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ABSTRACT 

Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), 

which leads to considerable losses in yield and quality. Quantitative resistance to the 

causative fungus Fusarium graminearum is yet poorly understood. We integrated 

transcriptomics and metabolomics data to dissect the molecular response to the 

fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines 

segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data 

sets portrait rearrangements in the primary metabolism and the translational 

machinery to counter the fungus and the effects of the toxin and highlight distinct 

changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These 

observations are possibly due to the activity of two amino acid permeases located in 

the QTL confidence interval, which may contribute to increased pathogen endurance. 

Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few 

genes that are specifically expressed in presence of the QTL and in response to the 

pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 

ubiquitin-protein ligase. On a genome-scale level the individual subgenomes of 

hexaploid wheat contribute differentially to defense: Especially the D subgenome 

exhibited a pronounced response to the pathogen and contributed significantly to the 

overall defense response. 
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INTRODUCTION 

Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) is one of the most important 

food crops worldwide providing about 20% of the daily human calorie consumption 

(Brenchley et al. 2012). Increasing nutritional demands by a growing world population 

and environmental stresses present major challenges for wheat research and 

breeders. One of the most prevalent diseases on wheat and other small grain cereals 

is Fusarium head blight (FHB). The disease is mainly caused by the hemibiotrophic 

fungus Fusarium graminearum, which thrives under humid and temperate conditions 

leading to large economic losses (McMullen et al. 2008; Pirgozliev et al. 2003). The 

most severe effect of FHB is the contamination of grains with mycotoxins such as 

deoxynivalenol (DON), which remain in the food chain and constitute a threat to the 

health of animals and humans (Pestka 2010). DON is a potent inhibitor of protein 

biosynthesis and, while its presence is not required to establish the infection site, it is 

essential for the pathogen to breach the barrier from the initially infected spikelet and 

its spread into the surrounding tissue (Jansen et al. 2005).  

The wheat defense response includes a plethora of well-described mechanisms 

including the biosynthesis of phenolics, polyamines, and other secondary 

metabolites, cell wall fortification as well as countermeasures to reduce oxidative 

stress and to inactivate DON (reviewed in Kazan et al. 2012; Walter et al. 2010). 

Little is known on how the adaptations in the primary metabolism contribute to 

resistance against F. graminearum. Schwachtje and Baldwin (2008) discussed roles 

for the primary metabolism that surpass its function in nutrient acquisition for the 

costly defense response. These may act in defense signaling, contribute to defense 

by themselves or work towards shifting recourses between infected/non-infected 

tissues to increase tolerance. Especially the production of secondary metabolites is 
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strongly linked to the expression of genes providing carbon, nitrogen and sulfur 

equivalents (Aharoni and Galili 2011). Therefore, changes in the primary and 

secondary metabolisms need to be equally considered when observing 

plant/pathogen interactions.  

Although bread wheat is considered susceptible to FHB a diverse collection of 

resistant germplasm has been identified. Over 100 quantitative trait loci (QTL) were 

described to contribute in varying extents to resistance against FHB (Buerstmayr et 

al. 2009). Yet, none of the underlying molecular mechanisms has been resolved to 

date. Two major and reproducible QTL derive from the Chinese spring wheat cultivar 

Sumai-3: Fhb1 located on the short arm of chromosome 3B confers high resistance 

against spreading of the disease (type II) (Buerstmayr et al. 2002; Anderson et al. 

2001), whereas Qfhs.ifa-5A on 5AS mainly confers resistance against initial infection 

(type I) (Buerstmayr et al. 2003).  

A small number of studies investigated the differential transcriptional response to the 

pathogen in lines differing in the presence of Qfhs.ifa-5A (Kugler et al. 2013; 

Schweiger et al. 2013). In contrast Fhb1 has been widely investigated and was 

successfully introduced into US elite breeding material (Jin et al. 2013). Fhb1 

containing lines exhibited an improved ability to transform DON into the non-toxic 

DON-3-glucoside (Lemmens et al. 2005). Still, several transcriptomic and 

metabolomic studies comparing lines segregating for Fhb1 did not lead to the 

identification of a causal gene responsive for this mechanism (Gunnaiah et al. 2012; 

Jia et al. 2009; Kugler et al. 2013; Schweiger et al. 2013; Walter et al. 2008; Warth et 

al. 2015; Xiao et al. 2013; Zhuang et al. 2013) 

Comparison of results between all these studies is challenging since they show little 

overlap due to the different investigated germplasm, sampling/inoculation procedures 
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and used statistical methods. Moreover, transcriptomic studies, including our own 

(Kugler et al. 2013; Schweiger et al. 2013), were long impeded by incomplete and 

frequently changing reference gene sets and incomplete gene annotations for bread 

wheat. All these factors have made it difficult to gain a complete picture of the 

transcriptomic response to the pathogen and to make a comparison between 

different studies. Recently, a comprehensive wheat survey sequence gene set has 

become available by the international wheat genome sequencing consortium 

(IWGSC) (Mayer et al. 2014). This reference provides a nearly complete mapping 

resource for transcriptomic studies. It comprises about 99,000 high confidence genes 

allocated to the corresponding subgenomes and chromosome arms, in version 2.2 of 

the annotation. To a large extent genes were also linearly ordered (Mayer et al. 

2009).  

We have used the corresponding newly available gene models to revisit the data 

from Kugler et al (2013), which describe the transcriptional response to F. 

graminearum in four near-isogenic lines (NILs) segregating for Fhb1 and Qfhs.ifa-5A. 

In this study we combined a gene co-expression network with differential gene 

expression analysis and metabolomics measurements, which were obtained from a 

time course series. We identified QTL and treatment specific network components, 

which aided in the reconstruction of alterations in the bread wheat primary 

metabolism in response to the pathogen and identified pathway components showing 

distinct changes for lines harboring Qfhs.ifa-5A. Likely candidate genes for either 

QTL emerged from the analysis of QTL-specific modules in our network. With the 

bread wheat genome sequence at hand it is now possible to also address the 

subgenome-specific contributions in the pathogen response on a genome-wide scale, 

which highlights a prominent role of the D subgenome.  
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METHODS 

Plant experiments  

The procedures to capture the metabolomics data (Warth et al. 2015) and the 

transcriptomics data (Kugler et al. 2013) used similar plant material, growth 

conditions and inoculation and sampling procedures with F. graminearum spore 

suspensions or DON (metabolomics dataset only), which were also described in the 

respective references. The metabolomics data set generated from F. graminearum-

inoculated plants comprises novel data generated similarly as described in Warth et 

al. (2015) for the DON-treated samples. The employed BC5F2 NILs have the 

susceptible German spring wheat cultivar Remus as the recurrent parent. They 

harbor both (NIL1), either (NIL2: Fhb1, NIL3: Qhfs.ifa-5A) or neither of the two 

resistance QTL, which were introgressed from CM-82036, a Mexican spring wheat 

line. Metabolomics samples were taken at time points 0, 12, 24, 48, and 96 hours 

past infection/inoculation (hpi). Transcriptomics samples were taken at 30 and 50 hpi 

(Figure 1). 

