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Abstract

In many medical treatments there can occur resistance to the used therapeutic agents. Un-
fortunately this happens to be one of the major issues dealing with cancer via chemother-
apy. This of course leads to a lower medical response or even to treatment failure. In
the cancer case often the resistance is not a pre-existing factor but arises due to the
chemotherapeutic pressure.

In order to analyse this behaviour Gevertz et al. set up a model in [7]. They used a
hybrid discrete-continuous mathematical model to describe the events in a cancer popu-
lated slice of tissue over time. The aim was to analyse the effects of the different kinds of
resistance on the tumor development and finally find the causes why treatment inefficiency
or failure occurred.

The objective of this thesis was to enhance the analysis of the Gevertz et al. devel-
oped model by examining clone development. To achieve this, the basic model had to be
modified to allow an output capable of reconstructing the clonal evolution retrospectively.
Furthermore routines were developed for processing the generated data. The outcome of
the analysing routines supports the suggestion from Gevertz et al. regarding that the
spatial location is significantly important for the clonal development of resistance. Tu-
mor heterogeneity can be examined through the cell lineages. By following a single long
surviving cell lineage, it is clear that there is often a fine line between death and survival
of a lineage/clone.
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Zusammenfassung

In vielen verschiedenen medikamentösen Behandlungen kommt es zur Resistenz des Or-
ganismus gegen das eingesetzte Arzneimittel. Unglücklicherweise ist dieses Verhalten
eines der größten Probleme bei der Krebsbehandlung durch Chemotherapie und führt zu
einem schlechten oder sogar erfolglosen Therapieergebnis. In der Krebstherapie ist dabei
diese Resistenz oftmals ein Ergebnis der Therapie selbst und nicht ein bereits vorhandener
Zustand.

Um diesen Verhalten zu analysieren haben Gevertz et al. in [7] ein hybrid diskret-
kontinuierliches mathematisches Modell entwickelt um die zeitliche Entwicklung des Tu-
mors zu beschreiben. Das Ziel dieses Modells lag in der Analyse der verschiedenen Arten
von Resistenz und deren Auswirkungen auf die Entwicklung des Tumors um schließlich
die Gründe für das Versagen der Therapie zu finden.

Der Zweck dieser Bachelorarbeit lag darin, die Analysemöglichkeiten des bisherigen
Modells zu erweitern um die Entwicklung einzelner Zellen untersuchen zu können. Dafür
musste einerseits das zugrundeliegende Modell verändert werden für einen feineren Out-
put um die klonale Entwicklung rückwirkend genau rekonstruieren zu können, andererseits
mussten zusätzlich Programme geschrieben werden um die Output Daten aufzubereiten.
Die Analyse unterstützt die bereits in der Abhandlung von Gevertz et al. aufgestell-
ten Hypothese über die Wichtigkeit der räumlichen Struktur für das Überleben mancher
Klone. Ebenso kann die Heterogenisierung des Tumors durch die Beobachtung der einzel-
nen Zelllinien begründet werden. Bei der Betrachtung vieler langlebiger Zelllinien wird
einem bewusst, dass oftmals ein schmaler Grat zwischen dem Tot und dem Überleben
von Zellen oder gar ganzer Klone liegt.
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1 Biological background

Cancer describes a large family of diseases which generates lots of different afflictions and
symptoms. All in common is the elementary problem. Unlike normal cells, cancer cells
are strictly spreading due to their anormal division control mechanisms. This leads to
a steady enlarging cell lump called tumor. Additionally cancer cells have in contrast to
normal cells no fix allocation and so can spread and invade neighbouring tissue which in
the long run leads to a complete system breakdown of the organism. Depending on the
sort of cancer cells there are many different tools for medical treatment. Some of them
are surgery, chemotherapy, radiation therapy and immunotherapy. These treatments are
often combined, but in this work we will focus on the most common treatment, i.e. by
a chemotherapeutic agent. The model we consider uses an agent which produces DNA
damage over the time until the cell dies as a consequence of the damage.

Like in many medical treatments (e.g. HIV or antibiotic medical treatment) in the
chemotherapy occurs medical resistance. There are mainly three different cases. The
first case is the impact of chemotherapy on healthy, sensitive, cells. They cannot stand
the therapy and certainly die after a long enough period of time. Second, there are
resistant cells. Here one can find two types of resistance, the pre-existing and the acquired
resistance. As the naming suggests, pre-existing resistance directs to a subpopulation of
the cancer cells that was already resistant before the start of the treatment. On the other
hand acquired resistance stands for the observation that cells were not resistant prior
to the treatment and gain a certain degree of immunity due to the chemotherapeutic
pressure. From a medical point of view it is difficult to determine which sort of resistance
prevails, but this would be necessary to choose the right treatment plan. Regardless
of which resistance occurs, the worst case would be the treatment failure in which the
cancer cells could not be erased completely and will recur more resistant and vigorous.
This phenomenon was also observed by Frei and Freireich after a high dose treatment
against leukemia. At first the study showed good results but at once many patients were
in a much worse medical condition and a second chemotherapeutic treatment did not have
any results. The problem in this case was that the cancer cells colonized the brain and
that is a part of the body where chemotherapy often fails because the blood-brain barrier
is a natural defense system of the body against foreign substances. [11]

This work aims to analyse chemotherapy resistance development by tracking surviving
clones back on a model by Gevertz et al. [7] which involves two mechanisms of resistance.

The ability of drug resistance is most likely related to the evolution. In order to survive,
mammals have evolved mechanisms to protect cells against cytotoxic compounds. These
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Figure 1: Some mechanisms of drug resistance [13]

mechanism often are activated as a natural protective reaction when a medical drug is
administered because these are unfamiliar substances to the human body. This could be a
problem when using a particular treatment and even more considering that often drugs are
used in combination. Hence over coming resistance to one medicament could lead to no
or less response to another treatment of a complete different disease. This phenomenon
is called multi-drug resistance. So it is important to know about the mechanisms of
resistance in order to switch to other therapies with other modes of action to gain a
reaction.

Of course there can be many reasons why the drug cannot work properly. For example
an irregular tumor vasculature which has areas not reached by the drug or because it is
absorbed by the cells in between. Another reason why the medicament does not reach the
cell could be areas with high fluid pressure in between which operate like a barrier without
passage. Also low serum levels can occur as a result of rapid metabolism or excretion of
the drug. There are more external possibilities, some intrinsic mechanisms how resistance
is generated are shown in figure 1 with important implications for drug designing and
therapy decisions.

One obvious way to prevent damage is not letting the drug in or dock. There are mainly
three ways a cell exchanges nutrients/molecules/etc. with its environment: Diffusion of
fluids across the plasma membrane, transport via receptors or transporter proteins (piggy
backing) and endocytosis. Completely terminating the traffic is not possible for the cell
as it also needs goods for a living. Hence the cell tries to reduce the drug input (or

14



even all input) through mutations or modification of the cell surface molecules or have
defective endocytosis. If the drug either way managed to get into the cell there are
energy depended efflux pumps. They work with a cassette of binding transporters which
normally are there for moving nutrients or biological important molecules. But those can
also detect different kinds of substrate (e.g. hydrophobic natural drugs) entering through
the cell membrane. If it is a undesirable substance, they bind it to themselves and guide
them to the extracellular space. Afterwards the transporters restore to their original
structure and are operational again.

Once a anti-cancer drug achieved to get into the cell, many of them have to undergo
a specific metabolic activation in order to acquire clinical efficacy. So one way of the
cell to protect against the drug is a very strong enhancement of the drug metabolism to
degenerate the activated drug before it can work. Another way is the reduced activation
of drug and wait for its efflux without impact. A third possibility is the inactivation of the
drug by modification. This could be done by partially degrading the chemical substance
or complexing the drug with molecules/proteins with the result that the key-lock pair
does not match any more. This method also can be used on the target side of the drug
leading to a less effective or no impact.

Especially DNA/RNA damaging drugs are resting until a certain cell cycle checkpoint
is reached and then interact in every run and the damage is rising step by step. The DNA
damage response mechanisms can not work that fast or even do not recognize a defect
and so the cell will die when a threshold is exceeded. Known mechanisms in this case are
that the cell cycle is slowed down so that it is enough time for the DNA repair or the
checkpoint signals are altered so that the drug does not get active. Another resistance
factor in this case is simply a higher tolerance of DNA damage which mostly is pre-existing.
Further, cells of a multicellular organism are an organized community also regarding cell
number regulation. The process of the programmed cell death is called apoptosis (Greek
for "falling off" like leaves on a tree). Some drugs aim to activate this natural process
but mutations of the activation sequence or modulations of this pathway are observed
techniques of the cell to protect itself from the treatment. The environment in which the
cells live plays an important role. For example if the environmental conditions are bad
(e.g. drug exposure) often a subpopulation of the cells are shifted in a quiescent state.
This means that the cell ceases the exchange with the environment, stops proliferation
and rests until better environmental conditions are reached.

Usually in current practice a mixture of drugs with different modes of action are
used as a "backup" if one agent has no effect because cells are resistant to a mechanism.
Otherwise independent cells can develop the different presented modes of resistance to the

15



treatment (in case of acquired resistance). Often cells of the same clone generate similar
phenotypes. This motivated us to the analysis of lineage trees of single clones. [3, 5, 15]

2 Mathematical modelling

At first we have to point out the difference between a system, a model and a simulation.
Generally speaking a system is a theoretical construct to understand processes in the
world. A system consists out of two basic parts. A set of objects and the relationships
between them. Additionally if it is not an isolated system; there exist interactions between
the system and its environment. The delimitation of a system is given by boundary
conditions which vary depending on the task to solve.

In the ancient Rome the Latin word "modulus" described a small scale replica of a
building. These can be transferred to the term model. A model is a simplified representa-
tion of a real system through specifying it in some formalism. The aim is to emphasise the
important aspects and neglect the unimportant features for the task by abstracting. This
may reflect in loosing a certain degree of accuracy. Also, there are many possible models
for a system and one cannot declare one superior to the other as its accuracy depends on
the question to answer.

The motivation of setting up models for real world problems is to predict the future
state of a system. This leads to the third term, the simulation. This simply means
numerically or computationally running the model for a certain initial state of the system.
Here the importance of neglecting aspects of no interest for the better performance may
be relevant. [2]

So far we dealt with the terminology in general. As we here are interested in mathe-
matical modelling this means that our model formalism is represented by functions and
equations. In the following we introduce two types of "bottom-up" models. In contrast
to the "top-down" models, which try to describe the global processes and transitions as
a whole, the "bottom-up" principle proceeds from describing microscopic views which
together form the macroscopic entirety.

2.1 Cellular automata

While there is a present popularity in research and application, the concept of cellular
automata (abbr. CA) dates from the mid 20th century. Around 1950 the idea of CA
was introduced by Stanislas Ulam, John von Neumann, and Konrad Zuse. This abstract
object provides a possibility to simulate systems and processes by the discretization of

16



(a) Neumann (b) Moore

Figure 2: Classic neighbourhoods for CA in two dimensions [14, p.29]

time, state and space. At first it was developed for one dimensional problems but most
of its applications today are in two or three dimensions. Generally a d-dimensional CA
consists out of four components:

• A regular, discrete, infinite network representing the space structure. The individual
parts of this network are called cells. Mathematically you can represent this by
Zd =: Ω.

• A finite set of elements (Ψ) representing the possible cell states.

• A finite subset ω ⊂ Ω where |ω| = n for every cell in Ω. This is called the neigh-
bourhood and is temporally and geometrically uniform.

• An update function or local transition rule δ : Ψn+1 → Ψ. It is a local, deterministic
and uniform function.

Assume the current timestep to be t. The transition to timestep t + 1 is done syn-
chronously for all cells in Ω. As the update function is deterministic and the update is
done synchronously the global evolution of the CA will always be the same provided that
the initial configuration is identical. [10, 14]

Every finite subset of Ω could define a neighbourhood but the classic neighbourhoods
are the nearest neighbourhoods depending on which norm is used. Let us consider a cell
z ∈ Ω. At first have a look at the 1-norm (∥z∥1 =

∑d
i=0 |zi|)1 and its corresponding

distance function dist1. On the basis of that, the Von Neumann neighbourhood is defined
as NV N(z) = {x ∈ Ω : dist1(z, x) ≤ 1}. Analogously the Moore environment is defined by

1d is the dimension of a general CA, d ∈ Z
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Figure 3: Overview/relationship of the terms agent and environment

the ∞-norm (∥z∥∞ = max{|zi| : i ∈ {1, ..., d}}) as NMO(z) = {x ∈ Ω : dist∞(z, x) ≤ 1}.
Both are graphically illustrated for a two dimensional CA in figure 2. [14]

CA have many applications like in traffic simulation or fluid simulation but certain
capabilities are limited. As the complexity in modern times raised (e.g. robotics, social
science, server-client simulation) and also the computational possibilities increased, a new
type of model was necessary.

2.2 Agent-based modelling

The agent-based model (abbr. ABM) is a very young discipline in contrast to the CA. It
originates from the artificial intelligence research and describes a kind of an evolution of
the CA. A ABM is structured by the environment and individual entities, called agents,
situated in the given environment. Now the term agent is characterized in a general way
as there is no explicit definition so far.

