expression model captures the most
relevant features of such a process: an average delay time, an overall variance between
cells and a mechanism resembling (epigenetic) inheritance at cell division. Additionally,
we neglected partitioning of molecules at cell division. However, we can simply exchange

5which is
∑31
i=1

(
32
i

)
pi(1− p)32−i; the first summand is the probability of one GM and 31 MegE cells, the

second term is the probability for 2 GM and 30 MegE cells, etc.
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the cell division nodes gc in Fig. 5.3A, that are implemented as identities by more complex
functions, modeling either deterministic halving or even stochastic partitioning of proteins
at cell division (Huh and Paulsson, 2011).

Throughout the chapter, we assumed that the observed marker that reports cell fate is
a fluorescence signal, either intracellular (e.g. GFP-fusion) or extracellular (live antibody
staining), that is triggered downstream of the decision. However, the proposed method
is not limited to fluorescence markers, but can in principle be applied to any observable
feature of a cell that is thought to be relevant for a particular cell fate. For example, one
can quantify and use cell morphology as a marker for cell fate (Cohen et al., 2010; Held
et al., 2010) or use cell survival and cell death as readout to learn if apoptosis is initiated
only in the dying cell or was already initiated in one of its ancestor cells.

Provided its extendability and generality, we are confident that the proposed method
can be applied to a wide range of cellular decision problems and that it will support the
analysis and understanding of lineage tree data that is becoming more and more popular
in single cell biology.



Chapter 6

Summary and outlook

In this thesis, I presented and analyzed models for cell fate choice in differentiating stem
and progenitor cells and developed methods to link those models to experimental data. Of
particular biological interest was the role of the two transcription factors PU.1 and Gata1
in hematopoietic cell fate choice. Those two factors form a genetic toggle switch and serve
as the current (but unproven) paradigm of cell fate choice on a molecular level. Therefore,
the toggle switch is a recurring theme in this thesis and is extensively analyzed. Motivated
and driven by single cell time-lapse data from the Schroeder lab (Department of Biosystems
Science and Engineering, ETH Zürich), the presented work put emphasis on single cell
models, their benefits and challenges. Single cell data and hence single cell models are in
fact necessary to study the dynamics of these cell fate decisions: The underlying dynamics
are inherently multimodal, i.e. progenitor cells choose either one fate or the other and with
potentially different dynamics. For example, GM-fated blood progenitors upregulate PU.1
whereas erythroid-fated cells downregulate PU.1, and averaging over the entire population
will yield non-representative intermediate PU.1 dynamics.

In chapter 3, we introduced a stochastic model of the toggle switch without autoacti-
vation and cooperative binding, but including an mRNA stage in the expression process.
While a deterministic model is monostable in the absence of autoactivation and coopera-
tivity of inhibition, stochastic models of the toggle switch were shown to be multimodal
(Lipshtat et al., 2006). In these models, transcription and translation are lumped into a
single synthesis reactions (one-stage gene expression), which is justified by a much faster
timescale of mRNA turnover e.g. in bacteria. Due to the mounting evidence that in mam-
malian cells, mRNA and protein turnover of transcription factors happen on a similar
timescale (Schwanhäusser et al., 2011) and the fact that small mRNA numbers introduce
strong stochastic fluctuations that propagate even in the presence of high protein num-
bers, we developed a toggle switch model explicitly accounting for the mRNA stage of gene
expression. We showed that inclusion of the mRNA stage indeed changes the dynamics
compared to one-stage toggle switches. While the one-stage model is trimodal and most
probability mass is located in a deadlock state where both factors are expressed in low
levels, in our two-stage model, this state splits into two intermediate states and most of
the probability mass shifts to the two states where either one or the other factor is strongly
expressed. Interestingly, in the context of cell fate choice, the intermediate states can be
associated with undecided states, which are however already biased towards one or the
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other fate. This phenomenon was for example observed by Chang et al. (2008) in blood
progenitor cells: While the progenitor population was provably undifferentiated, within
the population two subtypes existed that were shown to be biased towards either myeloid
or erythroid fate. Furthermore, we studied the process of state transitions within this
toggle switch model, and showed that the transitions are initiated by the occurrence of a
few elementary reactions, e.g. repressor unbinding followed by a single mRNA synthesis.
Hence, we could approximate the transition as a point process and provided analytical ex-
pressions for the transition rates in terms of elementary reaction rates. Next, we showed
how the dynamics of a toggle switch can be linked to existing time-lapse microscopy data of
differentiating granulocyte-monocyte progenitor cells in permissive conditions. Using the
annotated expression of the “loss of bipotency” marker LysM as a proxy for the timepoint
of differentiation, we extracted the timing of the cell fate decision from the genealogies
and used Approximate Bayesian Computation to fit a stochastic toggle switch model to
that data. The model could indeed fit the observed timing of differentiation and predicts
that the protein degradation rate of one factor as to be roughly one order of magnitude
smaller than the other, meaning that cells commit to the one fate much faster than to the
other. Unfortunately, with the existing data it was not possible to verify this hypothesis,
because no cell fate specific markers are contained in the dataset, and LysM expression
only indicates that a cell is no longer bipotent but does not provide information about the
chosen fate itself.