The metabolomics experiments have been conducted in a light and temperature 

controlled greenhouse in spring 2012 in full compliance with the Metabolomics 

Standards Initiative (Sumner et al. 2007). The transcriptomics experiment was 

conducted under comparable controlled light and climatic conditions in a growth 

chamber due to limited greenhouse space in fall 2011. In the transcriptomics 

experiment 12 florets per head (the two basal florets of 6 central spikelets) were 

inoculated at anthesis with 10 μl of a F. graminearum conidia spore suspension 

(strain IFA65, concentration 50,000 conidia/mL) or mock by cautiously inserting a 

droplet onto the generative part of each floret. Similarly, for the metabolomics 

experiment 20 florets per head (from 10 central spikeles) were inoculated to yield 
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sufficient tissue for analysis with either 10 µl of a F. graminearum conidia spore 

suspension (10,000 macroconidia/mL), DON (5 g/L in water) or mock. The treated 

heads were moistened and covered in plastic bags for 24 hours to provide humid 

conditions for the pathogen. Only palea and lemma of the inoculated florets were 

sampled including the respective part of the rachis at the indicated time points and 

shock frozen in liquid nitrogen.  

Metabolite analysis 

After milling, extraction, and evaporation of the samples, an online two-step 

derivatization procedure was performed using methoxyamine hydrochloride and N-

methyl-N-trimethylsilyl trifluoroacetamide. Analytes were separated and detected on 

an Agilent 7890A gas chromatograph coupled to a 5975C inert XL MSD detector 

(Agilent, Waldbronn, Germany). Raw data were processed using the 

MetaboliteDetector software (Hiller et al. 2009). GC-EI-MS spectra and retention 

indices of recognized features were compared to an in-house library, which was 

established with commercially available reference standards. Hence, most 

metabolites reported herein can be regarded as 'level 1 – identified compounds' 

(Sumner et al. 2007). Chromatography and mass spectrometry features for the 59 

identified metabolites as well as information on the identification level can be found in 

Supplemental Table 1. Data normalization was performed before statistical analysis 

using wheat aggregate QC samples and the internal standard nonadecanoic acid 

methylester. Missing value imputation and outlier testing was performed by tailored 

in-house R scripts (Warth et al. 2015). A multivariate evaluation of the DON-treated 

and mock samples (Warth et al. 2015) and the corresponding metadata is publically 

available via the MetaboLights metabolomics data repository (Salek et al. 2013) 

(accession number MTBLS112). The metadata for F. graminearum infected samples 
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is also provided through the MetaboLights database (accession number MTBLS153). 

In Stegle et al. (2010) a Gaussian process (GP) based on two conditions test (GP2S) 

was introduced for detecting differential expression between two conditions. We 

applied GP2S tests on the metabolite time series data for a pair-wise comparison of 

treatment effects. The GP2S test compares two models: The first model assumes 

that the time series measurement in both conditions control and treatment are 

samples drawn from a shared distribution. The alternative model describes the time 

series in both conditions as sampled from two independent distributions. We marked 

scores larger than log(3)=1.099 as indications for substantial differences in 

treatments. 

Gene expression analysis 

Extracted RNA from sampled tissues was sequenced on an Illumina HiSeq2000 by 

an external sequencing provider (GATC, Konstanz, Germany). A detailed description 

of the generation of the RNA-seq data is given in (Kugler et al. 2013). The 

corresponding data can be downloaded from Arrayexpress database under 

accession number E-MTAB-1729 (Kolesnikov et al. 2014). 

1,800 million single-end reads were mapped against the IWGSC bread wheat 

reference assembly. One replicate was removed after quality control (NIL2, M50, 

replicate 3). Reads were mapped against the reference by using TopHat (Trapnell et 

al. 2012) and Bowtie (Langmead and Salzberg 2012) with default parameters and 

keeping only unambiguously matched reads (Supplemental Table 2). Mapped reads 

were transformed to FPKM values and normalized using Cufflinks (Trapnell et al. 

2012). To test for differential expression (FDR-adjusted P < 0.1, absolute log2 fold 

change > 1) we applied the edgeR package in R (Robinson et al. 2010) on the raw 

counts as extracted with HTSeq (Anders et al. 2014) for the IWGSC high confidence 
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genes. We tested mock-treated samples against F. graminearum-inoculated samples 

for all four NILs at both time points (Supplemental Table 3) and for differences 

between NIL4 and the other NILs (Supplemental Table 4). Deviations from the 

expected A, B, and D subgenome distribution (Mayer et al. 2014) were assessed with 

chi-squared goodness of fit tests against 10,000 random multinomial distributions. A 

gene co-expression network comprising 18,948 genes was constructed using the 

Weighted Correlation Network Analysis (WGCNA) method (Langfelder and Horvath 

2008), after a pseudocount transformation l2fpkm=(log2(FPKM+1)), a coefficient of 

variation filter (CV>0.4), and keeping genes that surpassed a minimum expression 

level defined by the 5% percentile of all expressed genes The model was fit to a 

power law distribution (network type unsigned; power=11), and the data clustered 

based on the Topological Overlap Matrix (Langfelder et al. 2008) using the 

cutreeDynamic method (minClusterSize=50; deepSplit=2; 

pamRespectsDendro=FALSE, merging close modules at 0.9; Supplemental Figure 

1). Intramodular hub genes were defined by the top 10% percentile of the 

intramodular connectivity. Eigengenes were calculated using the WGCNA package 

(Langfelder and Horvath 2008). Enrichment of gene ontology (GO) terms was 

assessed with the Bioconductor package GOstats using conditional hypergeometric 

tests (Falcon and Gentleman 2007). Key enzymes were extracted by using their A. 

thaliana counterparts (Supplemental Table 5) and sequence homology searches 

based on blastp (Altschul et al. 1990) with at least 60% sequence coverage. The 

8,605 gene triplets were based on a reciprocal best hit criterion in pairwise 

subgenome matches similar to the approaches in (Pfeifer et al. 2014; Mayer et al. 

2014) and applying an identity threshold of 90%. For the gene triplet expression 

analysis gene triplets were concatenated into a triplet matrix as described in (Mayer 

et al. 2014; Pfeifer et al. 2014). The triplet co-expression network was inferred 
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analogical to the overall network (CV threshold 0.7; lower expression 10% percentile; 

network type “signed hybrid”, beta=8; minimal module size= 20; no merging of 

modules; Supplemental Figure 2). The significance of differences in the subgenome-

wise expression were quantified with a Kruskal-Wallis test and subsequent pair-wise 

Mann-Whitney U tests, as followed by an FDR adjustment of P values. 

RESULTS 

Integrated data analysis of the wheat response against F. graminearum and 

DON 

The aim of this study was to explore QTL-associated differences in the response of 

four bread wheat NILs (NIL1-4) after inoculation with F. graminearum or DON by 

combining gene expression and metabolomics measurements (Figure 1). The 

investigated four BC5F2 NILs share the common susceptible genetic background of 

the recurrent parent Remus but are different for introgressed resistance QTLs Fhb1 

and Qfhs.ifa-5A from the donor line CM-82036 providing them with distinct resistance 

levels (Schweiger et al. 2013). To describe differences in transcript abundances we 

employed the recent IWGSC bread wheat genome sequence assembly (Mayer et al. 

2014) as a mapping reference for RNA-seq measurements (Kugler et al. 2013). The 

RNA-seq data comprised samples from two time points, 30 and 50 hpi with either F. 

graminearum spore suspensions or mock treatment. To complement expression 

profiles with functional output we integrated GC-MS derived metabolite 

measurements from a dense time course of similar inoculation experiments on these 

NILs with the fungus and additionally with its major toxin DON (Warth et al. 2015). 

