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A B S T R A C T

Efficient segmentation of optoacoustic images has importance in enhancing the diagnostic and

quantification capacity of this modality. It may also aid in improving the tomographic reconstruction

accuracy by accounting for heterogeneous optical and acoustic tissue properties. In particular, when

imaging through complex biological tissues, the real acoustic properties often deviate considerably from

the idealized assumptions of homogenous conditions, which may lead to significant image artifacts if not

properly accounted for. Although several methods have been proposed aiming at estimating and

accounting for the complex acoustic properties in the image domain, accurate delineation of structures is

often hindered by low contrast of the images and other artifacts produced due to incomplete

tomographic coverage and heuristic assignment of the tissue properties during the reconstruction

process. In this letter, we propose instead a signal domain analysis approach that retrieves acoustic

properties of the object to be reconstructed from characteristic features of the detected optoacoustic

signals prior to image reconstruction. Performance of the proposed method is first tested in simulation

and experiment using two-dimensional tissue-mimicking phantoms. Significant improvements in the

segmentation abilities and overall reconstructed image quality are further showcased in experimental

cross-sectional data acquired from a human finger.

� 2015 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Text

Owing to the hybrid nature of optoacoustics, generation and
detection of signals is affected by both the optical and acoustic
properties of the imaged object as well as of the imaging system
employed [1,2]. Thermal energy resulting from absorption of the
excitation pulsed light is converted into propagating acoustic
pressure waves, which are subsequently recorded by a set of
detectors surrounding the object [3,4]. In the first image
reconstruction step, the distribution of the deposited optical
energy is restored from the measured time-resolved signals by
assuming a specific acoustic propagation model [4]. The ability to
quantitatively interpret the reconstructed images implies a second
step based on a light propagation model, which is aimed at
reconstructing the map of the optical absorption coefficient from
the restored thermal energy distribution [2]. Idealized ultrasound
propagation, namely a uniform medium with constant speed-of-
sound (SoS) and free of acoustic absorption and scattering, is
commonly assumed in order to perform the first reconstruction
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step [4]. However, acoustic properties of real biological tissues may
deviate from the idealized assumptions, e.g., the SoS may
significantly vary even among different soft tissues, from
1450 m/s in fat to 1600 m/s in muscle tissue, as compared to
1500 m/s in water at room temperature [5]. The use of average
(homogenous) acoustic parameters for optoacoustic reconstruc-
tions may consequently result in image blurring, loss of features
and deterioration of the overall imaging quality [6].

For accurate optoacoustic image reconstruction, the inverse
method therefore needs to be capable of taking into account the
heterogeneous distribution of the acoustic properties in the imaged
object. Analytic reconstruction methods, such as back-projection or
series expansion, are mostly based on the assumption of a uniform
acoustic medium, making them not suitable for this purpose. In
contrast, numerical methods are usually employed to efficiently
account for the non-uniform acoustic properties. For instance, the
model-based (MB) class of inverse algorithms has been shown
capable of modeling the effects of heterogeneous SoS or absorption
[6,7]. Even more flexible than MB approaches are time reversal (or
more general finite-time differences) algorithms, which are based on
repeated application of a time-propagation operator directly obtained
from the discretized wave equation [8,9]. In this way, heterogeneous
maps of SoS, impedance mismatches, or acoustic attenuation are
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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seamlessly included during the reconstruction with effects like
correct time-of-flight (TOF), ultrasonic refraction, or reflection readily
accounted for as well.

Nonetheless, provided a suitable reconstruction approach has
been identified, the acoustic reconstruction parameters still need to
be determined. In most cases, the exact distribution of the acoustic
properties in the medium is not known. Thus they need to be
assigned heuristically, optimized numerically in combination with
the absorption distribution, or determined experimentally. The
latter can be done using additional transmit-receive or passive
ultrasound scans of the object [10]. If ultrasound data is not
available, optoacoustic image segmentation offers an alternative
way to discern regions with different physical properties from e.g.
boundary detection or texture analysis followed by an autofocusing
step to assign the optimal parameters to those regions [11]. Howev-
er, automated segmentation in the image domain is often
complicated by the low contrast of the images, other artifacts,
and blurring resulting from reconstruction imperfections, such as an
incomplete tomographic coverage or heuristic (inaccurate) assign-
ment of tissue properties during the reconstruction process.

