

Tracking cell lineage to analyse anti-cancer drug resistance development in an agent based model

Bachelor's Thesis of Johannes Ringler

Supervisor: Dr. Judith Perez-Velazquez Advisor: Prof. Dr. Christina Kuttler

Submission date: 27.11.2015

Tracking cell lineage to analyse anti-cancer drug resistance development in an agent based model

Bachelor's Thesis of Johannes Ringler

Supervisor: Dr. Judith Perez-Velazquez Advisor: Prof. Dr. Christina Kuttler

Submission date: 27.11.2015

Abstract

In many medical treatments there can occur resistance to the used therapeutic agents. Unfortunately this happens to be one of the major issues dealing with cancer via chemotherapy. This of course leads to a lower medical response or even to treatment failure. In the cancer case often the resistance is not a pre-existing factor but arises due to the chemotherapeutic pressure.

In order to analyse this behaviour Gevertz et al. set up a model in [7]. They used a hybrid discrete-continuous mathematical model to describe the events in a cancer populated slice of tissue over time. The aim was to analyse the effects of the different kinds of resistance on the tumor development and finally find the causes why treatment inefficiency or failure occurred.

The objective of this thesis was to enhance the analysis of the Gevertz et al. developed model by examining clone development. To achieve this, the basic model had to be modified to allow an output capable of reconstructing the clonal evolution retrospectively. Furthermore routines were developed for processing the generated data. The outcome of the analysing routines supports the suggestion from Gevertz et al. regarding that the spatial location is significantly important for the clonal development of resistance. Tumor heterogeneity can be examined through the cell lineages. By following a single long surviving cell lineage, it is clear that there is often a fine line between death and survival of a lineage/clone.

Zusammenfassung

In vielen verschiedenen medikamentösen Behandlungen kommt es zur Resistenz des Organismus gegen das eingesetzte Arzneimittel. Unglücklicherweise ist dieses Verhalten eines der größten Probleme bei der Krebsbehandlung durch Chemotherapie und führt zu einem schlechten oder sogar erfolglosen Therapieergebnis. In der Krebstherapie ist dabei diese Resistenz oftmals ein Ergebnis der Therapie selbst und nicht ein bereits vorhandener Zustand.

Um diesen Verhalten zu analysieren haben Gevertz et al. in [7] ein hybrid diskretkontinuierliches mathematisches Modell entwickelt um die zeitliche Entwicklung des Tumors zu beschreiben. Das Ziel dieses Modells lag in der Analyse der verschiedenen Arten von Resistenz und deren Auswirkungen auf die Entwicklung des Tumors um schließlich die Gründe für das Versagen der Therapie zu finden.

Der Zweck dieser Bachelorarbeit lag darin, die Analysemöglichkeiten des bisherigen Modells zu erweitern um die Entwicklung einzelner Zellen untersuchen zu können. Dafür musste einerseits das zugrundeliegende Modell verändert werden für einen feineren Output um die klonale Entwicklung rückwirkend genau rekonstruieren zu können, andererseits mussten zusätzlich Programme geschrieben werden um die Output Daten aufzubereiten. Die Analyse unterstützt die bereits in der Abhandlung von Gevertz et al. aufgestellten Hypothese über die Wichtigkeit der räumlichen Struktur für das Überleben mancher Klone. Ebenso kann die Heterogenisierung des Tumors durch die Beobachtung der einzelnen Zelllinien begründet werden. Bei der Betrachtung vieler langlebiger Zelllinien wird einem bewusst, dass oftmals ein schmaler Grat zwischen dem Tot und dem Überleben von Zellen oder gar ganzer Klone liegt.

Declaration

I hereby	$\operatorname{confirm}$	that I ha	ave writt	en th	e accompa	mying tl	hesis	by	myself,	without	contri-
butions f	from any	sources	other tha	an th	ose cited i	n the te	xt.				

This applies also to all graphics and images included in the thesis.

Place, date, signature

Contents

1	Bio	logical background	13
2	Mat	thematical modelling	16
	2.1	Cellular automata	16
	2.2	Agent-based modelling	18
	2.3	Cellular automata vs. agent-based models	19
	2.4	Agent-based hybrid model	20
		2.4.1 Model equations	21
		2.4.2 Model dynamics	23
	2.5	Comparison with an evolutionary model	26
3	Ana	alysis and results	27
	3.1	No drug resistance	29
	3.2	Pre-existing resistance	31
	3.3	Acquired resistance	35
	3.4	Discussion	44
4	Pro	spect	45
5	App	pendix	49

List of Figures

1	Mechanisms of drug resistance	14
2	Cellular automata: Classic neighbourhoods	17
3	Agent-based model: Relationship agent - environment	18
4	Initial configuration of model WhAM	20
5	Update cell cycle of model WhAM	25
6	Evolutionary model: Possible options in branching process	27
7	dist function: Levels of cell distances	29
8	No resistance: Tumor evolution	30
9	No resistance: Tumor analysis	31
10	Pre-existing resistance: Spatial analysis and resistant trace tree	32
11	Pre-existing resistance: Death threshold and DNA damage analysis of re-	
	sistant clone	33
12	Pre-existing resistance: Not resistant clones analysis	34
13	Acquired resistance: $delta_death_rate = 0.000025$, general illustrations	
	and lineage movement	36
14	Acquired resistance: $delta_death_rate = 0.000025$, death threshold -	
	DNA damage of lineages	37
15	Acquired resistance: $delta_death_rate = 0.000059$, distance survival plot .	39
16	Acquired resistance: $delta_death_rate = 0.000059$, spatial Illustrations	40
17	Acquired resistance: $delta_death_rate = 0.000059$, death threshold -	
	DNA damage of lineages	41
18	Acquired resistance: $delta_death_rate = 0.000059$, lineage movement	42
19	Acquired resistance: $delta_death_rate = 0.000059$, tree analysis	43
List	of Tables	
TISE	of Tables	
1	Legend for cell properties of model WhAM	23

1 Biological background

Cancer describes a large family of diseases which generates lots of different afflictions and symptoms. All in common is the elementary problem. Unlike normal cells, cancer cells are strictly spreading due to their anormal division control mechanisms. This leads to a steady enlarging cell lump called tumor. Additionally cancer cells have in contrast to normal cells no fix allocation and so can spread and invade neighbouring tissue which in the long run leads to a complete system breakdown of the organism. Depending on the sort of cancer cells there are many different tools for medical treatment. Some of them are surgery, chemotherapy, radiation therapy and immunotherapy. These treatments are often combined, but in this work we will focus on the most common treatment, i.e. by a chemotherapeutic agent. The model we consider uses an agent which produces DNA damage over the time until the cell dies as a consequence of the damage.

Like in many medical treatments (e.g. HIV or antibiotic medical treatment) in the chemotherapy occurs medical resistance. There are mainly three different cases. The first case is the impact of chemotherapy on healthy, sensitive, cells. They cannot stand the therapy and certainly die after a long enough period of time. Second, there are resistant cells. Here one can find two types of resistance, the pre-existing and the acquired resistance. As the naming suggests, pre-existing resistance directs to a subpopulation of the cancer cells that was already resistant before the start of the treatment. On the other hand acquired resistance stands for the observation that cells were not resistant prior to the treatment and gain a certain degree of immunity due to the chemotherapeutic pressure. From a medical point of view it is difficult to determine which sort of resistance prevails, but this would be necessary to choose the right treatment plan. Regardless of which resistance occurs, the worst case would be the treatment failure in which the cancer cells could not be erased completely and will recur more resistant and vigorous. This phenomenon was also observed by Frei and Freireich after a high dose treatment against leukemia. At first the study showed good results but at once many patients were in a much worse medical condition and a second chemotherapeutic treatment did not have any results. The problem in this case was that the cancer cells colonized the brain and that is a part of the body where chemotherapy often fails because the blood-brain barrier is a natural defense system of the body against foreign substances. [11]

This work aims to analyse chemotherapy resistance development by tracking surviving clones back on a model by Gevertz et al. [7] which involves two mechanisms of resistance.

The ability of drug resistance is most likely related to the evolution. In order to survive, mammals have evolved mechanisms to protect cells against cytotoxic compounds. These

Figure 1: Some mechanisms of drug resistance [13]

mechanism often are activated as a natural protective reaction when a medical drug is administered because these are unfamiliar substances to the human body. This could be a problem when using a particular treatment and even more considering that often drugs are used in combination. Hence over coming resistance to one medicament could lead to no or less response to another treatment of a complete different disease. This phenomenon is called multi-drug resistance. So it is important to know about the mechanisms of resistance in order to switch to other therapies with other modes of action to gain a reaction.

Of course there can be many reasons why the drug cannot work properly. For example an irregular tumor vasculature which has areas not reached by the drug or because it is absorbed by the cells in between. Another reason why the medicament does not reach the cell could be areas with high fluid pressure in between which operate like a barrier without passage. Also low serum levels can occur as a result of rapid metabolism or excretion of the drug. There are more external possibilities, some intrinsic mechanisms how resistance is generated are shown in figure 1 with important implications for drug designing and therapy decisions.

One obvious way to prevent damage is not letting the drug in or dock. There are mainly three ways a cell exchanges nutrients/molecules/etc. with its environment: Diffusion of fluids across the plasma membrane, transport via receptors or transporter proteins (piggy backing) and endocytosis. Completely terminating the traffic is not possible for the cell as it also needs goods for a living. Hence the cell tries to reduce the drug input (or

even all input) through mutations or modification of the cell surface molecules or have defective endocytosis. If the drug either way managed to get into the cell there are energy depended efflux pumps. They work with a cassette of binding transporters which normally are there for moving nutrients or biological important molecules. But those can also detect different kinds of substrate (e.g. hydrophobic natural drugs) entering through the cell membrane. If it is a undesirable substance, they bind it to themselves and guide them to the extracellular space. Afterwards the transporters restore to their original structure and are operational again.

Once a anti-cancer drug achieved to get into the cell, many of them have to undergo a specific metabolic activation in order to acquire clinical efficacy. So one way of the cell to protect against the drug is a very strong enhancement of the drug metabolism to degenerate the activated drug before it can work. Another way is the reduced activation of drug and wait for its efflux without impact. A third possibility is the inactivation of the drug by modification. This could be done by partially degrading the chemical substance or complexing the drug with molecules/proteins with the result that the key-lock pair does not match any more. This method also can be used on the target side of the drug leading to a less effective or no impact.

Especially DNA/RNA damaging drugs are resting until a certain cell cycle checkpoint is reached and then interact in every run and the damage is rising step by step. The DNA damage response mechanisms can not work that fast or even do not recognize a defect and so the cell will die when a threshold is exceeded. Known mechanisms in this case are that the cell cycle is slowed down so that it is enough time for the DNA repair or the checkpoint signals are altered so that the drug does not get active. Another resistance factor in this case is simply a higher tolerance of DNA damage which mostly is pre-existing. Further, cells of a multicellular organism are an organized community also regarding cell number regulation. The process of the programmed cell death is called apoptosis (Greek for "falling off" like leaves on a tree). Some drugs aim to activate this natural process but mutations of the activation sequence or modulations of this pathway are observed techniques of the cell to protect itself from the treatment. The environment in which the cells live plays an important role. For example if the environmental conditions are bad (e.g. drug exposure) often a subpopulation of the cells are shifted in a quiescent state. This means that the cell ceases the exchange with the environment, stops proliferation and rests until better environmental conditions are reached.

Usually in current practice a mixture of drugs with different modes of action are used as a "backup" if one agent has no effect because cells are resistant to a mechanism. Otherwise independent cells can develop the different presented modes of resistance to the

treatment (in case of acquired resistance). Often cells of the same clone generate similar phenotypes. This motivated us to the analysis of lineage trees of single clones. [3, 5, 15]

2 Mathematical modelling

At first we have to point out the difference between a system, a model and a simulation. Generally speaking a system is a theoretical construct to understand processes in the world. A system consists out of two basic parts. A set of objects and the relationships between them. Additionally if it is not an isolated system; there exist interactions between the system and its environment. The delimitation of a system is given by boundary conditions which vary depending on the task to solve.

In the ancient Rome the Latin word "modulus" described a small scale replica of a building. These can be transferred to the term model. A model is a simplified representation of a real system through specifying it in some formalism. The aim is to emphasise the important aspects and neglect the unimportant features for the task by abstracting. This may reflect in loosing a certain degree of accuracy. Also, there are many possible models for a system and one cannot declare one superior to the other as its accuracy depends on the question to answer.

The motivation of setting up models for real world problems is to predict the future state of a system. This leads to the third term, the simulation. This simply means numerically or computationally running the model for a certain initial state of the system. Here the importance of neglecting aspects of no interest for the better performance may be relevant. [2]

So far we dealt with the terminology in general. As we here are interested in mathematical modelling this means that our model formalism is represented by functions and equations. In the following we introduce two types of "bottom-up" models. In contrast to the "top-down" models, which try to describe the global processes and transitions as a whole, the "bottom-up" principle proceeds from describing microscopic views which together form the macroscopic entirety.

2.1 Cellular automata

While there is a present popularity in research and application, the concept of cellular automata (abbr. CA) dates from the mid 20th century. Around 1950 the idea of CA was introduced by Stanislas Ulam, John von Neumann, and Konrad Zuse. This abstract object provides a possibility to simulate systems and processes by the discretization of

Figure 2: Classic neighbourhoods for CA in two dimensions [14, p.29]

time, state and space. At first it was developed for one dimensional problems but most of its applications today are in two or three dimensions. Generally a d-dimensional CA consists out of four components:

- A regular, discrete, infinite network representing the space structure. The individual parts of this network are called cells. Mathematically you can represent this by $\mathbb{Z}^d =: \Omega$.
- A finite set of elements (Ψ) representing the possible cell states.
- A finite subset $\omega \subset \Omega$ where $|\omega| = n$ for every cell in Ω . This is called the neighbourhood and is temporally and geometrically uniform.
- An update function or local transition rule $\delta: \Psi^{n+1} \to \Psi$. It is a local, deterministic and uniform function.