To gain insights into system-wide expression patterns we first used a weighted gene 

co-expression network analysis (WGCNA) approach (Langfelder and Horvath 2008) 

for grouping genes into sets of similar expression patterns. Genes within these 
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groups show strongly correlated expression, which indicates common regulatory 

mechanisms or concerted actions. The distinct expression profiles of modules are 

represented by the module eigengene (Langfelder and Horvath 2007), corresponding 

to the first principal component of the module expression matrix and which can be 

regarded as a representative for the gene expression in a module. Putative functional 

characterizations of modules regarding F. graminearum-resistance and QTL activity 

were derived by integration of differential expression information, GO enrichments 

and the corresponding module eigengene. Additionally, by quantifying intramodular 

connectivity we also extracted hub genes for each module. Based on their expression 

profiles and their functional characteristics we selected six network modules to be of 

special interest for subsequent investigations (Figure 2). Processed transcriptomic 

data and analysis results described in this study are available at the project’s 

RNASeqExpressionBrowser (Nussbaumer et al. 2014a) website 

(http://pgsb.helmholtz-muenchen.de/cgi-bin/db2/BOKUnils/index.cgi). The 

metabolomic data set for DON-treated NILs (Warth et al. 2015) and F. graminearum-

inoculated NILs comprised 59 metabolites mainly derived from the primary 

metabolism sampled at 0, 12, 24, 48, and 96 hpi (Supplemental Table 6). The 

differential abundance of metabolites between DON, F. graminearum and mock 

treatment was quantified by using a Gaussian processes-based score, which was 

calculated for each metabolite reflecting differences between two conditions in 

metabolite abundance over time (Stegle et al. 2010). The scoring compares two 

alternative models in which the data from the two conditions is either explained by 

one single (shared) process or by two independent processes (one for each 

condition). The two alternatives (shared or independent model) can then be 

compared, with larger scores indicating more pronounced differences between the 

conditions (Supplemental Table 7). 
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Increased turnover rates in a restructured primary metabolism fuel a broad 

defense response 

We first investigated the co-expression network for gene functions in response to the 

pathogen by looking into functional enrichments and characteristic expression 

patterns. The two largest modules of the co-expression network, module A (2,848 

genes) and module B (2,861 genes) grouped genes with strong general responses to 

the pathogen. Both were highly enriched for F. graminearum-responsive genes 

across all NILs regardless of individual resistance levels (one-sided Fisher’s test; 

FDR-adjusted P < 0.05; Figure 2A, 2B, Supplemental Figure 3). Genes in module A 

were differentially expressed in F. graminearum-inoculated samples at 30 hpi and 50 

hpi (Figure 2A), while genes in module B were more specific for 50 hpi (Figure 2B). 

While the subgenome distribution for all genes in these two modules showed no 

obvious bias, the distribution of the hub genes showed a slight overrepresentation of 

genes from the D subgenome. 

Overrepresented GO terms in module A reflected a broad response to the pathogen. 

These comprise functions in signaling, the defense against oxidative stress, the 

biosynthesis of tryptophan and defense-associated secondary metabolites such as 

phenylpropanoids. Moreover this group included chitinases, proteinase inhibitors, and 

efflux pumps (Supplemental Table 8). Several GO terms corresponded to the primary 

metabolism, which include a strongly upregulated sucrose-phosphatase 

(Traes_1DS_9AE5A76AC in GO:0009312) and genes involved in the biosynthesis of 

thiamin (GO:0009229). Sucrose phosphatases mediate the last step in the 

biosynthesis of sucrose, the plants main transport form of carbohydrates. We also 

found elevated sucrose levels in our metabolomics experiment although only for 

DON-treated samples (Supplemental Figure 4 and Supplemental Figure 5). Abundant 
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sucrose is broken down to fuel the tricarboxylic acid cycle (TCA) predominantly via 

glycolysis. The increased biosynthesis of thiamin relates to key enzymes in glycolysis 

and the TCA, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, which 

require thiamine diphosphate as cofactor.  

To further expand on these observations we evaluated changes in transcript and 

metabolite abundances associated with F. graminearum/DON treatments in the 

respiratory chain and in the metabolism of glutamate. We extracted the expression 

profiles of all genes encoding for respective protein functions and generated 

eigengenes for each group of genes as the representative expression value. The 

expression of genes in glycolysis and the TCA cycle was strongly associated with F. 

graminearum-inoculated samples (Figure 3 and Supplemental Table 9). Also the 

expression of genes encoding key enzymes in the pentose-phosphate pathway, 

glucose-6-phosphate dehydrogenase, and gluconate-6-phosphate dehydrogenase 

were strongly linked to pathogen treatment. The pentose-phosphate pathway 

provides an alternative route for the breakdown of hexoses into glycerinaldehyde-3-

phosphate. It also generates NADPH and erythrose-4-phosphate required in the 

shikimate pathway and ultimately for the production of phenylpropanoids. Despite 

increased abundances in transcript levels the corresponding metabolite levels in the 

glycolysis and pentose-phosphate pathway remain mostly unchanged (Figure 3, 

Supplemental Figure 4 and Supplemental Figure 5). 

 

Differences for Qfhs.ifa-5A in the TCA and the metabolism of glutamate. 

The metabolism of glutamate as a means to procure nitrogen for the biosynthesis of 

amines including amino acids depends on the availability of the TCA intermediate 2-

oxoglutarate, which serves as a link to the TCA cycle. Genes of the TCA cycle and 

the metabolism of glutamate were in general responsive to the pathogen, yet distinct 



 

15 

differences existed for lines harboring Qfhs.ifa-5A-related differences (Figure 4): 

Ammonia assimilation is mediated by glutamine synthetases (GS) and glutamate 

synthases (GOGAT), which generate glutamate from 2-oxoglutarate via glutamine. In 

plants the cytosolic (GS1) and the chloroplastic (GS2) isoenzymes for GS are 

regulated differentially with respect to tissue and external stimuli, assuring timely 

acquisition of ammonium from different sources (Miflin and Habash 2002). Three 

cytosolic GS1 genes showed increased transcript abundances in response to the 

pathogen and also exhibited the by far highest expression rates as compared to 11 

remaining wheat GS genes (Supplemental Figure 6). For the GOGAT we found a 

similar response for five NADH-dependent isozymes, but not for cytosolic ferredoxin-

dependent GOGAT (Figure 4, I). The expression of these genes was more strongly 

associated to the earlier infection time point 30 hpi in lines containing Qfhs.ifa-5A. A 

closer inspection of interrelated genes showed higher transcript abundances for 

many of them at 30 hpi for Qfhs.ifa-5A: This included most of the genes encoding 

TCA cycle steps as well as glutamate dehydrogenases and malic enzymes (Figure 4, 

II & III and Supplemental Table 9). Cytosolic malic enzymes provide additional 

pyruvate to the TCA cycle. The required malate originates from oxaloacetate, which 

most likely stems from the also strongly F. graminearum-responsive 

phosphoenolpyruvate carboxylase (Supplemental Table 6 and Supplemental Table 

9). Yet, the largest QTL-effects were observed for pyruvate dehydrogenases and 

malate dehydrogenases (Figure 4, IV & V), which did not exhibit earlier expression 

for the QTL but showed strongly reduced expression levels at 50 hpi in lines 

harboring Qfhs.ifa-5A. Abundance pattern of metabolite intermediates for these 

pathways reflected the observed differences in expression levels: Glutamate and 

aspartate levels were changed after DON and F. graminearum treatment only for 

lines without the QTL (NIL2 and NIL4), whereas glutamine and asparagine levels in 
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these lines were only changed in response to DON (Figures 3 and 4). Within the TCA 

cycle malate levels (in response to DON) and citrate/isocitrate levels were similarly 

affected (Figure 4). 