In this letter, we instead harvested characteristic features of the
measured data in the signal domain in order to perform segmentation
and to obtain acoustic parameters for optimized optoacoustic
reconstructions. In many experimental scenarios, absorption and
acoustic properties of the imaged objects exhibit a few dominant
features that can be linked in a simplified manner to allow for effective
optoacoustic signal domain analysis and parameter retrieval.

Tomographic optoacoustic data consists of many individual
projections, i.e. time-domain signals taken at several time instants at
one given detector angle. The ensemble of the projections for all
detection locations (e.g. regularly distributed on a circle for typical 2-
D tomographic systems) is called a sinogram, denoted here by
S t; ’ð Þ. Image pixels that contribute to the optoacoustic signal value
recorded at a given projection ’ and time instant t are distributed on
a circle of radius d ¼ c�t (c denotes the SoS) with its center located at
the detector position (Fig. 1(a), black dashed arcs). If tomographic
data is complete (i.e. the detection circle fully surrounds the object),
the individual optoacoustic signals will have redundancy with
respect to all time points before and after the time point
corresponding to the center of the tomographic scanning geometry
[12]. A similar ‘redundancy’ of the sinogram occurs for opposite
detectors: If a strongly absorbing boundary (black cross) orthogonal
to the direct path (1) to the detector (black arrow and dashed arc)
creates a large signal at the corresponding detector at time instant t1,
the opposite detector (2) would sense a highly correlated or even
redundant signal at t2 (Fig. 1(a) and 1(b)). This redundancy in the
projection data can be exploited to obtain the acoustic properties of
the medium, e.g. to determine the average SoS in the medium by
considering t1, t2, and the radius of the detection surface. Likewise,
by detecting both directly propagating (10) and reflected (3) signals
(white cross) from an acoustically reflecting boundary (white circle),
one may determine its location in space.

In order to perform segmentation and to extract optimized
reconstruction parameters directly from the individual projection
data, our proposed signal domain analysis is based on common
assumptions fulfilled for many realistic cross-sectional optoacous-
tic imaging scenarios, e.g. when imaging small animals or human
fingers [13,14]:

� The imaged volume can be effectively divided into two main
compartments having different yet constant acoustic properties.
It is then anticipated that the optimized reconstruction approach
considering the different properties would yield better quality
images as compared to the best reconstruction achievable under
assumptions of homogeneous (average) acoustic properties in
the entire medium.
� The boundary R ’img

� �
between the two compartments is convex

and smooth–as is the case for cross-sectional imaging of e.g.
small animals and human fingers. The boundary radius R ’img

� �
is described by a small set of suitable parameters, e.g. the first
few harmonics.
� The outer compartment, usually consisting of a coupling medium

(e.g. water, gel, or a solid acoustic couplant), only has insignificant
optical absorption as compared to the inner compartment. The
acoustic parameters of the former are assumed to be known for the
given ambient temperature. On the other hand, the shape of the
compartment does not have to be known a priori.
� The inner compartment is typically associated with the object to

be imaged, which is assumed to have low internal variations in
its acoustic properties as compared to the global difference with
respect to the outer compartment, e.g. various tissues versus
water. In addition, significant light absorption and attenuation
takes place close to the boundary between the two compart-
ments, a realistic assumption for most biological objects.
� Nonetheless, a third compartment with a strong acoustic

impedance mismatch can be added. Its dominant effect is inducing
internal reflections of the optoacoustic signals originating from
within the inner compartment. Such strong mismatches may
occur e.g. at the boundaries of bones or at air cavities.
� To avoid significant limited-view artifacts, the detection surface

should have a large angular coverage around the imaged object,
ideally more than 1808.