An agent is a system in an environment. The environment is not just the spatial space
the agent is located in, there can be interaction between the agent and the environment.
The latter allows for the usage of the resources of the environment (e.g. input of data
or goods) and consequently the manipulation of those in the environment. Further, an
agent can move freely (depending on the implementation) in space and is an autonomous
object. This means that at every timepoint the agent can decide which option would be
the best (in the implemented sense).

As there are usually many agents in an ABM there arise two questions. Are the single
agents different from each other and do they have relationships? For the first question the
most important fact is that the agents are diverse and heterogeneous. So primarily you
can say every agent is a unique entity but on the other hand there can exist more agents
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with the same or partly the same properties. Those form groups and are (normally)
important for observations concerning e.g. the dominance of different types of agents.
The second question depends on the implementation of a model. The theory allows every
possible scenario, from no relationship to interactions and exchange of goods with other
agents. A graphical summary can be seen in figure 3. Every agent has a limited point
of view, they do not see the whole system, only a part of it in their periphery. If in an
agent based model the agents are computed asynchronous, the simulation of such a model
can generate different outputs in different runs although the initial conditions were the
same. [4, 8]

2.3 Cellular automata vs. agent-based models

After a short introduction in the two types of models we continue by a comparison in
order to work out their important differences. This could also be helpful for choosing one
of the two models for a given task.

So first starting with the environment. The CA always has to be structured in a grid-
like way (transferable on Zd) whereas the ABM does not need any given grid structure.
Second the cells in a CA are locally fixed and only can attain one state. A movement
can only be modelled by the "movement" of a state from cell to cell. This leads also
to a limited movement possibility (usually 1 unit). In contrary, agents can move in the
environment freely and can carry a lot of information / data.

Evolution of the model in a simulation is a time-dependent process. The CA dictates
that this is a discrete step-by-step process following fixed rules which are applied simulta-
neously. This may lead to a deterministic behaviour. On the other hand in an ABM it is
no specified if the time is considered discrete or continuous. However one has to mention
that as the model has to be computed it is only a virtually continuous time scale. The
state transition in this case depends on many factors, just to mention a few like spatial
positions, agent properties, etc.. Because of the asynchronous computation of the agents
in the model this cannot be deterministic.

In general you can work out two "CA vs. ABM statements" describing the main
differences pretty well: standardised strict rules vs. degrees of freedom, simplicity vs.
adequate accuracy. The main questions of interest in both models are the same. Will a
specific model form (agents types or cell states) dominate in the future? Will simulations
have a stable mix of agents in the future, or respectively, will there be a steady state in a
CA? So in the end it is all a question about complexity which model you will choose for
a appropriate representation of a system.

19



(a) Initial configuration (b) Drug gradient

Figure 4: In (a) one can see a exemplary starting configuration where the 65 different
initial cells are marked with different symbols to graphical track the different clonal evo-
lution. In (b) one can see an exemplary drug gradient with the described niche. [7, p.31]

2.4 Agent-based hybrid model

After some theoretical presentation of possible ways for modelling systems, now the hybrid
discrete-continuous mathematical model used in this thesis is introduced. It was developed
and presented by Gevertz et al. in [7] and aimed to model cancer growth processes
while treatment with a DNA damaging chemotherapeutic agent. Thereby, the interaction
between the cells and the different types of resistance is regarded. In the following the
model under study is abbreviated by WhAM.

WhAM is a two-dimensional ABM where the environment is a small slice of tissue with
four fixed points to represent the blood vessels. These are necessary for the oxygen and
drug supply. Their location is fix in every simulation to allow us to draw conclusions about
the different resistance types or drug protocols. Otherwise results could be associated to
the different positioning of the vessels. Also always the same amount of 65 initial cells
are observed, only the mode of resistance and their initial location can be changed in the
case of pre-existing resistance. Then, resistant clones can be placed either very near the
vessels for good oxygen and drug supply or at a intermediate distance. It is also possible
to place them in a position between the vessels to investigate niche formation. The spatial
configuration can be seen in figure 4. All other influences around the tissue and all other
tissue components are neglected for simplicity.

The model is declared as a hybrid model because it has two types of modelling compo-
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nents. The ABM with discrete time steps and variables and parallel the system’s supply
of oxygen and drug is modelled by a reaction-diffusion partial-differential equation. The
resulting continuous gradient is evaluated at the discrete time points during the simula-
tion.

Previous to the presentation of the model equations we shortly mention here the
main results gained from the model simulations. In the case of pre-existing resistance it is
observed that with a low DNA damage repair term the tumor is eradicated, with a medium
DNA damage repair term resistant clones survive whereas sensitive clones die and with a
high DNA damage repair term all clones survived regardless their phenotype. Similarly in
the acquired resistance case. With slow increase of the death threshold all cells died; with
an intermediate increase some of the clones died but a resistant subpopulation emerges
and with high increase the treatment fails as (nearly) all clones survive. Also spatial
dynamics are observed. Cells near the vessels are killed very fast otherwise cells far away
from the vessels or in drug/oxygen niches survive much longer or rest in quiescent states
and emerge later in a resistant tumor.

2.4.1 Model equations

From now on let x = (x, y) denote the location of continuous variables and (X, Y ) defines
positions of discrete objects.

Oxygen kinetics
As declared above all nutrients including oxygen are delivered by the vasculature Vj

2 with
a constant rate of Sξ. The oxygen concentration ξ at location x = (x, y) at timepoint t

depends on the supply by the vasculature if it is close enough (see equation (1)) as well as
the diffusional inflow with diffusion coefficient Dξ. Additionally we consider the cellular
uptake by the tumor cells Ck

3 at this location (see equation (2)) with rate ρξ. All this is
unified in the following equation:

∂ξ(x, t)

∂t
= Dξ∆ξ(x, t)︸ ︷︷ ︸

diffusion

−min

(
ξ(x, t), ρξ

∑
k

χCk
(x, t)

)
︸ ︷︷ ︸

uptake by the cells

+Sξ

∑
j

χVj
(x, t)︸ ︷︷ ︸

supply

.

In this equation appear two characteristic functions for determining the neighbourhood
which are defined below. RC and RV thereby stand for the fixed cell radius respectively

2j indexing over the the vessels V
(X,Y )
j

3k indexing over the cancer cells C
(X,Y )
k
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vessel radius.

χCk
(x, t) =

1 if ∥x− C
(X,Y )
k (t)∥ < RC ,

0 otherwise.
(1)

χVj
(x, t) =

1 if ∥x− V
(X,Y )
j (t)∥ < RV ,

0 otherwise.
(2)

In order to get a unique oxygen gradient one has to define boundary conditions. So in
this case sink-like boundary conditions are used: ∀x ∈ ∂Ω : ∂ξ(x,t)

∂n
= −ϖξ(x, t) 4. The

initial oxygen concentration ξ(x, t0) was determined to get a stable gradient for a healthy
tissue or a tissue with cancer population but no chemotherapeutic treatment.

Drug kinetics
The modelling of the drug supply equation is pretty similar to the oxygen kinetics. Like
the drug concentration γ at location x = (x, y) and timepoint t firstly depends on the
inflow of near vessels and the diffusion. Therefore the diffusion coefficient is depicted by
Dγ and the supply rate by Sγ(t). Here can be remarked the first difference. The supply
rate of the vessels is not necessarily constant in order to have the possibility to test drug
protocols with no constant supply over time. Secondly we have to consider the efflux term.
We have a cellular uptake with a rate ργ but also a proportion of the chemotherapeutic
agent decays represented by the decay rate dγ.

∂γ(x, t)

∂t
= Dγ∆γ(x, t)︸ ︷︷ ︸

diffusion

− dγγ(x, t)︸ ︷︷ ︸
decay

−min
(
γ(x, t), ργ

∑
k

χCk
(x, t)

)
︸ ︷︷ ︸

uptake by the cells

+Sγ(t)
∑
j

χVj
(x, t)︸ ︷︷ ︸

supply

.

(3)
The boundary conditions for the drug equation are the same as for the oxygen and the
initial condition is the start of the treatment which means that drug is only found at the
blood vessels. This leads to: ∀x ∈ Ω \ Vk : γ(x, t0) = 0, ∀V (X,Y )

k : γ(x, t0) = Sγ(t0).

Cell mechanics
In WhAM a cell is represented by its center C

(X,Y )
k (t) and a fixed cell radius RC . Cells

do not have a fixed position, when cells collide 5, two repulsive forces fi,j and −fi,j are
applied to cells C

(X,Y )
i (t) and C

(X,Y )
j (t) to move the cells apart. If cells leave the tissue

4n inpointing normal, Ω the whole model domain
5For i, j cell indices: ∥C(X,Y )

i (t)− C
(X,Y )
j (t)∥ < 2RC
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C
(X,Y )
k (t) cell position Cage

k (t) cell age
Cmat

k cell maturation age Cξ
k(t) level of sensed oxygen

Cγ
k (t) level of accumulated drug Cexp

k (t) time high drug exposure
Cdam

k (t) level of accumulated DNA damage Cdeath
k (t) death threshold

C
(IDc,IDm)
k (host cell index, mother cell index)

Table 1: Legend for (5). Values are observed at timepoint t if it is a time dependent
variable.

domain 6, they disappear in the model. To simplify notation we let Xi := C
(X,Y )
i (t) and

F denotes the constant spring stiffness. Then the most simple case is about just two cells:

fi,j =

F(2RC − ∥Xi −Xj∥) Xi−Xj

∥Xi−Xj∥ if ∥Xi −Xj∥ < 2RC ,

0 otherwise.
(4)

But nearly always there are more cells involved. So let N be the set of all indices where
the associated cells are in the neighbourhood of Xi, then the resulting force Fi acting on
Xi results out of simple vector addition of the forces betwen Xi and Xj ∀j ∈ N \ i.

Fi =
∑
j∈N

fi,j.

The whole mechanic scheme can be seen as a system of overdamped springs connecting
the neighbouring cells. The Newtonian equations control the cells dynamics. This leads
to a representation of the force with a damping constant v and a location tracking within
a small interval ∆t:

Fi = −v
dXi

dt
and Xi(t+∆t) = Xi(t)−

1

v
∆tFi.

The tumor would achieve a stable state the moment when the neighbourhood of every
cell is empty. According to equation (4) every sub forces equal to zero and consequently
the resulting force equals zero, too.

2.4.2 Model dynamics

Ck(t) =
{
C

(X,Y )
k (t), Cage

k (t), Cmat
k , Cξ

k(t), C
γ
k (t), C

exp
k (t), Cdam

k (t), Cdeath
k (t), C

(IDc,IDm)
k

}
.

(5)
In equation (5) you see all the attributes/values of the cell with index k at timepoint
t. Speaking in terms of "sensed" oxygen or drug, the neighbourhood of Ck is defined as

6nucleus once crosses the domain border
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nk
7. In the following the update cycle of a cell (see figure 5) is described and the update

of the cell attributes is defined. This cycle is repeated for every cell in every timestep
in a random order as the agents are computed asynchronous and no cell should have
advantage/disadvantage by positioning.

First step is to determine the oxygen and drug uptake. Thereby the oxygen level is
equal to the oxygen uptake because all of it is used in every iteration. This simply leads
to the summation over the oxygen concentrations in the neighbourhood nk. The drug
uptake is slightly more complicated. First one ensures that the drug does not decline.
Then for every location x in the neighbourhood nk, the uptake is the difference between
the maximal possible uptake and the drug decay. If the uptake sum overall x leads to a
negative uptake this is set to zero in order to hold the steady rising drug level condition.

Cξ
k(t+∆t) =

∑
x

ξ(x, t)︸ ︷︷ ︸
sensed & used

, Cγ
k (t+∆t) = Cγ

k (t)+

max

0,
∑
x

min(γ(x, t), ργ)︸ ︷︷ ︸
uptake

− dγC
γ
k (t)︸ ︷︷ ︸

decay


∆t.

These two values decide the further course. The Cξ regulates if the cell oxygenation
falls under a threshold and consequently changes into a quiscent state which inhibits cell
division. The change of the Cγ value in combination with the duration of drug exposure
determines the DNA damage. This is calculated under consideration of the repair rate as
follows:

Cdam
k (t+∆t) = Cdam

k (t)+

[
max

(
0,
∑
x

min(γ(x, t), ργ)− dγC
γ
k (t)

)]
∆t−pCdam

k (t)︸ ︷︷ ︸
repair

. (6)

If the DNA damage exceeds a certain fixed death threshold (Cdeath) the cell dies. In
the case of pre-existing resistance the death threshold of some cells is higher by a factor
compared to the others, but this value cannot change over time. In the case of acquired
resistance this value is not fixed. Under given conditions the threshold can be computed
as follows: 8

Cexp
k (t+∆t) =

Cexp
k (t) + ∆t if Cγ

k (t) > γexp,

Cdeat
k (t) otherwise.

7nk =
{
x : ∥x− C

(X,Y )
k ∥ < RC

}
8texp: minimal time of high drug exposure for more resistance, γexp: barrier of high drug exposure
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Figure 5: Update cycle for a cell [7, p.8]

Cdeath
k (t+∆t) =

Cdeath
k (t) + ∆death if Cexp

k (t) > texp,

0 otherwise.