 

Protein ubiquitination, elevated levels of tRNA ligases and amino acids 

characterize the specific response to the ribotoxic effect of DON 

Module B was specific for genes expressed 50 hpi with the pathogen (Figure 2B). 

Independent studies demonstrated, that at this time point the fungus has switched 

from the initial biotrophic growth to the formation of infection hyphae (Pritsch et al. 

2000) and started to produce higher levels of DON (Audenaert et al. 2013). DON 

inhibits protein biosynthesis by interaction with the ribosomal 60S subunit and 

induces apoptosis via a mitogen-activated protein kinase-activated ribotoxic stress 

response (Pestka 2010). Accordingly, GO terms in module B were significantly 

enriched for terms relating to 'oxidation reduction' (GO:0006979) and 'translation' 

(GO:0006412) (Supplemental Table 8). The latter predominantly included genes 

encoding ubiquitin-60S ribosomal protein L40 fusion proteins. These fusion proteins 

act in ribosomal assembly and free ubiquitin acts in targeting nonfunctional proteins 

and unfinished peptide chains to the proteasome (Finley et al. 1989). Both 

mechanisms may be an active response to the effects of DON. Highly enriched 

genes within this module encoded for translation initiation factors (GO:0006413) and 

tRNA ligases (i.e. GO:0043039, GO:0034660), which mediate the transfer of amino 

acids to the expanding peptide chain in translation. All tRNA ligases showed strong 

associations to F. graminearum-inoculated samples with the exception of glycine 

tRNA ligases where none of the encoding genes were higher expressed in response 

to the pathogen (Supplemental Table 6 and Supplemental Table 9). We recorded 

high scores for most proteinogenic amino acids in the DON/mock comparison 
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indicating higher abundances in the DON-inoculated samples, which has been a 

major finding in our previous analysis (Warth et al. 2015). Several proteinogenic 

amino acids were also found changed in F. graminearum-inoculated samples albeit 

less pronounced (Figure 3, Supplemental Figure 4 and Supplemental Figure 5). 

These elevated levels derive from increased biosynthesis as reflected by the 

increased abundance of transcripts corresponding to most key amino acid 

biosynthesis genes (Figure 3, Supplemental Table 6 and Supplemental Table 9) 

except for asparagine synthase (asparagine), pyrroline-5- carboxylate reductase 

(proline), 3-phosphoserine phosphatase (serine) and dihydrodipicolinate synthase 

(lysine).  

 

QTL-specific modules and candidate genes emerging from the co-expression 

network. 

We identified several modules specific for either QTL: Modules C (162 genes, 

Qfhs.ifa-5A) and D (179 genes, Fhb1) showed significant expression differences 

between lines differing in the respective QTL (Figure 2C and 2D). A chromoWIZ 

analysis showed that both modules were enriched for genes located on chromosomal 

regions harboring the respective QTL (Supplemental Figure 7, Nussbaumer et al. 

2014b). Hub genes were almost entirely located on the A and the B subgenomes 

harboring the respective QTL (Figure 2C and 2D).  

Hub gene expression profiles in module D characterized constitutively expressed 

genes for Fhb1-containing lines regardless of treatment or time point. Among the 

highest expressed genes mapping to chromosome 3B are several protein kinases 

(Traes_3B_9985A569B, Traes_3B_ADCF93AE0, Traes_3B_E81A8FACB), a LRR 

receptor protein (Traes_3B_CE31EE51C) and beta-fructofuranosidase 

(Traes_3B_61E72DF24), and a gene encoding an unknown protein 
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(Traes_3B_908129DB2). Additionally, Traes_3DS_2BD8DC857 encoding an F-box 

protein, did not map to chromosome 3B of the FHB susceptible reference cultivar 

Chinese Spring (Supplemental Figure 8). 

Several genes in module D also showed differential expression in response to F. 

graminearum: Traes_3B_3A70D33A6, a receptor-like protein kinase and 

Traes_3B_6A585354F, a protein kinase, were significantly changed in response to 

the pathogen at 50 hpi and thus should also be considered likely candidates. 

Traes_7BS_5A4110BB1 a highly expressed and Fhb1-specific MATE-efflux pump 

maps to chromosome 7B and could be a likely downstream target of Fhb1-activity 

(Figure 5 A). 

A second Fhb1-related module E (87 genes) included genes higher expressed in 

Fhb1 lines at 50 hpi after inoculation with the pathogen (Figure 2E). Most genes 

within module E exhibited low transcript abundances and we found no enrichment for 

3B-mapped genes. Potentially, this module includes downstream targets of the QTL 

activity. Two genes emerge from this list as they were more abundant in response to 

the pathogen and mapped onto 3BS: Traes_3B_5088D482E a SINA-like 11 E3 

ubiquitin-protein ligase, and Traes_3B_6E28B451A (unknown protein, Figure 5B). Of 

these Traes_3B_5088D482E is the only gene in our analysis, differentially expressed 

also for 30 hpi in Fhb1 containing lines. GO enrichments for either module D or 

module E did not allow deducing biological functions of Fhb1-related downstream 

targets. 

Module C includes genes with significant expression differences between lines 

differing in Qfhs.ifa-5A (NIL1 and NIL3 compared to NIL4). In contrast to genes in 

module D, none of the 162 genes within module C were also changed for F. 

graminearum treatment. The set of 5A-mapped genes therein shows a constitutive 

expression pattern for Qfhs.ifa-5A and contains 50 genes (Supplemental Table S10). 
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Among these we identified two amino acid permeases (AAP, isoforms 8, 

Traes_5AS_073CAB1CC and 6, Traes_5AS_776E1FEE4, Figure 5C). However, 

Traes_5AS_776E1FEE4 showed overall low expression levels.  

Our network contained no module for genes with pathogen-specific expression 

changes for Qfhs.ifa-5A similar to module E for Fhb1, which matches previous 

observations suggesting a constitutive mode of action for the QTL (Kugler et al. 2013; 

Schweiger et al. 2013). Potentially, QTL-associated and pathogen-responsive genes 

could also be too small in numbers to form a module by themselves. Consequently, 

such genes could have been included in one of the pathogen-responsive modules. 

Two genes were significantly changed for Qfhs.ifa-5A and F. graminearum-treatment: 

Traes_5AL_5127CEB66 module B, flavin-containing monooxygenase) and 

Traes_5AL_A80AD7FF8 (module A, calmodulin-binding protein, Figure 5D). 

Alternatively, a susceptibility factor could be encoded in non-Qfhs.ifa-5A lines. Such 

genes and the downstream targets of such a factor might be included in module F 

(161 genes), specific for F. graminearum-inoculated NIL2 and NIL4 samples at 50 hpi 

(Figure 2F).  

A pronounced role of the D subgenome in the response to F. graminearum 

Two hybridization steps have resulted in three homoealleles for many of the 

functional genes in allohexaploid bread wheat (Marcussen et al. 2014). The 

consequent functional plasticity enabled reprogramming the individual subgenomes 

contributions to best meet environmental challenges including the response to 

pathogens (Feldman and Levy 2012). We hypothesized that redundant functions 

within homeoalleles are regulated differentially also in response to pathogen attack. 

Copies from single subgenomes may contribute in an additive manner, may have 

diverging expression patterns, have either been shut down, giving rise to expression 
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dominance from one or two subgenomes, or alternatively been subjected to 

subfunctionalization. We observed an unbalanced genome-wide distribution of F. 

graminearum-responsive higher expressed genes. Significantly more genes than 

expected were differentially expressed in the D subgenome and fewer in the A 

subgenome (Supplemental Figure 9).  