For chapter 4, we digressed from the toggle switch as a molecular mechanism of cell
fate choice and investigated how the influence of cell extrinsic variables, such as local
cell density or nutrient concentration on cell fate choice can be detected. For simplicity,
we considered only one cell fate, where for example cells are either undifferentiated or
differentiated. We assumed the cell fate choice to be a point process (as motivated by the
stochastic toggle switch), whose rate is now a function of external features. We showed
how this rate can be reconstructed from genealogies using a non-parametric estimator, but
also pointed out its drawbacks: (i) estimating the rate as function of multiple variables
is infeasible with limited sample size, (ii) indirect effects due to correlations of variables
cannot be identified. In turn, we estimated the rate via generalized linear models equipped
with regularization to remove indirect effects due to correlated features. Furthermore, we
proposed to use the correlations in terms of cell fate choice between genealogically related
cells in order to validate of the model, i.e. whether the model of the transition rate can or
cannot reproduce the observed correlation patterns. We demonstrated the success of our
approach on different synthetic datasets and illustrated exemplarily how the interaction
kernel of local cell density could be reconstructed from that data. Next, we tested how
our method performs for varying numbers of samples and amount of cell tracking errors to
give guidelines for future experiments. Although the analysis was performed for specific
sets of parameters, one obtains already a rough estimate of requirements: a few thousand
observed transitions (in our case corresponding to less then 100 genealogies) and a tracking
error of less than 5%. Note that the chosen linear dependence of the rate on features is
already a challenging scenario: Due to the gradual linear change of the rate with respect
to the feature, the transition events are only weakly correlated to the underlying features.
Non-linear relationships, where the rate abruptly changes by a large amount with respect
to an underlying feature (e.g. a step function) are easier to detect, as there is clear link
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between the transition event and the feature.

In chapter 5 we merged the previous ideas on mechanistic, cell-intrinsic and cell-
extrinsic mechanisms of cell fate choice. We assumed that differentiation itself is a point
process with a rate depending on external factors, but relax the assumption of the cell fate
marker immediately reporting the cell fate choice. Therefore we accounted for the fact
that the marker gene is upregulated most likely only as a delayed consequence of the newly
established fate, but not immediately when the cell fate choice is made. This delay, which
is modeled by a simple gene expression process, can cause correlated marker onsets beyond
what is expected from external influences (as indicated by the test proposed in chapter 4).
We developed a likelihood-based inference method that learns the model parameters from
genealogies and show that using the tree structure is crucial to identify the correct param-
eters. Furthermore, we used the fitted model to predict the timepoints of differentiation
within the observed genealogies. Testing the method on various synthetic datasets, we
showed that the same simple model is also capable of predicting the correct timepoints of
differentiation in datasets generated from more complex models of differentiation, e.g. a
toggle switch, or a toggle switch coupled to a cascade of genes.