The cell age is updated respectively by the timestep if it does not die. So there is a last
case to discuss, the cell division. This happens if the cell reached its mature age, it is well
oxygenated and not overcrowded. The latter means that only a certain amount of cells
can be located in a surrounding of the potentially dividing cell. If these conditions are
fulfilled, the cell will undergo mitosis and will place one daughter cell at the location of
the mother cell and the other at a random angle around the mother cell. At this point
the cell mechanics start working to stabilize the tumor. In this proliferation process the
mother passes the DNA damage and the death threshold but naturally the amount of
drug is bisected.

Some last words about the initial configuration of the cells which is set as follows:

Ck(t0) =

{
(Xk, Yk), 0,Mk,

∑
k

ξ(x, t0), 0, 0, 0, Tk, (k, 0)

}

Going through the values, the cells have a predefined location (Xk, Yk) and start with age
zero. The maturation age Mk is drawn from a uniform distribution [0.5×Age, 1.5×Age]

with Age being the average maturation age. The initial sensed oxygen level is set to the
cell neighbourhood of the stable gradient and all drug concerning attributes are set to
zero. All cells start with the same death threshold Tk and the unique cell index is set to
(k, 0) as the mothers of the initial cells are unknown.
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2.5 Comparison with an evolutionary model

The model we will analyse has been introduced in detail, now follows a short overview
over another approach dealing with the problem of drug resistance. A model dealing with
evolutionary dynamics of cancer in response to targeted combination therapy is presented
in [6]. Unlike than in WhAM the model neglects the spatial structure and environmental
influence factors and focuses on the tumor size and the treatment with more than one
drug (to target different pathways). It is a multitype branching process in continuous
time based on empirical obtained probabilities. In comparison to the WhAM model,
which focuses on empirical values (e.g. biological data), probabilities (e.g. the order
the agent update is executed) and fixed cell rules, the evolutionary model only stands
on probabilities. For the sake of convenience the cross-resistance phenomenon and the
loosing of resistance by mutation is neglected.

We shortly summarize the major results for a dual treatment. Comparison with the
WhAM model will be neglected as this does not focus on therapy with more than one
agent. Even though in medical practise for economic or medical reasons a sequential
therapy is used, the model precludes any chance of cure even in the case that there is no
possible mutation that confers cross resistance. One would assume that the simultaneous
therapy would deliver a promising outcome but only if there is no mutation the dual
simultaneous therapy will eradicate the tumor. Even if there is only one possible mutation
conferring cross resistance there is nearly no chance for tumor eradication. If still this
unlikely eradication happens, the remission is only shortly living. Furthermore simulations
with three therapeutic agents led to the same result.

Model
The possible combinations of resistance in the system with D different ordered drugs are
modelled with a binary string of length D. 0 stands for sensitivity and 1 for resistance.
So let m ≤ D define the quantity of resistant drugs for a cell and let Dr = {i1, ..., im :

1 ≤ i1 ≤ ... ≤ im ≤ D} be the set of the indexing drugs a cell is resistant to (but not to
the other D −m). Then for all sets s ∈ P (D \Dr) the ns describes the number of point
mutations that have the potential to confer resistance to all drugs in s and u is the point
mutation rate. A point mutation is a single nucleotide base change, insertion, or deletion
of the genetic material and the point mutation rate is a measure for the frequency how
often a point mutation occurs over time. Point mutations happen during the cell division
and the model assumes that the resistant mutation occurs in one daughter cell and the
other stays in the same state as the mother cell. If both daughter cells should have the
possibility of mutation, in the model the mutation factor simply is doubled.
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Figure 6: Illustration for the 4 possible resistance state proceedings in a model concerning
two different drugs. co. describes the complement of 1 and the sum of all the other
probabilities of the possible next state for a current state.

The model contains two stages. Stage 1 is the pretreatment where the model is
initialized with only sensitive cells (s = (0, ..., 0)) in place and the tumor expands at
rate r = b−d9. The second stage starts the treatment when the cells reached a number of
M . In this stage fully resistant cells (those with resistance profile (1,...,1)) continue with
rates b respectively d, all the other get new rates r′ = b′ − d′ < 0. The paper continues
with analysing the different branches, especially concerning the existence possibilities for
a total multi resistant clone (resistance profile (1,...,1)) which is equal to the treatment
failure.

3 Analysis and results

Treatment (or also without pressure) leads to the development of new cell features, for ex-
ample resistance or the possibility of spreading by metastatic behaviour. This may result
in differentiated cells with new phenotypes. Ultimately, this causes a heterogeneous cell
population and consequently difficulties in the therapy. The phenotype diversity causes
different responses of the subpopulations to the chemotherapeutic pressure. Our aim is
to understand the multiple cell lineages and to analyse how the surviving subpopulations
should have been treated. [1]

The aim of this work is to develop a routine analysing the output of WhAM to generate
9b defines the cell division rate and d the death rate
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lineage trees. This hierarchical structure is often used in biology and medicine to encode
cell division events over time. The function generates among others the complete lineage
trees of the tumor initiating cells (TIC). Every single branch of a tree describes one
specific lineage. In contrast to the structures displaying the complete tumor growth, the
partition into the single TIC for illustration and analyse gives the possibility to distinguish
between the several subpopulations (phenotypes) and their behaviour. Particularly, in this
work, the advantage of analysing the lineage trees is to draw spatial conclusions why this
specific clone behaved as simulated. To compare cell attributes one can define a domain
partition. The key aspect is to partition the tissue space in spatial levels describing areas
with similar supply of oxygen and drug to analyse the impact of niches or far distances
to vessels on the clonal evolution. There are of course more possible distance functions
assigning to each location in the tissue a value for the just mentioned purpose. So let d be
the euclidean norm in two dimensions, X = (X, Y ) an arbitrary location in the tissue and
let V = {v1, ...v4} be the set of the locations of the four vessels. Then the used distance
function dist is as follows:

dist : [−65, 65]× [−65, 65]︸ ︷︷ ︸
tissue space

→ R, X 7→ min
v∈V

(√
d(X, v)

)
. (7)

The reason why the square root of the Euclidean distances (or the minimal distance)
between a point and the vessels are taken is because in a healthy tissue the oxygen/drug
firstly spreads in an area of a circle, consequently the drug/oxygen is distributed quadratic
concerning the radius. From now on the term distance describes the outcome of dist for
the position of a cell in the tissue. This holds in the text as well as in the illustrations.
This distribution of the distance function is illustrated in figure 7. As the maximal value
that can result out of the dist function (this value is taken as the tissue is represented
with a compact set) is 7.9774, for the analyse the domain is partitioned in eight different
intervals respectively defining the eight categories cells are ordered to. Except of the last
interval, all of them evenly cover 1 distance unit (meaning [0,1) refers to category 1, [1,2)
refers to category 2 and so on). The higher is the distance category (depends on in which
interval the distance value (equation (7)) is located) of a cell, the lower is the drug/oxygen
uptake and so the cell is located in a spatial niche. The higher the total population around
the vessels, the lower is the category number already touched by the niche phenomenon
as the drug/oxygen is broadly used by the cells near the vessels.
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Figure 7: The figures are generated with the use of the implementation of function dist
(see appendix). (a) Graphical illustration of the dist function. (dist(30)) (b) The used
levels of distance (in the sense of equation (7)) in this paper to categorize cells. It is a
partition of the domain in nearly 8 equidistant intervals. (dist(8))

3.1 No drug resistance

In order to analyse the behaviour of the tumor evolution in resistant systems during the
therapy with a chemotherapeutic agent one also has to document the case of no resistance.
Otherwise no conclusions can be drawn of the impact of the different types of resistance
on the clonal evolution with anti-cancer medication. Therefore WhAM was run in the no
resistance mode and with a DNA repair rate of 0.015% (same repair rate in all cases).
The simulation in this and all other cases is considered until iteration 20000.

In figure 8 you can see shots of the tumor tissue at certain time points. In figure
8(a) you can see the distribution after the first pass of the loop. So in the beginning the
tumor grows steady with many different clones (see illustration 8(b)) until the cells near
the vessels are killed and the cells in the drug niche for now survive (compare figure 8(c)).
The tumor is diminished further until one strong clone (clone 25) arises from the drug
niche and starts spreading which can be seen in figure 8(d). But in the end this clone
dies out as well because there is no resistance to the drug which is equal to the complete
tumor eradication (iteration 6607).

At the beginning the tumor can grow quickly because it is well oxygenated (see figure
5: the cell has to be non-hypoxic in order to proliferate, in the WhAM tissue plots hypoxic
cells are represented by a white circle around them) and drug has not reached all cells.
The latter takes more time in average if the tumor, like in this case, grows fast because
the drug is distributed over more and more cells. The drug is indeed halved but as the
rise of damage depends on the change in drug and the current DNA damage there is no
gain from the drug halving (compare equation (6)). In figure 9(a) we can see that the
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(a) (b)

(c) (d)

Figure 8: No resistance: Illustration of the tumor evolution.

first clones are dying out around iteration 2500. In this plot there is a noticeable trend.
The higher the distance to the nearest vessel, the more likely the clone survives longer.
The initially surviving of the cells in the niche refers to the less drug uptake but why
the tumor can recover and grow again and why are they eradicated later? The reason is
the diminished number of cells. This leads to a further diffusion of the drug because it
is not used by cells in between. As a result the area of low drug supply shrinks and the
incremental term of the DNA damage equation essentially overpowers the repair term.

Now have a closer look on the clone 25 as the longest surviving. Its lineage tree (or
trace tree) can be seen in figure 9(b) (and also its symbol in the other plots). There
may be three reasons why this clone survived that long. The first is the optimal initial
position concerning the complete tissue In figure 8(a) we can see that the initial the cell
25 is placed right in the middle of the niche between the four vessels. This is important
for the primary surviving of the cell and for the growth of the clone. The second reason
is the protection of the clone by the clones represented via the blue and pink diamonds in
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(a) (b)

Figure 9: No resistance: (a) Illustration of the relationship between the distance of the
initial cell (in the sense of equation 7) of a clone and the extinction of the complete clone.
(b) Lineage tree for the initial cell 25. It is the longest surviving before tumor eradication.

the WhAM tissue images 8. They broadly absorbed the drug before it could invade in the
niche and reach clone 25. The last point is coincidence. The new cells and consequently
the movement of the tumor by the cell mechanics lead cell 25 completely in the niche.
Afterwards, approximately from iteration 3000 on, the clone strongly increased which can
be seen in the trace tree. This is a result of the cease of the other clones so there is
much less overcrowding. Nevertheless this only prolongs the survival of clone 25. The cell
protection is lost, the drug is invading in the niche and the number of cells is not rising
fast enough.

3.2 Pre-existing resistance

As already addressed in section 2.4, the pre-existing resistance in WhAM is modelled so
that two of the 65 initial clones have a higher death threshold (five times higher) than the
others. This ability is inherited and during the treatment the death threshold cannot be
heightened. Moreover there are three possible initial configurations (near, intermediate
and far away from the vessels) where the resistant clones are located at. Since in all the
three simulated initial configurations the same progress and result was observed, only the
case of the resistant cells near the vessels is presented.

At first all the clones evolve like in the case of no resistance. They spread and remain
in the niche until they die except for the two resistant clones. Those do not response
to the drug treatment and eventually populate the complete tissue space. We present a
similar analysis as in the case of no resistance, both in terms of resistant and non-resistant
cells evolution.
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Figure 10: Pre-existing resistance: (a) Illustration of the relationship between the distance
of the initial cell (in the sense of equation (7)) of a clone and the extinction of the complete
clone. (b) Location of the initial cells of the long surviving clones. (c) Location of the
initial cells of the short living clones. (d) Trace tree of resistant cell 54.

The same picture of the relationship between the distance to the nearest vessel and
the clonal survival is observed. In figure 10(a) one can see the exact same trend as in
the non-resistant case but the two resistant clones (those with the lowest distance to
the vessels) survive until the end of the simulation. In the tissue space one can see in
figure 10(b) the location of the longest surviving clones and in 10(c) the shortest surviving
clones. The clones dying first are located at the vessel (see figure 8(a)). The trace tree
of one of the resistant surviving clones, namely clone 54, can be seen in. 10(d). The first
sign of resistance was the rather constant iteration (except generation 1 due to display
problems) until proliferation and no cell death until about iteration 8000. This speaks
for the division right after the maturation age is reached. Afterwards the cell division
gets irregular and also some cells "disappear". The term is set in quotes because most of
the cells do not die but are not considered in the trace tree any more because the cells
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Figure 11: Pre-existing resistance: Digram plotting the number of cells in the DNA
damage levels against the death threshold levels of the cells in the last three generations
of cell 54. (a) pre-previous iteration; average cell age: 1664 iterations. (b) previous
iteration; average cell age: 2419 iterations. (c) generation in last iteration; average cell
age: 4364 iterations.

are pushed out of the watched domain. In the introduction of WhAM this was equal to
the death of the cell. This explains the ending of some lineages. There are two possible
explanations why the reproduction cycle concerning the number of iterations has become
unrhythmic. Both of them are related to the rapidly growing population. On the one
hand at the margin of the tissue the cells slip in a quiescent state as result of the low
oxygen supply (according to figure 5 this blocks the potential cell division), on the other
hand the overcrowding of the space. In figure 11 the distribution of the cells according
to their DNA damage level in final iterations is presented together with two ancestor
generations. So for example in figure 11(b) are considered only the ancestor cells of the
cells alive in final iteration. Speaking of the generations in time we see a rising generation
age and also a small shift of the damage level towards the death threshold. But even if
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Figure 12: Pre-existing resistance: (a) Lineage tree of longest surviving clone without
resistance, cell 25. (b) Histogram of the first 10 generations of cell 25 according their
participation in the distance levels 1-8 presented in figure 7(b). (c) Lineage tree of cell
45. (d) Generation distance level histogram for cell 45.

the DNA damage comes near the death threshold level or even exceeds it, the dying cells
would be immediately replaced by new cells. As a result of the high population number,
there will be cells which are slightly or not at all reached by the drug and so cells with a
low DNA damage will be generated. Consequently the pre-existing resistance results in a
complete treatment failure.