Following these observations we hypothesized redundant functions within 

homeoalleles are regulated differentially. To inspect differential contributions to a 

putative similar functionality by subgenomes, we employed a set of 8,605 

homeologous gene triplets (25,815 genes). Triplet genes are genes with a mutual 

best match to genes in the other two subgenomes. They have been previously used 

for characterizing gene expression bias in different wheat organs and the developing 

endosperm (Mayer et al. 2014; Pfeifer et al. 2014). In our data 1,384 (16%) triplets 

had at least one member residing in the co-expression network. Depending on the 

genotype, up to 15% of all triplets included at least one pathogen-responsive 

differentially expressed gene at 50 hpi. Only for 25% of these triplets all three copies 

were differentially expressed (Supplemental Figure 10A) suggesting a tight regulation 

of the resource intensive defense response. All subgenomes contributed equally to 

the number of differentially expressed genes in triplets with only one pathogen-

responsive member at 30 hpi (Supplemental Figure 10B). At 50 hpi we found a 

significant deviation from the expected distribution for lines lacking Qfhs.ifa-5A (NIL 2 

and NIL 4). Here the contribution of subgenome A dominated over contributions from 

subgenomes B and D.  

To investigate some of the dynamics in the observed gene expression bias we 

inferred a gene co-expression network for triplet genes. Expression bias between the 

three subgenomes was then captured by a weighted average and nodes were 

colored according to this average (Figure 6A). The network contained eight modules 
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with distinct expression patterns (Figure 6B and Supplemental Figure 11). Most of the 

modules were defined by the expression in one dominant subgenome or by the pair-

wise domination of the AB, BD, or respectively the AD subgenomes. One module of 

the triplet network included triplets with strong transcriptional responses to F. 

graminearum at 30 hpi and 50 hpi (highlighted in Figures 5A and 5B). For genes 

within this module responses were more pronounced for triplet members in the D 

subgenome, while A and B subgenome contributed about equally in expression 

strength (Figure 6C). With respect to the D subgenome dominance no differences 

between the four NILs were observed within this module (Supplemental Figure 12). 

To investigate whether the more pronounced reaction of the D genome is also 

reflected by the higher expression of pathogenesis-related genes we observed 

expression differences for genes encoding NB-ARC domains (IPR002182). While the 

number of gene family members are dominated by the A and the B subgenome, 

genes from the D subgenome are significantly higher expressed than homeoalleles 

from the A subgenome and in many cases also than those from the B subgenome 

(Supplemental Figure 13 and Supplemental Table 11). Similar observations were 

made for the NBS-LRR genes, although the differences were not as pronounced 

(Supplemental Figure 14 and Supplemental Table 11). Overall, our observations 

indicate a pronounced role of the D subgenome in response to F. graminearum. 

 

DISCUSSION 

Combined analysis of metabolomics and transcriptomics data  

The recent release of the bread wheat reference genome sequence and annotation 

includes an almost complete wheat gene set sorted into chromosome-arms (Mayer et 

al. 2014). Both features, the completeness of the resource and the possibility to 
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assign these genes to genomic regions surpasses by far any previous reference 

gene sets as a mapping reference for RNA-seq studies. This significantly improved 

mapping reference, combined with metabolomics data after inoculation with DON 

(Warth et al. 2015) and novel metabolomics data after inoculation with F. 

graminearum were the main motivation for this study and for revisiting existing data. 

All of the included experiments employed the same F. graminearum isolate and 

bread wheat near-isogenic material (differing in Fhb1 and Qfhs.ifa-5A) and are based 

on similar protocols for infection and tissue harvesting. Differences existed in the 

applied amount of spores between the transcriptomics experiment (500 conidia 

spores/floret) and metabolomics experiment (100 conidia spores/floret). Both 

concentrations suffice to successfully establish infection. In many biological reactions 

a stress trigger level must be reached to initiate a process. In complex processes it is 

often advantageous that all consecutive steps of a response occur automatically and 

are more or less 'programmed'. Applying sufficient conidia to initiate the plant 

response probably will trigger the whole process. Therefore we do not expect 

significant differences in the recorded metabolomics and transcriptomics data sets 

(an example for phenylalanine and is given in Supplemental Figure 15). Comparable 

transcriptomics and metabolomics studies have used a wide range of concentrations 

from 200 to 1000 conidia/floret to elicit a defense response to FHB (Jia et al. 2009; 

Gottwald et al. 2012; Foroud et al. 2012; Zhuang et al. 2013; Schweiger et al. 2013; 

Steiner et al. 2009; Gunnaiah and Kushalappa 2014; Diethelm et al. 2012). However, 

we cannot fully exclude the possibility that the observed metabolite changes i.e. for 

amino acids may have been recorded earlier at higher inoculum concentrations. The 

Bayes score reporting differences in metabolite abundances between treatments 

considers all time points by comparing differences between models of individual 

treatments. Possibly, earlier changes due to higher concentrations would have 
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influenced the time course models resulting in higher scores indicating even larger 

differences to the control mock models. However these changes would not alter the 

reported results here, as difference in score may also reflects the delay in/of 

metabolite changes but certainly highlights the presence of underlying metabolism. 

In a previous transcriptomic study (Schweiger et al. 2013) we used very early and 

late time points for expression analysis (8, 24 and 72 hpi). While the early time points 

provided only few differentially expressed genes, at 72 hpi a large and general 

response was detected for the susceptible lines. Apparently, resistance relevant 

reactions likely happen before 72 hpi. In the present study we chose two earlier time 

points, 30 and 50 hpi, to better capture the resistant reaction with two time points that 

encompass the onset of the production of larger amounts of DON (Pritsch et al. 2000, 

Audenaert et al. 2013). Fhb1 is closely linked to resistance against DON and given 

the investigated NILs segregating for Fhb1 these time points are appropriate to 

investigate related changes. The present metabolomics data describes five time 

points covering a time span of 96 hours and thus embraces both critical time points 

captured by RNAseq. While the individual time points (0, 12, 24, 48, 96 hpi) do not 

overlap perfectly with 30 and 50 hpi measured in the transcriptomics experiment, 

they allow modelling a dynamic behavior which can be brought into context with the 

measured gene expression data. We approached this by avoiding direct comparisons 

between data sets at specific time points, but compare single time point observations 

for the RNAseq data with the time course-derived Bayesian score. As such the 

scores are time-point independent and provide a very reliable means to report 

changes in relation to treatment.  

We analyzed the gathered data on different tiers: I. Given that our metabolomics 

analysis focused on metabolites derived from the well annotated primary metabolism 

we were able to integrate genotype-specific changes in metabolite abundances with 
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differential transcript abundances of genes involved in the respiratory chain, 

glutamate metabolism, and amino acid biosynthesis. II. Homeoalleles of hexaploid 

bread wheat can be identified in the chromosome-sorted IWGSC gene set. We made 

use of these to investigate differences in the subgenome-wise contributions to 

defense response. III. Compared to our previous analysis (Kugler et al. 2013) the 

gene co-expression network here includes significantly more genes, as a result of the 

IWGSC bread wheat reference genome sequence and allows allocating genes to 

their corresponding genomes. Therefore, we can provide a more complete and 

detailed picture on the genome-wide pathogen response and the corresponding 

dynamics.  

