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Label-free cell cycle analysis for high-throughput
imaging flow cytometry
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Imaging flow cytometry combines the high-throughput capabilities of conventional flow

cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA

content and quantification of the mitotic cell cycle phases by applying supervised machine

learning to morphological features extracted from brightfield and the typically ignored

darkfield images of cells from an imaging flow cytometer. This method facilitates non-

destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains

while maximizing available fluorescence channels. The method is effective in cell cycle

analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell

cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA

content of fission yeast, it is likely to have a broad application to other cell types.
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A
major challenge in many modern biological laboratories

is obtaining information-rich measurements of cells
in high-throughput and at single-cell resolution.

Conventional flow cytometry is a widespread and powerful
technique for the measurement of cell phenotype and function
using targeted fluorescent stains1. It is highly suited to the study
of cell populations and rare subset identification due to its high-
throughput, multi-parameter nature. The fluorescent stains can
be used to label cellular components or processes, revealing
specific cell phenotypes in the population and quantifying the
particular state of each cell2. For example, quantifying the
proportion of cells in each phase of the cell cycle, including
mitotic phases is very useful in the modern biological laboratory3.
It can be achieved with conventional flow cytometry using
multiple stains: typically, a stoichiometric fluorescent stain for
DNA reports the cells’ position within the G1, S and G2 phases of
the cell cycle2, and additional stains are needed to sort mitotic
cells into phases. Often these stains are incompatible with live cell
analysis (for example, antibodies against histone modifications3)
and even if live cell reporters are available4 these may have
confounding effects on the cells. For example, the commonly used
Hoechst 33342 stain, which binds to the minor groove of the
double-stranded DNA can induce single-strand DNA breaks5, or
DRAQ5 (deep red fluorescing bisalkylaminoanthraquinone) the
nuclear stain that intercalates with the cell’s DNA can influence
chromation organization and lead to histone dissociation6. Also,
several different markers are usually required to unambiguously
identify all cell cycle phases7. Therefore, an assay that reduces or
even eliminates the number of stains required to identify
phenotypes such as the position in the cell cycle is particularly
attractive.

In recent years, the two technologies of fluorescence micro-
scopy and flow cytometry have been integrated to create imaging
flow cytometry8, where an image is captured of each cell as it
flows past an excitation source and a CCD detector. It combines
conventional flow cytometry’s high-throughput speed and easy
identification of each individual cell with the fluorescence
microscopy’s spatial image acquisition. Therefore, imaging flow
cytometry measures not only fluorescence intensities but also the
spatial image of the fluorescence together with brightfield and
darkfield images of each cell in a population. The rich
information captured using imaging flow cytometry makes it an
ideal candidate for the use of high content approaches to identify

complex cell phenotypes such as the cell cycle phase of an
individual cell. We have previously demonstrated that measuring
the shape of the nucleus from cells stained with a nuclear
marker using imaging flow cytometry drastically improves the
classification of mitotic phases9. However, the even richer
morphological information that can be extracted using imaging
software tools10 offers the prospect of using more advanced
multivariate analysis techniques to mine the data and to identify
various cell phenotypes, as has been successfully done for
traditional microscopy images11–14. This type of analysis is also
usually more accurate and less subjective than any manual
analysis of the acquired images13 as well as more robust than
typical gating strategies that rely on only few features of the cells.

Here we report that quantitative image analysis of two largely
overlooked channels; brightfield and darkfield, both readily
collected by imaging flow cytometers that enables cell cycle-
related assays without needing any fluorescence biomarkers. We
use image analysis software9 to extract numerical measurements
of cell morphology from the brightfield and darkfield images, and
then we apply supervised machine-learning algorithms to identify
cellular phenotypes of interest, in the present case, cell cycle
phases. The designed workflow is open-source and freely
available (visit www.cellprofiler.org/imagingflowcytometry) and
accompanied by step-by-step tutorials and example data sets
online. Avoiding fluorescent stains provides several benefits: it
reduces effort and cost, avoids potentially confounding side
effects of live cell markers and frees up the remaining available
fluorescence channels of the imaging flow cytometer that can be
used to investigate other biological questions.