Now comparing this resistant tree to two non resistant clones, the longest non resistant
surviving (clone 25) and a short living (clone 45). In figure 12 the lineage trees are
illustrated. Initially focus on the less complex tree of cell 45 (figure 12(c)). The cell starts
dividing but all the cells of the clone die nearly at the same time. This shows that the
cells of the clone got the same amount of drug and because of no resistance they died very
early. Now the more interesting lineage tree of 25 (figure 12(a)). Here in the beginning a
regular reproduction is observed but earlier than the resistant clone 54 (about iteration
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1000) this order disappears. This results because clone 25 was in a spatial niche and
also the surrounding clones are long living (see figure 10(b)). The low drug supply in
the niche generates a low death rate and leads to an early overcrowding. Until there is
more space again, the process of cell division is inhibited. In the early iterations of tree
54 this behaviour is not observable. As the initial cell is placed near the vessels and the
non resistant clones around it die very early (figure 10(c)) space is free and the dividing
is continued. The first cells of clone 25 are dying from iteration 3000 which is identical to
the non resistant case. This fact as well as nearly the complete lineage tree is so similar
to the non resistant case because clone 25 never came into contact with the resistant ones
and died before they spread over the tissue.

Additionally to the previous observations in subsection 3.1 of clone 25 and clone 45
we want to point out the spatial "movement" of the generations. For clone 54 this
consideration is not that interesting, because of the resistance, the clone survives anyway.
The diagram plots for the first 10 generations (if it survives that long) of the spatial
distribution of the generation in 8 distance levels (according to figure 7(b)) is shown in
figures 12(b) and 12(d). In the simple case of clone 45, as a representative of fast dying
clones, we see in figure 12(d) that the initial cell is located relatively near the vessels,
namely in distance level 3. In the following two generations the cells move in higher
distance levels (4,5,6) but this was not fast enough and the clones could not escape the
high drug supply. The last generation is located in level 5 and the clone perishes there.
Now comparing to figure 12(b) which displays the same plot for cell 25. As we already
know it starts in the niche (level 7) and in the early beginning (since generation 2) already
populates the highest distance level 8 and never really reaches level 5 or lower. As one
can see the cell explosion after generation 5.

3.3 Acquired resistance

Acquired resistance, the second possible kind of resistance implemented in WhAM, was
modelled as follows. The death threshold level (the DNA damage a cell can manage) is
not like in the other case fixed, but a variable (once gained resistance cannot be lost for
example by another mutation). The rise is attached to the condition that the exposure
time with drug higher than a level exceeds a certain duration. For the sake of convenience
the step the threshold rises is at all times and for all cells the same constant ∆death. Now
we discuss two cases, differing in the amount of threshold gained per step, as they deliver
completely different results.
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(a) (b)
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Figure 13: Acquired resistance case 1: (a),(b) Tissue image at iteration 3500 respectively
iteration 10500. (c) Illustration of the relationship between the distance of the initial
cell (in the sense of equation (7)) of a clone and the extinction of the complete clone.
(d) Spatial movement of the longest lineage of 25. The first green circle stands for the
beginning location, every further red circle is the position after 500 iterations later. The
second green circle stands for the end position.

Case 1: ∆death = 0.000025

Comparing the figure 13(a) to the illustration 8(c) in case of no resistance the timepoint
when the first wave of death kicks in delays about 500 iterations. Occasional some cells
survive also in the drug exposed regions at first. But gradually the same course is pursued
which means that step by step all but one clone dies out, clone 25 recovers temporarily
but in the end also is diminished further and further. The main difference so far is
the timescale which is prolonged. This also reflects in the distance-survival plot (see
illustration 13(c)). The survival trend concerning the distance (in terms of equation (7))
and also the level of first deaths nearly stays the same as in the non-resistant case, but
there is a wider distribution regarding the surviving iterations. In the simulation the clone
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(a) (b)

Figure 14: Acquired resistance case 1: (a) Death threshold plotted against DNA damage
for the longest surviving lineage of clone 25. (b) Death threshold plotted against DNA
damage for the longest surviving lineage of clone 54.

25 survives until the end but only with one hypoxic cell which is located in the highest
distance class and consequently deeply in a drug niche. In figure 13(b) you already can
see the final tissue overview already at iteration 10500. Because in this class of resistance
the death threshold additionally varies to the DNA damage it is interesting to have a look
at the relationship between them for some certain lineages. Maybe this also could give
clues why clone 25 has not died so far.

In figure 14 the information is shown for the surviving lineage of 25 and the longest
surviving lineage of a dying cell 54. The circles in the plot stand for the initial cell at
the beginning, a proliferation within or death at the end of the cell lineage. The graph
is generated out of the given data from WhAM. In the used simulation the data was
saved to portrait the current state of the tissue and cells every 100 iterations. Between
these data points every 100 iterations the graph is linearised. This accuracy is absolute
adequate for this reflection, if not the simulation has to be done with more saving steps.
Naturally this leads to a worse runtime of the simulation and the analysis. First discuss
the plot for the clone 54 (see figure 14(b)) as a representative for a clone with a initial
position near the vessel. As a result of this, the clone (and so the cells of the considered
lineage) from the beginning and the complete lifetime is under high drug exposure. This
leads to a sustained death threshold increase right from the beginning. The needed drug
exposure level of 0.01 is overrun right away and at a high level, so that halving after
proliferation does not decrease the level. This increase is not fast enough to escape death
and so the lineage and the clone dies. Interesting is that the slope of the DNA damage
graph slowly falls within time in 14(b). The earliest decrease after the first proliferation
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is related to the rising number of cells and so less drug can be sensed by the lineage. The
second decrease after the second proliferation is the result of a greater minimal distance to
vessels, although there are less cells around the considered cell. This also is an indicator
that location (respectively distance to the nearest vessels) is the most important factor
for drug supply and DNA damage. In the end, clone 54 had an advantage over other cells
as it is located slightly further for longer survival, this is because the instant resistance
gain was superior to the faster DNA damage which led to slightly longer survival.

Now have a look at the longest lineage of clone 25 (see illustration 14(a)). In the early
time the death threshold curve as well as the DNA damage curve do not join. This is
justified by the fact, that the drug needs time to diffuse to the cells in the niche. Important
to notice is the earlier (but minimal) rise of the DNA damage because the drug exposure
must be high and long enough to develop resistance. After the drug has accumulated
strong enough, the lineage over the whole time linearly acquires resistance. In the early
segment also a frequent proliferation can be seen accompanied by a strongly rising DNA
damage. Both stops after iteration 2000 where the DNA damage further declines. The
cell is surrounded by other cells/clones and so shielded from the drug. On one side, the
cell cannot divide due to overcrowding, on the other side the fraction of repaired DNA
damage is greater than the gained drug in this period of time. Remarkable is that the drug
input is not zero, in this scenario the DNA damage would fall stronger. This trend finds
an abrupt end (near iteration 4000) when the first death wave clears the tissue around the
niches. The protective shield is destroyed and immediately the cell can divide as there is
enough space and the maturation age of course already was reached. The death wave of
the other clones leads to more drug input which instantly leads to an increase of DNA
damage. This same process can be seen later around iteration 6000 but only with cells
of clone 25 as all the others are eradicated already. This second decline stops at after
500 iterations for the simple reason that there are not enough cells as a shield. At this
point the cell already reached its final position which can be seen in the plot of the spatial
movement of the watched longest cell line (see figure 13(d)). Here it is also clear that the
longest cell line walked through the entire niche in the most distant area. The cell from
now acts in a hypoxic state which prohibits the proliferation. After this timepoint one
indirectly sees a stabilisation of the drug gradient. At iteration 11000, the drug uptake
nearly was sufficient enough to kill the cell and at iteration 14000 the fraction of repaired
DNA damage was higher than the sensed and used drug in the process of stabilization.
At the end of the process the drug gradient will have approximated the same state as
if there would be no cells in the tissue (see illustration 4) and not more drug will arrive
to the cell because of the drug decay (metabolism). The cell is going to regenerate to a
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Figure 15: Acquired resistance case 2: Illustration of the relationship between the distance
of the initial cell (in the sense of equation (7)) of a clone and the extinction of the complete
clone.

level that the repaired fraction of the current damage is equal to the constant sensed drug
uptake.

As only one cancer cell is left, it appears that the treatment was successful (remission)
but as soon as more oxygen in this tissue area would be supplied a very highly resistant
clone will spread and lead to a very dangerous recrudescence.

But how could the last cell have been eradicated? First idea is to diminish the resis-
tance gain. This would only be possible by reducing the drug supply to a level that the
cells would not even get in danger to die. This would lead to a worse result. The second
option is a higher drug supply after the other clones were eradicated. This would lead to
a further diffusion (if the decay rate would stay the same) and so the drug uptake (and
consequently the DNA damage) would rise and the death threshold would be exceeded
for a successful treatment. In order to protect the organism, a high dosage would only be
used at the end for a short period of time. This short high dose treatment for example
would be sufficient in iteration 10500 as the cell nearly died.

Again as in the other cases three factors were responsible for the survival: initial
position, protection by surrounding cells and the spatial niche.

Case 2: ∆death = 0.000059

As the heading of the paragraph already notes we discuss in this segment the case of
acquired resistance but with a higher amount of resistance gained in each step. In this
mode of resistance we know that the initial distance (see equation (7)) does not play the
same role as in the other modes (see 15). Nevertheless all the last surviving clones started
in the upper half of the complete distance interval. Explicit in 16(c) and 16(d) one can
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Figure 16: Acquired resistance case 2: Tissue condition over time.

have a look at the first dying and the longest surviving clones. Here one sees how both
close and far distant initial clones die in the early stage of the simulation. Of course the
first deaths still survived longer than in all other modes. The same in the case of long
surviving clones whereas all the final living clones started around the niche. In illustration
16(a) we can see the results of the first stronger death wave. This could not strike as in
the other cases as a result of the stronger death threshold gain. In the further course a
very strong heterogenization took place which lead to the final picture of the simulation
in iteration 20000 in figure 16(b).

At first the longest lineage of clone 46 (see illustration 17(a)) is compared to that in
case 1 with longest lineage of clone 54 (see figure 14(b)). The clones nearly have the same
initial position and both hardly moved in the tissue. This results in a similar DNA damage
and death threshold graph. Here one can nicely see that the stronger death threshold gain
resulted in a longer survival of about 1000 iterations. The second presented lineage (and
also the longest lineage of the clone) also shows more clones but are "killed" from the
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(a) (b)

(c) (d)

Figure 17: Acquired resistance case 2: Death threshold plotted against the DNA damage
graph for lineages for one longest (or the longest) lineage of the clone.

simulation. Therefore from figure 17(b) and 18(a) one can view that the DNA damage
is far away from the threshold level. The reason can be found in the movement plot of
the lineage. There you can see that the lineage is slightly pushed out of the watched
domain and consequently is no longer considered in the simulation. This happens not for
a single clone but several, which means the tumor is much more aggressive from what the
simulation shows.

Now an example for a weakly surviving clone can be found in illustration 17(c). We
neglect the early behaviour as this was already described with a sample clone before. The
interesting part is the period of the impending death between iteration 6000 to 12000.
In this period the cell is located in the wild area south of the vessel in the spatial plot
18(b). The lineage "fights" for survival and finally escapes the almost sure death because
the highly proliferative clone 25 pushes just a little bit further from the vessel. This was
sufficient enough to stop the rise of the DNA damage and at last generates a location
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(a) (b)

Figure 18: Acquired resistance case 2: Movement of explicit lineages of clone 62 respec-
tively clone 18.

where the DNA damage and the repair is balanced. The reason why this lineage survived
is the high proliferation rate, so the drug is partitioned every time in more clones. This
rapid division bisects every time the drug level but never deceeds the level for death
threshold gain. The constant reproduction of the cells of clone 18 in the late phase delays
the process of killing by the drug until clone 25 is saved. In this critical phase hardly
a lineage survived. Just consider the respective trace tree in figure 19(a). Little before
iteration 6000 it is clear that nearly all lineages die out. As the cells are not scattered,
they nearly have the same DNA damage - death threshold plots but in the critical phase
most (especially the edging and less distant) were not affected.