Assume the current timestep to be t. The transition to timestep t+1 is done synchronously for all cells in Ω . As the update function is deterministic and the update is done synchronously the global evolution of the CA will always be the same provided that the initial configuration is identical. [10, 14]

Every finite subset of Ω could define a neighbourhood but the classic neighbourhoods are the nearest neighbourhoods depending on which norm is used. Let us consider a cell $z \in \Omega$. At first have a look at the 1-norm $(\|z\|_1 = \sum_{i=0}^d |z_i|)^1$ and its corresponding distance function $dist_1$. On the basis of that, the Von Neumann neighbourhood is defined as $N_{VN}(z) = \{x \in \Omega : dist_1(z, x) \leq 1\}$. Analogously the Moore environment is defined by

¹d is the dimension of a general CA, $d \in \mathbb{Z}$

Figure 3: Overview/relationship of the terms agent and environment

the ∞ -norm ($||z||_{\infty} = max\{|z_i| : i \in \{1,...,d\}\}$) as $N_{MO}(z) = \{x \in \Omega : dist_{\infty}(z,x) \leq 1\}$. Both are graphically illustrated for a two dimensional CA in figure 2. [14]

CA have many applications like in traffic simulation or fluid simulation but certain capabilities are limited. As the complexity in modern times raised (e.g. robotics, social science, server-client simulation) and also the computational possibilities increased, a new type of model was necessary.

2.2 Agent-based modelling

The agent-based model (abbr. ABM) is a very young discipline in contrast to the CA. It originates from the artificial intelligence research and describes a kind of an evolution of the CA. A ABM is structured by the environment and individual entities, called agents, situated in the given environment. Now the term agent is characterized in a general way as there is no explicit definition so far.

An agent is a system in an environment. The environment is not just the spatial space the agent is located in, there can be interaction between the agent and the environment. The latter allows for the usage of the resources of the environment (e.g. input of data or goods) and consequently the manipulation of those in the environment. Further, an agent can move freely (depending on the implementation) in space and is an autonomous object. This means that at every timepoint the agent can decide which option would be the best (in the implemented sense).

As there are usually many agents in an ABM there arise two questions. Are the single agents different from each other and do they have relationships? For the first question the most important fact is that the agents are diverse and heterogeneous. So primarily you can say every agent is a unique entity but on the other hand there can exist more agents

with the same or partly the same properties. Those form groups and are (normally) important for observations concerning e.g. the dominance of different types of agents. The second question depends on the implementation of a model. The theory allows every possible scenario, from no relationship to interactions and exchange of goods with other agents. A graphical summary can be seen in figure 3. Every agent has a limited point of view, they do not see the whole system, only a part of it in their periphery. If in an agent based model the agents are computed asynchronous, the simulation of such a model can generate different outputs in different runs although the initial conditions were the same. [4,8]

2.3 Cellular automata vs. agent-based models

After a short introduction in the two types of models we continue by a comparison in order to work out their important differences. This could also be helpful for choosing one of the two models for a given task.

So first starting with the environment. The CA always has to be structured in a gridlike way (transferable on \mathbb{Z}^d) whereas the ABM does not need any given grid structure. Second the cells in a CA are locally fixed and only can attain one state. A movement can only be modelled by the "movement" of a state from cell to cell. This leads also to a limited movement possibility (usually 1 unit). In contrary, agents can move in the environment freely and can carry a lot of information / data.

Evolution of the model in a simulation is a time-dependent process. The CA dictates that this is a discrete step-by-step process following fixed rules which are applied simultaneously. This may lead to a deterministic behaviour. On the other hand in an ABM it is no specified if the time is considered discrete or continuous. However one has to mention that as the model has to be computed it is only a virtually continuous time scale. The state transition in this case depends on many factors, just to mention a few like spatial positions, agent properties, etc.. Because of the asynchronous computation of the agents in the model this cannot be deterministic.

In general you can work out two "CA vs. ABM statements" describing the main differences pretty well: standardised strict rules vs. degrees of freedom, simplicity vs. adequate accuracy. The main questions of interest in both models are the same. Will a specific model form (agents types or cell states) dominate in the future? Will simulations have a stable mix of agents in the future, or respectively, will there be a steady state in a CA? So in the end it is all a question about complexity which model you will choose for a appropriate representation of a system.

Figure 4: In (a) one can see a exemplary starting configuration where the 65 different initial cells are marked with different symbols to graphical track the different clonal evolution. In (b) one can see an exemplary drug gradient with the described niche. [7, p.31]

2.4 Agent-based hybrid model

After some theoretical presentation of possible ways for modelling systems, now the hybrid discrete-continuous mathematical model used in this thesis is introduced. It was developed and presented by Gevertz et al. in [7] and aimed to model cancer growth processes while treatment with a DNA damaging chemotherapeutic agent. Thereby, the interaction between the cells and the different types of resistance is regarded. In the following the model under study is abbreviated by WhAM.

WhAM is a two-dimensional ABM where the environment is a small slice of tissue with four fixed points to represent the blood vessels. These are necessary for the oxygen and drug supply. Their location is fix in every simulation to allow us to draw conclusions about the different resistance types or drug protocols. Otherwise results could be associated to the different positioning of the vessels. Also always the same amount of 65 initial cells are observed, only the mode of resistance and their initial location can be changed in the case of pre-existing resistance. Then, resistant clones can be placed either very near the vessels for good oxygen and drug supply or at a intermediate distance. It is also possible to place them in a position between the vessels to investigate niche formation. The spatial configuration can be seen in figure 4. All other influences around the tissue and all other tissue components are neglected for simplicity.

The model is declared as a hybrid model because it has two types of modelling compo-

nents. The ABM with discrete time steps and variables and parallel the system's supply of oxygen and drug is modelled by a reaction-diffusion partial-differential equation. The resulting continuous gradient is evaluated at the discrete time points during the simulation.

Previous to the presentation of the model equations we shortly mention here the main results gained from the model simulations. In the case of pre-existing resistance it is observed that with a low DNA damage repair term the tumor is eradicated, with a medium DNA damage repair term resistant clones survive whereas sensitive clones die and with a high DNA damage repair term all clones survived regardless their phenotype. Similarly in the acquired resistance case. With slow increase of the death threshold all cells died; with an intermediate increase some of the clones died but a resistant subpopulation emerges and with high increase the treatment fails as (nearly) all clones survive. Also spatial dynamics are observed. Cells near the vessels are killed very fast otherwise cells far away from the vessels or in drug/oxygen niches survive much longer or rest in quiescent states and emerge later in a resistant tumor.

2.4.1 Model equations

From now on let x = (x, y) denote the location of continuous variables and (X, Y) defines positions of discrete objects.

Oxygen kinetics

As declared above all nutrients including oxygen are delivered by the vasculature V_i^2 with a constant rate of S_{ξ} . The oxygen concentration ξ at location x = (x, y) at timepoint t depends on the supply by the vasculature if it is close enough (see equation (1)) as well as the diffusional inflow with diffusion coefficient \mathcal{D}_{ξ} . Additionally we consider the cellular uptake by the tumor cells C_k 3 at this location (see equation (2)) with rate ρ_{ξ} . All this is unified in the following equation:

$$\frac{\partial \xi(x,t)}{\partial t} = \underbrace{\mathcal{D}_{\xi} \Delta \xi(x,t)}_{diffusion} - \underbrace{\min \left(\xi(x,t), \rho_{\xi} \sum_{k} \chi_{C_{k}}(x,t) \right)}_{uptake\ by\ the\ cells} + \underbrace{S_{\xi} \sum_{j} \chi_{V_{j}}(x,t)}_{supply}.$$

In this equation appear two characteristic functions for determining the neighbourhood which are defined below. R_C and R_V thereby stand for the fixed cell radius respectively

 $^{^2}j$ indexing over the the vessels $V_j^{(X,Y)}$ $^3{\bf k}$ indexing over the cancer cells $C_k^{(X,Y)}$

vessel radius.

$$\chi_{C_k}(x,t) = \begin{cases} 1 & if \ ||x - C_k^{(X,Y)}(t)|| < R_C, \\ 0 & otherwise. \end{cases}$$
 (1)

$$\chi_{C_k}(x,t) = \begin{cases}
1 & if \ \|x - C_k^{(X,Y)}(t)\| < R_C, \\
0 & otherwise.
\end{cases}$$

$$\chi_{V_j}(x,t) = \begin{cases}
1 & if \ \|x - V_j^{(X,Y)}(t)\| < R_V, \\
0 & otherwise.
\end{cases}$$
(1)

In order to get a unique oxygen gradient one has to define boundary conditions. So in this case sink-like boundary conditions are used: $\forall x \in \partial\Omega : \frac{\partial \xi(x,t)}{\partial n} = -\varpi \xi(x,t)^4$. The initial oxygen concentration $\xi(x,t_0)$ was determined to get a stable gradient for a healthy tissue or a tissue with cancer population but no chemotherapeutic treatment.

Drug kinetics

The modelling of the drug supply equation is pretty similar to the oxygen kinetics. Like the drug concentration γ at location x = (x, y) and timepoint t firstly depends on the inflow of near vessels and the diffusion. Therefore the diffusion coefficient is depicted by \mathcal{D}_{γ} and the supply rate by $S_{\gamma}(t)$. Here can be remarked the first difference. The supply rate of the vessels is not necessarily constant in order to have the possibility to test drug protocols with no constant supply over time. Secondly we have to consider the efflux term. We have a cellular uptake with a rate ρ_{γ} but also a proportion of the chemotherapeutic agent decays represented by the decay rate d_{γ} .

$$\frac{\partial \gamma(x,t)}{\partial t} = \underbrace{\mathcal{D}_{\gamma} \Delta \gamma(x,t)}_{diffusion} - \underbrace{d_{\gamma} \gamma(x,t)}_{decay} - \underbrace{min\Big(\gamma(x,t),\rho_{\gamma} \sum_{k} \chi_{C_{k}}(x,t)\Big)}_{uptake\ by\ the\ cells} + \underbrace{S_{\gamma}(t) \sum_{j} \chi_{V_{j}}(x,t)}_{supply}.$$
(3)

The boundary conditions for the drug equation are the same as for the oxygen and the initial condition is the start of the treatment which means that drug is only found at the blood vessels. This leads to: $\forall x \in \Omega \setminus V_k : \gamma(x, t_0) = 0, \ \forall V_k^{(X,Y)} : \gamma(x, t_0) = S_{\gamma}(t_0).$

Cell mechanics

In WhAM a cell is represented by its center $C_k^{(X,Y)}(t)$ and a fixed cell radius R_C . Cells do not have a fixed position, when cells collide 5 , two repulsive forces $f_{i,j}$ and $-f_{i,j}$ are applied to cells $C_i^{(X,Y)}(t)$ and $C_j^{(X,Y)}(t)$ to move the cells apart. If cells leave the tissue

 $^{^4}n$ in pointing normal, Ω the whole model domain $^5 \text{For } i,j$ cell indices: $\|C_i^{(X,Y)}(t) - C_j^{(X,Y)}(t)\| < 2R_C$

$C_k^{(X,Y)}(t)$	cell position	$C_k^{age}(t)$	cell age
C_k^{mat}	cell maturation age	$C_k^{\xi}(t)$	level of sensed oxygen
$C_k^{\gamma}(t)$	level of accumulated drug	$C_k^{exp}(t)$	time high drug exposure
$C_k^{dam}(t)$	level of accumulated DNA damage	$C_k^{death}(t)$	death threshold
$C_k^{(ID_c,ID_m)}$	(host cell index, mother cell index)		

Table 1: Legend for (5). Values are observed at timepoint t if it is a time dependent variable.

domain ⁶, they disappear in the model. To simplify notation we let $X_i := C_i^{(X,Y)}(t)$ and \mathcal{F} denotes the constant spring stiffness. Then the most simple case is about just two cells:

$$f_{i,j} = \begin{cases} \mathcal{F}(2R_C - \|X_i - X_j\|) \frac{X_i - X_j}{\|X_i - X_j\|} & \text{if } \|X_i - X_j\| < 2R_C, \\ 0 & \text{otherwise.} \end{cases}$$
(4)

But nearly always there are more cells involved. So let N be the set of all indices where the associated cells are in the neighbourhood of X_i , then the resulting force F_i acting on X_i results out of simple vector addition of the forces betwen X_i and $X_j \, \forall j \in N \setminus i$.

$$F_i = \sum_{j \in N} f_{i,j}.$$

The whole mechanic scheme can be seen as a system of overdamped springs connecting the neighbouring cells. The Newtonian equations control the cells dynamics. This leads to a representation of the force with a damping constant v and a location tracking within a small interval Δt :

$$F_i = -v \frac{dX_i}{dt}$$
 and $X_i(t + \Delta t) = X_i(t) - \frac{1}{v} \Delta t F_i$.

The tumor would achieve a stable state the moment when the neighbourhood of every cell is empty. According to equation (4) every sub forces equal to zero and consequently the resulting force equals zero, too.

2.4.2 Model dynamics

$$C_k(t) = \left\{ C_k^{(X,Y)}(t), C_k^{age}(t), C_k^{mat}, C_k^{\xi}(t), C_k^{\gamma}(t), C_k^{exp}(t), C_k^{dam}(t), C_k^{death}(t), C_k^{(ID_c, ID_m)} \right\}. \tag{5}$$

In equation (5) you see all the attributes/values of the cell with index k at timepoint t. Speaking in terms of "sensed" oxygen or drug, the neighbourhood of C_k is defined as

⁶nucleus once crosses the domain border

 n_k ⁷. In the following the update cycle of a cell (see figure 5) is described and the update of the cell attributes is defined. This cycle is repeated for every cell in every timestep in a random order as the agents are computed asynchronous and no cell should have advantage/disadvantage by positioning.