Results
Label-free analysis workflow. The first step in the workflow of
label-free cell cycle classification (Fig. 1) is to acquire brightfield
and darkfield images from the cells (see Methods section). To
allow visual inspection and to optimize the file size for processing,
we tile individual cells’ brightfield and the darkfield images into
15� 15 montages, with up to 225 cells per montage. Then,
we load the montages into the open-source imaging software
CellProfiler9 for processing (see Methods section). There is
sufficient contrast between the cells and the flow media to
robustly segment the cells in the brightfield images without the
need for any stains. We extract 213 features from the segmented
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Figure 1 | Label-free imaging flow cytometry workflow. First the brightfield and darkfield images of the cells are measured by an imaging flow cytometer.

The brightfield and darkfield images depict the light transmitted through the cell and light scattered from the cells within a cone centered at a 90� angle,

respectively. Then the images are preprocessed, where we reshape the images to have their sizes coincide and tile them to montages of 15� 15 images.

The montages are loaded into the open-source image software CellProfiler that we use to segment the cells’ brightfield images and to extract

morphological features from the images. Finally, we apply supervised machine learning such as classification. For this purpose we need an annotated set of

cells where the actual cell state is known to train the classifier and to test its predictive power. Once the classifier is trained it is used to predict the state of

unlabelled cells and to digitally sort the cells into bins.
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brightfield and the full darkfield image (Supplementary Table 1).
The features can be summarized into five categories: size and
shape, granularity, intensity, radial distribution and texture.
These image features are the input for supervised machine
learning, namely classification and regression (see Methods
section), which we use to predict each cell’s DNA content and
the mitotic phases in the cell cycle without the need for any stains.
The machine-learning algorithms have to be trained on an
annotated subset of the investigated cells where the true cell state,
that is, the ‘ground truth’ is known. The ground truth can be
obtained either by manual identification (by a trained biologist
or using software tools11) or from labelling a subset of the
investigated cells with fluorescent stains (see Methods section).

Cell cycle analysis of fixed Jurkat cells. As an initial
demonstration of our technique, we sought a label-free way to
measure important cell cycle phenotypes including a continuous
property (a cell’s DNA content, from which G1, S and G2 phases
can be estimated) and discrete phenotypes (the mitotic phase of a
cell: prophase, anaphase, metaphase and telophase). We used
the ImageStream platform to capture images of 32,255
asynchronously growing Jurkat cells (Supplementary Fig. 1). As
controls, the cells were fixed and stained with PI (propidium
iodide) to quantify DNA content and a MPM2 (mitotic protein
monoclonal #2) antibody to identify mitotic cells (Supplementary
Fig. 2). These fluorescent markers were used to annotate a subset
of the cells with the ground truth (expected results) needed to
train the machine-learning algorithms and to evaluate the
predictive accuracy of our label-free approach (see Methods
section). Since it is infeasible to accurately identify individual cells
in the G1, S and G2 phase based only on one nuclear marker5,
we do not aim to predict those phases individually but to predict
each cell’s DNA content. Subsequently, we use the Watson
pragmatic curve fitting algorithm15 (see Methods section) to
estimate the percentage of cells in each of the G1/S/G2M phases
based on the predicted DNA content.

Using only cell features measured from brightfield and
darkfield images, we were able to devise a regression ensemble
(using least squares boosting16) that accurately predicts each
cell’s DNA content, obtaining a Pearson’s correlation of
r¼ 0.896±0.007 (error bars indicate the s.d. obtained via
10-fold (n¼ 10) cross-validation here and in all following
statements of the Results section unless stated differently; see
Methods section and Supplementary Note 1) between predicted
and actual nuclear stain intensity (Fig. 2a). This highly accurate
prediction of the DNA content can be used to further categorize
G1, S and G2/M cells or to allocate each cell a time position
within the cell cycle via the ergodic rate analysis, where cells are
sorted according to their DNA content17. Moreover, we were able
to classify mitotic phases (using random undersampling18 to
compensate for the high class imbalance) with true positive rates
of 55.4±7.0% (for prophase), 50.2±17.2% (for metaphase),
100% (for anaphase and telophase) and 93.1±0.5% for the
non-mitotic phases (Fig. 2b–g and Supplementary Table 2). We
analysed which features have the most significant contributions
for the prediction of both the nuclear stain and the mitotic phases
by ‘leave one out’ cross-validation (Supplementary Table 3). We
find that leaving one feature out has only a minor effect on the
results of the supervised machine-learning algorithms we used,
likely because many features are highly correlated to others. The
most important features are intensity, area, shape and radial
distribution of the brightfield images.