Now let us consider the strongest clone in the tissue, clone 25. As in all the other
simulations this clone invades the niche and from then on completely spreads through the
tissue. In figure 19(c) one can see between iteration 6000 to 14000 a population explosion.
From then on the proliferation rate is much less. Only if the tissue is not overcrowded due
to the death of other clones, mechanical movement or when scattered cells die, the cells
divide to fill up the tissue again. In figure 17(d) one can see the diagram for a lineage
completely moving through the niche and staying in the highest distance level. One can
recognize the often observed "wave phenomenon" due to overcrowded protection and the
drug niche. The lineage never was in danger of dying because of how its death threshold
advance against the DNA damage gained in the niche before population spread.

We now present a comparison between the location of the first 10 generations for clone
18 and 25 (histograms see figure 19). Both clones start at a similar position, 6 respectively
7. We already see for the strongest surviving clone little advantage. The most important
proliferations are the first ones, they strongly decide in which direction the clone will
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(a) (b)

(c) (d)

Figure 19: Acquired resistance case 2: (a) Lineage tree of clone 18. (b) Histogram of
the first 10 generations of clone 18 according their participation in the distance levels
1-8 presented in figure 7(b). (c) Lineage tree of clone 25. (d) Histogram of the first 10
generations of cell 25 according their participation in the distance levels 1-8 presented in
figure 7(b).

evolve. As we see in figure 19(d) already in generation 1 clone 25 settles the highest
distance level and not until generation 5 levels lower than 7 are colonized. As we would
extend this histogram for all generations, all the levels would be touched by the strongly
dominating clone. In the weakly surviving clone 18 we see in figure 19(b) the exact
contrary movement in the early stadium. Already in generation 1 the movement towards
the vessels begins with the advance in level 5 and in generation 5 in level 4. In the higher
levels (5-6) since iteration 8 the number of cells decline. If we would further protocol
these histograms over generations we would observe a further shift of the histogram to
the lower left side.
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3.4 Discussion

In this work clonal and lineage analysis were performed on a modified output of model
WhAM. The idea was to challenge that mostly all the cells of a clone behave the same way.
Simulations were performed and evaluated. All of them differ in the combination between
the mode of resistance, the DNA damage repair rate, the initial positioning in case of
pre-existing resistance and the gain of death threshold in case of acquired resistance. In
the presented variations all possible final outcomes occurred. The successful treatment in
case of no resistance, the nearly successful treatment in case of weak acquired resistance
and the treatment failure in the pre-existing and strong acquired resistance case.

We found that clone 25 is quite strong, indeed we compared its lineage trees in the
different cases. The trees can be partitioned in three segments. In a first one all trees
are nearly identical in the early phase. In the mid phase they differ concerning the
proliferation rate or survival time. The end phase is the most different. Graphically
this means more dense cell points/lineages, but in general the proportions of the trees
preserve in the different cases. The first segment is mainly controlled from the initial
positioning as in every case the cells can tolerate some DNA damage. Since this is always
the same, the early stage results in nearly identical trees. The second segment is driven
by ability. The ability (the type of resistance) additionally to the early positioning leads
to a different survival in the most critical mid phase. In the late phase we only recognize
the manifestation of the actions in the critical phase. Important is that this is not a clone
25 exclusive observation.

A strong focus was the local positioning of the initial clones with respect to the clonal
evolution. The outcome showed different key points depending on the mode of resistance.
In the pre-existing case, the position of the initial clone plays no role. All the clones except
of the two resistant ones behave the same way as in the case of no resistance. So the local
movements and positioning do not affect the result because in the no resistance case all
clones died. The opposite occurs in the acquired resistance case. Initial positioning and
movement is important for the survival and the strength of the surviving clones. The
death threshold gain plays a key role.

Two general statements that at more opportunities came up. The first one is the more
likely survival of high proliferative clones. To point out is that this is not owed to the drug
halving during division. It does not matter how high the drug level is already. The second
annotation is, that in all the observed lineages in the case of pre-existing resistance, once
the death threshold rise started it never stops. This is founded on the fact that the needed
drug level is so minimal and even in the niche more drug arrives than the halving could
get rid of.
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4 Prospect

In this thesis lineage trees were generated based on model WhAM and these trees were
analysed. The quantity of trees one can compare is strongly limited and secondly human
activity is error-prone. Another problem is the displaying of complex trees, one would
need really large surfaces to spot details. In order to solve problems it would be great to
transfer the analysing of lineage trees on a machine routine. This would give the possibility
to compare much more and complex lineage trees without mistakes (if the routine is
implemented correctly) and thereby can recognize patterns. The main difficulty is to
develop a proceeding to compare lineage trees. One possible solution is presented in [12] by
introducing a metric and in the end remains one ratio classifying the similarity/difference
between two lineage trees. We now describe briefly the method developed in that paper.

First step was to define the space of labelled but unordered trees (T ) for the algorithm.
Therefore an unordered but labelled tree T = (V,E, ν, σ,Σ) was defined whereas V and E

describe the nodes (cells) respectively, the directed edges. The function ν : V → P2(V )

allocates every node its descendants. Σ is the set of all possible labels and σ : V → Σ

assigns every node its label (cell attributes). Second was to define a metric MaxSimilarity

(computation of maximal similarity common subtree) on T to obtain a metric space
(T ,MaxSimilarity). In the paper they experimented with different types of metrics.
After underlying conditions are formalized the tree clustering algorithm is reviewed by
using a k-mean/k-median algorithm. The aim of this algorithm is dividing a dataset
A = {a1, ..., an} into non-empty and disjoint subsets Bi (i ∈ {1, ..., k}) with ∪iBi = A.
Accompanying to the subsets there is a set of centroids ci. This partition is done by
minimizing the squared sum of the distances between the aj ∈ Bi and its belonging
centroid ci.

This strategy could be transferred to lineage trees produced here. One could for exam-
ple define the centroids as trees with a different long survival or different high proliferation
rate and then let the algorithm work on the set of all initial cell trees. What we get as a
result are clusters with the same properties and so afterwards conclusions can be drawn
for example if the spatial structure is the reason for the resulting development of cells or
the type of resistance or both. A key role also would be that the conclusions we draw
from the lineage trees are more representative as a result of the much higher amount of
analysed data.

In the paper and also in the analysis of WhAM in [7] so far was only dealt with
a continuous drug supply of one single therapeutic agent. We saw that in nearly all
cases that the treatment with the drug develops resistance and gives rise to a resistant
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subpopulation and the tumor cannot be eradicated. In section 2.5 a model approach
was presented trying to avoid these problems by the usage of more than one drug with
different pathways, so if the cells gain resistance to one drug the other can still kill the cells.
The results of this model were not promising either. Once there is one single possibility
for a mutation generating cross-resistance to all drugs, there is nearly no chance for the
treatment success. Beside the number of different drugs the second possibility of change is
the time treatment protocol. The model WhAM allows different drug treatment protocols
with respect to time and dosage of the drug. This can be seen in equation (3) because the
drug supply rate is time dependent. Who is further interested in this kind of modification
of WhAM should have a look at [9].
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5 Appendix

This section contains the generated MATLAB code for the analysis of the lineage trees.
Therefore also the model WhAM was modified by the introduction of two new data
storage matrices containing the history of important attributes by cell which are saved in
the end. The following functions work on this new data and the anyway existing output
of model WhAM. Also the code of the function generating the illustration for the distance
levels/gradient is added.

1 function draw_cell_trace_my_version_2( cells, pathname, fig_mod, ...

2 fig_mod_2, save_mod, text_mod, doc_mod )

3

4 % Function for analysing the output of the modified model WhAM

5 % ("modelWhAM_updated_my_version.m") regarding the clonal evolution. The

6 % function delivers the lineage trees containing the input cells and

7 % generate further data of interest.

8 %

9 % Input arguments:

10 % - cells 1xn vector with cell ID's of the cells to be tracked

11 % If a empty vector is given the surviving clones are used.

12 % default [] All cells alive in final iteration.

13 % - pathname path of the output folder of

14 % "modelWhAM_udated_my_version.m"

15 % - fig_mod 0 every tree has its own figure

16 % 1 one figure containing all trees

17 % default 0

18 % - fig_mod_2 0 not

19 % 1 tree edges have same color as in model

20 % default 1

21 % - save_mod in case of fig_mod = 0

22 % 0 normal

23 % 1 x - axis stretched

24 % 2 y - axis stretched

25 % 3 grand

26 % default 0

27 % - text_mod 0 off (text and colored input values)

28 % 1 all cellID's

29 % 2 cellID's, threshold, damage of the last branch cell

30 % 3 both 1 and 2

31 % default 0

32 % - doc_mod document showing data for last three generations

49



33 % and overview for important inital cell values

34 % 0 off

35 % 1 on

36 % default 1

37

38

39 % set defaults

40 if( ~exist('fig_mod','var'))
41 fig_mod = 0;

42 end

43 if( ~exist('fig_mod_2','var'))
44 fig_mod_2 = 1;

45 end

46 if( ~exist('save_mod','var'))
47 save_mod = 0;

48 end

49 if( ~exist('text_mod','var'))
50 text_mod = 0;

51 end

52 if( ~exist('doc_mod','var'))
53 doc_mod = 1;

54 end

55 if( ~exist('doc_mod_2','var'))
56 doc_mod = 1;

57 end

58

59

60 % cells a row vector

61 if( ~isrow(cells) )

62 cells = cells';

63 end

64

65

66 % get constants

67 ncc = load([pathname,'/number_cancer_cells.txt']);

68 Niter = size(ncc,2)-1;

69 paramInt = load([pathname, '/paramInt.txt']);

70 num_init_cells = paramInt(5);

71

72

73 % loading files

74 bdh = load([pathname, '/birth_death_history.txt']);

75 tdh = load([pathname, '/threshold_damage_history.txt']);
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76 cells_mother = load([pathname, '/cellsMotherID_', num2str(Niter), ...

77 '.txt']);

78

79 % cells default

80 which_cells = 0; % information for naming the plot

81 if( isempty(cells))

82 % cells alive in last iteration

83 cells = find(bdh(3,:) == 1);

84 which_cells = 1;

85 if( isempty(cells))

86 % tumor is eradicated: last surviving cell(s)

87 cells = find(bdh(2,:) == Niter);

88 which_cells = 2;

89 end

90 end

91

92

93 % get initial mother for every cell ID

94 init_mothers = find_init_mothers( cells, cells_mother );

95 init_mothers_unique = sort(unique(init_mothers));

96

97

98 % main

99 if(fig_mod == 1)

100 m = floor(sqrt(size(init_mothers_unique,2)));

101 n = ceil(sqrt(size(init_mothers_unique,2)));

102 subplot(m,n,1);

103

104 for i = 1:size(init_mothers_unique,2)

105 if(which_cells == 0)

106 help_vec = cells(init_mothers_unique(i) == init_mothers);

107 help_vec_str = sprintf('%.0f,' , help_vec);

108 help_vec_str = help_vec_str(1:end-1); % strip final comma

109 elseif(which_cells == 1)

110 help_vec_str = 'All descendants alive in final iteration.';

111 else

112 help_vec_str = 'Tumor eradicated. Last surviving cell(s).';

113 end

114 help_string = ['Initial cell: ', ...

115 num2str(init_mothers_unique(i)), ...

116 '\n Trace tree containing input cell(s): ', help_vec_str];

117

118 subplot(m,n,i)
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119 title(sprintf(help_string))

120 hold on

121

122 [data, pointer_storage] = tree_gen(init_mothers_unique(i), ...

123 bdh , cells_mother , Niter);

124 plot_tree(data, pointer_storage, text_mod,tdh, fig_mod_2, ...

125 init_mothers_unique(i));

126 end

127 clear help_string;

128 clear help_vec;

129 clear help_vec_str;

130

131 path_result = save_data_1(pathname);

132

133 % create document

134 if(doc_mod == 1)

135 doc_gen(path_result, init_mothers_unique, bdh, tdh, ...

136 cells_mother, Niter);

137 DrawTissue(bdh, path_result,Niter, pathname);

138 end

139 else

140 for i = 1:size(init_mothers_unique,2)

141 if(which_cells == 0)

142 help_vec = cells(init_mothers_unique(i) == init_mothers);

143 help_vec_str = sprintf('%.0f,' , help_vec);

144 help_vec_str = help_vec_str(1:end-1); % strip final comma

145 elseif(which_cells == 1)

146 help_vec_str = 'All descendants alive in final iteration.';

147 else

148 help_vec_str = 'Tumor eradicated. Last surviving cell(s).';

149 end

150 help_string = ['Initial cell: ', ...

151 num2str(init_mothers_unique(i)), ...

152 '\n Trace tree containing input cell(s): ', help_vec_str];

153

154 figure_storage(init_mothers_unique(i)) = figure;

155 title(sprintf(help_string))

156 hold on

157 [data, pointer_storage] = tree_gen(init_mothers_unique(i), ...

158 bdh , cells_mother , Niter);

159 plot_tree(data, pointer_storage, text_mod, tdh, fig_mod_2, ...

