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ABSTRACT

The prevalence of obesity is increasing worldwide and contrib-
utes to many health problems, including kidney disease. Unex-
pectedly, 10–30% of obese individuals are apparently not at
increased risk of metabolic diseases, e.g. type 2 diabetes, cardi-
ovascular disease and risk of renal disease. Their phenotype is
labeled ‘metabolically healthy obesity’. In the search for mechan-
isms explaining this unexpected condition, a favourable type of
body fat distribution with low insulin resistance and with low
subclinical inflammation has been identified. Furthermore,
signalling pathways have been found that distinguish between
metabolically benign and malignant obesity. In addition, the
important roles of fatty acids, adipokines and hepatokines were
identified. These factors regulate insulin resistance and subclinical
inflammation. Onset and evolution of chronic kidney disease
(CKD) are affected by obesity. CKD also increases the risk of
insulin resistance and subclinical inflammation, two pathways
that play an important role in the pathogenesis of renal malfunc-
tion. This brief review summarizes novel insights, specifically
how distinct body fat compartments (including perivascular and
even renal sinus fat) may have an impact on progression of CKD.

Keywords: chronic kidney disease, insulin resistance, metabo-
lically healthy obesity, non-alcoholic fatty liver disease, subcli-
nical inflammation

INTRODUCTION

The recent worldwide epidemic of obesity [1–4] is considered
to be largely the cause of the recently increased incidence of
type 2 diabetes, cardiovascular disease (CVD) and several

types of cancer. Even the increasing prevalence of chronic
kidney disease (CKD) has—to some extent—been attributed
to the recent endemic of obesity and its metabolic compli-
cations [5]. Many studies have consistently documented that
obesity is a risk factor for a decline of glomerular filtration rate
as well as onset and progression of CKD [6–10]. Furthermore,
in agreement with studies about the incidence of type 2 dia-
betes and CVD, the usual type of obesity is also associated
with a higher risk of onset and/or progression of CKD. Esti-
mates of visceral obesity, e.g. increased waist circumference,
were found to be stronger predictors of end-stage renal disease
(ESRD) than the elevated body mass index (BMI). While in-
creased visceral obesity may cause and aggravate CKD by pro-
moting metabolic diseases, recent studies indicate that even in
the absence of the well-known risk factors such as hypertension
or diabetes, obesity per se may be harmful to the kidney [11–
13]. This conclusion is supported by the study of Nerpin et al.
[14] which documents that insulin resistance, which often ac-
companies obesity, is a very strong marker of incident CKD.
Thus, the assumption of a pathogenetic role is indeed reason-
able. The authors showed that impaired insulin sensitivity at
baseline predicted incident impairment of renal function inde-
pendently of other risk factors, including age and fasting plasma
glucose [14]. As a result, it has increasingly been postulated that
insulin resistance (as well as factors promoting insulin resist-
ance) plays a role in the development of CKD.

NEW ASPECTS CONCERNING THE ROLE
OF INSULIN RESISTANCE IN CKD

Several mechanisms are known to impair insulin signalling in
metabolic tissues, thus contributing to ‘whole-body insulin
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resistance’. Among these mechanisms, genetic defects in skel-
etal muscle and the liver have been shown to result in de-
creased glucose disposal and increased hepatic glucose
production [15]. These mechanisms eventually result in hy-
perglycemia and insulin resistance. It has also been documen-
ted, however, that the onset and progression of CKD may be
independent of glycemia, so that other mechanisms may be
critical as well, at least for the early stages of impaired renal
function. In this context, humoral signals of metabolic tissues
become relevant. The expansion of visceral adipose tissue, i.e.
a target for infiltration by immune cells, is involved in the
above process [16]. Furthermore, the decrease in adiponectin
concentration is relevant: it is associated with reduced whole-
body insulin sensitivity and possibly causes increased pro-
inflammatory signalling in the kidney as well [17]. It must be
admitted, however, that the renal biology and function of adi-
ponectin, to-date considered the most important adipokine in
metabolic diseases, has not been fully understood [18]. Fur-
thermore, increased leptin-induced proteinuria and type 2 col-
lagen expression by increased TGF-β1 production is thought
to be involved in glomerusclerosis [19]. In addition, the meta-
bolic syndrome is strongly associated with increased visceral
obesity and contributes to onset and progression of CKD via
hyperinsulinaemia, inappropriate activation of the renin angio-
tensin system and oxidative stress in the kidney. The resulting
pathology includes impaired pressure/natriuresis relationship,
increased salt sensitivity for blood pressure, aldosterone excess,
glomerular hypertension, endothelial dysfunction and vaso-
constriction as well as matrix expansion [10].

