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Quantifying the heritability 
of glioma using genome-wide 
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Genome-wide association studies (GWAS) have successfully identified a number of common single-
nucleotide polymorphisms (SNPs) influencing glioma risk. While these SNPs only explain a small 
proportion of the genetic risk it is unclear how much is left to be detected by other, yet to be 
identified, common SNPs. Therefore, we applied Genome-Wide Complex Trait Analysis (GCTA) 
to three GWAS datasets totalling 3,373 cases and 4,571 controls and performed a meta-analysis 
to estimate the heritability of glioma. Our results identify heritability estimates of 25% (95% CI: 
20–31%, P = 1.15 × 10−17) for all forms of glioma - 26% (95% CI: 17–35%, P = 1.05 × 10−8) for 
glioblastoma multiforme (GBM) and 25% (95% CI: 17–32%, P = 1.26 × 10−10) for non-GBM tumors. 
This is a substantial increase from the genetic variance identified by the currently identified GWAS 
risk loci (~6% of common heritability), indicating that most of the heritable risk attributable to 
common genetic variants remains to be identified.

Gliomas account for ~40% of all primary brain tumours and are responsible for around 13,000 
cancer-related deaths in the USA each year1. Gliomas are defined in part by malignancy grade (e.g. 
pilocytic astrocytoma WHO grade I, diffuse ‘low grade’ glioma WHO grade II, anaplastic glioma WHO 
grade III and glioblastoma (GBM) WHO grade IV can be distinguished2). Most gliomas carry a poor 
prognosis irrespective of treatment, with the most common form of glioma, glioblastoma (GBM), having 
a median overall survival of ~15 months3,4.
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While the glioma subtypes have distinct molecular profiles resulting from different etiological path-
ways5, no environmental factor has been consistently linked to disease risk except exposure to ionizing 
radiation, which accounts for few cases1. Evidence for inherited genetic susceptibility to glioma is pro-
vided by a number of rare inherited cancer syndromes, including Turcot’s and Li–Fraumeni syndromes, 
and neurofibromatosis6. Even collectively these syndromes however account for little of the two-fold 
increased risk of glioma seen in relatives of glioma patients1,7.

Recent genome-wide association studies (GWAS) have provided unambiguous evidence for common 
genetic susceptibility to glioma - identified single nucleotide polymorphisms (SNPs) at 5p15.33 (TERT), 
7p11.2 (EGFR) 8q24.21 (CCDC26), 9p21.3 (CDKN2A/CDKN2B), 11q23.3 (PHLDB1) and 20q13.33 
(RTEL1) associated with risk8–10. It is not clear however how much of the heritability of glioma ascriba-
ble to common variation these risk SNPs explain.

Testing SNPs individually for an association in GWAS necessitates the imposition of a very stringent 
P-value to address the issue of multiple testing (i.e. conventionally P ≤  5.0 ×  10−8). While this reduces 
false positives it can result in true associations being missed. Genome-wide Complex Trait Analysis 
(GCTA) allows the contribution of all SNPs in a GWAS to be simultaneously evaluated in estimat-
ing heritability11–13. GCTA calculates the genetic similarity between subjects and uses the restricted 
maximum-likelihood approach to estimate narrow sense heritability (h2). An alternative approach based 
on phenotype correlation-genotype correlation (PCGC) regression has recently been developed to avoid 
potential bias introduced by GCTA when applied to case-control studies14. Here we apply both GCTA 
and PCGC methodologies to three glioma GWAS to enumerate the heritability accounted for by com-
mon genetic variation.

Materials and Methods
Ethics. Collection of blood samples and clinical information from subjects was undertaken with 
informed consent and relevant ethical review board approval in accordance with the tenets of the 
Declaration of Helsinki. Ethical committee approval for this study was obtained from relevant study 
centers [France: APHP ethical committee-CPP (comité de Protection des Personnes); Germany: Ethics 
Commission of the Medical Faculty of the University of Bonn and USA: University of Texas MD 
Anderson Cancer Institutional Review Board].