160 init_mothers_unique(i));

161 end
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162

163 clear help_string;

164 clear help_vec;

165 clear help_vec_str;

166

167 path_result = save_data_2(init_mothers_unique, figure_storage, ...

168 pathname, save_mod);

169

170 % create document

171 if(doc_mod == 1)

172 doc_gen(path_result,init_mothers_unique, bdh, tdh, ...

173 cells_mother, Niter);

174 DrawTissue(bdh, path_result,Niter, pathname);

175 end

176 end

177

178 end % end main

179

180

181

182 % defined help functions

183

184 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

185 % function creating and saving a document for all trees in order %

186 % to display data for every tree %

187 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

188 function doc_gen( path_result, init_mothers_unique, bdh, tdh, ...

189 cells_mother, Niter )

190

191 final_data_matrix = [];

192 % open a file for writing

193 fid = fopen([path_result,'/doc_file.txt'], 'w');

194

195 % title

196 s1 = 'Document summing up important data for the cells in last ';

197 s2 = 'generation and its two progenitors in every trace tree.\nThe ';

198 s3 = 'data is formatted by the following pattern:\n\ncell ID\nmother ';

199 s4 = 'cell ID\nage\nfinal threshold\nincrease of threshold\nfinal ';

200 s5 = 'damage\nincrease of damage\n\n';

201 fprintf(fid, [s1,s2,s3,s4,s5]);

202 clear s1

203 clear s2

204 clear s3
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205 clear s4

206 clear s5

207

208 % write data for every initial mother cell

209 for i = init_mothers_unique

210 fprintf(fid, ['Data for trace tree with initial cell ', ...

211 num2str(i), ':\n\n']);

212

213 last_cells = [];

214 stack = i;

215 while(~isempty(stack))
216 if(bdh(3,stack(1))~=2)
217 last_cells(end+1) = stack(1);

218 stack(1)=[];

219 else

220 stack(end+1:end+2) = [bdh(4,stack(1)), bdh(4,stack(1))+1];

221 stack(1)=[];

222 end

223 end

224

225 %{

226 % In case you want to have the last cells over all initial mothers

227 last_cells = find(bdh(2,:) == Niter); % tumor died out

228 if(isempty(last_cells))

229 last_cells = find(bdh(3,:) == 1); % cells survived

230 end

231 %}

232 for j = last_cells

233 data = zeros(3,3);

234 data_2 = zeros(4,3);

235 help = j;

236 for jj = 1:3

237 if(bdh(2,help) == -1)

238 data(:,jj) = [help;cells_mother(help); ...

239 Niter-bdh(1,help)];

240 else

241 data(:,jj) = [help;cells_mother(help); ...

242 bdh(2,help)-bdh(1,help)];

243 end

244 data_2(:,jj) = [tdh(1,help);tdh(3,help)-tdh(1,help); ...

245 tdh(2,help);tdh(4,help)-tdh(2,help)];

246 help = cells_mother(help);

247 end

54



248 fprintf(fid,'%d\t\t\t\t%d\t\t\t\t%d\n',data');

249 fprintf(fid,'%.4f\t\t\t\t%.4f\t\t\t\t%.4f\n',data_2');

250 fprintf(fid,'\n');

251 final_data_matrix(end+1:end+7,1:3) = [data;data_2];

252 end

253 % seperation between initial mother cells

254 final_data_matrix(end+1:end+7,1:3) = ones(7,3)*-1;

255 fprintf(fid,'\n\n');

256

257

258 % generate and save hist for threshold/damage diagram considering

259 % surviving cells

260 cells_diag_1 = last_cells(bdh(3,last_cells) == 1);

261 if(isempty(cells_diag_1))

262 cells_diag_1 = last_cells(bdh(2,last_cells) == max(bdh(2,last_cells)));

263 end

264 one = sum(Niter - bdh(1,cells_diag_1(bdh(2,cells_diag_1) == -1)));

265 two = sum(bdh(2,cells_diag_1(bdh(2,cells_diag_1) ~= -1)) ...

266 - bdh(1,cells_diag_1(bdh(2,cells_diag_1) ~= -1)));

267 average_age = round((one+two)/numel(cells_diag_1));

268 diagram1 = figure;

269 s1 = 'final death threshold -- DNA damage diagram for initial mother ';

270 s2 = '\nDiagram is considering surviving cells in last iteration or ';

271 s3 = 'the last surviving cell in case of tumor eradication.\nAverage age: ';

272 s4 = ' iterations';

273 title(sprintf([s1, num2str(i),s2,s3, ...

274 num2str(average_age),s4]));

275 clear s1

276 clear s2

277 clear s3

278 clear s4

279 hold on

280 fin_thr = tdh(3,cells_diag_1);

281 fin_dam = tdh(4,cells_diag_1);

282 xval = linspace(min([fin_thr,fin_dam]),max([fin_thr,fin_dam]), 20);

283 hist(fin_thr, xval);

284 plotval = histc(fin_dam, xval);

285 xval = xval(plotval ~= 0);

286 plotval = plotval(plotval ~= 0);

287 scatter(xval,plotval, 'MarkerFaceColor','r');

288 xlabel('threshold / damage');

289 ylabel('# cells');

290 legend('# cells with threshold','# cells with damage', ...
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291 'Location','Northwest');

292 hold off

293

294 average_thr_dam = zeros(2,3);

295 average_thr_dam(:,1) = [sum(fin_thr),sum(fin_dam)]/numel(fin_thr);

296

297 cells_diag_2 = unique(cells_mother(cells_diag_1));

298 one = sum(Niter - bdh(1,cells_diag_2(bdh(2,cells_diag_2) == -1)));

299 two = sum(bdh(2,cells_diag_2(bdh(2,cells_diag_2) ~= -1)) ...

300 - bdh(1,cells_diag_2(bdh(2,cells_diag_2) ~= -1)));

301 average_age = round((one+two)/numel(cells_diag_2));

302 diagram2 = figure;

303 s1 = 'final death threshold -- DNA damage diagram for initial mother ';

304 s2 = '\nDiagram is considering cells of the previous generation of ';

305 s3 = 'the surviving cells in last iteration or the last surviving cell ';

306 s4 = 'in case of tumor eradication.\nAverage age: ';

307 s5 = ' iterations';

308 title(sprintf([s1, num2str(i),s2,s3,s4, ...

309 num2str(average_age),s5]));

310 clear s1

311 clear s2

312 clear s3

313 clear s4

314 clear s5

315 hold on

316 fin_thr = tdh(3,cells_diag_2);

317 fin_dam = tdh(4,cells_diag_2);

318 xval = linspace(min([fin_thr,fin_dam]),max([fin_thr,fin_dam]), 20);

319 hist(fin_thr, xval);

320 plotval = histc(fin_dam, xval);

321 xval = xval(plotval ~= 0);

322 plotval = plotval(plotval ~= 0);

323 scatter(xval,plotval, 'MarkerFaceColor','r');

324 xlabel('threshold / damage');

325 ylabel('# cells');

326 legend('# cells with threshold','# cells with damage', ...

327 'Location','Northwest');

328 hold off

329

330 average_thr_dam(:,2) = [sum(fin_thr),sum(fin_dam)]/numel(fin_thr);

331

332 cells_diag_3 = unique(cells_mother(cells_diag_2));

333 one = sum(Niter - bdh(1,cells_diag_3(bdh(2,cells_diag_3) == -1)));
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334 two = sum(bdh(2,cells_diag_3(bdh(2,cells_diag_3) ~= -1)) ...

335 - bdh(1,cells_diag_3(bdh(2,cells_diag_3) ~= -1)));

336 average_age = round((one+two)/numel(cells_diag_3));

337 diagram3 = figure;

338 s1 = 'final death threshold -- DNA damage diagram for initial mother ';

339 s2 = '\nDiagram is considering cells of the pre-previous generation ';

340 s3 = 'of the surviving cells in last iteration or the last surviving ';

341 s4 = 'cell in case of tumor eradication.\nAverage age: ';

342 s5 = ' iterations';

343 title(sprintf([s1, num2str(i),s2,s3,s4, ...

344 num2str(average_age),s5]));

345 clear s1

346 clear s2

347 clear s3

348 clear s4

349 clear s5

350 hold on

351 fin_thr = tdh(3,cells_diag_3);

352 fin_dam = tdh(4,cells_diag_3);

353 xval = linspace(min([fin_thr,fin_dam]),max([fin_thr,fin_dam]), 20);

354 hist(fin_thr, xval);

355 plotval = histc(fin_dam, xval);

356 xval = xval(plotval ~= 0);

357 plotval = plotval(plotval ~= 0);

358 scatter(xval,plotval, 'MarkerFaceColor','r');

359 xlabel('threshold / damage');

360 ylabel('# cells');

361 legend('# cells with threshold','# cells with damage', ...

362 'Location','Northwest');

363 hold off

364

365 average_thr_dam(:,3) = [sum(fin_thr),sum(fin_dam)]/numel(fin_thr);

366

367 diagram4 = figure;

368 s1 = 'Average threshold/damage of the last three generations for ';

369 s2 = 'surviving cells.';

370 title([s1,s2]);

371 clear s1

372 clear s2

373 hold on

374 xval = 1:3;

375 plot(xval,average_thr_dam(1,3:-1:1),'r');

376 plot(xval,average_thr_dam(2,3:-1:1),'b');
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377 legend('avg threshold','avg damage');

378 set(gca, 'XTick',1:3, 'XTickLabel', ...

379 {'pre-previous','previous','last'});

380 xlabel('generation');

381 ylabel('threshold / damage');

382 hold off

383

384

385 fname = [path_result,'/threshold_damage_hist_',num2str(i),'_1'];

386 saveas(diagram1 ,fname,'epsc')

387 saveas(diagram1 ,fname,'fig')

388 fname = [path_result,'/threshold_damage_hist_',num2str(i),'_2'];

389 saveas(diagram2 ,fname,'epsc')

390 saveas(diagram2 ,fname,'fig')

391 fname = [path_result,'/threshold_damage_hist_',num2str(i),'_3'];

392 saveas(diagram3 ,fname,'epsc')

393 saveas(diagram3 ,fname,'fig')

394 fname = [path_result,'/average_generation_threshold_damage_', ...

395 num2str(i)];

396 saveas(diagram4 ,fname,'epsc')

397 saveas(diagram4 ,fname,'fig')

398

399 end

400

401 % close the file

402 fclose(fid);

403

404 % save matrix

405 save([path_result,'/doc_matrix.mat'],'final_data_matrix');

406

407 end % doc_gen

408

409

410 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

411 % function plotting the data generated by tree_gen %

412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

413 function plot_tree( data, pointer_storage, text_mod, tdh, ...

414 fig_mod_2, mother )

415

416 % determining color/symbol

417 Ncolors=6;

418 colors=[0,0,1;1,1,0;1,0,1;0,1,1;1,0,0;0,1,0];

419 Nsymbols=12;
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420 symbols=['o','>','v','p','d','*','<','h','^','s','x','+'];

421

422 ccol=1+mod(mother,Ncolors);

423 ssym=1+(mother-mod(mother,Ncolors))/Ncolors;

424

425 for cell = unique(data.cellNr)

426 rootpath = [];

427 help_cell = cell;

428 while( help_cell > 0 )

429 rootpath = [help_cell rootpath];

430 help_cell = floor(help_cell/2);

431 end

432 clear help_cell;

433

434 % determining x position

435 x = 0;

436 for i=2:numel(rootpath)

437 step = 1/2^(i-1);

438 if mod(rootpath(i),2)==0

439 % even number, left branch

440 x = x - step;

441 else

442 % odd number, right branch

443 x = x + step;

444 end

445 end

446

447 % determining y position

448 time = data.timepoint(data.cellNr==cell);

449 ypos = [min(time),max(time)];

450

451 % plot life current mother

452 line([x x], ypos,'color','k','linewidth',0.1);

453

454 % plot color/symbol

455 if(fig_mod_2 == 1)

456 plot(x,ypos(1),symbols(ssym),'MarkerFaceColor', ...

457 colors(ccol,1:3), 'MarkerEdgeColor',colors(ccol,1:3), ...

458 'MarkerSize', 3)

459 end

460

461 % plot connection if there are children

462 c1 = cell*2;
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463 c2 = cell*2+1;

464 if (numel(find(data.cellNr==c1))>0 || ...

465 numel(find(data.cellNr==c2))>0)

466 x1 = x+(1/2^floor(log2(cell)+1));

467 x2 = x-(1/2^floor(log2(cell)+1));

468 line([x1 x2], [max(time) max(time)],'color', ...

469 'k','linewidth',0.1);

470

471 if(text_mod == 1 || text_mod == 3)

472 text(x2,max(time), sprintf('%d', ...

473 find(pointer_storage == cell*2)),'VerticalAlignment', ...

474 'baseline','HorizontalAlignment','left',...

475 'color','r','FontWeight','light','FontSize',10);

476 text(x1,max(time), sprintf('%d', ...

477 find(pointer_storage == cell*2+1)),'VerticalAlignment', ...

478 'baseline','HorizontalAlignment','right',...