In short, the proposed method can be described as follows: The
signals are transformed into a Hilbert domain to facilitate analysis
while retaining the key signal features. Examples of such features
can be seen in signals like (1), (2), and (3) in Fig. 1(b), all originating
from absorption at the boundary. Variations in both spatial
distribution of the absorbers or acoustic propagation properties
may result in optoacoustic signal alterations. For instance, a larger
phantom size would result in an earlier detection of the first signals
(1) while a smaller SoS within the phantom would lead to a delayed
arrival of the signal features (2) and (3). A simplistic, low
dimensional model can predict the corresponding time of arrival
given the known phantom shape or the SoS. In turn, one may
consider solving the inverse problem of obtaining the unknown
acoustic parameters from the extracted signal features. Such a
methodology is of high computational efficiency because the
iterative optimization is performed by only considering one (or a
few) unknowns without involving calculations with thousands of
pixels or multiple time consuming image reconstruction proce-
dures.

In detail, the proposed method is based on the following steps
and assumptions: As can be noticed from Fig. 1(a) and 1(b), distinct
image features would result in similarly distinct sinogram features.
For the purpose of feature extraction in the signal domain, the
absolute value of the Hilbert-transformed (with respect to time)
sinogram is taken, denoted here by H t; ’ð Þ. In this way, the measured
bipolar signals are transformed into unipolar signals that are more
suitable for feature extraction by maximization. In order to perform
signal domain analysis and finally render the desired model
parameters, a parameterized, time-of-flight-based model function
TOF ’; mð Þ is subsequently used. TOF ’; mð Þ calculates the signal TOF
for given source locations and acoustic properties as a function of
detector position ’ (considering the minimal TOF according to
Fermat’s principle). In the examples below, the sought-after set of
parameters of the model, m, consists of the SoS within the imaged
object, of the parameterized boundary between the compartments
or of the reflecting interface. Thus, TOF ’; mð Þ is a simplistic, low
dimensional acoustic propagation model that relates parameterized
signal origin, propagation according to parameterized acoustic
properties, and time of arrival at the detection location. The three



Fig. 1. Concept of signal domain analysis. (a) At the absorbing boundary (black cross) of the numerical phantom huge signals will be detected at detector locations ((1) and (2))

with a tangential integration arc (dashed black line). Opposite detectors provide partially redundant information and consequently information on the SoS. Accordingly,

boundary signals (white cross) with direct (10) and indirect (3) propagation provide information on the location of a reflecting boundary (white dashed line). (b)

Corresponding sinogram with signal features corresponding to those in the image domain in (a). (c) Workflow of the proposed algorithm: Instead of performing

reconstructions (red) with a heuristically assumed SoS map, signal domain analysis (green) is performed prior to reconstruction. Unipolar signals H are generated from the

measured bipolar signals S by applying a Hilbert transformation with respect to the time variable. The optimized SoS parameters are obtained by retrieving characteristic

features in the signals via maximizing the low dimensional functional f depending on acoustic parameters m through TOF and on the signals H. Subsequently, only a single

reconstruction process with an optimized SoS map has to be performed. Conversely, for image domain methods (pale blue) the computationally expensive reconstruction

procedure has to be performed multiple times as part of the optimization process.
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TOF-functions use a model for: 1. The shortest (direct) propagation
time as a function of the detection angle and compartment boundary
parameters (TOF1 ’; mð Þ), i.e. it allows for determining the shape of
the compartments; 2. The longest (transmission) propagation
time for the boundary signals as a function of detection angle and
SoS within the object (TOF2 ’; mð Þ), i.e. it allows for determining
the SoS of the inner compartment; 3. The reflected signal
propagation time as a function of the detection angle and
reflector boundary (TOF3 ’; mð Þ), i.e. it allows for determining
the shape of the reflecting boundary. The corresponding processes
and signals are labeled by (1), (2), and (3) in Fig. 1(a) and (b),
respectively.

Model parameters are consequently obtained by numerical
maximization of a functional f with respect to m. f is the sum of the
Hilbert-transformed sinogram H for all projections, each corre-
sponding to one specific time instant as predicted by TOF ’; mð Þ. For
a suitable selection of model parameters m, shape of the signal
feature predicted by TOF ’; mð Þ is highly correlated with the
signals, thus a maximum value of the functional f is expected.
Conversely, for an arbitrary choice of m no pronounced correlation
is expected, thus the functional is not maximized. Optimized
acoustic parameters m are then obtained via

m ¼ argmaxmf mð Þ ¼ argmaxm

X
’

H TOF ’; mð Þ; ’ð Þð Þ
� �

: (1)

Weighting factors, initial guesses, priors, or constraints can also
be seamlessly included in this type of maximization procedure. The
overall workflow of the proposed method is summarized in
Fig. 1(c). After obtaining the optimized parameters, the latter serve
as an input to a single optimized reconstruction. Since only a single
reconstruction step is required, this approach is much less
computationally demanding as compared to alternative methods
working in the image domain, which would generally require
multiple reconstructions with trial and error parameter selection.