DOES METABOLICALLY HEALTHY
OBESITY EXIST?

The recent proposal of the existence of ‘metabolically healthy
obesity’ (MHO) has provoked some interesting novel hypoth-
eses. It has been documented that a subgroup of obese individ-
uals (∼10–30%) is apparently protected from the metabolic
complications of obesity; at least the risk appears to be con-
siderably lower than expected for the given level of obesity.
This subgroup is thought to be not only at lower risk of cardio-
vascular morbidity, but also of mortality, compared with obese
individuals with major cardiovascular risk factors [20, 21]. Fur-
thermore, because the reduction of mortality and incidences of
diabetes and CVD, that are being brought about by bariatric
surgery, appear to depend on the presence and absence of
MHO [20], this novel concept may also become important for
the direction of obese people toward specific prevention and
treatment programmes. However, the application of MHO
concept in clinical practice may be limited by the fact that BMI,
which is a component of the MHO definition, does not necess-
arily represent only fat mass, but also lean mass. Nevertheless,
in relatively sedentary people BMI is still a good estimate of fat
mass. In our initial study addressing MHO [22] we could show
that when mostly sedentary middle-aged people with a BMI of
≥30 kg/m2 were divided into a metabolically healthy and a me-
tabolically at-risk group, both BMI and fat mass, measured by
whole-body magnetic resonance imaging, were almost identical

in both groups. Certainly, this may not necessarily be the case
in physically active and younger individuals.

Furthermore, it is presently not clear as to whether MHO
reflects an intermediate, rather than a truly low-risk state.
Recent data from the North West Adelaide Health Study indi-
cate that MHO might be a transient phenotype for a proportion
of individuals [23]. From all individuals classified as having
MHO in the beginning, one-third changed to a high-risk phe-
notype during the course of the study, but lower risk of type 2
diabetes and CVD was restricted to the subgroup of individuals
with MHO maintaining this condition. Thus, having MHO
during one clinical examination should not imply that there is
no metabolic risk; however, keeping the MHO status may
clearly be beneficial for metabolic health. In addition, the fact
that currently there is no agreement about a universal definition
of the MHO phenotype limits its use in daily clinical routine.

The most important characteristics of the MHO phenotype
include low insulin resistance, low carotid intima-media thick-
ness and lower prevalence of non-alcoholic fatty liver disease
(NAFLD) [22]. Additionally, low levels of the hepatokine fetuin-
A are found in subjects with MHO [22, 24]. Interestingly, visceral
fat mass and adiponectin levels were, at the most, only mildly
altered compared with metabolically unhealthy obese subjects
[22, 24]. In >300 subjects with increased risk of type 2 diabetes,
we found that high liver fat content and elevated fetuin-A levels
were independent predictors of insulin resistance and impaired
glucose regulation [25]. This finding leads to the question
through which mechanism do NAFLD and fetuin-A have an
impact on metabolism and cause subclinical inflammation.

ROLE OF NAFLD AND FETUIN-A
IN METABOLISM

By regulating carbohydrate and lipid fluxes the liver can quickly
adapt to extreme conditions of nutrient availability, e.g. pro-
longed fasting and chronic overfeeding. Insulin inhibits pro-
duction and release of glucose by the liver as a result of blocking
both gluconeogenesis and glycogenolysis. In adipose tissue as
well as in the liver, increased energy intake and/or reduced
energy expenditure result in accumulation of lipids, accompanied
by infiltration and activation of immune cells, thus resulting in
insulin resistance. Impaired insulin signalling in the liver in-
creases endogenous glucose production, thus causing hypergly-
caemia. Hyperglycaemia and glucotoxicity contribute to the
development of type 2 diabetes and CVD [26]. Insulin is also a
powerful regulator of hepatic lipid metabolism as a result im-
paired insulin signaling in the liver and might considerably con-
tribute to the known atherogenic dyslipidaemia associated with
insulin-resistant states. It is widely thought that such increased
circulating lipid pool is a result of insulin resistance of the liver. It
is also considered to be a prerequisite for atherosclerosis [26].