Before proceeding to the application of the method to the PU.1/Gata1 data, it is
insightful to discuss how the our model relates to previously published models on cell fate
choice via a toggle switch. In the work of Huang et al. (2007), the cell fate decision is
modeled via a toggle switch assuming deterministic dynamics. In a deterministic system,
a state transition cannot occur spontaneously as the cell will always converge to the stable
state, in whose basin of attraction the cell is located. Therefore, Huang et al. (2007)
assumed a gradual change of a system parameter (the strength of autoactivation) over
time, eventually leading to a bifurcation. This destabilizes the progenitor state and leads
to a transition into one of the two differentiated states which the cell reaches after a given
period of time (approximately 72h in their experiments). Our model of a point process
decision and a delay can be viewed as a generalization of the model by Huang et al. (2007):
We would consider the change of the activation strength as an external time-dependent
influence, which modulates the differentiation rate λ. For example, to recapitulate the
scenario by Huang et al. (2007), one would choose λ(t) = Θ(t − t∗), where Θ is the
Heaviside step function and t∗ is the timepoint at which the bifurcation occurs in their
model. Hence, cells differentiated with certainty after timepoint t∗. Similarly, the time
it takes for the deterministic system to settle into one of the differentiated stable states
would be accounted for by or model as a sharply peaked gene expression delay. Hence, our
model would allow to reconstruct the timing of the underlying bifurcation event, which in
this scenario correspond to the timepoint of differentiation.

Having established that our model is capable of accurately predicting timepoints of
differentiation when the driving mechanism is a toggle switch, we finally analyzed the
role of PU.1 in the GM/MegE cell fate decision in hematopoiesis. Here we used a recent
dataset by Hoppe et al., in revision, where for the first time expression levels of PU.1
and Gata1 were observed in single blood stem and progenitor cells continuously over time
across several generations. We focused on GM-fated cells, whose commitment is indicated
by expression of CD16/32, a GM-lineage specific surface marker. For this fate choice, it
is expected that PU.1 is upregulated from intermediate expression in CMPs to high levels
in GMPs. However, whether this upregulating is the origin or a consequence of the cell



126 CHAPTER 6. SUMMARY AND OUTLOOK

fate choice is yet unknown. We fitted the proposed model to the CD16/32 onsets in GM-
fated genealogies and predicted the timepoints of differentiation within those genealogies.
Investigating the PU.1 expression levels in the predicted cells, we found that PU.1 is
upregulated several generations later, whereas from a toggle switch driven cell fate decision
one would expect PU.1 upregulating within the predicted cells. This led to the conclusion
that PU.1 is not actively involved in the cell fate decision, but is merely regulated in
response to the the chosen fate where it then coordinates the fate-specific gene expression
in its role as a myeloid master regulator.

While the long delay (> 4 generations) between the cell fate decision and the obser-
vation of the marker onset was unexpected, it fits well to another independent observa-
tion: Genealogies where both myeloid- and erythroid-fated cells are present are very rare
(< 10%, Hoppe et al., in revision). This can be explained if the respective cell fate deci-
sions happen early on in the genealogy. Otherwise, one would in fact expect the majority
of genealogies to contain both cell fates just by chance (see Marr et al., 2012 for mathe-
matical details). Another possible explanation for the lack of these mixed genealogies is
the presence of a strong lineage bias in the starting population, i.e. single cells are undif-
ferentiated, but latently already biased towards either the myeloid or erythroid lineage.
Such lineage bias was readily observed in a progenitor cell line (Chang et al., 2008) and
also reported for hematopoietic stem cells, albeit for different lineages (Dykstra et al.,
2007; Müller-Sieburg et al., 2002) and might be implemented molecularly by the toggle
switch discussed in chapter 3. However, such lineage bias would not produce the observed
correlated marker onsets. Cells within a genealogy would only choose the same fate, but
the timing of this decision would not be correlated. Hence, we argue that the lack of mixed
genealogies originates from an early cell fate decision rather than from a lineage bias.