479 'color','r','FontWeight','light', 'FontSize',10);

480 end

481 else

482 current_cellID = find(pointer_storage == cell);

483 if(text_mod == 2 || text_mod == 3)

484 s1 = 'cellID: %d \n final threshold: %d \n final damage: ';

485 s2 = '%d \n threshold increase: %d \n damage incease: %d ';

486 text(x,max(time) + 10,...

487 sprintf([s1,s2],...

488 current_cellID,tdh(3,current_cellID), ...

489 tdh(4,current_cellID),tdh(3,current_cellID)- ...

490 tdh(1,current_cellID),tdh(4,current_cellID)- ...

491 tdh(2,current_cellID)),'EdgeColor','r', ...

492 'VerticalAlignment','top','HorizontalAlignment','center',...

493 'color','k','FontWeight','light', 'FontSize',10);

494 clear s1

495 clear s2

496 end

497 end

498

499 end

500

501 set(gca,'YDir','reverse'); % reverse timescale

502 set(gca,'XTick',[]) % remove x-axis

503

504 end % plot_tree

505
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506

507 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

508 % function finding the initial mother cell for a vector of cell ID's %

509 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

510 function init_mothers = find_init_mothers( cells, cells_mother )

511

512 init_mothers = cells;

513 help_cells = cells;

514

515 % init_cells are the mother cells of help_cells

516 init_mothers = cells_mother(init_mothers);

517 while(sum(help_cells == init_mothers) < size(init_mothers,2))

518 help_cells = init_mothers;

519 init_mothers = cells_mother(init_mothers);

520 end

521

522 end % find_init_mothers

523

524

525 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

526 % function saving the data %

527 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

528 function path_result = save_data_1 ( pathname )

529

530 path_result = [pathname,'/trace_trees_',datestr(now,'HHMMSS')];

531 mkdir(path_result)

532 fname=[path_result, '/trace_trees'];

533

534 % set suitable size

535 number_subplots = size(get(gcf,'Children'),1);

536 m = floor(sqrt(number_subplots)); % #rows

537 n = ceil(sqrt(number_subplots)); % #columns

538 set(gcf, 'PaperUnits', 'inches');

539 x_width=n*8;

540 y_width=m*5;

541 set(gcf, 'PaperPosition', [0 0 x_width y_width]);

542

543 saveas(gcf ,fname,'epsc')

544 saveas(gcf ,fname,'fig')

545

546 end % save_data_1

547

548
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549 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

550 % function saving the data %

551 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

552 function path_result = save_data_2 ( init_mothers_unique, ...

553 figure_storage, pathname, save_mod )

554

555 path_result = [pathname,'/trace_trees_',datestr(now,'HHMMSS')];

556 mkdir(path_result)

557 for i=1:size(init_mothers_unique,2)

558

559 % set suitable size

560 set(figure_storage(init_mothers_unique(i)), 'PaperUnits', 'inches');

561 switch save_mod

562 case 0

563 set(figure_storage(init_mothers_unique(i)), ...

564 'PaperPosition', [0 0 8 6]);

565 case 1

566 set(figure_storage(init_mothers_unique(i)), ...

567 'PaperPosition', [0 0 40 6]);

568 case 2

569 set(figure_storage(init_mothers_unique(i)), ...

570 'PaperPosition', [0 0 8 40]);

571 case 3

572 set(figure_storage(init_mothers_unique(i)), ...

573 'PaperPosition', [0 0 40 30]);

574 end

575

576 fname=[path_result, '/trace_tree_',num2str(init_mothers_unique(i))];

577 saveas(figure_storage(init_mothers_unique(i)),fname,'epsc')

578 saveas(figure_storage(init_mothers_unique(i)),fname,'fig')

579 end

580

581 end % save_data_2

582

583

584 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

585 % function generating data structure for the plot_tree function %

586 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

587 function [tree, pointer_storage] = tree_gen( mother, bdh , cells_mother , Niter)

588

589 % stack contains cellsID's you havent't considered so far

590 stack = mother;

591 pointer_storage = []; % contains which "plotID" every cellID is
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592 i = 1; % pointer

593

594 % initialize tree

595 tree.cellNr = [];

596 tree.timepoint = [];

597 tree.identifier = ['trace tree with mother ',num2str(mother)];

598

599

600 while(isempty(stack) == 0)

601 if(bdh(1,stack(1)) == -1) % #iterations alive

602 num_entries = bdh(2,stack(1))+1;

603 else

604 if(bdh(2,stack(1)) == -1)

605 num_entries = Niter-bdh(1,stack(1))+1;

606 else

607 num_entries = bdh(2,stack(1))-bdh(1,stack(1))+1;

608 end

609 end

610

611 pointer_storage(stack(1)) = i;

612

613 cellNr = ones(1,num_entries)*i;

614 if(bdh(2,stack(1))==-1)

615 timepoint = Niter-num_entries+1 : Niter;

616 else

617 timepoint = bdh(2,stack(1))-num_entries+1 : bdh(2,stack(1));

618 end

619 tree.cellNr(end+1:end+num_entries) = cellNr;

620 tree.timepoint(end+1:end+num_entries) = timepoint;

621

622 % add children to stack

623 if(bdh(4,stack(1)) ~= 0)

624 % add children to stack

625 stack(end+1:end+2) = bdh(4,stack(1)):bdh(4,stack(1))+1;

626 end

627

628 % update pointer for next iteration if it isn't the last one

629 if(size(stack,2) > 1)

630 if(cells_mother(stack(1)) == cells_mother(stack(2)))

631 i = i+1;

632 else

633 i = pointer_storage(cells_mother(stack(2)))*2;

634 end
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635 end

636

637 stack(1) = []; % clear processed cell off stack

638

639 end

640

641 end % tree_gen

642

643

644 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

645 % function drawing initial cells and analysing their clonal survival %

646 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

647 function DrawTissue(bdh,path_result,Niter, pathname)

648

649 % define draw input values

650 cellSize=8; % size of the cell marker

651

652 xmin=-75; xmax= 75;

653 ymin=xmin; ymax=xmax;

654 hb = 2;

655 Source_drug=1;

656 Ngx=1+floor((xmax-xmin)/hb); % number of grid points - x axis

657 Ngy=1+floor((ymax-ymin)/hb); % number of grid points - y axis

658 xgg=xmin:hb:xmax; % data for drawing

659 ygg=ymin:hb:ymax; % data for drawing

660 drugDom=zeros(Ngx,Ngy);

661

662 vessel=[-20,-40;-40,20;20,-20;60,60];

663 cell_xy=[0,0;5,5;-5,2;-1,7;-5,6;-10,5;-11,-2;-7,-6;-3,-7;3,-7;7,-2;...

664 11,1;9,6;4,8;2,11;3,-1;0,-4;-4,-2;-9,1;-13,2;-13,7;-8,9;-3,12;...

665 1,15;5,13;7,11;12,9;13,4;15,0;11,-4;6,-8;2,-10;-4,-10;-10,-10;...

666 -14,-3;-11.9366,10.9859;-12.1479,12.4648;-18.9085,4.4366;-18.2746,...

667 13.3099;-22.7113,10.1408;-25.4577,2.3239;-17.0070,21.3380;-22.5000,...

668 17.5352;-30.1056,13.9437;-31.5845,21.1268;-36.0211,12.8873;-41.5141,...

669 10.5634;-37.7113,5.0704;-33.6972,-1.6901;-27.5704,-3.3803;-47.4296,...

670 16.4789;-48.4859,24.9296;-41.5141,26.4085;-32.8521,18.1690;-28.2042,...

671 42.4648;-39.4014,39.0845;-55.4577,33.8028;-55.8803,26.8310;-55.0352,...

672 16.4789;-47.8521,13.3099;-50.1761,30.6338;-42.3592,28.7324;-30.7394,...

673 5.0704;-27.5704,7.8169;-40.4577,0.4225];

674

675 Ncolors=6;

676 colors=[0,0,1;1,1,0;1,0,1;0,1,1;1,0,0;0,1,0];

677 Nsymbols=12;
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678 symbols=['o','>','v','p','d','*','<','h','^','s','x','+'];

679

680 % Determine the initial clones to draw

681 % 1st row: cellID

682 % 2nd row: clone death iteration

683 % if -1 stll alive

684 init_clones_death = find(bdh(1,:)==-1);

685 for i=init_clones_death

686 stack1 = i;

687 stack2 = i;

688 while(isempty(stack1)==0)

689 if(bdh(4,stack1(1))~=0)
690 stack2(end+1:end+2)=[bdh(4,stack1(1)), bdh(4,stack1(1))+1];

691 stack1(end+1:end+2)=[bdh(4,stack1(1)), bdh(4,stack1(1))+1];

692 end

693 stack1(1)=[];

694 end

695 if(min(bdh(2,stack2))==-1)

696 init_clones_death(2,i)= -Niter;

697 else

698 init_clones_death(2,i)= max(bdh(2,stack2));

699 end

700 distances = [norm(vessel(1,:)-cell_xy(i,:)),norm(vessel(2,:)- ...

701 cell_xy(i,:)),norm(vessel(3,:)- cell_xy(i,:)),norm(vessel(4,:)- ...

702 cell_xy(i,:))];

703 % item describing if a position lies in a niche

704 init_clones_vessel_distance(i)=min(distances.^(1/2));

705 end

706

707 sort_iterations = unique(sort(init_clones_death(2,:)));

708 last_iterations = sort_iterations(end-2:end);

709 sort_iterations = sort_iterations(sort_iterations>=0);

710 first_iterations = sort_iterations(1:4);

711

712 last_init_cells = init_clones_death(:,...

713 init_clones_death(2,:)==last_iterations(1) | ...

714 init_clones_death(2,:)==last_iterations(2) | ...

715 init_clones_death(2,:)==last_iterations(3) | ...

716 init_clones_death(2,:)==-Niter);

717 last_init_cells = sortrows(last_init_cells',2)';

718 last_init_cells = [last_init_cells(:,end-2:end), ...

719 last_init_cells(:,1:end-3)];

720
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721 first_init_cells = init_clones_death(:,...

722 init_clones_death(2,:)==first_iterations(1) | ...

723 init_clones_death(2,:)==first_iterations(2) | ...

724 init_clones_death(2,:)==first_iterations(3) | ...

725 init_clones_death(2,:)==first_iterations(4));

726

727 overview_last = figure;

728 axis([xmin,xmax,ymin,ymax])

729 axis equal

730 hold on

731

732 contourf(xgg,ygg,drugDom',[0:0.05:Source_drug],'edgecolor','none');

733 colormap(bone)

734 caxis([0,0.35*Source_drug])

735 colorbar

736

737 for z = last_init_cells(1,:)

738 ccol=1+mod(z,Ncolors);

739 ssym=1+(z-mod(z,Ncolors))/Ncolors;

740 plot(cell_xy(z,1), cell_xy(z,2),symbols(ssym), ...

741 'MarkerFaceColor',colors(ccol,1:3),'MarkerEdgeColor', ...

742 colors(ccol,1:3),'MarkerSize',cellSize)

743 end

744 set(gca,'Color','k');

745 h = legend(strcat(num2str(last_init_cells(1,:)'),{' / '}, ...

746 num2str(abs(last_init_cells(2,:)'))),'Location','southeast');

747 set(h,'TextColor', 'w')

748 set(h,'EdgeColor', 'w')

749

750 % plot vessels

751 plot(vessel(:,1),vessel(:,2),'ro','MarkerFaceColor','r','MarkerSize',...

752 2*cellSize,'LineWidth',2)

753

754 % title plot

755 s1 = 'Initial cells of the surviving clones and/or the three dead but ';

756 s2 = 'longest surviving clones.';

757 title(sprintf([s1,s2]) ,'FontSize',12)

758 clear s1

759 clear s2

760

761 saveas(overview_last,[path_result,'/long_initial_cells'],'epsc')

762 saveas(overview_last,[path_result,'/long_initial_cells'],'fig')

763
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764 overview_first = figure;

765 axis([xmin,xmax,ymin,ymax])

766 axis equal

767 axis([xmin,xmax,ymin,ymax])

768 hold on

769

770 contourf(xgg,ygg,drugDom',[0:0.05:Source_drug],'edgecolor','none');

771 colormap(bone)

772 caxis([0,0.35*Source_drug])

773 colorbar

774

775 for z = first_init_cells(1,:)

776 ccol=1+mod(z,Ncolors);

777 ssym=1+(z-mod(z,Ncolors))/Ncolors;

778 plot(cell_xy(z,1), cell_xy(z,2),symbols(ssym), ...

779 'MarkerFaceColor',colors(ccol,1:3),'MarkerEdgeColor', ...

780 colors(ccol,1:3),'MarkerSize',cellSize)

781 end

782 set(gca,'Color','k');

783 h = legend(strcat(num2str(first_init_cells(1,:)'),{' / '}, ...

784 num2str(first_init_cells(2,:)')),'Location','southeast');

785 set(h,'TextColor', 'w')

786 set(h,'EdgeColor', 'w')

787

788 % plot vessels

789 plot(vessel(:,1),vessel(:,2),'ro','MarkerFaceColor','r','MarkerSize',...