In line with our previous observations in Kugler et al. (2013) two network modules, 

representing an early and a late response to the pathogen, were found in the co-

expression network. Given the improved gene annotation we could now further refine 

these data and provide a more comprehensive functional description of the 

corresponding genes and the respective pathways, while also taking subgenome 

contributions into account. For instance, using the current bread wheat annotation we 

identified a pathogen-responsive network module (B) enriched for WRKY 

transcription factors (one-sided Fisher’s test based on the human readable 

description line; FDR-adjusted P < 0.001). In our previous study such enrichment 

was also observed for such a generally pathogen responsive network module. 

Moreover, expanding in comparison to the previous approach, we were able to detect 

and characterize QTL-specific modules, which were investigated for F. graminearum-

responsive genes mapping to chromosome-arms harboring the respective QTL.  

Increases in respiration and amino acid biosynthesis as a response to 

Fusarium graminearum and DON 
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The plant defense against pathogens requires the de novo synthesis of a plethora of 

secondary metabolites and defense-related proteins as well as the fortification of cell 

walls and antagonizing the effects of oxidative stress (Walter et al. 2010). As such, it 

is energy intensive and requires elevated rates in respiration (Bolton 2009). Mounting 

a successful defense response may rely on the efficiency of these mechanisms to 

supply the required substrates, but alterations in the primary metabolism have also 

been suggested to contribute to defense by themselves (Schwachtje and Baldwin 

2008). For instance, glucose and hexokinase activity induce PR genes in Arabidopsis 

thaliana (Xiao et al. 2000), whereas silencing of the hexokinase 1 in Nicotiana 

benthamiana led to increased levels of H2O2 and programmed cell death associated 

transcripts (Kim et al. 2006). Also much evidence has been gathered for similar 

mechanisms involving the metabolism of several amino acids as well as lipids and 

the photorespiratory chain (Rojas et al. 2014). Our analysis aimed to reconstruct 

such activities in the bread wheat respiratory chain, in glutamate metabolism and in 

the biosynthesis of amino acids. 

We found glycolysis, the pentosephosphate pathway, and the TCA cycle strongly 

induced in response to the pathogen, which might be fueled by the invertase-

mediated cleavage of sucrose into glucose and fructose. The higher turnover rates in 

these pathways were visible in increased transcript abundances despite of the - in 

many cases - unchanged pathway intermediate metabolites. In this respect the 

response to F. graminearum is similar to the general model of the plant primary 

metabolism under pathogen attack (Bolton 2009). Upon carbon starvation plants may 

procure additional carbon from abundant amino acids for respiration (Araújo et al. 

2011). This seems not to be the case in the wheat/F. graminearum interaction. Warth 

et al. (2015) have reported increased amino acid abundances in response to DON, 

hypothesizing that this may either be due to the increased biosynthesis of amino 
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acids or that amino acids stem from degradation of unfinished peptide chains as a 

consequence of the ribotoxic effect of DON. In the gene expression data we found 

strong indications for the increased biosynthesis of amino acids, likely reflecting the 

efforts of keeping up the protein biosynthesis in order to counteract the effect of 

DON. Key biosynthesis genes for all amino acids except proline, lysine, serine, and 

asparagine were more abundant in response to the pathogen. Although, we did not 

find evidence for the increased biosynthesis of serine or proline in the transcriptomic 

data, DON-inoculated samples showed strong differences in the abundance of serine 

and proline compared to mock treatment as indicated by the Bayes score (highlighted 

in red in Figure 4). Levels of both amino acids are strongly increased after DON-

treatment (Warth et al. 2015). Especially proline was reported to be more abundant 

under different stresses (Sharma and Dietz 2006). Proline accumulated in tissues 

surrounding hypersensitive lesions caused by Pseudomonas syringae on Arabidopsis 

thaliana leading to the assumption that it may play a role in quenching free radicals 

(Fabro et al. 2004). It also holds a role in nitrogen transport in the phloem, as its 

levels are possibly linked to GS1 activity (Brugière et al. 1999). Other proteinogenic 

amino acids such as the phenolic amino acids and amino acids derived from 

aspartate were also highly changed in response to DON. Yet, aspartate itself, as well 

as the functionally linked pools of asparagine, glutamine and glutamate, were largely 

unchanged. Glutamate pools remain largely unchanged under stress conditions 

(Forde and Lea 2007), and we speculate that this could also be true for the closely 

linked aspartate. Glutamine and asparagine levels in contrast can be subject to 

change due to active influx of these compounds as nitrogen-sources into the sink 

tissue (Masclaux-Daubresse et al. 2006). Other amino acids with less pronounced 

changes such as serine or alanine may in fact be remobilized into the respiratory 

chain as suggested by (Araújo et al. 2011). Concerning the suggested two alternative 
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models for increased amino acid abundances (Warth et al. 2015) our combination of 

transcriptomic and metabolomic data provided clear evidence that a higher tRNA-

ligase activity is supported by increased amino acid biosynthesis - yet not all amino 

acids biosynthesis pathways are similarly affected. 

Increased activity in the glutamate metabolism: a possible role for Qfhs.ifa-5A 

mediated resistance? 

Our previous study (Kugler et al. 2013) found the activity of glutamate regulated Ca2+ 

channels associated with Qfhs.ifa-5a. Now using the almost complete bread wheat 

genes we were able to fully reconstruct changes in the glutamate metabolism during 

defense. The F. graminearum-responsive GS1 and NADPH-dependent GOGAT 

genes are not part in metabolizing newly synthesized ammonium from 

photosynthesis but facilitate the transport of nitrogen in the form of glutamine through 

the phloem into sink/infected tissue (Masclaux-Daubresse et al. 2010). Seifi et al. 

(2013) suggested two different roles in pathogen defense for the metabolism of 

glutamate, which may either act towards depleting infected tissue from nitrogen 

compounds in order to prevent these from being scavenged by the pathogen or it 

may assist the cell to endure the disease by hauling energy equivalents into the 

infected tissue. The latter is characterized by the increased activity of the GOGAT/GS 

cycle, the GABA shunt, and glutamate deyhdrogenase genes, while aspartate 

transaminases and asparagine synthases are less active. Our data suggests the 

bread wheat defense against F. graminearum aims to endure the disease by 

strengthening the TCA cycle and supplying carbon/nitrogen for the biosynthesis of 

secondary metabolites: GS1-generated glutamine enters the infected tissue as an 

additional carbon and nitrogen source. In sink tissue glutamine is metabolized to 

glutamate by NADH-dependent GOGAT and then further decomposed into 2-
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oxoglutarate by the also highly F. graminearum-responsive glutamate 

dehydrogenases (GDH). Although GDH can perform the reverse reaction to 

additionally assimilate ammonium under given conditions the more likely reaction is 

the deamination of glutamate into 2-oxoglutarate as an anaplerotic reaction to fuel 

the TCA cycle (Masclaux-Daubresse et al. 2006). Abundant ammonium from GDH 

activity may be reused by GS1 located in the infected tissue. 