First step is to determine the oxygen and drug uptake. Thereby the oxygen level is equal to the oxygen uptake because all of it is used in every iteration. This simply leads to the summation over the oxygen concentrations in the neighbourhood n_k . The drug uptake is slightly more complicated. First one ensures that the drug does not decline. Then for every location x in the neighbourhood n_k , the uptake is the difference between the maximal possible uptake and the drug decay. If the uptake sum overall x leads to a negative uptake this is set to zero in order to hold the steady rising drug level condition.

$$C_k^{\xi}(t+\Delta t) = \underbrace{\sum_{x} \xi(x,t)}_{sensed \ \& \ used}, \quad C_k^{\gamma}(t+\Delta t) = C_k^{\gamma}(t) + \left[\max\left(0, \sum_{x} \underbrace{\min(\gamma(x,t), \rho_{\gamma})}_{uptake} - \underbrace{d_{\gamma}C_k^{\gamma}(t)}_{decay} \right) \right] \Delta t.$$

These two values decide the further course. The C^{ξ} regulates if the cell oxygenation falls under a threshold and consequently changes into a quiscent state which inhibits cell division. The change of the C^{γ} value in combination with the duration of drug exposure determines the DNA damage. This is calculated under consideration of the repair rate as follows:

$$C_k^{dam}(t+\Delta t) = C_k^{dam}(t) + \left[max \left(0, \sum_x min(\gamma(x,t), \rho_\gamma) - d_\gamma C_k^\gamma(t) \right) \right] \Delta t - \underbrace{pC_k^{dam}(t)}_{repair}.$$
 (6)

If the DNA damage exceeds a certain fixed death threshold (C^{death}) the cell dies. In the case of pre-existing resistance the death threshold of some cells is higher by a factor compared to the others, but this value cannot change over time. In the case of acquired resistance this value is not fixed. Under given conditions the threshold can be computed as follows: ⁸

$$C_k^{exp}(t + \Delta t) = \begin{cases} C_k^{exp}(t) + \Delta t & if \ C_k^{\gamma}(t) > \gamma_{exp}, \\ C_k^{deat}(t) & otherwise. \end{cases}$$

 $^{^{7}}n_{k} = \left\{ x : \|x - C_{k}^{(X,Y)}\| < R_{C} \right\}$

 $^{^{8}}t_{exp}$: minimal time of high drug exposure for more resistance, γ_{exp} : barrier of high drug exposure

Figure 5: Update cycle for a cell [7, p.8]

$$C_k^{death}(t + \Delta t) = \begin{cases} C_k^{death}(t) + \Delta_{death} \ if \ C_k^{exp}(t) > t_{exp}, \\ 0 \ otherwise. \end{cases}$$

The cell age is updated respectively by the timestep if it does not die. So there is a last case to discuss, the cell division. This happens if the cell reached its mature age, it is well oxygenated and not overcrowded. The latter means that only a certain amount of cells can be located in a surrounding of the potentially dividing cell. If these conditions are fulfilled, the cell will undergo mitosis and will place one daughter cell at the location of the mother cell and the other at a random angle around the mother cell. At this point the cell mechanics start working to stabilize the tumor. In this proliferation process the mother passes the DNA damage and the death threshold but naturally the amount of drug is bisected.

Some last words about the initial configuration of the cells which is set as follows:

$$C_k(t_0) = \left\{ (X_k, Y_k), 0, M_k, \sum_k \xi(x, t_0), 0, 0, 0, T_k, (k, 0) \right\}$$

Going through the values, the cells have a predefined location (X_k, Y_k) and start with age zero. The maturation age M_k is drawn from a uniform distribution $[0.5 \times Age, 1.5 \times Age]$ with Age being the average maturation age. The initial sensed oxygen level is set to the cell neighbourhood of the stable gradient and all drug concerning attributes are set to zero. All cells start with the same death threshold T_k and the unique cell index is set to (k,0) as the mothers of the initial cells are unknown.

2.5 Comparison with an evolutionary model

The model we will analyse has been introduced in detail, now follows a short overview over another approach dealing with the problem of drug resistance. A model dealing with evolutionary dynamics of cancer in response to targeted combination therapy is presented in [6]. Unlike than in WhAM the model neglects the spatial structure and environmental influence factors and focuses on the tumor size and the treatment with more than one drug (to target different pathways). It is a multitype branching process in continuous time based on empirical obtained probabilities. In comparison to the WhAM model, which focuses on empirical values (e.g. biological data), probabilities (e.g. the order the agent update is executed) and fixed cell rules, the evolutionary model only stands on probabilities. For the sake of convenience the cross-resistance phenomenon and the loosing of resistance by mutation is neglected.

We shortly summarize the major results for a dual treatment. Comparison with the WhAM model will be neglected as this does not focus on therapy with more than one agent. Even though in medical practise for economic or medical reasons a sequential therapy is used, the model precludes any chance of cure even in the case that there is no possible mutation that confers cross resistance. One would assume that the simultaneous therapy would deliver a promising outcome but only if there is no mutation the dual simultaneous therapy will eradicate the tumor. Even if there is only one possible mutation conferring cross resistance there is nearly no chance for tumor eradication. If still this unlikely eradication happens, the remission is only shortly living. Furthermore simulations with three therapeutic agents led to the same result.

Model

The possible combinations of resistance in the system with D different ordered drugs are modelled with a binary string of length D. 0 stands for sensitivity and 1 for resistance. So let $m \leq D$ define the quantity of resistant drugs for a cell and let $D_r = \{i_1, ..., i_m : 1 \leq i_1 \leq ... \leq i_m \leq D\}$ be the set of the indexing drugs a cell is resistant to (but not to the other D - m). Then for all sets $s \in P(D \setminus D_r)$ the n_s describes the number of point mutations that have the potential to confer resistance to all drugs in s and u is the point mutation rate. A point mutation is a single nucleotide base change, insertion, or deletion of the genetic material and the point mutation rate is a measure for the frequency how often a point mutation occurs over time. Point mutations happen during the cell division and the model assumes that the resistant mutation occurs in one daughter cell and the other stays in the same state as the mother cell. If both daughter cells should have the possibility of mutation, in the model the mutation factor simply is doubled.

Figure 6: Illustration for the 4 possible resistance state proceedings in a model concerning two different drugs. co. describes the complement of 1 and the sum of all the other probabilities of the possible next state for a current state.

The model contains two stages. Stage 1 is the pretreatment where the model is initialized with only sensitive cells (s = (0, ..., 0)) in place and the tumor expands at rate $r = b - d^9$. The second stage starts the treatment when the cells reached a number of M. In this stage fully resistant cells (those with resistance profile (1,...,1)) continue with rates b respectively d, all the other get new rates r' = b' - d' < 0. The paper continues with analysing the different branches, especially concerning the existence possibilities for a total multi resistant clone (resistance profile (1,...,1)) which is equal to the treatment failure.

3 Analysis and results

Treatment (or also without pressure) leads to the development of new cell features, for example resistance or the possibility of spreading by metastatic behaviour. This may result in differentiated cells with new phenotypes. Ultimately, this causes a heterogeneous cell population and consequently difficulties in the therapy. The phenotype diversity causes different responses of the subpopulations to the chemotherapeutic pressure. Our aim is to understand the multiple cell lineages and to analyse how the surviving subpopulations should have been treated. [1]

The aim of this work is to develop a routine analysing the output of WhAM to generate

⁹b defines the cell division rate and d the death rate

lineage trees. This hierarchical structure is often used in biology and medicine to encode cell division events over time. The function generates among others the complete lineage trees of the tumor initiating cells (TIC). Every single branch of a tree describes one specific lineage. In contrast to the structures displaying the complete tumor growth, the partition into the single TIC for illustration and analyse gives the possibility to distinguish between the several subpopulations (phenotypes) and their behaviour. Particularly, in this work, the advantage of analysing the lineage trees is to draw spatial conclusions why this specific clone behaved as simulated. To compare cell attributes one can define a domain partition. The key aspect is to partition the tissue space in spatial levels describing areas with similar supply of oxygen and drug to analyse the impact of niches or far distances to vessels on the clonal evolution. There are of course more possible distance functions assigning to each location in the tissue a value for the just mentioned purpose. So let d be the euclidean norm in two dimensions, X = (X, Y) an arbitrary location in the tissue and let $V = \{v_1, ... v_4\}$ be the set of the locations of the four vessels. Then the used distance function dist is as follows:

$$dist: \underbrace{[-65, 65] \times [-65, 65]}_{tissue\ space} \rightarrow \mathbb{R}, \quad X \mapsto \min_{v \in V} \left(\sqrt{d(X, v)}\right). \tag{7}$$

The reason why the square root of the Euclidean distances (or the minimal distance) between a point and the vessels are taken is because in a healthy tissue the oxygen/drug firstly spreads in an area of a circle, consequently the drug/oxygen is distributed quadratic concerning the radius. From now on the term distance describes the outcome of dist for the position of a cell in the tissue. This holds in the text as well as in the illustrations. This distribution of the distance function is illustrated in figure 7. As the maximal value that can result out of the dist function (this value is taken as the tissue is represented with a compact set) is 7.9774, for the analyse the domain is partitioned in eight different intervals respectively defining the eight categories cells are ordered to. Except of the last interval, all of them evenly cover 1 distance unit (meaning [0,1) refers to category 1, [1,2) refers to category 2 and so on). The higher is the distance category (depends on in which interval the distance value (equation (7)) is located) of a cell, the lower is the drug/oxygen uptake and so the cell is located in a spatial niche. The higher the total population around the vessels, the lower is the category number already touched by the niche phenomenon as the drug/oxygen is broadly used by the cells near the vessels.

Figure 7: The figures are generated with the use of the implementation of function dist (see appendix). (a) Graphical illustration of the dist function. (dist(30)) (b) The used levels of distance (in the sense of equation (7)) in this paper to categorize cells. It is a partition of the domain in nearly 8 equidistant intervals. (dist(8))

3.1 No drug resistance

In order to analyse the behaviour of the tumor evolution in resistant systems during the therapy with a chemotherapeutic agent one also has to document the case of no resistance. Otherwise no conclusions can be drawn of the impact of the different types of resistance on the clonal evolution with anti-cancer medication. Therefore WhAM was run in the no resistance mode and with a DNA repair rate of 0.015% (same repair rate in all cases). The simulation in this and all other cases is considered until iteration 20000.

In figure 8 you can see shots of the tumor tissue at certain time points. In figure 8(a) you can see the distribution after the first pass of the loop. So in the beginning the tumor grows steady with many different clones (see illustration 8(b)) until the cells near the vessels are killed and the cells in the drug niche for now survive (compare figure 8(c)). The tumor is diminished further until one strong clone (clone 25) arises from the drug niche and starts spreading which can be seen in figure 8(d). But in the end this clone dies out as well because there is no resistance to the drug which is equal to the complete tumor eradication (iteration 6607).

At the beginning the tumor can grow quickly because it is well oxygenated (see figure 5: the cell has to be non-hypoxic in order to proliferate, in the WhAM tissue plots hypoxic cells are represented by a white circle around them) and drug has not reached all cells. The latter takes more time in average if the tumor, like in this case, grows fast because the drug is distributed over more and more cells. The drug is indeed halved but as the rise of damage depends on the change in drug and the current DNA damage there is no gain from the drug halving (compare equation (6)). In figure 9(a) we can see that the

Figure 8: No resistance: Illustration of the tumor evolution.

first clones are dying out around iteration 2500. In this plot there is a noticeable trend. The higher the distance to the nearest vessel, the more likely the clone survives longer. The initially surviving of the cells in the niche refers to the less drug uptake but why the tumor can recover and grow again and why are they eradicated later? The reason is the diminished number of cells. This leads to a further diffusion of the drug because it is not used by cells in between. As a result the area of low drug supply shrinks and the incremental term of the DNA damage equation essentially overpowers the repair term.

Now have a closer look on the clone 25 as the longest surviving. Its lineage tree (or trace tree) can be seen in figure 9(b) (and also its symbol in the other plots). There may be three reasons why this clone survived that long. The first is the optimal initial position concerning the complete tissue In figure 8(a) we can see that the initial the cell 25 is placed right in the middle of the niche between the four vessels. This is important for the primary surviving of the cell and for the growth of the clone. The second reason is the protection of the clone by the clones represented via the blue and pink diamonds in

Figure 9: No resistance: (a) Illustration of the relationship between the distance of the initial cell (in the sense of equation 7) of a clone and the extinction of the complete clone. (b) Lineage tree for the initial cell 25. It is the longest surviving before tumor eradication.

the WhAM tissue images 8. They broadly absorbed the drug before it could invade in the niche and reach clone 25. The last point is coincidence. The new cells and consequently the movement of the tumor by the cell mechanics lead cell 25 completely in the niche. Afterwards, approximately from iteration 3000 on, the clone strongly increased which can be seen in the trace tree. This is a result of the cease of the other clones so there is much less overcrowding. Nevertheless this only prolongs the survival of clone 25. The cell protection is lost, the drug is invading in the niche and the number of cells is not rising fast enough.

3.2 Pre-existing resistance

As already addressed in section 2.4, the pre-existing resistance in WhAM is modelled so that two of the 65 initial clones have a higher death threshold (five times higher) than the others. This ability is inherited and during the treatment the death threshold cannot be heightened. Moreover there are three possible initial configurations (near, intermediate and far away from the vessels) where the resistant clones are located at. Since in all the three simulated initial configurations the same progress and result was observed, only the case of the resistant cells near the vessels is presented.

At first all the clones evolve like in the case of no resistance. They spread and remain in the niche until they die except for the two resistant clones. Those do not response to the drug treatment and eventually populate the complete tissue space. We present a similar analysis as in the case of no resistance, both in terms of resistant and non-resistant cells evolution.

Figure 10: Pre-existing resistance: (a) Illustration of the relationship between the distance of the initial cell (in the sense of equation (7)) of a clone and the extinction of the complete clone. (b) Location of the initial cells of the long surviving clones. (c) Location of the initial cells of the short living clones. (d) Trace tree of resistant cell 54.