To verify the predictions of our model, additional experimental proof is required. To
that end, we propose to measure the rate of the point process governing differentiation via
cytokine instruction: Assuming that cytokines can instruct undecided cells but exert no ef-
fect on already decided cells, one can determine the timepoints of differentiation via colony
assays1. Applying a myeloid-promoting cytokine at the start of the experiment should re-
sult exclusively in GM-colonies, as all cell were undecided and can be instructed via the
cytokine. Applying the cytokine at a later timepoint will result in some MegE-colonies, as
some cells already differentiated into the MegE-lineage and cannot be instructed by the
cytokine. Hence, one can derive the fraction of differentiated cells and therefore the rate
of differentiation at each time from the number of non-instructable colonies.

While it was already postulated that the PU.1/Gata1 toggle switch as a whole cannot
be the determinant of myeloid/erythroid fate (Hoppe et al., in revision; Schwarzfischer,
2013), e.g. due to absence of Gata1 in CMPs, here our model showed more generally
that also a toggle switch consisting of PU.1 and another yet unknown transcription factor
does not implement the cell fate decision molecularly. Note that we did not analyze the
timecourses of Gata1 during the cell fate decision as Gata1 is not detectable in GM-fated
cells, as shown by Schwarzfischer (2013). Our findings do not in general rule out the
paradigm of toggle switches as molecular implementations of binary cell fate choice, but
simply show that the most promising candidate pair of PU.1 and Gata1 is not an instance

1Cells are plated in clonal density and after a given period of time, e.g. one week, the composition of the
formed colonies in terms of cell types is assessed.
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of this paradigm. For the future, an important question arises: How can one find the true
transcription factors that might mediate the myeloid/erythroid cell fate choice?

From the experimental side, one could rely on increasing automation of time-lapse
microscopy, cell tracking and quantification, e.g. using microfluidics, and perform the
analysis on a whole library of mouse lines, where different transcription factors have been
tagged by fluorescence (analogous to the Yeast GFP library, Huh et al., 2003) to find
transcription factors that are differentially regulated during the cell fate decision.

On the computational side, we envision a combination of time-lapse experiments, yield-
ing timecourses of a few proteins, and static large scale methods such as single-cell qPCR
or RNAseq. Based on the idea that the gene regulatory network should restrict the tran-
scription factor dynamics to a low dimensional manifold (Huang, 2012), one might be able
to infer from timecourses of a few factors the current location of a cell on manifold and
hence extrapolate timecourses of the other factors that have only been observed statically.
This would allow to assess the dynamics of the entire gene regulatory network at the
timepoint of a cell fate decision and to find those factors that drive it. In a first attempt,
it would be interesting to compare our results about the timing of the myeloid/erythroid
decision from time-lapse data with static single cell qPCR data. Ideally, the qPCR dataset
should contain the same cell types observed also in the course of the time-lapse experi-
ment, i.e. hematopoietic stem cells, CMPs, GMPs and MEPs and has to contain PU.1 and
Gata1 in its gene-set. Performing dimension reduction using e.g. diffusion maps (Coifman
et al., 2005) creates a low dimensional embedding of the high dimensional qPCR data
and can also recapitulate the branching structure of the underlying cell type hierarchies
(Haghverdi et al., in revision) and the time ordering of cells. Mapping the time ordering of
the diffusion map into real time by e.g. comparing the rates of change in PU.1 and Gata1
between datasets, one could assess where our predicted delay of 4-5 generations between
cell fate decision and CD16/32 lies with respect to the branching of the two lineages in
the qPCR dataset and which factors are differentially regulated at that point.

Although during my thesis, the methods and models were developed in the context
of stem cell differentiation and hematopoiesis in particular, the ubiquity of stochastic cell
state transitions opens up many other applications: Reprogramming somatic cells into
iPS cells is believed to be a stochastic process (Hanna et al., 2009; Buganim et al., 2012)
and e.g. analyzing the timing of reprogramming (Morris et al., 2014) might give important
insight into this complex procedure. Similarly, it is thought that tumorogenesis and tumor
heterogeneity is the result of stochastic state transitions between cancer stem cells and
non-tumorogenic cells (Gupta et al., 2011). Furthermore, metastases are generated when
cells randomly undergo a epithelial-mesenchymal transition, detach from the tumor and
spread the cancer into other body parts (Magee et al., 2012). Here, our methods could be
used e.g. to understand how external environment influences transition probabilities within
the tumor or to predict at which cells in the tumor initiated an epithelial-mesenchymal
transition, thus promoting the development of more effective therapies.
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Appendix A