Genome-wide association studies. We used three non-overlapping case-control series of Northern 
European ancestry which had been the subject of previous GWAS8,9; summarized in Supplementary 
Table 1. Briefly, the US GWAS was based on 1,247 cases (mean age 47 years) ascertained through the 
MD Anderson Cancer Center, Texas, between 1990 and 2008. Individuals with European ancestry from 
the Cancer Genetic Markers of Susceptibility (CGEMS) studies served as controls8,15,16. The French 
GWAS study comprised 1,423 patients with glioma ascertained through the Service de Neurologie 
Mazarin, Groupe Hospitalier Pitié-Salpêtrière Paris9. The controls were ascertained from the SU.VI.MAX 
(SUpplementation en VItamines et MinerauxAntioXydants) study of 12,735 healthy subjects (women 
aged 35–60 years; men aged 45–60 years)17. The German GWAS comprised 846 patients who underwent 
surgery for a glioma at the Department of Neurosurgery, University of Bonn Medical Center, between 
1996 and 20089. Control subjects were taken from three population studies: KORA (Co-operative Health 
Research in the Region of Augsburg; n =  371)18–20, POPGEN (Population Genetic Cohort; n =  595)21 and 
from the Heinz Nixdorf Recall study (n =  344)22. Genotyping quality control assessment was as previ-
ously described8,9 and all SNPs presented in this study passed the required thresholds. Duplicate samples 
were used to check genotyping quality. SNPs and samples with < 95% SNPs genotyped were eliminated 
from the analyses. Genotype frequencies at each SNP were tested for deviation from the Hardy-Weinberg 
equilibrium (HWE) and rejected at P <  10−4.

Statistical analysis. Consistent with our previous analysis9, quantile-quantile (Q-Q) plots for the 
German and US series showed some evidence of inflation (inflation factor λ =  1.15 and 1.11, respectively, 
based on the 90% least significant SNPs), however after correcting for population substructure using 
the top 10 principal-components in Eigenstrat, λ  for all studies was ≤ 1.04 (Supplementary Figure 1). 
Therefore all heritability estimates were calculated adjusting for 10 principal components.

Artefactual differences in allele frequencies between cases and controls can contribute to the estimation 
of spurious genetic variation therefore for the current analysis we imposed a number of additional quality 
control measures to the dataset as advocated by Lee et al. when estimating heritability23. Using PLINK 
software24 we excluded SNPs in cases and controls that had a minor allele frequency (MAF) < 0.01 or 
a HWE test with P <  0.05 (per-study exclusions =  60,932–62,065). Performing a differential missingness 
test between cases and controls we excluded SNPs with P <  0.05 (per-study exclusions =  25,002–60,235). 
In addition we excluded individuals having a relatedness score of > 0.05. rs2736100 exhibited a HWE 
P-value of 0.01 in the German dataset but was still included in order to estimate the heritability attribut-
able to known loci. This filtering resulted in the use of 263,905 SNPs common to the three case-control 
series (Supplementary Table 2). A total of 93 samples in the French series, 137 samples in the German 
series and 78 samples in the USA series were removed during quality-control steps for reasons including 
a failure to genotype, unknown duplicates, and closely related individuals, leaving 3,373 cases and 4,571 
controls for heritability analysis.
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Estimation of heritability was performed in GCTA using the methodology of Yang et al.25 and Lee  
et al 23. A genetic relationship matrix (GRM) of pairs of samples was used as input for the restricted 
maximum likelihood analysis to estimate the heritability explained by the selected set of SNPs. GCTA 
uses the disease prevalence to transform the estimated heritability to the liability scale. As previously 
advocated when calculating the heritability of a common lethal disease such as cancer26,27 we used the 
lifetime risk to transform the estimated heritability to the liability scale. Given glioma accounts for ~40% 
of all primary brain tumours1 and that GBM comprise 54.7% of gliomas28, and that the lifetime risk of 
brain and nervous system tumours is 0.62%29 we estimated the lifetime risk of all glioma, GBM and 
non-GBM tumors to be 0.24%, 0.13% and 0.11% respectively.