We tested the performance of our method in three numerical and
experimental settings. Fig. 2 illustrates the results of our simulations
done with the k-wave toolbox using a two-dimensional image
domain of 472 � 472 pixels and 720 equally spaced projections
covering 3608 [8]. Fig. 2(a) depicts the energy absorption map of the
original numerical phantom. SoS was set to c1 ¼ 1700m=s inside the



Fig. 2. Numerical simulation. (a) Original optical absorption distribution and

acoustic properties: The SoS is c0 ¼ 1500m=s outside of the red line and c1 ¼
1700m=s inside. An acoustic mismatch is indicated by the blue circle (twice the

impedance inside). (b) Corresponding Hilbert-transformed sinogram with fitted signal
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imaged object (enclosed by the red curve) and to c0 ¼ 1500m=s

outside. The blue circle having a radius of 80 pixels enclosed an
acoustically mismatching area with twice the impedance of the
surrounding medium. Fig. 2(b) presents the significant part of the
corresponding Hilbert-transformed sinogram H t; ’ð Þ. The subse-
quent detection of the rising edge on a per-projection basis resulted
in a set of initial parameters for discerning the object’s boundary.
After maximization, the optimum TOF1 ’; mð Þ is plotted in Fig. 2(b)
(red curve), representing the signals originating from the object’s
estimated boundary (approximately 1 pixel average deviation in the
image domain from the original). Using the obtained compartment
boundary as input for TOF2 ’; mð Þ, a second maximization procedure
initialized with c1 ¼ 1500m=s yielded a SoS estimate for the inner
compartment of c1 ¼ 1694m=s (remaining error of 0.4%). The
maximizing TOF2 ’; mð Þ is plotted in green in Fig. 2(b), representing
the signals of the object’s estimated boundary after transmission
through the inner compartment. Next, by using the corresponding
source locations on the compartment boundary and the determined
SoS of the inner compartment, the optimization for TOF3 ’; mð Þ (blue
curve, estimated reflected boundary signals) resulted in an
estimated radius for the highly reflective boundary of 81.4 pixels,
i.e. an error of 1.8% with respect to its original value. Fig. 2(c) plots the
corresponding focusing function, which is the focusing functional
value f as a function of the selected SoS within the object. It was
calculated assuming either the 2-compartmental model (red curve)
with c0 ¼ 1500m=s outside of the object or the homogeneous (blue
curve) SoS model with the respective maxima values at chomo ¼
1584m=s and c1 ¼ 1694m=s corresponding to the optimal SoS
selection.

Fig. 2(d) shows central region (dashed pink box in (a)) of the k-
wave time reversal reconstruction using homogeneous propagation
properties with chomo ¼ 1584m=s, no acoustic mismatch, and all other
parameters as in the forward simulation. Fig. 2(e) shows the
corresponding reconstruction using the SoS map obtained from
signal domain analysis (i.e. object boundary, fixed SoS c0 ¼ 1500m=s

outside of the object, and estimated SoS c1 ¼ 1694m=s within the
object). The estimated object’s boundary, SoS of the inner compart-
ment, and location of the reflecting boundary are superimposed in red,
green and blue, respectively. Finally, Fig. 2(f) plots the original and
reconstructed image intensities along the phantom’s central axis
(dotted pink line in (a)) using the optimally selected SoS values.
Clearly, the proposed 2-compartmental reconstruction approach
deviated significantly less from the original values in the phantom in
terms of absorbers’ locations and magnitude. This is also reflected in
an overall improved image root mean square deviation

(RMSD ¼
P

n¼pixels In�Iorig
n

� �2
=
P

n¼pixels Iorig
n

� �2
� �0:5

, where I is the

reconstructed image and I origð Þ is the original image) of RMSDhetero ¼
0:39 as compared to RMSDhomo ¼ 0:95 for the reconstruction
assuming a homogenous SoS.