790 2*cellSize,'LineWidth',2)

791

792 % title plot

793 s1 = 'Initial cells of the first eradicated clones';

794 title(sprintf(s1) ,'FontSize',12)

795 clear s1

796

797 saveas(overview_first,[path_result,'/first_initial_cells'],'epsc')

798 saveas(overview_first,[path_result,'/first_initial_cells'],'fig')

799

800 % plot distance - death iteration

801 overview2 = figure;

802 hold on

803 bol = init_clones_death(2,:)<0;

804 scatter(init_clones_vessel_distance(~bol), init_clones_death(2,~bol))
805 scatter(init_clones_vessel_distance(bol), init_clones_death(2,bol).*(-1),'r')

806 ylabel('# iterations until death')
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807 xlabel('distance')

808 title('distance - survival diagram')

809 legend('dead clones','surviving clones','Location','northeastoutside')

810

811 saveas(overview2,[path_result,'/dist_survival'],'epsc')

812 saveas(overview2,[path_result,'/dist_survival'],'fig')

813

814 cell_xy_history = load([pathname,'/cell_xy_history.txt']);

815 % categorizing the cells in 8 distance zones

816 % nearly the value 8 is gained out of the maximum of the distance

817 % function over the complete tissue space

818 bins = 0:1:8;

819 % spatial histograms per clone

820 for i = first_init_cells(1,:)

821 stack1 = i; % ID of current generation

822 stack2 = []; % ID of next generation

823 for j = 1:10

824 if(isempty(stack1)==1)

825 break

826 end

827 d1 = cell_xy_history(stack1,:) - repmat(vessel(1,:),size(stack1,2),1);

828 d2 = cell_xy_history(stack1,:) - repmat(vessel(2,:),size(stack1,2),1);

829 d3 = cell_xy_history(stack1,:) - repmat(vessel(3,:),size(stack1,2),1);

830 d4 = cell_xy_history(stack1,:) - repmat(vessel(4,:),size(stack1,2),1);

831 for z=1:size(d1,1)

832 d11(z) = norm(d1(z,:));

833 d22(z) = norm(d2(z,:));

834 d33(z) = norm(d3(z,:));

835 d44(z) = norm(d4(z,:));

836 end

837 gen_dist = min([d11;d22;d33;d44]).^(1/2);

838 % columns describe generations

839 bincounts(:,j) = histc(gen_dist,bins);

840 % update neue generation

841 while(isempty(stack1)==0)

842 if(bdh(4,stack1(1))~=0)
843 stack2(end+1:end+2)=[bdh(4,stack1(1)),bdh(4,stack1(1))+1];

844 stack1(1)=[];

845 else

846 stack1(1)=[];

847 end

848 end

849 stack1 = stack2;
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850 stack2 = [];

851 end

852

853 % plot histogram

854 figure

855 bar(bincounts(1:end-1,:))

856 legend('generation 0','generation 1','generation 2','generation 3', ...

857 'generation 4','generation 5','generation 6', ...

858 'generation 7','generation 8','generation 9', 'Location', ...

859 'northeastoutside')

860 title(['location histogram for the first 10 generations of ', ...

861 num2str(i)])

862 ylabel('#cells in distance category')

863 xlabel('distance category')

864

865 saveas(gcf,[path_result,'/hist_first_',num2str(i)],'epsc')

866 saveas(gcf,[path_result,'/hist_first_',num2str(i)],'fig')

867 hold off

868

869 clear d1

870 clear d2

871 clear d3

872 clear d4

873 clear d11

874 clear d22

875 clear d33

876 clear d44

877 clear bincounts

878 end

879

880 for i = last_init_cells(1,:)

881 stack1 = i; % ID of current generation

882 stack2 = []; % ID of next generation

883

884 for j = 1:10

885 if(isempty(stack1)==1)

886 break

887 end

888 d1 = cell_xy_history(stack1,:) - repmat(vessel(1,:),size(stack1,2),1);

889 d2 = cell_xy_history(stack1,:) - repmat(vessel(2,:),size(stack1,2),1);

890 d3 = cell_xy_history(stack1,:) - repmat(vessel(3,:),size(stack1,2),1);

891 d4 = cell_xy_history(stack1,:) - repmat(vessel(4,:),size(stack1,2),1);

892 for z=1:size(d1,1)
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893 d11(z) = norm(d1(z,:));

894 d22(z) = norm(d2(z,:));

895 d33(z) = norm(d3(z,:));

896 d44(z) = norm(d4(z,:));

897 end

898 gen_dist = min([d11;d22;d33;d44]).^(1/2);

899 % columns describe generations

900 bincounts(:,j) = histc(gen_dist,bins);

901 % update neue generation

902 while(isempty(stack1)==0)

903 if(bdh(4,stack1(1))~=0)
904 stack2(end+1:end+2)=[bdh(4,stack1(1)),bdh(4,stack1(1))+1];

905 stack1(1)=[];

906 else

907 stack1(1)=[];

908 end

909 end

910 stack1 = stack2;

911 stack2 = [];

912 end

913

914 % plot histogram

915 figure

916 bar(bincounts(1:end-1,:))

917 legend('generation 0','generation 1','generation 2','generation 3', ...

918 'generation 4','generation 5','generation 6', ...

919 'generation 7','generation 8','generation 9', 'Location', ...

920 'northeastoutside')

921 title(['location histogram for the first 10 generations of ', ...

922 num2str(i)])

923 ylabel('#cells in distance category')

924 xlabel('distance category')

925

926 saveas(gcf,[path_result,'/hist_last_',num2str(i)],'epsc')

927 saveas(gcf,[path_result,'/hist_last_',num2str(i)],'fig')

928 hold off

929

930 clear d1

931 clear d2

932 clear d3

933 clear d4

934 clear d11

935 clear d22
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936 clear d33

937 clear d44

938 clear bincounts

939 end

940

941 end % DrawTissue

1 function thres_dam_lineage_2( pathname, cellID, final, step)

2 % function determining and plotting the death threshold against

3 % the DNA damage for a longest lineage of a initital cell cellID or a exact

4 % defined lineages for not eradicating tumors

5 %

6 % pathname: path of the saved data from WhAM

7 % cellID: ID of a initial mother cell

8 % => output: arbitrary longest surviving lineage

9 % ID of a cell in final iteration

10 % => output: exact the lineage with final of cellID

11 % final: final iteration

12 % step: save step out of WhAM

13

14 bdh = load([pathname,'/birth_death_history.txt']);

15 tdh = load([pathname,'/threshold_damage_history.txt']);

16 cellsMotherID = load([pathname,'/cellsMotherID_',num2str(final),'.txt']);

17

18 if(sum(cellID == 1:65)==1)

19 % determine all cells of clone

20 stack1 = cellID;

21 stack2 = cellID;

22 while(isempty(stack1)==0)

23 if(bdh(4,stack1(1))~=0)
24 stack2(end+1:end+2)=[bdh(4,stack1(1)), bdh(4,stack1(1))+1];

25 stack1(end+1:end+2)=[bdh(4,stack1(1)), bdh(4,stack1(1))+1];

26 end

27 stack1(1)=[];

28 end

29

30 % determine longest lineages and select one lineage

31 if(min(bdh(2,stack2))~=-1)
32 last = find(bdh(2,:)==max(bdh(2,stack2)));

33 else

34 last = find(bdh(2,:)==-1);

35 end
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36 while(sum(stack2 == last(1))==0)

37 last(1) = [];

38 end

39 last = last(1);

40 else

41 last = cellID;

42 end

43 % data2 is a storage matrix. In the first row the death threshold is stored,

44 % in the second the DNA damage of the current lineage. data1 parallel

45 % stores the attendant number of iteration. Generally this is only the data

46 % at specific timepoints, when a cell dies or proliferates.

47 help = last

48 if(bdh(2,help)==-1)

49 data1 = final;

50 else

51 data1 = bdh(2,help);

52 end

53 data2= tdh(3:4,help);

54 while(cellsMotherID(help)~=help)
55 help = cellsMotherID(help);

56 data1(end+1) = bdh(2,help);

57 data2(:,end+1) = tdh(3:4,help);

58 end

59 data1(end+1) = 0;

60 data2(:,end+1) = tdh(1:2,help);

61

62 % data describes the development of the death threshold and damage in

63 % the steps of the output of WhAM.

64 % 1st row: death threshold

65 % 2nd row: DNA damage

66 help = last;

67 if(bdh(2,help)==-1)

68 data = [];

69 for i = final:-step:0

70 cell_damage = load([pathname,'/cell_damage_',num2str(i),'.txt']);

71 cell_death = load([pathname,'/cell_death_',num2str(i),'.txt']);

72 cell_ID = load([pathname,'/cell_ID_',num2str(i),'.txt']);

73

74 if(sum(cell_ID(1,:) == help) ~= 1)

75 help = cellsMotherID(help);

76 end

77

78 data(1:2,end+1) = [cell_death(cell_ID(1,:)==help),...
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79 cell_damage(cell_ID(1,:)==help)];

80 end

81 iterations = 0:step:final;

82 else

83 data=[];

84 data(1:2,end+1) = tdh(3:4,help);

85 final_help = floor(bdh(2,help)/100)*100;

86 for i = final_help:-step:0

87 cell_damage = load([pathname,'/cell_damage_',num2str(i),'.txt']);

88 cell_death = load([pathname,'/cell_death_',num2str(i),'.txt']);

89 cell_ID = load([pathname,'/cell_ID_',num2str(i),'.txt']);

90

91 if(sum(cell_ID(1,:) == help) ~= 1)

92 help = cellsMotherID(help);

93 end

94

95 data(1:2,end+1) = [cell_death(cell_ID(1,:)==help),...

96 cell_damage(cell_ID(1,:)==help)];

97 end

98 iterations = 0:step:final_help;

99 iterations(end+1)=bdh(2,last);

100 end

101

102 x=figure;

103 plot(iterations, data(1,end:-1:1), 'b')

104 hold on

105 plot(iterations, data(2,end:-1:1), 'r')

106 scatter(data1(end:-1:1), data2(1,end:-1:1), 'b')

107 scatter(data1(end:-1:1), data2(2,end:-1:1), 'r')

108

109 legend('death threshold','DNA damage','Location','northwest')

110 xlabel('iteration')

111 ylabel('threshold / damage')

112 title(sprintf(['death threshold / DNA damage plot for the longest lineage', ...

113 '\n of clone:\t',num2str(cellID)]))

114

115 end

1 function spatial_lineage_track( pathname, cellID, final, step )

2 % Function tracking the movement of a lineage in time.

3 % pathname: path of the saved data from WhAM

4 % cellID: ID of a cell in final iteration
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5 % final: final iteration

6 % step: save step out of WhAM

7

8 vessel=[-20,-40;-40,20;20,-20;60,60];

9 xmin=-75; xmax= 75;

10 ymin=xmin; ymax=xmax;

11

12 cellsMotherID = load([pathname,'/cellsMotherID_',num2str(final),'.txt']);

13 bdh = load([pathname,'/birth_death_history.txt']);

14

15 help_cell = cellID;

16 while(cellsMotherID(help_cell)~=help_cell)
17 help_cell = cellsMotherID(help_cell);

18 end

19

20 help = cellID;

21 data = [];

22 if(bdh(2,help)==-1)

23 final_help = 20000;

24 else

25 final_help = floor(bdh(2,help)/100)*100;

26 end

27

28 for i = final_help:-step:0

29 cell_xy = load([pathname,'/cell_xy_',num2str(i),'.txt']);

30 cell_ID = load([pathname,'/cell_ID_',num2str(i),'.txt']);

31

32 if(sum(cell_ID(1,:) == help) ~= 1)

33 help = cellsMotherID(help);

34 end

35

36 data(end+1,1:2) = cell_xy(cell_ID(1,:)==help,:);

37 end

38 iterations = 0:step:final_help;

39

40

41 x = figure;

42 plot(vessel(:,1),vessel(:,2),'ro','MarkerFaceColor','r','MarkerSize',...

43 2*2,'LineWidth',2)

44 hold on

45 scatter(data(1:5:end,1),data(1:5:end,2), 'r')

46 scatter(data([1,end],1),data([1,end],2), 'g', 'ro')

47 plot(data(:,1),data(:,2), 'b')
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48 axis([xmin,xmax,ymin,ymax])

49 axis equal

50 title(sprintf(['Lineage of: \t',num2str(cellID),'\nInitial cell: \t',...

51 num2str(help_cell)]))

52 end

1 function dist(plot_accuracy)

2 % Function generating figure for the distance gradient as presented in the

3 % paper. plot_accuracy defines in how many levels the plot should be

4 % presented.

5

6 vessel = [-20,-40;-40,20;20,-20;60,60];

7 xdata = repmat([-65:65],131,1);

8 ydata = repmat([65:-1:-65]',1,131);

9 data = zeros(131,131);

10

11 for i = 1:(131*131)

12 co = [xdata(i),ydata(i)];

13 d1 = norm(co-vessel(1,:));

14 d2 = norm(co-vessel(2,:));

15 d3 = norm(co-vessel(3,:));

16 d4 = norm(co-vessel(4,:));

17 data(i) = min([d1,d2,d3,d4].^(1/2));

18 end

19 data(1:end,:)=data(end:-1:1,:);

20

21 grad = figure;

22 contourf([-65:65],[-65:65],data,plot_accuracy);

23 end
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