We estimated the heritability in GCTA under the following scenarios:

1. Heritability explained by the autosome. A single GRM is computed for all autosomal SNPs.
2. Heritability adjusting for incomplete LD between array SNPs and causal SNPs, following the pro-

cedure of Yang et al.25 and adjusting for a range of MAF thresholds of causal SNPs from < 0.1 to 
< 0.5.

3. Heritability explained by individual chromosomes. A GRM is computed for each chromosome 
individually and then fitting is done simultaneously for all chromosome GRMs using the REML 
approach.

4. Heritability explained by risk SNPs identified by GWAS as located within autosomal regions asso-
ciated with glioma. For each risk SNP the heritability is estimated for all chromosomes simultane-
ously using the risk SNP genotype as a covariate. The heritability associated with the SNP is taken 
to be the difference between the heritability of the chromosome on which it is found as calculated 
with and without adjusting for the covariate.

5. Heritability explained by a) genic and intergenic, b) conserved (GERP >  2.0) and non-conserved 
(GERP <  2.0), c) functional (CADD >  10.0) and non-functional (CADD <  10.0) and d) transcrip-
tion factor binding site occupying and non-occupying SNPs. For a-d separate GRMs are computed 
for SNPs in either of the two categories. Heritability was estimated simultaneously for the two 
GRM using the REML approach.

Estimation of genetic correlation between GBM and non-GBM glioma subtypes was carried out in 
GCTA using a bivariate REML analysis as per Lee et al.30, randomly assigning controls equally between 
the two glioma subtypes in each of the studies.

As advocated31 we estimated heritability using PCGC regression adjusting for population structure 
using a two-step procedure, where firstly the first 10 PCs (as computed in GCTA) are “cleaned” from the 
GRM, and are also subsequently included as fixed effects in the PCGC regression.

Meta-analysis under a fixed-effects model was conducted using standard methods. We calculated 
Cochran’s Q statistic to test for heterogeneity and the I2 statistic to quantify the proportion of the total 
variation that was caused by heterogeneity32.

GWAS array SNPs were functionally annotated using SeattleSeq Annotation 13833, making use of 
genomic evolutionary rate profiling (GERP)34 conservation metrics and combined annotation dependent 
depletion (CADD)35 scores. Conserved transcription factor bindings sites were predicted by the ‘tfb-
sCons’ track from the UCSC Genome Browser36, which searches for conserved elements in TransFac 
Matrix Database v4 after alignment in Human/Rat/Mouse.

Results
Restricting our analysis to SNPs mapping to the autosomes and following quality control filtering a total 
of 263,905 SNPs common to the 3,373 cases and 4,571 controls from the three GWAS were analysed 
(Table 1).

Variance explained by all autosomal SNPs. After transforming the data to account for lifetime 
risk and ascertainment the variance in liability of all glioma explained by the SNPs in each of the studies 

Study

All glioma GBM Non-GBM

h2 (±S.E.) P h2 (±S.E.) P h2 (±S.E.) P

France 0.23 (± 0.05) 5.76 ×  10−6 0.21 (±0.10) 0.017 0.22 (±0.06) 2.27 ×  10−5

Germany 0.35 (±0.07) 2.18 ×  10−7 0.48 (±0.09) 2.52 ×  10−7 0.29 (±0.10) 0.0014

USA 0.23 (±0.04) 7.46 ×  10−9 0.19 (±0.06) 8.87 ×  10−4 0.26 (±0.06) 1.80 ×  10−5

Combined 0.25 (±0.03) 1.15 ×  10−17 0.26 (±0.05) 1.05 ×  10−8 0.25 (±0.04) 1.24 ×  10−10

I2/Phet 25%/0.26 72%/0.03 0%/0.82

Table 1.  Estimated genetic variance of glioma explained by all SNPs. S.E., standard error.
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ranged from 0.23 to 0.35 (Table 1). Combining data from the three studies provides an estimate of the 
heritability of glioma of 0.25 (± 0.03, Table 1). The confidence intervals of overall heritability estimates 
from the US, French and German series overlapped, arguing against population-specific differences 
affecting the estimates.