The same picture of the relationship between the distance to the nearest vessel and the clonal survival is observed. In figure 10(a) one can see the exact same trend as in the non-resistant case but the two resistant clones (those with the lowest distance to the vessels) survive until the end of the simulation. In the tissue space one can see in figure 10(b) the location of the longest surviving clones and in 10(c) the shortest surviving clones. The clones dying first are located at the vessel (see figure 8(a)). The trace tree of one of the resistant surviving clones, namely clone 54, can be seen in. 10(d). The first sign of resistance was the rather constant iteration (except generation 1 due to display problems) until proliferation and no cell death until about iteration 8000. This speaks for the division right after the maturation age is reached. Afterwards the cell division gets irregular and also some cells "disappear". The term is set in quotes because most of the cells do not die but are not considered in the trace tree any more because the cells

Figure 11: Pre-existing resistance: Digram plotting the number of cells in the DNA damage levels against the death threshold levels of the cells in the last three generations of cell 54. (a) pre-previous iteration; average cell age: 1664 iterations. (b) previous iteration; average cell age: 2419 iterations. (c) generation in last iteration; average cell age: 4364 iterations.

are pushed out of the watched domain. In the introduction of WhAM this was equal to the death of the cell. This explains the ending of some lineages. There are two possible explanations why the reproduction cycle concerning the number of iterations has become unrhythmic. Both of them are related to the rapidly growing population. On the one hand at the margin of the tissue the cells slip in a quiescent state as result of the low oxygen supply (according to figure 5 this blocks the potential cell division), on the other hand the overcrowding of the space. In figure 11 the distribution of the cells according to their DNA damage level in final iterations is presented together with two ancestor generations. So for example in figure 11(b) are considered only the ancestor cells of the cells alive in final iteration. Speaking of the generations in time we see a rising generation age and also a small shift of the damage level towards the death threshold. But even if

Figure 12: Pre-existing resistance: (a) Lineage tree of longest surviving clone without resistance, cell 25. (b) Histogram of the first 10 generations of cell 25 according their participation in the distance levels 1-8 presented in figure 7(b). (c) Lineage tree of cell 45. (d) Generation distance level histogram for cell 45.

the DNA damage comes near the death threshold level or even exceeds it, the dying cells would be immediately replaced by new cells. As a result of the high population number, there will be cells which are slightly or not at all reached by the drug and so cells with a low DNA damage will be generated. Consequently the pre-existing resistance results in a complete treatment failure.

Now comparing this resistant tree to two non resistant clones, the longest non resistant surviving (clone 25) and a short living (clone 45). In figure 12 the lineage trees are illustrated. Initially focus on the less complex tree of cell 45 (figure 12(c)). The cell starts dividing but all the cells of the clone die nearly at the same time. This shows that the cells of the clone got the same amount of drug and because of no resistance they died very early. Now the more interesting lineage tree of 25 (figure 12(a)). Here in the beginning a regular reproduction is observed but earlier than the resistant clone 54 (about iteration

1000) this order disappears. This results because clone 25 was in a spatial niche and also the surrounding clones are long living (see figure 10(b)). The low drug supply in the niche generates a low death rate and leads to an early overcrowding. Until there is more space again, the process of cell division is inhibited. In the early iterations of tree 54 this behaviour is not observable. As the initial cell is placed near the vessels and the non resistant clones around it die very early (figure 10(c)) space is free and the dividing is continued. The first cells of clone 25 are dying from iteration 3000 which is identical to the non resistant case. This fact as well as nearly the complete lineage tree is so similar to the non resistant case because clone 25 never came into contact with the resistant ones and died before they spread over the tissue.

Additionally to the previous observations in subsection 3.1 of clone 25 and clone 45 we want to point out the spatial "movement" of the generations. For clone 54 this consideration is not that interesting, because of the resistance, the clone survives anyway. The diagram plots for the first 10 generations (if it survives that long) of the spatial distribution of the generation in 8 distance levels (according to figure 7(b)) is shown in figures 12(b) and 12(d). In the simple case of clone 45, as a representative of fast dying clones, we see in figure 12(d) that the initial cell is located relatively near the vessels, namely in distance level 3. In the following two generations the cells move in higher distance levels (4,5,6) but this was not fast enough and the clones could not escape the high drug supply. The last generation is located in level 5 and the clone perishes there. Now comparing to figure 12(b) which displays the same plot for cell 25. As we already know it starts in the niche (level 7) and in the early beginning (since generation 2) already populates the highest distance level 8 and never really reaches level 5 or lower. As one can see the cell explosion after generation 5.

3.3 Acquired resistance

Acquired resistance, the second possible kind of resistance implemented in WhAM, was modelled as follows. The death threshold level (the DNA damage a cell can manage) is not like in the other case fixed, but a variable (once gained resistance cannot be lost for example by another mutation). The rise is attached to the condition that the exposure time with drug higher than a level exceeds a certain duration. For the sake of convenience the step the threshold rises is at all times and for all cells the same constant Δ_{death} . Now we discuss two cases, differing in the amount of threshold gained per step, as they deliver completely different results.

Figure 13: Acquired resistance case 1: (a),(b) Tissue image at iteration 3500 respectively iteration 10500. (c) Illustration of the relationship between the distance of the initial cell (in the sense of equation (7)) of a clone and the extinction of the complete clone. (d) Spatial movement of the longest lineage of 25. The first green circle stands for the beginning location, every further red circle is the position after 500 iterations later. The second green circle stands for the end position.

Case 1: $\Delta_{death} = 0.000025$

Comparing the figure 13(a) to the illustration 8(c) in case of no resistance the timepoint when the first wave of death kicks in delays about 500 iterations. Occasional some cells survive also in the drug exposed regions at first. But gradually the same course is pursued which means that step by step all but one clone dies out, clone 25 recovers temporarily but in the end also is diminished further and further. The main difference so far is the timescale which is prolonged. This also reflects in the distance-survival plot (see illustration 13(c)). The survival trend concerning the distance (in terms of equation (7)) and also the level of first deaths nearly stays the same as in the non-resistant case, but there is a wider distribution regarding the surviving iterations. In the simulation the clone

Figure 14: Acquired resistance case 1: (a) Death threshold plotted against DNA damage for the longest surviving lineage of clone 25. (b) Death threshold plotted against DNA damage for the longest surviving lineage of clone 54.

25 survives until the end but only with one hypoxic cell which is located in the highest distance class and consequently deeply in a drug niche. In figure 13(b) you already can see the final tissue overview already at iteration 10500. Because in this class of resistance the death threshold additionally varies to the DNA damage it is interesting to have a look at the relationship between them for some certain lineages. Maybe this also could give clues why clone 25 has not died so far.

In figure 14 the information is shown for the surviving lineage of 25 and the longest surviving lineage of a dying cell 54. The circles in the plot stand for the initial cell at the beginning, a proliferation within or death at the end of the cell lineage. The graph is generated out of the given data from WhAM. In the used simulation the data was saved to portrait the current state of the tissue and cells every 100 iterations. Between these data points every 100 iterations the graph is linearised. This accuracy is absolute adequate for this reflection, if not the simulation has to be done with more saving steps. Naturally this leads to a worse runtime of the simulation and the analysis. First discuss the plot for the clone 54 (see figure 14(b)) as a representative for a clone with a initial position near the vessel. As a result of this, the clone (and so the cells of the considered lineage) from the beginning and the complete lifetime is under high drug exposure. This leads to a sustained death threshold increase right from the beginning. The needed drug exposure level of 0.01 is overrun right away and at a high level, so that halving after proliferation does not decrease the level. This increase is not fast enough to escape death and so the lineage and the clone dies. Interesting is that the slope of the DNA damage graph slowly falls within time in 14(b). The earliest decrease after the first proliferation is related to the rising number of cells and so less drug can be sensed by the lineage. The second decrease after the second proliferation is the result of a greater minimal distance to vessels, although there are less cells around the considered cell. This also is an indicator that location (respectively distance to the nearest vessels) is the most important factor for drug supply and DNA damage. In the end, clone 54 had an advantage over other cells as it is located slightly further for longer survival, this is because the instant resistance gain was superior to the faster DNA damage which led to slightly longer survival.

Now have a look at the longest lineage of clone 25 (see illustration 14(a)). In the early time the death threshold curve as well as the DNA damage curve do not join. This is justified by the fact, that the drug needs time to diffuse to the cells in the niche. Important to notice is the earlier (but minimal) rise of the DNA damage because the drug exposure must be high and long enough to develop resistance. After the drug has accumulated strong enough, the lineage over the whole time linearly acquires resistance. In the early segment also a frequent proliferation can be seen accompanied by a strongly rising DNA damage. Both stops after iteration 2000 where the DNA damage further declines. The cell is surrounded by other cells/clones and so shielded from the drug. On one side, the cell cannot divide due to overcrowding, on the other side the fraction of repaired DNA damage is greater than the gained drug in this period of time. Remarkable is that the drug input is not zero, in this scenario the DNA damage would fall stronger. This trend finds an abrupt end (near iteration 4000) when the first death wave clears the tissue around the niches. The protective shield is destroyed and immediately the cell can divide as there is enough space and the maturation age of course already was reached. The death wave of the other clones leads to more drug input which instantly leads to an increase of DNA damage. This same process can be seen later around iteration 6000 but only with cells of clone 25 as all the others are eradicated already. This second decline stops at after 500 iterations for the simple reason that there are not enough cells as a shield. At this point the cell already reached its final position which can be seen in the plot of the spatial movement of the watched longest cell line (see figure 13(d)). Here it is also clear that the longest cell line walked through the entire niche in the most distant area. The cell from now acts in a hypoxic state which prohibits the proliferation. After this timepoint one indirectly sees a stabilisation of the drug gradient. At iteration 11000, the drug uptake nearly was sufficient enough to kill the cell and at iteration 14000 the fraction of repaired DNA damage was higher than the sensed and used drug in the process of stabilization. At the end of the process the drug gradient will have approximated the same state as if there would be no cells in the tissue (see illustration 4) and not more drug will arrive to the cell because of the drug decay (metabolism). The cell is going to regenerate to a

Figure 15: Acquired resistance case 2: Illustration of the relationship between the distance of the initial cell (in the sense of equation (7)) of a clone and the extinction of the complete clone.

level that the repaired fraction of the current damage is equal to the constant sensed drug uptake.

As only one cancer cell is left, it appears that the treatment was successful (remission) but as soon as more oxygen in this tissue area would be supplied a very highly resistant clone will spread and lead to a very dangerous recrudescence.

But how could the last cell have been eradicated? First idea is to diminish the resistance gain. This would only be possible by reducing the drug supply to a level that the cells would not even get in danger to die. This would lead to a worse result. The second option is a higher drug supply after the other clones were eradicated. This would lead to a further diffusion (if the decay rate would stay the same) and so the drug uptake (and consequently the DNA damage) would rise and the death threshold would be exceeded for a successful treatment. In order to protect the organism, a high dosage would only be used at the end for a short period of time. This short high dose treatment for example would be sufficient in iteration 10500 as the cell nearly died.

Again as in the other cases three factors were responsible for the survival: initial position, protection by surrounding cells and the spatial niche.

Case 2: $\Delta_{death} = 0.000059$

As the heading of the paragraph already notes we discuss in this segment the case of acquired resistance but with a higher amount of resistance gained in each step. In this mode of resistance we know that the initial distance (see equation (7)) does not play the same role as in the other modes (see 15). Nevertheless all the last surviving clones started in the upper half of the complete distance interval. Explicit in 16(c) and 16(d) one can

Figure 16: Acquired resistance case 2: Tissue condition over time.

have a look at the first dying and the longest surviving clones. Here one sees how both close and far distant initial clones die in the early stage of the simulation. Of course the first deaths still survived longer than in all other modes. The same in the case of long surviving clones whereas all the final living clones started around the niche. In illustration 16(a) we can see the results of the first stronger death wave. This could not strike as in the other cases as a result of the stronger death threshold gain. In the further course a very strong heterogenization took place which lead to the final picture of the simulation in iteration 20000 in figure 16(b).

At first the longest lineage of clone 46 (see illustration 17(a)) is compared to that in case 1 with longest lineage of clone 54 (see figure 14(b)). The clones nearly have the same initial position and both hardly moved in the tissue. This results in a similar DNA damage and death threshold graph. Here one can nicely see that the stronger death threshold gain resulted in a longer survival of about 1000 iterations. The second presented lineage (and also the longest lineage of the clone) also shows more clones but are "killed" from the

Figure 17: Acquired resistance case 2: Death threshold plotted against the DNA damage graph for lineages for one longest (or the longest) lineage of the clone.

simulation. Therefore from figure 17(b) and 18(a) one can view that the DNA damage is far away from the threshold level. The reason can be found in the movement plot of the lineage. There you can see that the lineage is slightly pushed out of the watched domain and consequently is no longer considered in the simulation. This happens not for a single clone but several, which means the tumor is much more aggressive from what the simulation shows.

Now an example for a weakly surviving clone can be found in illustration 17(c). We neglect the early behaviour as this was already described with a sample clone before. The interesting part is the period of the impending death between iteration 6000 to 12000. In this period the cell is located in the wild area south of the vessel in the spatial plot 18(b). The lineage "fights" for survival and finally escapes the almost sure death because the highly proliferative clone 25 pushes just a little bit further from the vessel. This was sufficient enough to stop the rise of the DNA damage and at last generates a location

Figure 18: Acquired resistance case 2: Movement of explicit lineages of clone 62 respectively clone 18.

where the DNA damage and the repair is balanced. The reason why this lineage survived is the high proliferation rate, so the drug is partitioned every time in more clones. This rapid division bisects every time the drug level but never deceeds the level for death threshold gain. The constant reproduction of the cells of clone 18 in the late phase delays the process of killing by the drug until clone 25 is saved. In this critical phase hardly a lineage survived. Just consider the respective trace tree in figure 19(a). Little before iteration 6000 it is clear that nearly all lineages die out. As the cells are not scattered, they nearly have the same DNA damage - death threshold plots but in the critical phase most (especially the edging and less distant) were not affected.

Now let us consider the strongest clone in the tissue, clone 25. As in all the other simulations this clone invades the niche and from then on completely spreads through the tissue. In figure 19(c) one can see between iteration 6000 to 14000 a population explosion. From then on the proliferation rate is much less. Only if the tissue is not overcrowded due to the death of other clones, mechanical movement or when scattered cells die, the cells divide to fill up the tissue again. In figure 17(d) one can see the diagram for a lineage completely moving through the niche and staying in the highest distance level. One can recognize the often observed "wave phenomenon" due to overcrowded protection and the drug niche. The lineage never was in danger of dying because of how its death threshold advance against the DNA damage gained in the niche before population spread.