Experimental studies with an absorbing ink phantom were
conducted for the purpose of further validation. For this, a
commercial cross-sectional multi-spectral optoacoustic tomogra-
phy (MSOT) small animal scanner (model: inVisionTF256, iThera
Medical GmbH, Munich, Germany) was used. Technical details of
the scanner are available elsewhere [15]. In short, for optoacoustic
signal excitation it uses a pulsed optical parametric oscillator laser
characteristics corresponding to phantom boundary (red, TOF1), inner SoS (green,

TOF2) and reflected signals (blue, TOF3). (c) Signal domain SoS focus function for

homogeneous (blue) and proposed 2-compartmental model (red). (d) Optimized

homogeneous reconstruction and (e) optimized 2-compartmental reconstruction of

the central region (indicated by the dashed pink box in (a)) with parameters from

signal domain analysis. The estimated shapes of the phantom and of the reflector are

superimposed in red and blue, respectively. (f) Central vertical cross-section (dotted

pink line in (a)) for original (black), optimized homogeneous (blue), and 2-

compartmental model (red).
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tunable in the near-infrared spectral range from 670 nm up to
930 nm. The laser has 10 Hz pulse repetition rate and a maximum
per-pulse energy of 100 mJ (model: SpitLight, InnoLas Laser GmbH,
Krailling, Germany). Detection of signals originating from the
imaged plane is subsequently done by a custom-made ultrasound
array with 256 cylindrically-focused elements having a central
frequency of 5 MHz, 70% relative bandwidth, and tomographic
coverage of 2668 around the imaged object (Imasonic SaS, Voray,
France). The recorded optoacoustic responses were simultaneously
digitized at the 256 projections with a sampling frequency of
40 MSa/s at 12 bit vertical resolution and transferred to a computer
for live preview and further processing. The 15.9 mm diameter
phantom used for validation consisted of solidified agar (1.8% w/w)
mixed with a solution of India ink for attaining background
absorption of approximately ma ¼ 3:6cm�1 without addition of
scattering substances like lipids (Fig. 3(a)). Several 200 mm
diameter black polyethylene microspheres (Cospheric LLC, USA)
were added to the phantom within the imaged plane. The data was
acquired using 750 nm excitation wavelength. The measured
optoacoustic signals were band-pass filtered between 100 kHz and
7 MHz to remove low frequency offsets and high frequency noise
and the images were reconstructed iteratively using a MB
reconstruction algorithm [6].

Fig. 3 illustrates the results from the ink phantom experiment.
Fig. 3(b) shows the Hilbert-transformed sinogram H t; ’ð Þ of the
measured data having characteristic signal features originating
from the phantom boundary and the microspheres. The estimated
boundary resulting from the TOF1 ’; mð Þ fitting is depicted by the
red line, assuming a SoS in water of c0 ¼ 1517m=s at the measured
water temperature of 34 8C. Note that signals were only available
from a partial angle covering less than 3608. The optimization
yielded an average object diameter of 15.8 mm, i.e. 0.5% smaller
than the actual inner diameter of the syringe (3/8 inch) used to
mold the phantom. The subsequent TOF2 ’; mð Þ optimization
resulted in a SoS of c1 ¼ 1537m=s within the object (green line). In
contrast, one obtained a SoS of chomo ¼ 1523m=s when optimizing
the functional f for the homogenous SoS case (solid blue curve in
Fig. 3(c)). A similar, post-reconstruction search for the optimal SoS
Fig. 3. Experimental ink phantom study. (a) Photograph of the central slice of the highly

transformed measured signals with TOF1 (red) and TOF2 fits (green) to determine object sh

a 2-compartmental model obtained in the signal domain via TOF2 (red), correspond

homogeneous image domain Tenenbaum gradient focus function (dashed blue). The 

Optimized homogeneous and (e) optimized heterogeneous reconstruction of the phant
in the image domain using a Tenenbaum gradient [8] focus
measure (dashed blue curve) yielded a very similar value, thus
validating the optimal SoS choice obtained via the signal domain
analysis. Fig. 3(d) shows the reconstructed image when using the
optimized homogeneous SoS while Fig. 3(e) shows the recon-
structed image when using optimized heterogeneous parameters
with the estimated phantom outline superimposed in red. All the
microspheres were resolved via optimization of both homoge-
neous and heterogeneous models with no substantial differences
in the image quality observed. In this particular case, the use of a
heterogeneous SoS model was not crucial owing to the relatively
small SoS difference between imaged object and surrounding
water.