Several of these described genes showed differential expression patterns for lines 

differing in Qfhs.ifa-5A. Transcript abundances for NADPH-GOGAT and GDH genes 

were higher in F. graminearum-treated samples at 30 hpi for lines harboring Qfhs.ifa-

5A. Potentially, these lines react earlier to the influx of glutamine and provide earlier 

an increased amount of 2-oxoglutatare to the TCA cycle (Figure 4, II, IIIV). Such 

differences were also observed for several TCA cycle genes (aconitases, citrate 

synthases, succinate dehydrogenases) as well as malic enzymes, which provide 

additional pyruvate for the TCA cycle. Similarly, associated metabolite levels are 

changed in response to DON and the fungus only for lines lacking this earlier 

reaction, which we observed for the Qfhs.ifa-5A-lines (Figure 4). TCA intermediate 

substances are subject to high turnover rates and concentrations tend to be stable 

(Sweetlove et al. 2010). The required increased flux in response to the pathogen 

seems to be more efficiently met by the earlier action of Qfhs.ifa-5A-lines. In contrast, 

the adaptation to F. graminearum in non-Qfhs.ifa-5A lines leads to the observed 

changes in pool levels. However, the large variances in the measurements of 

metabolites do not allow a further interpretation of the present data. Not all genes 

changed for Qfhs.ifa-5A act earlier in response to the pathogen: Pyruvate 

dehydrogenases and malate dehydrogenases were less strongly changed at 50 hpi 

in response to F. graminearum in Qfhs.ifa-5A containing lines (Figure 4). How these 

expression patterns fit into the proposed mechanism remains unclear. For a more 
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detailed interpretation of these observations more comprehensive, preferably 

longitudinal expression profiles will be needed.  

The observed changes for the TCA cycle and glutamate metabolism could contribute 

to a higher 'endurance' in Qfhs.ifa-5A lines and thus be part the resistance 

mechanism encoded by the QTL. Among the genes constitutively changed for the 

QTL encoded on 5A in module C two amino acid permeases (AAP, isoforms 6, 

Traes_5AS_776E1FEE4 and 8, Traes_5AS_073CAB1CC) could contribute to the 

higher influx of amino acids from the phloem and provide substrates for the observed 

QTL-associated changes. In A. thaliana AtAAP6 regulates the phloem amino acid 

composition and AtAAP8 is involved in seed development (Tegeder and Rentsch 

2010). AtAAP6 was reported to be expressed in sink tissue with a high affinity for 

neutral amino acids and other amino acids with acidic side chains (Hunt et al. 2010). 

Also AtAAP8 has a high affinity to aspartate and glutamate (Schmidt et al. 2007). 

Due to the potentially large pericentromeric introgression harboring the QTL many 

other genes that show constitutive expression differences cannot be ruled out as 

putative candidates. This list (Supplemental Table S10) also includes candidates 

from our previous studies (Schweiger et al 2013, Kugler et al. 2013) including a lipid 

transfer protein, which shows among the highest expression differences. 

Narrowing down single gene candidates is aggravated by the susceptible 

Chinese Spring mapping reference 

We have made use of a combination of co-expression patterns, differential 

expression analysis, and chromosome location to narrow down the list of candidates 

for Fhb1. Most genes specifically expressed for Fhb1 exhibited a constitutive 

expression pattern (module D). While many of these genes map to chromosome 3B a 

closer inspection showed that none of the modules hub genes mapped within close 
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vicinity of the genomic region carrying the susceptible Fhb1 locus of cultivar Chinese 

Spring (contig ctg0954 [GenBank:FN564434] (Choulet et al. 2010). It is unclear how 

large the introgressed region carrying Fhb1 is. Possibly several of the reported genes 

are distant from the locus and QTL unrelated: Mapping against the complete 3B 

chromosome sequence (Choulet et al. 2014) placed Traes_3B_3A70D33A6, a 

receptor-like protein kinase, at position 10.095.372 bp and Traes_3B_6A585354F, a 

protein kinase, at position 9.817.008 bp, which is about 17 Mbp distal to the Fhb1 

marker Umn10 (27.605.772 bp). Several other genes in module D mapped to 

ctg0954, but only three of them within the QTL confidence interval between flanking 

markers Sts32 and Sts189. All three are only weakly expressed and corresponding 

transcripts are more abundant in lines harboring the susceptible QTL allele 

(Traes_3B_07980E2CE, Traes_3B_0D8C9A632, Traes_3B_CDF3C9680). Similarly, 

candidates from module E, which groups Fhb1-specific and F. graminearum-

responsive genes (Traes_3B_5088D482E, 19.748.084 bp, SINA-like 11 E3 ubiquitin-

protein ligase and Traes_3B_6E28B451A, 4.483.234 bp, unknown) are too distant 

from the marker to be considered candidate genes based on the Chinese Spring 

reference. 

The absence of closely mapped genes does not necessarily mean that the elusive 

Fhb1 gene remains unrecognized by the IWGSC wheat gene set, which is also 

based on the susceptible Chinese Spring cultivar. It may be that the resistance gene 

is only present in the resistant genotype and would not map onto the contig. Likely 

reads derived from genes not represented in the gene set will map to close homologs 

or in case of hexaploid wheat to the next homoelog on sister chromosomes should 

they exist. For example Traes_3DS_2BD8DC857 specifically expressed for Fhb1 

containing lines maps to the homoelogous region of Fhb1 on chromosome 3D. 

Possibly, the susceptible reference genotype Chinese Spring lacks such a gene in 
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the Fhb1 region and 3B-specific reads map to this putative homeolog. The possible 

absence of this gene in the susceptible cultivar Chinese Spring may derive from 

pseudogenization or small chromosomal rearrangements (Bennetzen and 

Ramakrishna 2002), which may occur even between different varieties of the same 

species (Feuillet and Salse 2009). Liu et al have compared the synteny of the 

genetically mapped locus of Fhb1 to the rice and barley physical maps and did find 

evidence for rearrangements based on marker collinearity in this region (Liu et al. 

2006). Possibly, the gene content and/or gene order of the genomic region containing 

the resistant Fhb1 locus does not follow the established Chinese Spring reference 

cultivar. This would also allow to hypothesize that candidate genes that mapped in 

this study distant to the Fhb1 marker Umn10 in Chinese Spring could in fact be 

located within the QTL confidence interval in Fhb1-containing genotypes.  

On the other hand this study has considered high-confidence gene models only. Low 

confidence genes in wheat comprise a large number, more than 100,000, of 

putatively fragmented gene models, pseudogenes, and repeat associated elements 

for which little evidence for functionally expressed gene products exist. In Schweiger 

et al. (2013) we have measured gene expression using the Affymetrix wheat 

GeneChip, yielding four differentially expressed transcripts mapping to the region of 

Fhb1. Two of these genes corresponded to low confidence genes 

(Ta.6066.2.S1_a_at: Ta3bMIPSv2Loc009233; Ta.22694.1.A1_at: 

Ta3bMIPSv2Loc008006) and only one, Ta.28185.1.S1_at, had homology to a high 

confidence gene (Traes_3B_05EEE7D3F1). This is also the only gene mapping to 

the QTL confidence interval between markers sts32 and sts189. All genes are 

expressed in a constitutive manner for the absence/presence of the introgressed QTL 

region, which matches the reported findings. Traes_3B_05EEE7D3F1 is higher 

expressed for the susceptible QTL allele. One of the reported differentially expressed 
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probe sets (TaAffx.12498.2.S1_at) was not included in either data set. Possibly these 

low confidence genes are relevant for the QTL activity and should be considered 

once the genomic region of a Fhb1-containing cultivar is resolved and available.  

Genetic approaches to map these genes in materials segregating for Fhb1 are 

required to narrow down this list of candidates. (Zhuang et al. 2013) have mapped 

the expression traits of one out of 47 FHB investigated resistance candidate genes in 

an eQTL study to the Fhb1 locus (10.1094/MPMI-10-12-0235-R). However, a BLAST 

survey of this putative resistance gene designated WFhb1_c1 showed that the 

IWGSC gene set does not include a homolog on chromosome 3B and also their 

mapped Fhb1 interval spanning more than 16 cM is large.  