The master equations of an
interacting population of dividing
cells

We consider a population of cells, each defined via its position x, its state s and its age
τ (see section 4.1.1). Cells change state s with rate λ(F ), where F are the cell’s features
(cell density, age, etc.), and divide with age dependent rate γ(τ). First, let us describe
how the distribution of a single cell evolves:

Ṗ(x, s, τ, t) = ∇2P(x, s, τ, t) +
∂

∂τ
P(x, s, τ, t)

− δs,0 · λ(x, t, τ) · P(x, s, τ, t)

+ δs,1 · λ(x, t, τ) · P(x, s− 1, τ, t)

− γ(τ) · P(x, s, τ, t)

This is analogous to the equation given in section 4.1.1, but contains an extra term that
accounts for the loss of the single cell due to cell division giving rise to a pair of cells.
When considering pairs of cells, we must describe the evolution of their joint distribution
P(x1, s1, τ1, x2, s2, τ2, t):

Ṗ(x1,s1, τ1, x2, s2, τ2, t) =

(
∇2
x1,x2

+
∂

∂τ2
+

∂

∂τ2

)
· P(x1, s1, τ1, x2, s2, τ2, t)

− [δ(s1) · λ(F1(x1, τ1, x2, τ2)) + δ(s0) · λ(F2(x1, τ1, x2, τ2))] · P(x1, s1, τ1, x2, s2, τ2, t)

+ δ(s1 − 1) · λ(F1(x1, τ1, x2, τ2)) · P(x1, s1 − 1, τ1, x2, s2, τ2, t)

+ δ(s2 − 1) · λ(F2(x1, τ1, x2, τ2)) · P(x1, s1, τ1, x2, s2 − 1, τ2, t)

+ δ(τ1) · δ(τ2) · δ(x1 − x2) ·
∫ t

0
dτ ′γ(τ ′)P(x1, s1, τ

′, t)

− [γ(τ1) + γ(τ2)] · P(x1, s1, τ1, x2, s2, τ2, t)

The first line represent diffusion in space and drift in time. The second line corresponds
to loss due to a state change out of state A, where the rate λ depends on the features Fi of
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cell i, which is function depending on potentially all system variables (e.g. cell locations
when representing cell density). The third line accounts for a cell in state A (s1 = 0) at
position x1 that transitions into state B (the forth line is analogous for the second cell).
The fifth line includes the gain of probability due to a division event in the single cell
equation creating two cells of age 0. This term gives rise to the coupling of the equations.
For simplicity we assumed that a division event at location x gives rise to two cells both
located at x as well. Finally, the last term models loss due to either cell 1 or cell 2 dividing.

The equation for higher numbers of cells (triplets, etc.) become more and more complex
as one has to deal with arising symmetries (see e.g. Dodd and Ferguson (2009)).



Appendix B

Inferring lineage decisions from
branches

B.1 Theory

Here, we briefly develop an alternative approach to infer the differentiation events, based
only on branches of the lineage trees. One can simply reduce the intricate tree-structured
data to single branches and estimate the parameters from these branches. Having observed
a set of trees Ti, (i = 1, . . . , N), for each tree Ti one extracts all possible branches Bj

i , one
branch per leave cell j (Fig. B.1A). In order to obtain independent data points required for

parameter estimation, we have to randomly sample a single branch B j̃
i from each tree Ti

(see Fig. B.1A). For example, if we observe 100 trees we can only obtain 100 independent
branches, thereby discarding a lot of data. Having sampled N independent branches
Bi, (i = 1, . . . , N) we extract the times ti, (i = 1, . . . , N) between the root of the branch
and the onset of the marker. We can now derive the likelihood of these observations ti
given the parameters (θ, η) of our model. Recall that θ and η represent the parameters
associated with the differentiation process and delay process, respectively.