Finally, Fig. 4 presents the results obtained with the dataset
acquired from the first author’s index finger. The finger was imaged
in the area between peripheral and distal interphalangeal joints
using the same MSOT scanner [13]. The dorsal side of the finger
was facing the detection array while the imaging was done at
either 690 nm or 900 nm excitation wavelength. At 690 nm,
melanin exhibits the highest contribution to the image contrast
whereas at 900 nm the vasculature with main contributions from
oxygenated hemoglobin is dominant (Fig. 4(a)). Fig. 4(b) shows the
MB reconstruction at 900 nm excitation assuming a homogeneous
SoS of 1542 m/s, a value that was obtained by optimization in the
post-reconstruction image domain. At this excitation wavelength,
the vasculature stands out as the most dominant feature in the
images whereas effects of smearing and reflections by the bone can
be clearly recognized (green circles and blue arrows). Furthermore,
the skin surface can be readily identified while the incomplete
tomographic angular coverage has resulted in additional artifacts
visible at the bottom (palmar) part of the image.

The Hilbert-transformed sinogram of the finger’s cross-section
acquired at 690 nm is shown in Fig. 4(c). This data was chosen for the
signal domain analysis because of the dominating melanin
absorption at the lower wavelengths and thus stronger signals
generated from the skin. The fits for the skin surface (TOF1 ’; mð Þ,
shown by the red curve), inner SoS (c1 ¼ 1610m=s, green curve),
and skin reflection at the bone surface (blue curve) have been
 absorbing ink phantom with several microspheres (cut after imaging). (b) Hilbert-

ape and SoS within the object, respectively, superimposed. (c) SoS focus function for

ing signal domain focus function assuming a homogenous SoS (solid blue), and

respective maxima are c1 ¼ 1537m=s, chomo ¼ 1523m=s, and chomo ¼ 1524m=s.(d)

om with the estimated object shape superimposed in red.



Fig. 4. Results attained from in vivo human finger data. (a) Absorption spectra of the three main chromophores in the near-infrared. At higher wavelengths, the relative

absorption of blood is the highest with main contribution stemming from the oxygenated hemoglobin. For lower wavelengths, significant contributions stem from melanin as

well. (b) Cross-sectional reconstruction of a finger at 900 nm excitation wavelength with best homogeneous SoS (chomo ¼ 1542m=s). Blue arrows represent reflection artifacts

induced by the bone. (c) Hilbert-transformed sinogram at 690 nm excitation with fits for finger shape (red), inner SoS (green) and bone (blue). (d) Corresponding

reconstruction using optimized 2-compartmental model parameters (c1 ¼ 1610m=s within the red curve) obtained from signal domain analysis. The pink line indicates the

final segmentation (solid) obtained from an active contour image domain segmentation based on a manually selected initial guess (dotted). (e) Same reconstruction for

900 nm excitation wavelength with improved image quality over the homogeneous model (green circles). (f) Slice of the finger acquired using MRI with the superimposed

location of the skin (red) and bone (blue) as estimated by MSOT. Manual registration was done based on the dorsal vascular of the MRI slice and of the MSOT reconstruction in

(e). Scale bar corresponds to 1 cm.
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superimposed onto the sinogram. Fig. 4(d) presents the corre-
sponding reconstruction using the optimized model parameters.
The estimated shape of the finger (red) agreed well with the
actually reconstructed skin outline. On the other hand, the
estimated shape of the bone (blue) did not correlate with any
absorbing structures in the reconstructed image. This is not
surprising since the bone is only weakly absorbing compared to
blood, thus mainly affecting the images by generating acoustic
reflections at its surface. Note that the solid lines in Fig. 4(d)
indicate boundary segments which were directly extracted from
the measured signals while the dashed segments are based on
extrapolations for the remaining angles and might therefore not
necessarily coincide with real structures.