PCGC has recently been proposed to reliably estimate heritability from case-control GWAS data and 
to avoid bias introduced by GCTA when applied to case-control studies31. Heritability estimates for 
PCGC were 0.24 (± 0.07, Supplementary Table 3). As this is very close to the estimate obtained from 
GCTA (0.25 ±  0.03), we restricted subsequent analysis to GCTA.

To adjust for the underestimate of heritability caused by the array SNPs not being in complete LD 
with the causal SNPs we followed the procedure of Yang et al.25. The MAF distribution of causal SNPs 
affects this estimate, and as we do not know the true distribution we calculate the adjustment for a range 
of MAF thresholds (Table  2). Assuming that causal SNPs and array SNPs have the same distribution 
(MAF threshold of 0.5) the adjusted heritability was calculated to be 31% (± 3.8%) which is close to the 
unadjusted value of 25% (± 3.0%). Conversely if causal SNPs are assumed to have MAF < 0.1 then the 
adjusted heritability is 41% (± 5.6%) which is significantly higher than the unadjusted value. While it 
is expected from neutral and selection theories of quantitative genetic variation that causal SNPs will 
on average have lower MAF than those on the array37 the exact distribution of MAF for causal SNPs in 
glioma is unknown.

Accumulating data have established that the glioma subtypes have different molecular profiles pos-
sibly resulting from different etiologic pathways, which might be shared by tumor subtypes or be type 
specific. To explore the possibility that common genetic variation en masse may impact differentially on 
the risk of glioma by subtype we estimated heritability for GBM and non-GBM glioma assuming that 
GBM accounts for ~55% of all glioma prevalence. Stratifying these data the variance in liability of GBM 
explained by the SNPs in each of the studies ranged from 0.21 to 0.48 with the pooled estimate being 
0.26 (Table 1). The variance in liability of non-GBM explained by the SNPs in each of the studies was 
similar ranging from 0.22 to 0.29, with a pooled estimate of 0.25 (Table 1).

To gain insight into the underlying basis of the heritability associated with common variation we 
investigated the relative contribution of individual chromosomes (Supplementary Table 4). While for a 
trait such as height there is a strong linear relationship between chromosome length and the variance 
explained by the chromosome13, we observed only a modest relationship (R2 =  0.29 , P =  0.010, Fig. 1).

To determine the relative contribution of putatively functional vs non-functional SNPs to glioma her-
itability, we partitioned the variance explained by all the SNPs into different groupings, (Supplementary 
Table 5). There was little apparent difference in heritability estimates between SNPs mapping within 
genes versus those mapping outside of genes. Additionally, consistent with GWAS arrays being designed 
for tagging purposes many of the putative functional variants comprised a small fraction of the total and 
therefore heritability estimates inherently had a large error.

Impact of known risk loci on variance. To determine the additive impact of the known GWAS risk 
loci on the heritability of glioma we estimated heritability by including the risk SNP as a covariate. The 
total estimated heritability of glioma explained by the seven risk loci is 1.6% (± 2.6%), 1.3% (± 3.9%) 
and 1.7% (± 3.3%) for all glioma, GBM and non-GBM tumors respectively (Table 3). These estimates are 
substantially lower than the genetic variance associated captured by all the SNPs on the array. These data 
therefore suggest a large proportion of the heritability in glioma remains unaccounted for by currently 
identified risk SNPs.