Both the differentiation process and the delay process contribute to the length of the
observed branch ti. The branch length ti is the sum of two random variables, one repre-
senting the time until differentiation, the other representing the time from differentiation
to marker onset. Hence, we observe the convolution (Fig. B.1B bottom panel) of the hid-
den event densities of the differentiation Φ(t) (Fig. B.1B upper panel) and the delay Ψ(t)
(Fig. B.1B middle panel). For simplicity of notation we defined Ψ(t) = Ψ0(t), the first
passage time distribution starting from state x0 = 0. The likelihood for a single marker
onset observation at time t is therefore:

L(t|θ, η) = (Φ ∗Ψ)(t) =

∫ t

0
dτ Φ(τ |θ) ·Ψ(t− τ |η) . (B.1)

Here, we explicitly note the dependence of Φ and Ψ on their associated parameters θ
and η. The likelihood of multiple observations ti (i = 1, ..., N) is just the product of the
individual likelihoods due to their independence. Note that this is only possible because
we enforced independence by sampling just one branch per tree. In order to estimate the
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Figure B.1: Inference of the differentiation decision using branches estimates observed
data well but fails to infer differentiation and delay distributions properly. A) Having
observed a set of trees Ti with marker onsets indicated by gray circles, for each tree,
one constructs all possible branches Bj

i and obtains independent samples Bi by randomly
choosing one branch per tree. B) The marker onset distribution (bottom panel) is the
convolution of the differentiation distribution Φ (upper panel) and the marker delay dis-
tribution Ψ (middle panel). Based on 50 observed branches generated from one param-
eter set, we obtain an estimate of the marker onset distribution (gray bars in bottom
panel). Applying the deconvolution based on a linearly increasing differentiation haz-
ard, we find estimates of differentiation and delay distributions, Φ̂, Ψ̂ (dashed lines in
all panel). Even though the marker onset distributions and its estimate agree very well
(L1 distance = 0.16), the estimates Φ̂ and Ψ̂ are apparently different from the distribu-
tions Φ and Ψ (L1 distance = 0.28 and L1 distance = 0.44). C) Histograms of L1-distance
between estimated and true differentiation-, marker delay-, and marker onset distributions
for 100 randomly chosen parameter sets. Even though the distance with respect to the
convolution is small (Quantile0.95 = 0.25 in the bottom panel) indicating a good fit, the
fits of the underlying unobserved components Φ and Ψ don’t agree (Quantile0.95 = 1.50
and Quantile0.95 = 1.61 in the upper and middle panel).
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parameters θ and η of the two underlying processes, we maximize the log-likelihood with
respect to the parameters to obtain the maximum likelihood estimate:

(θ̂, η̂) = argmax
θ,η

log

[∏
i

L(ti|θ, η)

]
= argmax

θ,η

∑
i

log [L(ti|θ, η)] (B.2)

To solve the above optimization problem, we apply a standard multiple-restart (Latin
Hypercube (McKay et al., 1979)) optimization routine.

B.2 Simulation study

We now test the branch inference method on synthetic data. We first choose parameters
θ and η, giving rise to the a particular differentiation and delay distribution (via Eq. 5.3
and Eq. 5.5) as well as their convolution (see Fig. B.1B, solid lines). Next, we draw
300 samples from this convolution as our observation (grey bars in Fig. B.1B bottom
panel). By solving the optimization problem in Eq. B.2 numerically, we obtain a maximum
likelihood estimate (θ̂, η̂) and compute the corresponding differentiation (Φ̂), delay (Ψ̂) and
convolved distributions (Φ̂ ∗ Ψ̂) (see Fig. B.1B, dashed lines). One observes that the true
and estimated convolved distributions (Fig. B.1B, solid and dashed lines, bottom panel)
are very similar. This is expected, because we are directly fitting this distribution via the
optimization. Since we provided only a finite sample of size N = 300 from this distribution
(Fig. B.1B, bars), the fitted distribution is slightly different from the true one. Examining
the differentiation and delay distribution (Fig. B.1B, upper and middle panel), we notice
a considerable discrepancy between the true and estimated distributions. Even though
we are able to find parameters that closely reproduce the convolution, the underlying two
distributions Φ̂ and Ψ̂ are different from the true distributions Φ and Ψ.