In order to compare the performance of our signal domain
segmentation algorithm with an image domain segmentation
approach, we performed an active contour segmentation of the
images using the active contour toolbox without manually
optimizing the default parameters [16]. Starting with a manually
selected initial guess (dotted pink ellipse) has rendered the final
segmentation as shown by the solid pink line. The obtained image
domain segmentation indicates that the proposed signal domain
analysis yielded results of at least similar or even better quality.
Indeed, advanced image segmentation methods may produce
more accurate results, yet would commonly require additional
computational complexity and dedicated optimized settings.

Applying the optimized SoS map has similarly resulted in
improvements for the image acquired at 900 nm (Fig. 4(e)), in
which the small vessels (labeled with green circles) appeared with
a better shape and contrast as compared to Fig. 4(b) that was
obtained after image domain focusing and using a homogeneous
SoS model. To better quantify the improved focusing performance,
a 2-D Gaussian was fitted to the vessel indicated by the green
asterisk in Fig. 4(b) for reconstructions obtained using both
homogeneous and heterogeneous models (Fig. 4(b) and (f)).
Besides an increased magnitude (maximum intensity value of
1.1 (a.u.) compared to 0.79 (a.u.)), the heterogenous model resulted
in a similar focal FWHM of 864 mm in the vertical direction
(compared to 875 mm in the homogenous case) and a 22%
improved FWHM of 301 mm in the horizontal direction (compared
to 387 mm in the homogeneous case).

To further validate the attained betterments, the same finger
was imaged using a 3 T MRI system (Verio, Siemens AG, Erlangen,
Germany) and a flexible surface coil (flex large, Siemens AG,
Erlangen, Germany). Fig. 4(f) shows the MRI cross-section acquired
approximately from the same location as for the MSOT images.
Manual registration of the images was then done by using dorsal
vasculature as reference points with the estimated shapes of the
skin and bone indicated by the red and the blue curve, respectively.
Apparently, soft tissue deformations and a different finger position
during the MRI acquisition have led to deviations in the lower
(palmar) part of the image, but all major vessels in the MRI image
had a matching one in the MSOT (Fig. 4(e)). In the upper part of the
image, the estimated skin surface agreed well with the MRI image,
whereas the quality of the fits was lower in the lower part of the
image, mainly due to the lack of tomographic information from the
limited-view detection in the MSOT scanner and soft tissue
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deformations. Likewise, the estimated location of the bone agreed
well with the MRI for the dorsal side while the extrapolated
segments showed large deviations, again due to the missing
optoacoustic tomographic data from the corresponding angles.

The angular dependence of H t; ’ð Þ can be interpreted as
follows. The optoacoustic signals transmitted through the finger
were mainly detected at the radial and ulnar (lateral) sides of the
finger because the bone did almost not influence these signal
propagation paths. The central detectors (located in front of the
dorsal part of the finger) did not measure transmitted signals
from the palmar side as the bone reflected most of those signals.
The ulnar and radial bone delineation was further complicated
due to the higher curvature of the bone surface in these areas and
the geometrical alignment of skin, bone, and detectors. Delinea-
tion of the palmar part of the bone completely failed due to the
limited-view setup and lack of tomographic information while
the extrapolated outline did not render the true shape of the
bone.

The proposed signal domain analysis approach comes with
three major advantages over the alternative optimization
methods operating in the image domain. First, its segmentation
and SoS optimization performance is not affected by image
domain artifacts, such as streak and other artifacts related to the
limited-view tomographic geometry [17]. Second, it is computa-
tionally efficient because only one single reconstruction cycle is
needed as compared to multiple cycles required by the image
domain optimization algorithms [11]. This is of special impor-
tance when employing the MB reconstruction framework to
account for a heterogeneous SoS distribution in the medium,
which is often associated with a significantly higher computa-
tional load as compared to its counterpart assuming an
acoustically homogenous medium [6]. Third, delineation of some
strongly reflecting structures, such as bones, cannot be reliably
performed in the image domain if these structures are not
optically absorbing and produce no optoacoustic contrast, but
only reflection artifacts.