We now present a comparison between the location of the first 10 generations for clone 18 and 25 (histograms see figure 19). Both clones start at a similar position, 6 respectively 7. We already see for the strongest surviving clone little advantage. The most important proliferations are the first ones, they strongly decide in which direction the clone will

Figure 19: Acquired resistance case 2: (a) Lineage tree of clone 18. (b) Histogram of the first 10 generations of clone 18 according their participation in the distance levels 1-8 presented in figure 7(b). (c) Lineage tree of clone 25. (d) Histogram of the first 10 generations of cell 25 according their participation in the distance levels 1-8 presented in figure 7(b).

evolve. As we see in figure 19(d) already in generation 1 clone 25 settles the highest distance level and not until generation 5 levels lower than 7 are colonized. As we would extend this histogram for all generations, all the levels would be touched by the strongly dominating clone. In the weakly surviving clone 18 we see in figure 19(b) the exact contrary movement in the early stadium. Already in generation 1 the movement towards the vessels begins with the advance in level 5 and in generation 5 in level 4. In the higher levels (5-6) since iteration 8 the number of cells decline. If we would further protocol these histograms over generations we would observe a further shift of the histogram to the lower left side.

3.4 Discussion

In this work clonal and lineage analysis were performed on a modified output of model WhAM. The idea was to challenge that mostly all the cells of a clone behave the same way. Simulations were performed and evaluated. All of them differ in the combination between the mode of resistance, the DNA damage repair rate, the initial positioning in case of pre-existing resistance and the gain of death threshold in case of acquired resistance. In the presented variations all possible final outcomes occurred. The successful treatment in case of no resistance, the nearly successful treatment in case of weak acquired resistance and the treatment failure in the pre-existing and strong acquired resistance case.

We found that clone 25 is quite strong, indeed we compared its lineage trees in the different cases. The trees can be partitioned in three segments. In a first one all trees are nearly identical in the early phase. In the mid phase they differ concerning the proliferation rate or survival time. The end phase is the most different. Graphically this means more dense cell points/lineages, but in general the proportions of the trees preserve in the different cases. The first segment is mainly controlled from the initial positioning as in every case the cells can tolerate some DNA damage. Since this is always the same, the early stage results in nearly identical trees. The second segment is driven by ability. The ability (the type of resistance) additionally to the early positioning leads to a different survival in the most critical mid phase. In the late phase we only recognize the manifestation of the actions in the critical phase. Important is that this is not a clone 25 exclusive observation.

A strong focus was the local positioning of the initial clones with respect to the clonal evolution. The outcome showed different key points depending on the mode of resistance. In the pre-existing case, the position of the initial clone plays no role. All the clones except of the two resistant ones behave the same way as in the case of no resistance. So the local movements and positioning do not affect the result because in the no resistance case all clones died. The opposite occurs in the acquired resistance case. Initial positioning and movement is important for the survival and the strength of the surviving clones. The death threshold gain plays a key role.

Two general statements that at more opportunities came up. The first one is the more likely survival of high proliferative clones. To point out is that this is not owed to the drug halving during division. It does not matter how high the drug level is already. The second annotation is, that in all the observed lineages in the case of pre-existing resistance, once the death threshold rise started it never stops. This is founded on the fact that the needed drug level is so minimal and even in the niche more drug arrives than the halving could get rid of.

4 Prospect

In this thesis lineage trees were generated based on model WhAM and these trees were analysed. The quantity of trees one can compare is strongly limited and secondly human activity is error-prone. Another problem is the displaying of complex trees, one would need really large surfaces to spot details. In order to solve problems it would be great to transfer the analysing of lineage trees on a machine routine. This would give the possibility to compare much more and complex lineage trees without mistakes (if the routine is implemented correctly) and thereby can recognize patterns. The main difficulty is to develop a proceeding to compare lineage trees. One possible solution is presented in [12] by introducing a metric and in the end remains one ratio classifying the similarity/difference between two lineage trees. We now describe briefly the method developed in that paper.

First step was to define the space of labelled but unordered trees (\mathcal{T}) for the algorithm. Therefore an unordered but labelled tree $T=(V,E,\nu,\sigma,\Sigma)$ was defined whereas V and E describe the nodes (cells) respectively, the directed edges. The function $\nu:V\to P_2(V)$ allocates every node its descendants. Σ is the set of all possible labels and $\sigma:V\to\Sigma$ assigns every node its label (cell attributes). Second was to define a metric MaxSimilarity (computation of maximal similarity common subtree) on \mathcal{T} to obtain a metric space $(\mathcal{T}, MaxSimilarity)$. In the paper they experimented with different types of metrics. After underlying conditions are formalized the tree clustering algorithm is reviewed by using a k-mean/k-median algorithm. The aim of this algorithm is dividing a dataset $A = \{a_1, ..., a_n\}$ into non-empty and disjoint subsets B_i $(i \in \{1, ..., k\})$ with $\cup_i B_i = A$. Accompanying to the subsets there is a set of centroids c_i . This partition is done by minimizing the squared sum of the distances between the $a_j \in B_i$ and its belonging centroid c_i .

This strategy could be transferred to lineage trees produced here. One could for example define the centroids as trees with a different long survival or different high proliferation rate and then let the algorithm work on the set of all initial cell trees. What we get as a result are clusters with the same properties and so afterwards conclusions can be drawn for example if the spatial structure is the reason for the resulting development of cells or the type of resistance or both. A key role also would be that the conclusions we draw from the lineage trees are more representative as a result of the much higher amount of analysed data.

In the paper and also in the analysis of WhAM in [7] so far was only dealt with a continuous drug supply of one single therapeutic agent. We saw that in nearly all cases that the treatment with the drug develops resistance and gives rise to a resistant

subpopulation and the tumor cannot be eradicated. In section 2.5 a model approach was presented trying to avoid these problems by the usage of more than one drug with different pathways, so if the cells gain resistance to one drug the other can still kill the cells. The results of this model were not promising either. Once there is one single possibility for a mutation generating cross-resistance to all drugs, there is nearly no chance for the treatment success. Beside the number of different drugs the second possibility of change is the time treatment protocol. The model WhAM allows different drug treatment protocols with respect to time and dosage of the drug. This can be seen in equation (3) because the drug supply rate is time dependent. Who is further interested in this kind of modification of WhAM should have a look at [9].

References

- [1] Stuart K. Calderwood. Tumor heterogeneity, clonal evolution, and therapy resistance: An opportunity for multitargeting therapy. *Discor Med.*, 15(82): 188-194, 2014.
- [2] Stefan Pfenninger Dieter M. Imboden. Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Springer, 2013.
- [3] Sarah Heerboth-Karolina Lapinska Mckenna Longacre-Nicole Snyder Genevieve Housman, Shannon Byler and Sibaji Sarkar. Drug resistance in cancer: An overview. cancers, 6(3): 1769 1792, 2014.
- [4] Terna Gilbert. How to build and usa agents-based models in social science. *Mind and Society*, 1:57-72, 2000.
- [5] Michael M. Gottesman. Mechanisms of cancer drug resistance. *Annual Reviews*, 53:615-627, 2002.
- [6] B. Allen-T. Antal K. Chatterjee-P. Shah Y. S. Moon A. Yaqubie N. Kelly D.T. Le E.J. Lipson P.B. Chapman L.A. Diaz B. Vogelstein M.A. Nowak I. Bozic, J.G. Reiter. Evolutionary dynamics of cancer in response to targeted combination therapy. *eLife*, 2:1-15, 2013.
- [7] Kerri-Ann Norton Judith Perez-Velazquez Alexandria Volkening Jana L. Gevertz, Zahra Aminzare and Katarzyna A. Rejniak. Emergence of anti-cancer drug resistance: Exploring the importance of the microenvironmental niche via a spatial model. 2012.
- [8] Wooldrige Jennings, Sycara. A Roadmap of Agent Research and Development (Autonomous Agents and Multi- Agent Systems). Kluwer Academic Publishers, 1998.
- [9] Olga Khrutska. Exploring the anti-cancer drug resistance via an agent-based hybrid model. Master's thesis, Technische Universität München, 2015.
- [10] J.Mazoyer M. Delorme, editor. *Cellular Automata A Parallel Model*. Springer Science+Business Media Dordrecht, 1999.
- [11] S. Mukherjee. The emperor of all maladies: a biography of cancer. *New York:* Scribner, 2012.

- [12] Nina Hubig-Claudia Plant Carsten Marr-Michael A. Rieger Timm Schroeder Fabian J. Theis Valeriy Khakhutskyy, Michael Schwarzfischer. Centroid clustering of cellular lineage trees. *Information Technology in Bio- and Medical Informatics*, p.15-29, September 2014.
- [13] Daniel Weber. Circumvention of multi-drug resistance of cancer cells by chinese herbal medicines. *Chin Med. 2010; 5: 26*, 2010.
- [14] Dieter A. Wold-Gladrow. Lattice Gas, Cellular Automata and Lattice Boltzman Models. Springer, 2000.
- [15] Hiba Zahreddine and Katherine L. B. Borden. Mechanisms and insights into drug resistance in cancer. *Frontiers in Pharmacology*, 4:28, 2013.

