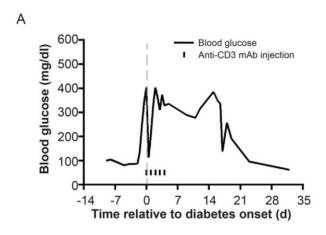
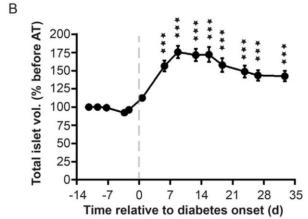
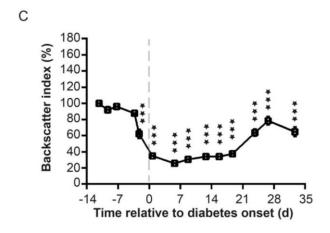
Distinct roles of beta cell mass and function during type 1 diabetes onset and remission

Helena Chmelova^{1,2}, Christian M. Cohrs^{1,2}, Julie A. Chouinard^{1,2}, Cathleen Petzold¹, Matthias Kuhn³, Chunguang Chen^{1,2}, Ingo Roeder³, Karsten Kretschmer^{1,2} and Stephan Speier^{1,2}


¹DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany; ²Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Germany; ³Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.


Supplementary Table 1. Effect of donor and recipient genotype on intraocular islet environment. Combining the RIP-HA mouse model and the AC imaging platform allows modifying the environment for intraocular islets by different arrangements of islet donor and recipient genotypes. Thereby, intraocular islets can be studied *in vivo* in the presence or absence of autoimmune infiltration in combination with a normo- or hyperglycemic environment.


recipient mouse islets

		RIP-HA ⁺	RIP-HA
donor islets	RIP-HA ⁺	Intraocular islet infiltrationHyperglycemic environment	Intraocular islet infiltrationNormoglycemic environment
	RIP-HA	Intact intraocular isletsHyperglycemic environment	Intact intraocular isletsNormoglycemic environment

Supplementary Figure 1. NOD.SCID islets transplanted to the AC of NOD.SCID mice show similar changes in total islet volume and islet backscatter in response transient hyperglycemia. (A) Non-fasting blood glucose of NOD.SCID recipient mice in response to adoptive transfer of NOD.BDC2.5 T cells and anti-CD3 mAb treatment (mean of 3 mice). (B) Total islet volume of intraocular NOD.SCID islets in response to adoptive T cell transfer and anti-CD3 mAb treatment in the same NOD.SCID recipient mice as in panel A (n = 19 islets from 3 mice; mean \pm SEM). (C) Backscatter index of the same islets analyzed in panel B (mean \pm SEM). Significant changes from before adoptive transfer were analyzed by a linear mixed model and are indicated by * (p < 0.05), ** (p < 0.01) or *** (p < 0.005).

SUPPLEMENTARY DATA

Induction of autoimmune diabetes in NOD.SCID mice by adoptive transfer of BDC2.5 T **cells.** Single cell suspensions from pooled spleen and lymph nodes (cervical, axillary, brachial, inguinal, popliteal, and mesenteric) of NOD-BDC2.5 mice were prepared using 70 µm cell strainers (BD, NJ, USA). Cells were subsequently washed in Hank's Balanced Salt Solution (Life Technologies, CA, USA) supplemented with 10 mM HEPES and 5% fetal bovine serum. Cells were labeled with biotin-conjugated CD4 (Clone RM4-5), PE-conjugated Vβ4-TCR (Clone KT4), APC-conjugated CD62L (Clone MEL-14) and PerCP-Cy5.5-conjugated CD25 (Clone PC61) monoclonal antibodies (mAbs) and with Pacific Blue-conjugated streptavidin (all eBioscience, CA, USA or BD). The autoMACSTM magnetic cell separation system and streptavidin-conjugated magnetic microbeads (Miltenyi Biotec, Germany) were used to enrich CD4+ T cells. The sample was sorted on a FACS Aria (BD). For adoptive transfer, 2 x 106 FACS-purified CD4+Vβ4+CD62LhighCD25- BDC2.5 T cells in PBS were injected i.v. into recipient NOD.SCID mice. Non-fasting blood glucose levels were closely monitored after adoptive transfer. Diabetes onset was defined as non-fasting blood glucose > 400 mg / dl and normoglycemia as non-fasting blood glucose levels < 200 mg / dl. Arrest of autoimmune attack was achieved by treatment with anti-CD3 mAb. Mice received intravenous injections of 10 µg / day anti-CD3 mAb (Clone 145-2C11; eBioscience) for 5 consecutive days starting at diabetes onset. To achieve restoration of normoglycemia, mice were additionally implanted with 1 insulin pellet at >2 weeks after diabetes onset (LinBit; LinShin Canada Inc., Canada).