Further refinements of the method are possible by operating on
full tomographic datasets having 3608 coverage around the object
[14], incorporating multispectral processing, or exploiting addi-
tional frequency domain features of the detected signals via cross-
correlation or wavelet-based methods. Another future direction
will evaluate the possibility of including three (or more)
compartments into the model, thus potentially further enhancing
the image quality by modeling of the scattered signals. The
proposed signal domain segmentation is readily applicable to
many other imaging geometries, e.g. handheld scanners or raster-
scanning systems [18,19], that often provide only a reduced
detection surface aperture. Also in imaging with such systems, the
skin surface is typically smooth and flat while single vessels could
provide dominant features to be used as the guide stars for SoS
estimation in the tissue (instead of SoS estimation from
transmission for >1808 coverage). In addition, similar methodolo-
gy can be implemented in 3-D tomography geometries using 2-D
boundary parameterizations. Besides improving the image quality,
the signal domain segmentation possibly allows for simple
detection of motion due to e.g. breathing, which can be
subsequently used for efficient retrospective gating or clustering.
On the other hand, applicability of the method is limited when
imaging irregularly shaped objects or in cases where distribution
of the acoustic and optical properties in the object is highly
uncorrelated.

In summary, a signal domain segmentation algorithm was
developed that exploits characteristic signal features in order to
perform object segmentation and retrieve optimal acoustic
reconstruction parameters prior to image reconstruction,
which results in improved image quality and considerable
computational gains versus alternative methods performing the
segmentation and parameter optimization in the image domain.
The suggested technique was successfully evaluated in numeri-
cal simulations, experimental phantom measurements, and
cross-sectional image data acquired from a human finger. The
proposed signal domain segmentation thus offers a robust
methodology for image quality enhancement in tomographic
optoacoustic imaging.
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[19] R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, D. Razansky, Fast scanning coaxial
optoacoustic microscopy, Biomedical optics express 3 (2012) 1724–1731.

Christian Lutzweiler is currently pursuing a PhD in biomedical engineering at

Chair of Biological Imaging, TU München, and at Institute for Biological and Medical

Imaging, Helmholtz Zentrum München. He received his diploma of physics

from Karlsruhe Institute of Technology. His main research interests include

http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0100
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0100
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0105
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0105
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0110
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0115
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0115
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0115
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0120
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0120
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0120
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0125
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0125
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0125
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0130
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0130
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0130
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0135
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0135
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0135
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0140
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0140
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0140
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0145
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0145
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0145
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0145
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0145
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0150
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0150
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0150
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0155
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0155
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0155
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0160
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0160
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0160
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0165
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0165
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0165
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0170
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0170
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0170
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0175
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0175
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0175
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0180
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0180
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0185
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0185
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0190
http://refhub.elsevier.com/S2213-5979(15)30007-0/sbref0190


C. Lutzweiler et al. / Photoacoustics 3 (2015) 151–158158
reconstruction problems in photoacoustic imaging and clinical imaging studies

using multispectral optoacoustic tomography.

Reinhard Meier, MD, is Professor of Radiology and Vice-Chairman of the Department

of Diagnostic and Interventional Radiology at the University Hospital of Ulm.

Furthermore, he is director of the Lab ‘Translational Molecular Imaging’ at the

Department of Diagnostic and Interventional Radiology, Technical University Munich.

He completed his postdoctoral training at the University of California San Francisco.

The purpose of his research is to translate molecular imaging technologies from bench

to bedside. As an example, he introduced optical imaging for detection and therapy

monitoring of rheumatoid arthritis in the hand of patients to his clinic.
Daniel Razansky is the Professor of Molecular Imaging Engineering at the Technical

University of Munich and the Institute for Biological and Medical Imaging,

Helmholtz Center Munich. He earned his degrees in Electrical and Biomedical

Engineering from the Technion – Israel Institute of Technology and completed a

postdoctoral training at the Harvard Medical School. His Lab works at the interface

of engineering, biology and medicine to devise novel tools for high performance

functional and molecular imaging. In particular, new imaging paradigms based on

biomedical optics, optoacoustics, ultrasound and their synergistic combinations are

developed to enable multi-scale observations with unprecedented spatiotemporal

resolution and penetration of several millimeters to centimeters into living intact

organisms.


	Optoacoustic image segmentation based on signal domain analysis
	1 Text
	Conflict of interest
	Acknowledgements
	References