5 Appendix

This section contains the generated MATLAB code for the analysis of the lineage trees. Therefore also the model WhAM was modified by the introduction of two new data storage matrices containing the history of important attributes by cell which are saved in the end. The following functions work on this new data and the anyway existing output of model WhAM. Also the code of the function generating the illustration for the distance levels/gradient is added.

```
function draw_cell_trace_my_version_2( cells, pathname, fig_mod, ...
       fig_mod_2, save_mod, text_mod, doc_mod )
  % Function for analysing the output of the modified model WhAM
    ("modelWhAM_updated_my_version.m") regarding the clonal evolution. The
    function delivers the lineage trees containing the input cells and
    generate further data of interest.
    Input arguments:
     - cells
                   1xn vector with cell ID's of the cells to be tracked
                   If a empty vector is given the surviving clones are used.
11
                   default
                               []
                                       All cells alive in final iteration.
12
                   path of the output folder of
13
     - pathname
                   "modelWhAM_udated_my_version.m"
14
                            every tree has its own figure
     - fig_mod
15
                           one figure containing all trees
  9
                   1
16
                   default
17
     - fig_mod_2
                   0
18
  응
                           tree edges have same color as in model
19
                   default 1
  응
20
  응
     - save_mod
                   in case of fiq_mod = 0
                           normal
  응
22
                           x - axis stretched
                   1
23
                   2
                           y - axis stretched
  응
                           grand
25
                   default
  응
26
  응
     - text_mod
                           off (text and colored input values)
                   0
27
                   1
                           all cellID's
  응
28
                            cellID's, threshold, damage of the last branch cell
29
  9
                   3
                           both 1 and 2
30
                   default
                                0
     - doc_mod
                   document showing data for last three generations
```

```
and overview for important inital cell values
33 %
                  0
                 1
                         on
35
36 %
                 default 1
38
39 % set defaults
  if( ~exist('fig_mod','var'))
     fig_mod = 0;
42 end
43 if( ~exist('fig_mod_2','var'))
  fig_mod_2
                = 1;
45 end
46 if( ~exist('save_mod','var'))
     save_mod
                 = 0;
48 end
49 if( ~exist('text_mod','var'))
  text_mod = 0;
51 end
52 if( ~exist('doc_mod','var'))
  doc_mod = 1;
54 end
55 if( ~exist('doc_mod_2','var'))
  doc_mod = 1;
57 end
59
60 % cells a row vector
61 if( ~isrow(cells) )
  cells = cells';
62
63 end
64
66 % get constants
                      load([pathname, '/number_cancer_cells.txt']);
67 NCC
68 Niter
                 =
                      size(ncc, 2)-1;
  paramInt
                      load([pathname, '/paramInt.txt']);
70 num_init_cells = paramInt(5);
71
73 % loading files
74 bdh
                      load([pathname, '/birth_death_history.txt']);
                      load([pathname, '/threshold_damage_history.txt']);
75 tdh
```

```
load([pathname, '/cellsMotherID_', num2str(Niter), ...
76 cells_mother
                             '.txt']);
77
78
  % cells default
79
   which_cells = 0;
                                 % information for naming the plot
   if( isempty(cells))
       % cells alive in last iteration
82
       cells = find(bdh(3,:) == 1);
83
       which_cells = 1;
84
       if( isempty(cells))
85
           % tumor is eradicated: last surviving cell(s)
86
           cells = find(bdh(2,:) == Niter);
87
           which cells = 2;
88
89
       end
   end
91
92
   % get initial mother for every cell ID
93
                     = find_init_mothers( cells, cells_mother );
   init_mothers
   init_mothers_unique = sort(unique(init_mothers));
95
96
97
   % main
98
   if(fig_mod == 1)
99
       m = floor(sqrt(size(init_mothers_unique,2)));
100
       n = ceil(sqrt(size(init_mothers_unique,2)));
101
       subplot(m,n,1);
102
103
       for i = 1:size(init_mothers_unique,2)
104
           if (which_cells == 0)
105
                help_vec = cells(init_mothers_unique(i) == init_mothers);
106
                help_vec_str = sprintf('%.0f,' , help_vec);
107
                help_vec_str = help_vec_str(1:end-1); % strip final comma
108
           elseif(which_cells == 1)
109
                help_vec_str = 'All descendants alive in final iteration.';
110
           else
111
                help_vec_str = 'Tumor eradicated. Last surviving cell(s).';
112
           end
113
           help_string = ['Initial cell: ', ...
114
                num2str(init_mothers_unique(i)), ...
115
                '\n Trace tree containing input cell(s): ', help_vec_str];
116
117
           subplot(m,n,i)
```

```
title(sprintf(help_string))
119
            hold on
120
121
            [data, pointer_storage] = tree_gen(init_mothers_unique(i), ...
122
                bdh , cells_mother , Niter);
123
            plot_tree(data, pointer_storage, text_mod,tdh, fig_mod_2, ...
124
                init_mothers_unique(i));
125
       end
126
       clear help_string;
127
       clear help_vec;
128
       clear help_vec_str;
129
130
       path_result = save_data_1(pathname);
131
132
       % create document
133
       if(doc_mod == 1)
134
            doc_gen(path_result, init_mothers_unique, bdh, tdh, ...
135
                cells_mother, Niter);
136
            DrawTissue(bdh, path_result, Niter, pathname);
137
       end
138
   else
139
       for i = 1:size(init_mothers_unique, 2)
140
            if(which_cells == 0)
141
                help_vec = cells(init_mothers_unique(i) == init_mothers);
142
                help_vec_str = sprintf('%.0f,' , help_vec);
143
                help_vec_str = help_vec_str(1:end-1);
                                                          % strip final comma
144
            elseif(which cells == 1)
145
                help_vec_str = 'All descendants alive in final iteration.';
146
            else
147
                help_vec_str = 'Tumor eradicated. Last surviving cell(s).';
148
            end
149
            help_string = ['Initial cell: ', ...
150
                num2str(init_mothers_unique(i)), ...
151
                '\n Trace tree containing input cell(s): ', help_vec_str];
152
153
            figure_storage(init_mothers_unique(i)) = figure;
154
            title(sprintf(help_string))
155
            hold on
156
157
            [data, pointer_storage] = tree_gen(init_mothers_unique(i), ...
                bdh , cells_mother , Niter);
158
            plot_tree(data, pointer_storage, text_mod, tdh, fig_mod_2, ...
159
                init_mothers_unique(i));
160
161
       end
```

```
162
       clear help_string;
163
       clear help_vec;
164
       clear help_vec_str;
165
166
       path_result = save_data_2(init_mothers_unique, figure_storage, ...
167
          pathname, save_mod);
168
169
       % create document
170
       if(doc mod == 1)
171
           doc_gen(path_result,init_mothers_unique, bdh, tdh, ...
172
               cells_mother, Niter);
173
          DrawTissue(bdh, path_result, Niter, pathname);
174
175
       end
  end
176
177
           % end main
178
  end
179
180
181
   % defined help functions
182
183
   184
   % function creating and saving a document for all trees in order
185
   % to display data for every tree
186
   function doc_gen( path_result, init_mothers_unique, bdh, tdh, ...
188
       cells_mother, Niter )
189
190
       final_data_matrix = [];
191
       % open a file for writing
192
       fid = fopen([path_result,'/doc_file.txt'], 'w');
193
194
       % title
195
       s1 = 'Document summing up important data for the cells in last ';
196
       s2 = 'generation and its two progenitors in every trace tree.\nThe ';
197
       s3 = 'data is formatted by the following pattern:\n\ncell ID\nmother ';
198
       s4 = 'cell ID\nage\nfinal threshold\nincrease of threshold\nfinal ';
199
       s5 = 'damage \in nincrease of damage \in n';
200
       fprintf(fid, [s1,s2,s3,s4,s5]);
201
       clear s1
202
       clear s2
203
       clear s3
204
```

```
clear s4
205
        clear s5
206
207
        % write data for every initial mother cell
208
        for i = init_mothers_unique
209
            fprintf(fid, ['Data for trace tree with initial cell ', ...
210
                 num2str(i), ':\n\n']);
211
212
213
            last_cells = [];
            stack = i;
214
            while(~isempty(stack))
215
                 if(bdh(3, stack(1)) \sim = 2)
216
                     last_cells(end+1) = stack(1);
217
218
                     stack(1) = [];
                else
219
                     stack(end+1:end+2) = [bdh(4, stack(1)), bdh(4, stack(1))+1];
220
                     stack(1) = [];
221
                 end
222
            end
223
224
            응 {
225
            % In case you want to have the last cells over all initial mothers
226
            last_cells = find(bdh(2,:) == Niter); % tumor died out
227
            if(isempty(last_cells))
228
                 last_cells = find(bdh(3,:) == 1); % cells survived
229
            end
230
            응 }
231
            for j = last_cells
232
                data =
                              zeros(3,3);
233
                 data_2 =
                             zeros(4,3);
234
                help = j;
235
                 for jj = 1:3
236
                     if(bdh(2,help) == -1)
237
                          data(:,jj) = [help;cells_mother(help); ...
238
                              Niter-bdh(1,help)];
239
                     else
240
                          data(:,jj) = [help;cells_mother(help); ...
241
                              bdh(2,help)-bdh(1,help)];
242
                     end
243
                     data_2(:,jj) = [tdh(1,help);tdh(3,help)-tdh(1,help); ...
244
                         tdh(2,help);tdh(4,help)-tdh(2,help)];
245
                     help = cells_mother(help);
246
                 end
247
```

```
fprintf(fid,'%d\t\t\t\t\t\d\n',data');
248
               249
               fprintf(fid, '\n');
250
               final_data_matrix(end+1:end+7,1:3) = [data;data_2];
251
           end
252
           % seperation between initial mother cells
253
           final_data_matrix(end+1:end+7,1:3) = ones(7,3) \star-1;
254
           fprintf(fid, '\n\n');
255
256
257
258
           % generate and save hist for threshold/damage diagram considering
           % surviving cells
259
           cells_diag_1 = last_cells(bdh(3,last_cells) == 1);
260
261
           if (isempty(cells_diag_1))
               cells_diag_1 = last_cells(bdh(2,last_cells) == max(bdh(2,last_cells)));
262
263
           end
           one = sum(Niter - bdh(1,cells_diag_1(bdh(2,cells_diag_1) == -1)));
264
           two = sum(bdh(2,cells_diag_1(bdh(2,cells_diag_1) ~= -1)) ...
265
               - bdh(1,cells_diag_1(bdh(2,cells_diag_1) ~= -1)));
266
           average_age = round((one+two)/numel(cells_diag_1));
267
           diagram1 = figure;
268
           s1 = 'final death threshold -- DNA damage diagram for initial mother ';
269
           s2 = '\nDiagram is considering surviving cells in last iteration or ';
270
           s3 = 'the last surviving cell in case of tumor eradication.\nAverage age: ';
271
           s4 = ' iterations';
272
           title(sprintf([s1, num2str(i),s2,s3, ...
               num2str(average_age),s4]));
274
           clear s1
275
           clear s2
276
           clear s3
277
           clear s4
278
           hold on
279
           fin_thr = tdh(3,cells_diag_1);
280
           fin_dam = tdh(4,cells_diag_1);
281
           xval = linspace(min([fin_thr,fin_dam]), max([fin_thr,fin_dam]), 20);
282
           hist(fin_thr, xval);
283
           plotval = histc(fin_dam, xval);
284
           xval = xval(plotval ~= 0);
285
           plotval = plotval(plotval ~= 0);
286
           scatter(xval,plotval, 'MarkerFaceColor','r');
287
           xlabel('threshold / damage');
288
           ylabel('# cells');
289
           legend('# cells with threshold', '# cells with damage', ...
290
```

```
'Location', 'Northwest');
291
            hold off
292
293
            average\_thr\_dam = zeros(2,3);
294
            average_thr_dam(:,1) = [sum(fin_thr),sum(fin_dam)]/numel(fin_thr);
295
296
            cells_diag_2 = unique(cells_mother(cells_diag_1));
297
            one = sum(Niter - bdh(1,cells_diag_2(bdh(2,cells_diag_2) == -1)));
298
            two = sum(bdh(2,cells_diag_2(bdh(2,cells_diag_2) ~= -1)) ...
299
                - bdh(1,cells_diag_2(bdh(2,cells_diag_2) ~= -1)));
300
            average_age = round((one+two)/numel(cells_diag_2));
301
            diagram2 = figure;
302
            s1 = 'final death threshold -- DNA damage diagram for initial mother ';
303
            s2 = '\nDiagram is considering cells of the previous generation of ';
304
            s3 = 'the surviving cells in last iteration or the last surviving cell ';
305
            s4 = 'in case of tumor eradication.\nAverage age: ';
306
            s5 = ' iterations';
307
            title(sprintf([s1, num2str(i),s2,s3,s4, ...
308
                num2str(average_age),s5]));
309
            clear s1
310
            clear s2
311
            clear s3
312
            clear s4
313
            clear s5
314
            hold on
315
            fin_thr = tdh(3,cells_diag_2);
316
            fin_dam = tdh(4,cells_diag_2);
317
            xval = linspace(min([fin_thr,fin_dam]), max([fin_thr,fin_dam]), 20);
318
           hist(fin thr, xval);
319
           plotval = histc(fin_dam, xval);
320
            xval = xval(plotval ~= 0);
321
            plotval = plotval(plotval ~= 0);
322
            scatter(xval,plotval, 'MarkerFaceColor','r');
323
            xlabel('threshold / damage');
324
            ylabel('# cells');
325
            legend('# cells with threshold','# cells with damage', ...
326
                'Location', 'Northwest');
327
           hold off
328
329
            average_thr_dam(:,2) = [sum(fin_thr), sum(fin_dam)]/numel(fin_thr);
330
331
            cells_diag_3 = unique(cells_mother(cells_diag_2));
332
            one = sum(Niter - bdh(1,cells_diag_3(bdh(2,cells_diag_3) == -1)));
333
```

```
two = sum(bdh(2,cells_diag_3(bdh(2,cells_diag_3) ~= -1)) ...
334
                - bdh(1,cells_diag_3(bdh(2,cells_diag_3) ~= -1)));
335
            average_age = round((one+two)/numel(cells_diag_3));
336
            diagram3 = figure;
337
            s1 = 'final death threshold -- DNA damage diagram for initial mother ';
338
            s2 = '\nDiagram is considering cells of the pre-previous generation ';
339
            s3 = 'of the surviving cells in last iteration or the last surviving ';
340
            s4 = 'cell in case of tumor eradication.\nAverage age: ';
341
            s5 = ' iterations';
342
            title(sprintf([s1, num2str(i),s2,s3,s4, ...
343
                num2str(average_age),s5]));
344
            clear s1
345
            clear s2
346
            clear s3
347
            clear s4
348
            clear s5
349
            hold on
350
            fin_thr = tdh(3,cells_diag_3);
351
            fin_dam = tdh(4,cells_diag_3);
352
            xval = linspace(min([fin_thr,fin_dam]), max([fin_thr,fin_dam]), 20);
353
            hist(fin_thr, xval);
354
            plotval = histc(fin_dam, xval);
355
            xval = xval(plotval ~= 0);
356
            plotval = plotval(plotval ~= 0);
357
            scatter(xval,plotval, 'MarkerFaceColor','r');
358
            xlabel('threshold / damage');
359
            ylabel('# cells');
360
            legend('# cells with threshold','# cells with damage', ...
361
                'Location', 'Northwest');
362
            hold off
363
364
            average_thr_dam(:,3) = [sum(fin_thr),sum(fin_dam)]/numel(fin_thr);
365
366
            diagram4 = figure;
367
            s1 = 'Average threshold/damage of the last three generations for ';
368
            s2 = 'surviving cells.';
369
            title([s1,s2]);
370
            clear s1
371
            clear s2
372
            hold on
373
            xval = 1:3;
374
            plot(xval, average_thr_dam(1, 3:-1:1), 'r');
375
            plot(xval, average_thr_dam(2, 3:-1:1), 'b');
376
```

```
legend('avg threshold', 'avg damage');
377
           set(gca, 'XTick',1:3, 'XTickLabel', ...
378
               {'pre-previous', 'previous', 'last'});
379
           xlabel('generation');
380
           ylabel('threshold / damage');
381
           hold off
382
383
384
           fname = [path_result,'/threshold_damage_hist_',num2str(i),'_1'];
385
           saveas(diagram1 , fname, 'epsc')
386
           saveas(diagram1 , fname, 'fig')
387
           fname = [path_result,'/threshold_damage_hist_',num2str(i),'_2'];
388
           saveas(diagram2 , fname, 'epsc')
389
           saveas(diagram2 , fname, 'fig')
390
           fname = [path_result,'/threshold_damage_hist_',num2str(i),'_3'];
391
           saveas(diagram3 , fname, 'epsc')
392
           saveas(diagram3 , fname, 'fig')
393
           fname = [path_result,'/average_generation_threshold_damage_', ...
394
              num2str(i)];
395
           saveas(diagram4 , fname, 'epsc')
396
           saveas(diagram4 ,fname,'fig')
397
398
       end
399
400
       % close the file
401
       fclose(fid);
402
403
       % save matrix
404
       save([path_result,'/doc_matrix.mat'],'final_data_matrix');
405
406
   end % doc_gen
407
408
409
   410
   % function plotting the data generated by tree_gen
411
   function plot_tree( data, pointer_storage, text_mod, tdh, ...
413
       fig_mod_2, mother )
414
415
       % determining color/symbol
       Ncolors=6;
417
       colors=[0,0,1;1,1,0;1,0,1;0,1,1;1,0,0;0,1,0];
418
       Nsymbols=12;
419
```

```
symbols=['o','>','v','p','d','*','<','h','^','s','x','+'];
420
421
        ccol=1+mod(mother, Ncolors);
422
        ssym=1+(mother-mod(mother, Ncolors))/Ncolors;
423
424
        for cell = unique(data.cellNr)
425
            rootpath = [];
426
            help_cell = cell;
427
            while( help_cell > 0 )
428
                 rootpath = [help_cell rootpath];
429
                help_cell = floor(help_cell/2);
430
431
            end
            clear help_cell;
432
433
            % determining x position
434
            x = 0;
435
            for i=2:numel(rootpath)
436
                step = 1/2^{(i-1)};
437
                 if mod(rootpath(i), 2) == 0
438
                     % even number, left branch
439
                     x = x - step;
440
                 else
441
                     % odd number, right branch
442
                     x = x + step;
443
                 end
444
            end
445
446
            % determining y position
447
            time = data.timepoint(data.cellNr==cell);
            ypos = [min(time), max(time)];
449
450
            % plot life current mother
451
            line([x x], ypos, 'color', 'k', 'linewidth', 0.1);
452
453
            % plot color/symbol
454
            if(fig_mod_2 == 1)
455
                 plot(x,ypos(1),symbols(ssym),'MarkerFaceColor', ...
456
                     colors(ccol,1:3), 'MarkerEdgeColor', colors(ccol,1:3), ...
457
                     'MarkerSize', 3)
458
            end
459
460
            % plot connection if there are children
461
            c1 = cel1 * 2;
462
```

```
c2 = cell * 2 + 1;
463
            if (numel(find(data.cellNr==c1))>0 || ...
464
                     numel(find(data.cellNr==c2))>0)
465
                x1 = x+(1/2^floor(log2(cell)+1));
466
                x2 = x-(1/2^floor(log2(cell)+1));
467
                line([x1 x2], [max(time) max(time)],'color', ...
468
                     'k', 'linewidth', 0.1);
469
470
                if(text_mod == 1 || text_mod == 3)
471
                     text(x2, max(time), sprintf('%d', ...
472
                         find(pointer_storage == cell*2)),'VerticalAlignment', ...
473
                         'baseline', 'HorizontalAlignment', 'left', ...
474
                         'color','r','FontWeight','light','FontSize',10);
475
                     text(x1, max(time), sprintf('%d', ...
476
                         find(pointer_storage == cell*2+1)),'VerticalAlignment', ...
477
                         'baseline', 'HorizontalAlignment', 'right', ...
478
                         'color','r','FontWeight','light', 'FontSize',10);
479
                end
480
            else
481
                current_cellID = find(pointer_storage == cell);
482
                if(text_mod == 2 || text_mod == 3)
483
                     s1 = 'cellID: %d \n final threshold: %d \n final damage: ';
484
                     s2 = '%d \n threshold increase: %d \n damage incease: %d ';