Discussion
Our results show for the first time that a substantial proportion (approximately 25%) of variation in the 
risk of developing glioma is associated with common SNPs (i.e. minor allele frequency, MAF > 0.01) that 
are in LD with functional variants. These results are consistent with a highly polygenic model because we 
demonstrated variation across the entire genome. The methodology we have used here does not attempt 

MAF Threshold h2 (±S.E.) P

No adjustment 0.25 (± 0.030) 1.13 ×  10−17

0.5 0.31 (± 0.038) 5.96 ×  10−16

0.4 0.32 (± 0.040) 1.25 ×  10−15

0.3 0.33 (± 0.042) 4.20 ×  10−15

0.2 0.35 (± 0.046) 2.11 ×  10−14

0.1 0.41 (± 0.056) 2.61 ×  10−13

Table 2.  Heritability of glioma adjusted for incomplete LD between causal SNPs and those used to 
compute the GRM. Various minor allele frequency (MAF) thresholds were used to simulate different 
possible MAF distributions of the causal SNPs.
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to test the effects of single SNPs but tests their accumulated effects. It estimates the joint effect of geno-
typed SNPs and that effect reflects their LD with unknown functional variants, assuming that functional 
variants are in sufficient LD with the genotyped SNP for their contribution to heritability to be captured. 
Our estimate is based on realized relationships between very distant relationships thereby breaking up 
possible correlation (i.e. confounding) between genetic and environmental risk factors.

A strength of our study is that we were able to make use of data from three independent GWAS to 
derive combined heritability estimates, therefore minimising the possibility of biases in individual stud-
ies affecting study findings. Additionally we endeavoured to protect against differences in population 
structure between cases and controls affecting estimates by adjusting for 10 principal components in 
each of the three GWAS datasets. In the German dataset the GBM heritability estimate was significantly 
larger than in the other datasets hence we cannot entirely exclude the possibility of residual population 
structure differences affecting estimates.

Previous estimates of the heritability for glioma from segregation analysis, which have been based on 
analyses of pedigrees of 297 and 639 glioma probands have reported values of 0.68 and 0.66 for polygenic 
heritability respectively38,39. These estimates could differ from those that we report here for a number 
of reasons. Firstly, the narrow-sense heritability estimated in our analysis is simply the additive genetic 
variance as a proportion of the phenotypic variance. Therefore, it does not include non-additive epistatic 
gene-gene interactions, dominance effects or gene-environment interactions impacting on glioma risk.

Additionally, our estimate of heritability may provide a lower bound for narrow-sense heritability, due 
to imperfect LD between genotyped SNPs and unknown causal variants. Moreover, it has been argued 
that uneven linkage disequilibrium between genotyped SNPs and unknown causal variants could intro-
duce bias in heritability estimates40. Furthermore, indels and structural variants were not considered, 
although some may be tagged. In addition, the proportion of variance explained by GWAS SNPs is 
underestimated by GCTA, since the model imposes a prior centered zero as the effect size of the SNPs 
used in calculation of the GRM. We have also assumed that inheritance is strictly Mendelian which 
excludes the possible contribution of de novo copy number variants or methylation status variants to 

Figure 1. Estimate of the variance explained by each chromosome in the combined dataset as a function 
of chromosome size. The regression R2 was 0.29 (P =  0.010).

Locus SNP
All glioma
h2 (±S.E.)

GBM
h2 (±S.E.)

Non-GBM
h2 (±S.E.)

5p15.33 rs2736100 0.0012 (± 0.011) 0.0053 (± 0.016) 0.000017 (± 0.013)

7p11.2 rs11979158 −0.00029 (± 0.0099) 0.000093 (± 0.015) −0.00017 (± 0.013)

7p11.2 rs2252586 0.00036 (± 0.0099) 0.00096 (± 0.015) −0.00021 (± 0.013)

8q24 rs4295627 0.0047 (± 0.010) 0.00035 (± 0.016) 0.0066 (± 0.013)

9p21.3 rs4977756 0.0067 (± 0.0095) 0.0036 (± 0.015) 0.0025 (± 0.012)

11q23.3 rs498872 0.0032 (± 0.0095) 0.0025 (± 0.013) 0.0082 (± 0.012)

20q13.33 rs6010620 0.00034 (± 0.0075) 0.00036 (± 0.011) −0.00021 (± 0.0098)

Total 0.016 (± 0.026) 0.013 (± 0.039) 0.017 (± 0.033)

Table 3.  Estimates of the variance explained by individual glioma risk SNPs. S.E., standard error.
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glioma risk. It is therefore possible that our estimates of heritability are inherently conservative in terms 
of defining the contribution of the impact of inherited predisposition to glioma risk. Notwithstanding 
such caveats the magnitude of the estimated heritability in our study is such that this polygenic suscep-
tibility contributes significantly to the development of glioma.