Detection of mitotic phase block. The assessment of the
therapeutic blocking of the cell cycle (in a particular phase) is of

particular importance. We tested the method’s ability to predict
the DNA content of Jurkat cells treated with 50 mM Nocodazole, a
mitotic blocking agent. To confirm the magnitude of the block of
cells in mitosis, we performed three additional replicates
demonstrating an average increase of cells in the G2/M phase of
19.0±11.0% (error bars indicate the s.d. obtained from n¼ 3
replicates for each condition) compared with the control
(Supplementary Fig. 3). The label-free prediction of the DNA
content has a Pearson’s correlation of r¼ 0.894±0.032 with the
true DNA content (PI is used as a fixed cell nuclear stain to
provide the ground truth for the machine-learning algorithms)
and the percentage of cells in the G1, S and G2/M phases are in
excellent agreement (Fig. 3a). Therefore, the technique is suc-
cessfully detecting the expected increase in the G2/M cells due to
the blocking agent based on the predicted DNA content. Again,
we were able to classify mitotic phases and found true positive
rates of 65.5±6.3% (for prophase), 100% (for the other mitotic
phases) and 85.8±1.4% for the non-mitotic phases (Fig. 3b–e and
Supplementary Table 4). Treatment of the cells with the mitotic
blocking agent led to an increase in the percentage of prophase
cells from 1.88 to 11.07, which is confirmed by comparison with
the ground truth (Supplementary Table 2 and Table 4) and in
agreement with the identified magnitude of the block of cells in
mitosis.

Cell cycle analysis of live Jurkat cells. Many experimental
protocols require live cells rather than fixed. We tested the ability
of the technique to detect cell cycle changes in live Jurkat cells. To
provide ground truth (that is, the expected cell cycle distribution),
the cells were stained with DRAQ5, a live-cell DNA stain
(Fig. 4a). Like most live-cell-compatible DNA stains, DRAQ5 is
not an ideal marker because of the variability of uptake of the dye
in live cells19, nonetheless, we obtain a Pearson’s correlation of
r¼ 0.786±0.010 for predicting the DNA content of untreated
cells. With a regression ensemble trained on the stained live cells,
we are also able to predict the effect of treatment with a phase-
blocking agent on an entirely unstained data set (Fig. 4b). We
detect an increase of cells in the G2/M phase from 20.9 to 34.3%
when the cells are treated with 50 mM Nocodazole; this is
consistent with the average increase of 19.0±11.0% obtained
from repeating the phase block experiments with stained cells
(Supplementary Fig. 3).

Cell cycle analysis of fission yeast. To explore the generality of
our method for other cell types, we tested it on another species,
fission yeast (Supplementary Fig. 4). The yeast cells were fixed
and stained with PI to measure the DNA content of each cell
(see Methods section); subsequently the cells were assigned to the
G1, S, G2 or M phase by manually gating on image based metrics
from the PI channel of the Imagestream data20, which provided
the ground truth (Supplementary Fig. 5). The label-free
regression predicts a DNA content with a Pearson’s correlation
of r¼ 0.855±0.006 (Fig. 5a) and a classification accuracy of
70.2±2.2% (G1), 90.1±1.1% (S), 96.8±0.3% (G2) and
44.0±8.4% (M) (Fig. 5b–f and Supplementary Table 5).

Discussion
We demonstrate here that it is possible to determine a cell
population’s DNA content and mitotic phases based entirely on
features extracted from cells’ brightfield and darkfield images, as
obtained in high-throughput via imaging flow cytometry. The
method requires an annotated data set to train the machine-
learning algorithms, either by staining a subset of the investigated
cells with markers, or by visual inspection and assignment of
cell classes of interest. Once the machine-learning algorithm is
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Figure 2 | Machine learning allows for robust label-free prediction of DNA content and cell cycle phases of Jurkat cells. (a) We find a Pearson’s

correlation of r¼0.896±0.007 (error bars indicate the s.d. obtained via 10-fold cross-validation) between actual DNA content and predicted DNA

content based on regression using brightfield and darkfield morphological features only (see Methods section). We used the Watson pragmatic curve

fitting algorithm to specify the fraction of cells in the G1, S and G2 phases. (b–f) For cells that are actually in a particular phase (for example, b shows cells

in G1/S/G2), the bar plots show the classification results based on brightfield and darkfield morphological features only (for example, b shows that the few

cells in prophase (Pro), metaphase (Meta), anaphase (Ana), and telophase (Telo) are errors). (g) Bar plot of the true positive rates of the cell cycle

classification.
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trained for a particular cell type and phenotype, the consistency
of imaging flow cytometry allows high-throughput scoring
of unlabelled cells for discrete and well-defined phenotypes
(for example, mitotic cell cycle phases) and continuous properties
(for example, DNA content).