485
                     text(x, max(time) + 10, ...
486
                     sprintf([s1,s2],...
487
                     current_cellID, tdh(3, current_cellID), ...
488
                     tdh(4,current_cellID),tdh(3,current_cellID)- ...
489
                     tdh(1,current_cellID),tdh(4,current_cellID)- ...
490
                     tdh(2,current cellID)), 'EdgeColor', 'r', ...
491
                     'VerticalAlignment', 'top', 'HorizontalAlignment', 'center', ...
492
                     'color','k','FontWeight','light', 'FontSize',10);
493
                     clear s1
494
                     clear s2
495
                end
496
            end
497
498
        end
499
500
        set(gca,'YDir','reverse'); % reverse timescale
501
        set(gca,'XTick',[])
                                      % remove x-axis
502
503
   end % plot_tree
504
505
```

```
506
  507
  % function finding the initial mother cell for a vector of cell ID's %
508
  509
   function init_mothers = find_init_mothers( cells, cells_mother )
510
511
      init_mothers = cells;
512
      help_cells = cells;
513
514
      % init cells are the mother cells of help cells
515
      init_mothers = cells_mother(init_mothers);
516
      while(sum(help_cells == init_mothers) < size(init_mothers,2))</pre>
517
         help cells = init mothers;
518
         init_mothers = cells_mother(init_mothers);
519
      end
520
521
  end % find_init_mothers
522
523
524
  525
  % function saving the data
526
  function path_result = save_data_1 ( pathname )
528
529
      path_result = [pathname,'/trace_trees_',datestr(now,'HHMMSS')];
530
      mkdir(path_result)
531
      fname=[path result, '/trace trees'];
532
533
      % set suitable size
534
      number_subplots = size(get(gcf,'Children'),1);
535
      m = floor(sqrt(number_subplots));
                                         % #rows
536
      n = ceil(sqrt(number_subplots));
                                         % #columns
537
      set(gcf, 'PaperUnits', 'inches');
538
      x_width=n*8;
539
      y_width=m*5;
540
      set(gcf, 'PaperPosition', [0 0 x_width y_width]);
541
542
      saveas(gcf , fname, 'epsc')
543
      saveas(gcf ,fname,'fig')
544
545
  end % save_data_1
546
547
548
```

```
% function saving the data
550
  551
   function path_result = save_data_2 ( init_mothers_unique, ...
552
      figure_storage, pathname, save_mod )
553
554
      path_result = [pathname,'/trace_trees_',datestr(now,'HHMMSS')];
555
      mkdir(path_result)
556
      for i=1:size(init_mothers_unique,2)
557
558
559
          % set suitable size
          set(figure_storage(init_mothers_unique(i)), 'PaperUnits', 'inches');
560
         switch save mod
561
             case 0
562
                 set(figure_storage(init_mothers_unique(i)), ...
563
                    'PaperPosition', [0 0 8 6]);
564
             case 1
565
                 set(figure_storage(init_mothers_unique(i)), ...
566
                    'PaperPosition', [0 0 40 6]);
567
568
                 set(figure_storage(init_mothers_unique(i)), ...
569
                    'PaperPosition', [0 0 8 40]);
570
571
                 set(figure_storage(init_mothers_unique(i)), ...
572
                    'PaperPosition', [0 0 40 30]);
573
         end
574
575
         fname=[path_result, '/trace_tree_', num2str(init_mothers_unique(i))];
576
          saveas(figure storage(init mothers unique(i)), fname, 'epsc')
          saveas(figure_storage(init_mothers_unique(i)), fname, 'fig')
578
      end
579
580
  end % save_data_2
581
582
583
  % function generating data structure for the plot_tree function
585
  586
587
   function [tree, pointer_storage] = tree_gen( mother, bdh , cells_mother , Niter)
588
      % stack contains cellsID's you havent't considered so far
589
      stack
             = mother;
590
      pointer_storage = [];
                              % contains which "plotID" every cellID is
```

```
= 1;
                                       % pointer
        i
592
593
        % initialize tree
594
        tree.cellNr
                      = [];
595
        tree.timepoint = [];
596
        tree.identifier = ['trace tree with mother ', num2str(mother)];
597
598
599
        while(isempty(stack) == 0)
600
            if(bdh(1, stack(1)) == -1)
                                                    % #iterations alive
601
                 num_entries = bdh(2, stack(1)) + 1;
602
603
            else
                 if(bdh(2, stack(1)) == -1)
604
                     num_entries = Niter-bdh(1, stack(1))+1;
605
                 else
606
                     num_entries = bdh(2, stack(1)) - bdh(1, stack(1)) + 1;
607
                 end
608
            end
609
610
            pointer_storage(stack(1)) = i;
611
612
            cellNr
                         = ones(1, num_entries) *i;
613
            if(bdh(2, stack(1)) == -1)
614
                timepoint
                             = Niter-num_entries+1 : Niter;
615
            else
616
                              = bdh(2, stack(1)) -num_entries+1 : bdh(2, stack(1));
                 timepoint
617
618
            tree.cellNr(end+1:end+num_entries) = cellNr;
619
            tree.timepoint(end+1:end+num_entries) = timepoint;
620
621
            % add children to stack
622
            if(bdh(4,stack(1)) \sim = 0)
623
                 % add children to stack
624
                 stack(end+1:end+2) = bdh(4, stack(1)):bdh(4, stack(1))+1;
625
            end
626
627
             % update pointer for next iteration if it isn't the last one
628
            if(size(stack, 2) > 1)
629
                 if(cells_mother(stack(1)) == cells_mother(stack(2)))
630
                     i = i+1;
631
                 else
632
                     i = pointer_storage(cells_mother(stack(2)))*2;
633
                 end
634
```

```
end
635
636
           stack(1)
                        = [];
                                        % clear processed cell off stack
637
638
       end
639
640
   end % tree_gen
641
642
643
   644
   % function drawing initial cells and analysing their clonal survival %
645
   646
   function DrawTissue (bdh, path result, Niter, pathname)
647
648
       % define draw input values
649
       cellSize=8;
                       % size of the cell marker
650
651
       xmin=-75; xmax=75;
652
       ymin=xmin; ymax=xmax;
653
       hb
                       = 2;
654
       Source_drug=1;
655
       Ngx=1+floor((xmax-xmin)/hb); % number of grid points - x axis
656
       Ngy=1+floor((ymax-ymin)/hb); % number of grid points - y axis
657
       xqq=xmin:hb:xmax;
                                     % data for drawing
658
       ygg=ymin:hb:ymax;
                                     % data for drawing
659
       drugDom=zeros(Ngx,Ngy);
660
661
       vessel=[-20, -40; -40, 20; 20, -20; 60, 60];
662
       cell xy = [0,0;5,5;-5,2;-1,7;-5,6;-10,5;-11,-2;-7,-6;-3,-7;3,-7;7,-2;...
663
         11,1;9,6;4,8;2,11;3,-1;0,-4;-4,-2;-9,1;-13,2;-13,7;-8,9;-3,12;...
664
         1,15;5,13;7,11;12,9;13,4;15,0;11,-4;6,-8;2,-10;-4,-10;-10,-10;...
665
         -14, -3; -11.9366, 10.9859; -12.1479, 12.4648; -18.9085, 4.4366; -18.2746, \dots
666
         13.3099; -22.7113, 10.1408; -25.4577, 2.3239; -17.0070, 21.3380; -22.5000, \dots
667
         17.5352; -30.1056, 13.9437; -31.5845, 21.1268; -36.0211, 12.8873; -41.5141, \dots
668
         10.5634; -37.7113, 5.0704; -33.6972, -1.6901; -27.5704, -3.3803; -47.4296, \dots
669
         16.4789; -48.4859, 24.9296; -41.5141, 26.4085; -32.8521, 18.1690; -28.2042, \dots
670
         42.4648; -39.4014, 39.0845; -55.4577, 33.8028; -55.8803, 26.8310; -55.0352, ...
671
         16.4789; -47.8521, 13.3099; -50.1761, 30.6338; -42.3592, 28.7324; -30.7394, \dots
672
         5.0704; -27.5704, 7.8169; -40.4577, 0.4225];
673
674
       Ncolors=6;
675
       colors=[0,0,1;1,1,0;1,0,1;0,1,1;1,0,0;0,1,0];
676
       Nsymbols=12;
677
```

```
symbols=['o','>','v','p','d','*','<','h','^','s','x','+'];
678
679
        % Determine the initial clones to draw
680
        % 1st row: cellID
681
        % 2nd row: clone death iteration
682
                     if -1 stll alive
683
        init_clones_death = find(bdh(1,:)==-1);
684
        for i=init_clones_death
685
            stack1 = i;
686
            stack2 = i;
687
            while (isempty (stack1) == 0)
688
                if(bdh(4, stack1(1)) \sim = 0)
689
                     stack2(end+1:end+2) = [bdh(4, stack1(1)), bdh(4, stack1(1))+1];
690
                     stack1(end+1:end+2) = [bdh(4, stack1(1)), bdh(4, stack1(1))+1];
691
                end
692
                stack1(1) = [];
693
            end
694
            if(min(bdh(2,stack2))==-1)
695
                init_clones_death(2,i) = -Niter;
696
            else
697
                init_clones_death(2,i) = max(bdh(2,stack2));
698
            end
699
            distances = [norm(vessel(1,:)-cell_xy(i,:)),norm(vessel(2,:)-...
700
                cell_xy(i,:)), norm(vessel(3,:) - cell_xy(i,:)), norm(vessel(4,:) - ...
701
                cell_xy(i,:))];
702
            % item describing if a position lies in a niche
703
            init_clones_vessel_distance(i) = min(distances.^(1/2));
704
        end
705
706
        sort_iterations = unique(sort(init_clones_death(2,:)));
707
        last_iterations = sort_iterations(end-2:end);
708
        sort_iterations = sort_iterations(sort_iterations>=0);
709
        first_iterations = sort_iterations(1:4);
710
711
        last_init_cells = init_clones_death(:,...
712
            init_clones_death(2,:) == last_iterations(1) | ...
713
            init_clones_death(2,:) == last_iterations(2) | ...
714
            init_clones_death(2,:) == last_iterations(3) | ...
715
            init_clones_death(2,:) ==-Niter);
716
        last_init_cells = sortrows(last_init_cells',2)';
717
        last_init_cells = [last_init_cells(:,end-2:end), ...
718
            last_init_cells(:,1:end-3)];
719
720
```

```
first_init_cells = init_clones_death(:,...
721
            init_clones_death(2,:) == first_iterations(1) | ...
722
            init_clones_death(2,:) == first_iterations(2) | ...
723
            init_clones_death(2,:) == first_iterations(3) | ...
724
            init_clones_death(2,:) == first_iterations(4));
725
726
        overview_last = figure;
727
        axis([xmin,xmax,ymin,ymax])
728
        axis equal
729
       hold on
730
731
732
        contourf(xqq,yqq,druqDom',[0:0.05:Source_druq],'edgecolor','none');
733
        colormap(bone)
        caxis([0,0.35*Source_drug])
734
       colorbar
735
736
        for z = last_init_cells(1,:)
737
            ccol=1+mod(z, Ncolors);
738
            ssym=1+(z-mod(z, Ncolors))/Ncolors;
739
            plot(cell_xy(z,1), cell_xy(z,2), symbols(ssym), ...
740
              'MarkerFaceColor', colors (ccol, 1:3), 'MarkerEdgeColor', ...
741
              colors(ccol, 1:3), 'MarkerSize', cellSize)
742
        end
743
        set(gca, 'Color', 'k');
744
       h = legend(strcat(num2str(last_init_cells(1,:)'),{' / '}, ...
745
            num2str(abs(last_init_cells(2,:)'))),'Location','southeast');
        set(h,'TextColor', 'w')
747
        set(h,'EdgeColor', 'w')
748
        % plot vessels
750
       plot(vessel(:,1), vessel(:,2), 'ro', 'MarkerFaceColor', 'r', 'MarkerSize',...
751
             2*cellSize,'LineWidth',2)
752
753
        % title plot
754
        s1 = 'Initial cells of the surviving clones and/or the three dead but ';
755
        s2 = 'longest surviving clones.';
756
        title(sprintf([s1,s2]) ,'FontSize',12)
757
       clear s1
758
       clear s2
759
760
        saveas(overview_last,[path_result,'/long_initial_cells'],'epsc')
761
        saveas(overview_last,[path_result,'/long_initial_cells'],'fig')
762
763
```

```
overview_first = figure;
764
        axis([xmin, xmax, ymin, ymax])
765
        axis equal
766
        axis([xmin, xmax, ymin, ymax])
767
       hold on
768
769
        contourf(xgg,ygg,drugDom',[0:0.05:Source_drug],'edgecolor','none');
770
        colormap(bone)
771
772
        caxis([0,0.35*Source_drug])
        colorbar
773
774
        for z = first_init_cells(1,:)
775
            ccol=1+mod(z, Ncolors);
776
            ssym=1+(z-mod(z, Ncolors))/Ncolors;
777
            plot(cell_xy(z,1), cell_xy(z,2),symbols(ssym), ...
778
              'MarkerFaceColor', colors (ccol, 1:3), 'MarkerEdgeColor', ...
779
              colors(ccol,1:3), 'MarkerSize', cellSize)
780
        end
781
        set (gca, 'Color', 'k');
782
        h = legend(strcat(num2str(first_init_cells(1,:)'),{' / '}, ...
783
            num2str(first_init_cells(2,:)')),'Location','southeast');
784
        set(h,'TextColor', 'w')
785
        set(h,'EdgeColor', 'w')
786
787
        % plot vessels
788
        plot(vessel(:,1),vessel(:,2),'ro','MarkerFaceColor','r','MarkerSize',...
789
             2*cellSize, 'LineWidth', 2)
790
791
        % title plot
792
        s1 = 'Initial cells of the first eradicated clones';
793
        title(sprintf(s1) ,'FontSize',12)
794
        clear s1
795
796
        saveas(overview_first,[path_result,'/first_initial_cells'],'epsc')
797
        saveas(overview_first,[path_result,'/first_initial_cells'],'fig')
798
799
        % plot distance - death iteration
800
        overview2 = figure;
801
       hold on
802
       bol = init_clones_death(2,:)<0;</pre>
803
        scatter(init_clones_vessel_distance(~bol), init_clones_death(2,~bol))
804
        scatter(init_clones_vessel_distance(bol), init_clones_death(2,bol).*(-1),'r')
805
        ylabel('# iterations until death')
806
```

```
xlabel('distance')
807
        title ('distance - survival diagram')
808
        legend('dead clones','surviving clones','Location','northeastoutside')
809
810
        saveas(overview2,[path_result,'/dist_survival'],'epsc')
811
        saveas(overview2, [path_result, '/dist_survival'], 'fig')
812
813
        cell_xy_history = load([pathname,'/cell_xy_history.txt']);
814
        % categorizing the cells in 8 distance zones
815
        % nearly the value 8 is gained out of the maximum of the distance
816
        % function over the complete tissue space
817
       bins = 0:1:8;
818
        % spatial histograms per clone
819
        for i = first_init_cells(1,:)
820
            stack1 = i;
                            % ID of current generation
821
            stack2 = [];
                            % ID of next generation
822
            for j = 1:10
823
                if (isempty(stack1) == 1)
824
                     break
825
                end
826
                d1 = cell_xy_history(stack1,:) - repmat(vessel(1,:),size(stack1,2),1);
827
                d2 = cell_xy_history(stack1,:) - repmat(vessel(2,:),size(stack1,2),1);
828
                d3 = cell_xy_history(stack1,:) - repmat(vessel(3,:),size(stack1,2),1);
829
                d4 = cell_xy_history(stack1,:) - repmat(vessel(4,:),size(stack1,2),1);
830
                for z=1:size(d1,1)
831
                     d11(z) = norm(d1(z,:));
832
                     d22(z) = norm(d2(z,:));
833
                     d33(z) = norm(d3(z,:));
834
                     d44(z) = norm(d4(z,:));
835
                end
836
                gen_dist = min([d11;d22;d33;d44]).^(1/2);
837
                % columns describe generations
838
                bincounts(:,j) = histc(gen_dist,bins);
839
                % update neue generation
840
                while (isempty (stack1) == 0)
841
                     if(bdh(4, stack1(1)) \sim = 0)
842
                         stack2(end+1:end+2) = [bdh(4, stack1(1)), bdh(4, stack1(1))+1];
843
                         stack1(1) = [];
844
845
                     else
                         stack1(1) = [];
846
                     end
847
                end
848
                stack1 = stack2;
849
```

```
stack2 = [];
850
            end
851
852
            % plot histogram
853
            figure
854
            bar(bincounts(1:end-1,:))
855
            legend('generation 0', 'generation 1', 'generation 2', 'generation 3', ...
856
                 'generation 4', 'generation 5', 'generation 6', ...
857
                 'generation 7', 'generation 8', 'generation 9', 'Location', ...
858
                 'northeastoutside')
859
            title(['location histogram for the first 10 generations of ', ...
860
861
                 num2str(i)])
            ylabel('#cells in distance category')
862
            xlabel('distance category')
863
864
            saveas(gcf,[path_result,'/hist_first_',num2str(i)],'epsc')
865
            saveas(gcf,[path_result,'/hist_first_',num2str(i)],'fig')
866
            hold off
867
868
            clear d1
869
            clear d2
870
            clear d3
871
            clear d4
872
            clear d11
873
            clear d22
874
            clear d33
875
            clear d44
876
            clear bincounts
877
        end
878
879
        for i = last_init_cells(1,:)
880
            stack1 = i;
                             % ID of current generation
881
            stack2 = [];
                             % ID of next generation
882
883
            for j = 1:10
884
                 if (isempty (stack1) ==1)
885
                     break
886
                 end
887
                 d1 = cell_xy_history(stack1,:) - repmat(vessel(1,:),size(stack1,2),1);
888
                 d2 = cell_xy_history(stack1,:) - repmat(vessel(2,:),size(stack1,2),1);
889
                d3 = cell_xy_history(stack1,:) - repmat(vessel(3,:),size(stack1,2),1);
890
                 d4 = cell_xy_history(stack1,:) - repmat(vessel(4,:),size(stack1,2),1);
891
                 for z=1:size(d1,1)
892
```

```
d11(z) = norm(d1(z,:));
893
                     d22(z) = norm(d2(z,:));
894
                     d33(z) = norm(d3(z,:));
895
                     d44(z) = norm(d4(z,:));
896
                 end
897
                 gen_dist = min([d11;d22;d33;d44]).^(1/2);
898
                 % columns describe generations
899
                 bincounts(:,j) = histc(gen_dist,bins);
900
                 % update neue generation
901
                 while (isempty (stack1) == 0)
902
                     if(bdh(4, stack1(1)) \sim = 0)
903
                          stack2(end+1:end+2) = [bdh(4, stack1(1)), bdh(4, stack1(1))+1];
904
                          stack1(1)=[];
905
906
                     else
                          stack1(1) = [];
907
                     end
908
                 end
909
                 stack1 = stack2;
910
                 stack2 = [];
911
            end
912
913
            % plot histogram
914
            figure
915
            bar(bincounts(1:end-1,:))
916
            legend('generation 0', 'generation 1', 'generation 2', 'generation 3', ...
917
                 'generation 4', 'generation 5', 'generation 6', ...
918
                 'generation 7', 'generation 8', 'generation 9', 'Location', ...
919
                 'northeastoutside')
920
            title(['location histogram for the first 10 generations of ', ...
921
                 num2str(i)])
922
            ylabel('#cells in distance category')
923
            xlabel('distance category')
924
925
            saveas(gcf,[path_result,'/hist_last_',num2str(i)],'epsc')
926
            saveas(gcf,[path_result,'/hist_last_',num2str(i)],'fig')
927
            hold off
928
929
            clear d1
930
            clear d2
931
            clear d3
932
            clear d4
933
            clear d11
934
            clear d22
935
```

```
clear d44
937
            clear bincounts
938
       end
939
940
941 end % DrawTissue
 1 function thres_dam_lineage_2( pathname, cellID, final, step)
 _{2} % function determining and plotting the death threshold against
  % the DNA damage for a longest lineage of a initital cell cellID or a exact
 4 % defined lineages for not eradicating tumors
 5
   % pathname: path of the saved data from WhAM
 7 % cellID:
                ID of a initial mother cell
                    => output: arbitrary longest surviving lineage
                ID of a cell in final iteration
                    => output: exact the lineage with final of cellID
11 % final:
                final iteration
   % step:
                save step out of WhAM
12
13
14 bdh = load([pathname,'/birth_death_history.txt']);
  tdh = load([pathname,'/threshold_damage_history.txt']);
   cellsMotherID = load([pathname, '/cellsMotherID_', num2str(final), '.txt']);
17
   if (sum(cellID == 1:65) == 1)
       % determine all cells of clone
19
       stack1 = cellID;
20
       stack2 = cellID;
       while (isempty (stack1) == 0)
22
            if (bdh (4, stack1(1)) ~=0)
23
                stack2(end+1:end+2) = [bdh(4,stack1(1)), bdh(4,stack1(1))+1];
                stack1(end+1:end+2) = [bdh(4, stack1(1)), bdh(4, stack1(1))+1];
25
            end
26
27
            stack1(1) = [];
       end
28
29
        % determine longest lineages and select one lineage
30
       if (min(bdh(2, stack2)) \sim = -1)
31
            last = find(bdh(2,:) == max(bdh(2,stack2)));
32
       else
33
            last = find(bdh(2,:) == -1);
34
       end
```