Apart from this conventional explanation, we have recently
proposed a novel concept to explain how NAFLD affects
lipid metabolism: if fat accumulates in the liver, proteins with
signalling properties in other tissues (hepatokines) are relea-
sed [27]. Fetuin-A is the best studied of these hepatokines.
Its expression is increased in NAFLD [28–31]. Besides its
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well-known impact to inhibit insulin signalling [32], we could
show that fetuin-A strongly induces cytokine expression in
monocytes and adipose tissue [33]. In addition, we and others
showed that fetuin-A predicts incident diabetes [34, 35] as
well as CVD [36, 37]. More recently in animals as well as
in vitro it was shown that fetuin-A serves as an adaptor protein
for saturated fatty acids, allowing them to activate Toll-like re-
ceptor 4. This way, fetuin-A induces inflammatory signalling
and insulin resistance [38], which are important factors driving
the development of T2DM and CVD. In addition, fetuin-A is
currently considered as the missing link to explaining lipid-
induced inflammation [39]. These animal data and in vitro find-
ings can be translated to humans in vivo: fetuin-A and fatty
acids interact to induce insulin resistance [40].

I S FETUIN-A RELATED TO CKD?

Is there information that fetuin-A could also be involved in
the pathogenesis of CKD? It is well known that in advanced
CKD and in ESRD fetuin-A may inhibit ectopic calcification,
thus perhaps even protecting the kidney [41]. We speculate that
in early stages of CKD when ectopic calcification is not yet rel-
evant, the pro-inflammatory effects of fetuin-A may prevail to a
large extent. In this context, it is of interest that elevated fetuin-
A levels had been found in women with normal glucose toler-
ance but with albuminuria; this relationship was independent of
well-known predictors of albuminuria [42].

Because of the finding that fetuin-A induces pro-inflamma-
tory signaling in adipose tissue [33, 38, 43], perivascular fat
comes into the focus of research addressing the impact of
fetuin-A on vessels and kidney. Perivascular fat is considered
to play an important role in vascular function [44]. The renal
function heavily depends on blood flow. One paracrine effect
of increased pro-inflammatory signalling may be glomerular
function—obviously relevant for the development of CKD.
Perivascular fat is strongly associated with insulin resistance
[45]. We recently also identified increased amounts of peri-
vascular renal sinus fat (Figure 1), which was associated with ex-
ercise-induced albuminuria, independently of sex, age, visceral
fat mass and blood pressure [46]. Furthermore, findings from
the Framingham Heart Study Renal suggest that renal sinus fat
may play a role in blood pressure regulation and CKD [47].
This neglected finding might become relevant if it turns out to
be a predictor of CKD.

There is good evidence that not all fat is created equal.
When characterizing perivascular fat, we found that adipo-
cytes in this location differed substantially with respect to mes-
senger RNA expression and protein production of angiogenic
factors compared with fat cells from other sites [48]. Such
difference may affect growth of fat tissue, contribute to com-
plications of atherosclerotic plaques and be responsible for
alterations in blood flow. Because fetuin-A strongly induces
pro-inflammatory signalling in adipose tissue, it is indeed
plausible that it may also have an impact on renal function by
directly acting on perivascular renal sinus fat and potentially
also on the endothelium. Currently studies addressing this
issue are under way.

SUMMARY

Visceral adiposity and, more importantly, NAFLD, are
strongly involved in the pathogenesis of type 2 diabetes, CVD
and potentially also kidney disease; the latter is suggested by
fat deposition in the renal sinus and is strongly supported by
precise measurements of body fat distribution. The best
marker of disturbed fat metabolism may be insulin resistance.
Among the mechanisms of particular importance are pre-
sumably dysregulated release of cytokines, adipokines and
hepatokines (as depicted in Figure 2). This conclusion is also
in line with the novel finding of a putative critical role of
perivascular renal sinus fat and its link to albuminuria. These

F IGURE 1 : Perivascular renal sinus fat in humans. Axial T1-
weighted magnetic resonance images taken at the level of entry of the
renal arteries into the renal sinus in two subjects with comparable
BMI. (a) Male volunteer (BMI 32.3 kg/m2) with a high amount of
perivascular adipose tissue in the renal sinus (RSF). Manually drawn
regions of interest for quantification of total kidney area (region A,
dashed line, blue arrow) and adipose tissue in the renal sinus (region
B, continuous line, white arrow) are drawn in the right kidney. (b)
Male volunteer (BMI 33.5 kg/m2) with a low amount of RSF on both
sides. RSF was calculated as the arithmetical mean of B/(A + B) left
and right. FromWagner R et al. [46] (with permission for reproduc-
tion from Springer).
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findings call for further studies of the role of lipid metab-
olism in the pathogenesis of CKD.

CONFLICT OF INTEREST STATEMENT

The results presented in this paper have not been published
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