The liability threshold model upon which we have estimated heritability assumes the distribution of 
disease liability is unimodal. Provided there is no single unidentified genetic or a major environmental 
risk factor contributing to glioma this assumption will not be violated. Since no major disease gene 
for glioma has been identified and the only established environmental risk factor is ionizing radiation 
(accounting for very few cases), our estimates of heritability are unlikely to be significantly biased as a 
result of the assumed model of disease risk.

Not only do our findings provide quantification of the impact of common variation on glioma risk, 
they also provide a strong rationale for continuing to search for additional novel risk variants through 
GWAS-based strategies. Thus far, eight independent loci have been shown conclusively to be associated 
with glioma8–10,41. While the risk of glioma associated with these common variants is not insignificant 
(RRs of 1.2–1.4), collectively they underscore less than 5% of the entire genetic variance in risk of all 
forms of glioma. It is, therefore, likely that additional common low risk variants remain to be discovered 
and should be eminently harvestable in new larger GWAS or through further pooling of additional 
existing datasets. However, most novel risk variants yet to be discovered are likely to have more modest 
effect on glioma risk than those which have been so far discovered.

It is possible that some disease-causing variants which are very rare have a substantive effect on 
glioma risk but there is no reason to believe that much of the genetic variance is solely explained by a 
restricted number of high-risk mutations. Additional ongoing GWAS are therefore likely to be informa-
tive in refining estimates of heritability. Moreover, higher-density SNP genotyping would however pro-
vide a higher probability of LD with functional disease-causing variants thus potentially affording the 
capturing of a higher proportion of the genetic variance - provided the characteristics of disease-causing 
variants do not differ systematically from the genotyped SNPs (e.g. because of lower MAF).

Further advancements are likely to be made following the establishment of large consortia such as 
GLIOGENE42. Such initiatives not only provide the basis for GWAS with increased sample size, SNP 
coverage and number of SNPs taken forward to large-scale replication to aid in the identification of 
additional novel risk variants, but also facilitate pooling studies of existing GWAS data to importantly 
improve the standard error of the point estimate of the heritability of glioma.

Glioma is increasingly being viewed as a highly heterogeneous cancer. Primary and secondary forms 
of GBM are recognized, with secondary GBM developing through progression from low-grade diffuse 
astrocytomas or anaplastic astrocytomas. While usually indistinguishable histologically, distinct molec-
ular pathways characterize the primary and secondary forms43. Notably, IDH1 mutations are commonly 
detectable in low-grade glioma and secondary GBM but are rare in primary GBMs43,44. Thus there are 
limitations on the interpretation of data obtained in our study in terms of the generalizability to all 
specific histological forms of glioma. Moreover, in recent years MRI scanning has revealed that low 
grade glioma can be incidentally detected in 0.2% of healthy individuals43,44 potentially impacting on 
the heritable risk. In this study we did however seek to address the impact of genetic variation on risk of 
glioma subtype by analysis of GBM and non-GBM glioma. A combined estimate of the genetic correla-
tion between GBM and non-GBM in our datasets was 0.87, albeit with wide confidence limits (± 0.22), 
suggesting that a significant complement of the heritable risk of glioma may be generic.

In summary, we report the first study to show that a large proportion of the heritability of developing 
glioma can be ascribed to common genetic variation. Moreover, it is the first to show biologically and 
unequivocally that the risk of glioma is highly polygenic. Our findings imply that very large sample 
sizes will be needed to detect novel loci with genome-wide significance and that the majority of additive 
genetic variation for glioma is not explained by rare variants that are not in LD with common SNPs.
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