As a simple measure to quantify this difference, we calculate the L1-distance between
true distribution (p) and estimated distributions (p̂) as:

L1(p, p̂) =
∑
t

|p(t)− p̂(t)| .

In our toy example (Fig. B.1B), we find a small distance between the estimated and
true convolution (0.1), but larger distance for the differentiation (0.28) and delay (0.44)
distributions. This toy example suggests that the deconvolution is not unique within
the error introduced by finite sample size. This is not surprising, as noisy deconvolution
problems often are ill-posed if not sufficiently constrained. In our example, we constrain
the distributions Φ and Ψ to be of a specific form, but these constraints are still not
sufficient to make the problem solvable. For example, a trivial indeterminacy occurs if both
distributions can closely resemble each other (within the error introduced by finite sample
size) for certain choices of parameters. Since the convolution is symmetric (f ∗ g = g ∗ f),
in this case one cannot tell what is differentiation and what is delay just from observing
the sum of both processes, e.g swapping Φ and Ψ in Fig. B.1B will yield exactly the same
convolution and hence the same likelihood.

In order to systematically assess this non-identifiability using branches, we repeat the
above analysis for a set of 100 parameters (θ, η)i, (i = 1, . . . , 100), randomly sampled
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from the intervals given in Table 5.2. We simulate 50 trees Ti for each (θ, η)i, sample
a set of branches Bi (as discussed in Fig. B.1A) and perform the maximum likelihood
estimation using Eq. B.2. For each set of branches Bi, we obtain estimates of the un-
derlying differentiation and delay distributions (Φ̂i and Ψ̂i). In Fig. B.1C, a histogram of
the L1-distances between estimated and true distributions is shown. We observe that the
distance with respect to the convolution distribution is rather small (Quantile0.95 = 0.25),
indicating that the the estimated parameters can fit the true marker distribution very
well. Again, one cannot expect this distance to be zero because we provided only a finite
sample (as discussed for Fig. B.1B). The distances with respect to differentiation and delay
distribution are more wide spread, especially the delay distributions often fit very badly
(Quantile0.95 = 1.61). This confirms our previous statement about the ill-posed nature of
this problem: Observing only branches is insufficient to reconstruct the two underlying
processes of differentiation and marker delay.
Note that the prediction of differentiating cells within a tree is not possible using the
branch inference. One can of course estimate Φ and Ψ by maximizing Eq. B.2 for a set of
observed branches and use Eq. B.1 to find the cell within a branch that has most likely
differentiated. However, there is no way to predict the differentiating cells within a whole
tree with that approach: The branch inference method cannot per se handle the tree
structure, because it treats cells independently. If we predict the branches within a tree
independently, we can easily run into inconsistencies. For example consider the tree T1

in Fig. B.1A. If for some reason in branch B
(1)
1 the leave is predicted to differentiate, but

in branch B
(2)
1 the root is predicted to differentiate we cannot put those prediction back

together into a consistent tree.
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Tree inference for the toggle
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C.1 A different parameter regime
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Figure C.1: Inferring the differentiation timepoint in genealogies simulated
with a toggle switch model (see Fig. 5.6) and a different set of parameters. A)
The model gives rise to a similar attractor landscape as before (compare to Fig. 5.6B).
However, overall protein numbers are increased. B) Estimated differentiation and marker
delay probability distributions from 100 simulated observed trees. C) Trajectories of pre-
dicted differentiating cells are centered on the timepoint of differentiation (t = 0). D)
Trajectories of cells whose progeny differentiates into both fates (see inset). Parameters
used for simulation are γX = γY = 0.29 h−1 (degradation rate), αX = αY = 1440 h−1

(maximal synthesis rate), n = 2 (cooperativity), and KX = KY = 1000 (dissociation
constants), x∗ = 4500 (detection threshold).
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C.2 A toggle switch coupled to a three-gene cascade
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Figure C.2: A) Schematic of the model: A toggle switch (genes X and Y, see Fig. 5.6)
implements the cell fate decision while the marker proteins that are detectable (genes C,
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the system is considered to be symmetric, i.e. both cascades share the same parameters.
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(dashed black line). C) Two exemplary genealogies simulated with the model in A,B. De-
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