 

Imbalances in subgenome expression contribution 

Polyploidization events present a form of 'genomic shock', which leads to increased 

transposable element activity and epigenetic silencing (Wendel 2000). Such effects 

may also be reflected in the expression patterns and the interplay between the A, B, 

and D subgenomes.  

An imbalance in the number of disease-resistance genes has been described for 

tetraploid and hexaploid wheat, with the highest number of genes stemming from the 

B subgenome (Feldman et al. 2012; Fahima et al. 2006; Peng et al. 2003). Based on 

the IWGSC annotation, most members of two defense-related gene families were 

encoded on the A and B subgenomes (Mayer et al. 2014). This distribution does not 

correspond to findings in our data, where in terms of gene expression contributions to 

the defense response from the D and the B subgenomes dominated over 

contributions from the A subgenome. Such expression observations might be 

affected by differences in total gene numbers on the subgenomes. To address this 
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we eliminated this bias by considering only the 1:1:1 homoelogous triplet genes in the 

triplet gene co-expression network, which showed that genes from the D subgenome 

are more abundant in response to the pathogen than their A and B counterparts. 

From these observations and the hub gene-specific subgenome distribution in 

modules A and B we reason that subgenome D contributions may play a decisive 

role in overall resistance to F. graminearum.  This hypothesis could relate to the 

overall high susceptibility to FHB of tetraploid durum wheat (Triticum turgidum ssp. 

durum, 2n = 4x = 28, AABB). Only single lines have been described which harbor 

intermediate levels resistance to FHB (Huhn et al. 2012; Prat et al. 2014). Since 

durum and bread wheat share the same ancestral A and B subgenomes, the added 

resistance in bread wheat may stem from D subgenome contributions. Although, 

most of the relevant resistance QTL in T. aestivum have been mapped to the A or B 

subgenome (Buerstmayr et al. 2009), resistances encoded on the D subgenome may 

well play decisive roles: The D subgenome is much less polymorphic due to its 

evolutionary only recent addition to wheat and thus resistance contributors may not 

be segregating in mapping populations. An indication for its relevance comes from 

Aegilops tauschii, the contributor of the D subgenome to wheat, which has been 

widely employed in the generation of synthetic hexaploid wheats from crosses with 

tetraploid species such as Triticum turgidum. The addition of the D subgenome has 

improved resistances against a variety of biotic and abiotic stresses including 

resistance against FHB in comparison to the tetraploid parental line (Mujeeb-Kazi et 

al. 2008). Whether these resistance genes are in effect in T. aestivum remains to be 

shown. However, we also observed a slight bias towards the A genome for triplets, 

where only a single copy was responsive to the pathogen. Overall, it appears that the 

response to the pathogen is distributed between the different subgenomes and more 
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data will be needed to generalize findings of subgenome bias in the context of bread 

wheat pathogen response. 
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FIGURE LEGENDS 

Figure 1. Source material, experimental conditions, and analyses. Each near-

isogenic line (blue: NIL1, green: NIL2, purple: NIL3, orange: NIL4) contains either the 

resistant or susceptible alleles of Fhb1 (AA, aa) and Qfhs.ifa-5A (BB, bb). Plants 

were either inoculated with F. graminearum spore suspensions, DON or water as 

control. Samples were collected at different time points as indicated by grey, dashed 

boxes and subjected to RNA-sequencing (transcriptomics) or GC-MS analysis 

(metabolomics). Transcriptomics data were characterized using a co-expression 

network approach and differential expression analysis. Metabolomics data was 

characterized by calculating a Bayes factor score and clustering of these scores. 

Figure 2. Co-expression network modules. RNA-seq data was clustered into 

modules by inferring a weighted co-expression network. Panels A-F represent 

selected modules characterized by a general response to the fungus or are specific 

for QTL. The module eigengene panels (left) summarize the module-wise expression 

(Fg: treatment with F. graminearum, M: mock treatment, 30: 30 hpi, 50: 50 hpi; blue: 

NIL1, green: NIL2, purple: NIL3, orange: NIL4). Pie charts give the ratios of genes 

contributed by the individual subgenomes for the entire module (left) and for 

intramodular hub genes (right). 

Figure 3. Changes in the primary metabolism in response to F.graminearum and 

DON. Metabolites quantified by GC-MS are set in black, non-measured and non-

detected metabolites are set in grey. Treatment-responsive metabolites (DON and F. 

graminearum (Fg); Supplemental Table 2) in the individual lines are indicated by 

color (blue: NIL1, green: NIL2, purple: NIL3, orange: NIL4). Levels of metabolites set 

in red were strongly changed in response to DON or F. graminearum (average score 

greater than 10). Genes with significantly changed transcript abundances are 
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indicated by arrows/lines set in grey, while dashed lines indicate no significantly 

changed transcript in any line. *Citrate and *isocitrate could not be distinguished due 

to chromatographic co-elution. *Tryptamine levels were at or below the methods 

detection limit in most samples and thus could not be safely quantified. 

Figure 4. QTL-associated differential transcript and metabolite abundances in the 

glutamate metabolism. Metabolites quantified by GC-MS are set in black, non-

measured and non-detected metabolites are set in grey. Treatment responsive (DON 

and F. graminearum (Fg); Supplemental Table 2) metabolites in the individual lines 

are indicated by color (blue: NIL1, green: NIL2, purple: NIL3, orange: NIL4). Green 

arrows/lines highlight genes with increased expression at 30 hpi for Qfhs.ifa-5A, red 

lines represents decreased expression at 50 hpi for Qfhs.ifa-5A. These expression 

differences are visualized for the isogene families by eigengene values (I-V). The 

individual NILs are distinguished by color. The four bars per line represent F. 

graminearum-inoculated samples at 30 and 50 hpi and mock-treated samples at 30 

and 50 hpi from left to right. 

Figure 5. Gene expression profiles of QTL candidates. (A) Fhb1-associated and F. 

graminearum-responsive genes in module D; (B) Fhb1-associated and F. 

graminearum-responsive genes mapped to chromosome 3B in module E; (C) 

Qfhs.ifa-5A-associated constitutively expressed amino acid permeases in module C 

and (D) Qfhs.ifa-5A-associated, F. graminearum-responsive genes. Means of FPKM 

values are given for each tested experimental condition (NIL1-4, F ... F. 

graminearum-inoculated, M ... mock-treated, 30/50 ... 30/50 hai). 

Figure 6. Co-expression analysis of homeologous triplet genes. A set of conserved 

triplet genes, with one copy per subgenome (A, B, and D) was used to investigate 

genome-specific expression behavior and dosage effects in a triplet-based co-
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expression network. (A) Coloring the network nodes by expression contributions from 

individual genomes highlighted regions where the combined triplet expression is 

dominated by a single or two genomes. (B) The triplet network was split into triplet 

network modules with specific expression patterns for genome expression bias 

(Supplemental Figure 11). (C) The boxplots show subgenome-wise expression 

strength of triplet members in a F. graminearum-responsive triplet module 

(highlighted in A and B) under the given conditions for NIL1 (Fg: treatment with F. 

graminearum; M: mock treatment; 30: 30hpi; 50: 50 hpi). Within this module, 

expression in response to the fungus was dominated by the D subgenome, which 

was also observed for NIL2, NIL3, and NIL4 (Supplemental Figure 12). 
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