clear d33

936

```
while (sum(stack2 == last(1)) == 0)
36
           last(1) = [];
37
       end
38
       last = last(1);
39
  else
       last = cellID;
41
42 end
43 % data2 is a storage matrix. In the first row the death threshold is stored,
44 % in the second the DNA damage of the current lineage. data1 parallel
45 % stores the attendant number of iteration. Generally this is only the data
46 % at specific timepoints, when a cell dies or proliferates.
47 help = last
  if(bdh(2,help)==-1)
      data1 = final;
49
  else
       data1 = bdh(2, help);
51
52 end
53 data2= tdh(3:4,help);
  while (cellsMotherID (help) ~=help)
      help = cellsMotherID(help);
55
       data1(end+1) = bdh(2,help);
56
       data2(:,end+1) = tdh(3:4,help);
57
  end
58
59 \text{ data1}(end+1) = 0;
  data2(:,end+1) = tdh(1:2,help);
  % data describes the development of the death threshold and damage in
62
63 % the steps of the output of WhAM.
64 % 1st row: death threshold
  % 2nd row: DNA damage
66 help = last;
  if(bdh(2,help)==-1)
67
       data = [];
68
       for i = final:-step:0
69
           cell_damage = load([pathname,'/cell_damage_',num2str(i),'.txt']);
70
           cell_death = load([pathname,'/cell_death_',num2str(i),'.txt']);
71
           cell_ID
                        = load([pathname, '/cell_ID_', num2str(i), '.txt']);
72
73
           if(sum(cell_ID(1,:) == help) \sim= 1)
74
               help = cellsMotherID(help);
75
           end
76
77
           data(1:2,end+1) = [cell_death(cell_ID(1,:)==help),...
```

```
cell_damage(cell_ID(1,:) ==help)];
79
80
       iterations = 0:step:final;
81
   else
82
       data=[];
83
       data(1:2,end+1) = tdh(3:4,help);
84
       final_help = floor(bdh(2,help)/100)*100;
85
       for i = final_help:-step:0
86
            cell_damage = load([pathname,'/cell_damage_',num2str(i),'.txt']);
87
           cell_death = load([pathname,'/cell_death_',num2str(i),'.txt']);
88
                        = load([pathname, '/cell_ID_', num2str(i), '.txt']);
           cell_ID
89
90
           if(sum(cell ID(1,:) == help) \sim= 1)
91
                help = cellsMotherID(help);
92
           end
93
94
           data(1:2,end+1) = [cell_death(cell_ID(1,:)==help),...
95
                cell_damage(cell_ID(1,:) ==help)];
96
       end
97
       iterations = 0:step:final_help;
98
       iterations(end+1) = bdh(2, last);
99
   end
100
101
102 x=figure;
   plot(iterations, data(1,end:-1:1), 'b')
103
   hold on
104
   plot(iterations, data(2,end:-1:1), 'r')
105
   scatter(data1(end:-1:1), data2(1,end:-1:1), 'b')
   scatter(data1(end:-1:1), data2(2,end:-1:1), 'r')
108
   legend('death threshold', 'DNA damage', 'Location', 'northwest')
109
   xlabel('iteration')
110
   ylabel('threshold / damage')
111
   title(sprintf(['death threshold / DNA damage plot for the longest lineage', ...
112
       '\n of clone:\t',num2str(cellID)]))
113
   end
115
 1 function spatial_lineage_track( pathname, cellID, final, step )
 2 % Function tracking the movement of a lineage in time.
 3 % pathname: path of the saved data from WhAM
 4 % cellID: ID of a cell in final iteration
```

```
5 % final:
              final iteration
6 % step:
              save step out of WhAM
s \text{ vessel} = [-20, -40; -40, 20; 20, -20; 60, 60];
9 xmin=-75; xmax=75;
10 ymin=xmin; ymax=xmax;
11
                   = load([pathname,'/cellsMotherID_',num2str(final),'.txt']);
12 cellsMotherID
                    = load([pathname,'/birth_death_history.txt']);
14
15 help_cell = cellID;
  while (cellsMotherID (help_cell) ~=help_cell)
       help_cell = cellsMotherID(help_cell);
17
18
  end
19
20 help = cellID;
21 data = [];
_{22} if (bdh (2, help) ==-1)
       final_help = 20000;
24 else
       final\_help = floor(bdh(2,help)/100)*100;
25
  end
26
  for i = final_help:-step:0
28
                   = load([pathname, '/cell_xy_', num2str(i), '.txt']);
       cell_xy
29
       cell_ID
                    = load([pathname, '/cell_ID_', num2str(i), '.txt']);
30
31
       if(sum(cell_ID(1,:) == help) \sim= 1)
32
           help = cellsMotherID(help);
       end
34
35
       data(end+1,1:2) = cell_xy(cell_ID(1,:) ==help,:);
36
  end
37
   iterations = 0:step:final_help;
38
39
x = figure;
42 plot(vessel(:,1), vessel(:,2), 'ro', 'MarkerFaceColor', 'r', 'MarkerSize',...
            2*2, 'LineWidth',2)
43
44 hold on
45 scatter(data(1:5:end,1), data(1:5:end,2), 'r')
46 scatter(data([1,end],1),data([1,end],2), 'g', 'ro')
47 plot(data(:,1), data(:,2), 'b')
```

```
48 axis([xmin,xmax,ymin,ymax])
49 axis equal
50 title(sprintf(['Lineage of: \t',num2str(cellID),'\nInitial cell: \t',...
       num2str(help_cell)]))
52 end
1 function dist(plot_accuracy)
2 % Function generating figure for the distance gradient as presented in the
_{3} % paper. plot_accuracy defines in how many levels the plot should be
4 % presented.
6 vessel = [-20, -40; -40, 20; 20, -20; 60, 60];
7 \text{ xdata} = \text{repmat}([-65:65], 131, 1);
s \text{ ydata} = \text{repmat}([65:-1:-65]',1,131);
9 data
          = zeros(131, 131);
  for i = 1: (131*131)
       co = [xdata(i), ydata(i)];
12
       d1 = norm(co-vessel(1,:));
13
       d2 = norm(co-vessel(2,:));
14
       d3 = norm(co-vessel(3,:));
       d4 = norm(co-vessel(4,:));
16
       data(i) = min([d1, d2, d3, d4].^(1/2));
17
18 end
19 data(1:end,:) = data(end:-1:1,:);
20
21 grad = figure;
22 contourf([-65:65],[-65:65],data,plot_accuracy);
23 end
```