The same basic strategy can be readily adapted to measure
other phenotypes, making this a generally useful approach for
label-free, single-cell phenotyping in the modern biological
laboratory. The method can also be used retrospectively on data
sets that do not have the necessary stains for phenotype

identification, providing an annotated data set is available to
train the algorithms (see Methods section). While current
imaging flow cytometers do not have physical cell-sorting
capabilities, and for now our approach is suited to experimental
contexts where samples are analysed only, this approach may
offer the possibility to entirely avoid any fluorescent stain and
opens up the perspective for a new generation of image flow
cytometers that could operate without fluorescence channels.

The workflow we designed is open-source and freely available
(www.cellprofiler.org/imagingflowcytometry and Supplementary
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Figure 3 | Label-free prediction of DNA content and cell cycle phases for fixed Jurkat cells treated with a prophase blocking agent. (a) Based only on

brightfield and darkfield features, we find a Pearson’s correlation of r¼0.894±0.032 (error bars indicate the s.d. obtained via 10-fold cross-validation)

between actual DNA content and predicted DNA content using regression (see Methods section). We applied the Watson pragmatic algorithm to

determine the G1, S and G2/M phases in the DNA histograms. (b–d) For cells that are actually in a particular phase (for example, b shows cells in

G1/S/G2), the bar plots show the classification results (see Methods section) (for example, b shows that the few cells in prophase (Pro) and the other

mitotic phases (others) are errors). Note that we grouped the cells in metaphase, anaphase and telophase into one class since we only detected very

little cells in those phases after treatment with the prophase blocking agent. (e) Bar plot of the true positive rates of the cell cycle classification. Using

boosting with random undersampling to compensate for class imbalances, we obtain true positive rates of 65.5±6.3% (P), 85.8±1.4% (G1/S/G2) and

100% (others).
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Note 1). Label-free identification of phenotypes enables
continuous, non-destructive monitoring of cell samples,
minimizes potentially confounding influences of the stains on
the cells and maximizes available fluorescence channels to
investigate biological questions such as the search for novel
hallmarks in cell cycle21, the identification of stem and progenitor
cells22 or the proliferation of cancer cells23.

Methods
Code availability. All processing steps are described in a step-by-step tutorial
hosted on an up-to-date website with guidance on carrying out the tutorial (visit
www.cellprofiler.org/imagingflowcytometry; a static version of the tutorial can also

be found in Supplementary Note 1). The code and the analysed data are freely
available on the webpage. The code is also available as Supplementary Information
(Supplementary Code 1–6). We used Matlab version 8.0.0.783 (R2012b)) and
CellProfiler version 2.1.1 for our analysis.

Cell culture and phase block. Ten million E6.1 Jurkat Cells (Fred Hutchinson
Cancer Research Center derived clone, Cell Services, CRUK) were cultured in
RPMI media (Cat no 31870-082, Life Technologies, Inc., USA) containing 10%
FBS, Penicillin/Streptomycin/Glutamine (Sigma-Aldrich G6784) at 1% and
2-Mercaptoethanol (50 mM) at 37 �C/5% CO2. For cells requiring a phase block the
cells were incubated with 50 mM Nocodazole for 20 h at 37 �C per 5% CO2, counted
and checked for viability using a Vi-Cell counter (Beckman Coulter, Inc., USA).
Cells were washed once in PBS containing 2% FBS (wash buffer) and the cellular
suspensions were divided in two.
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Figure 4 | Label-free prediction of DNA content for live Jurkat cells and detection of a phase blockage. (a) Supervised machine learning (trained using

live cells stained with DRAQ5 to determine the DNA content) allows for robust label-free prediction of the DNA content of live cells based only on

brightfield and darkfield images. We find a Pearson correlation of r¼0.786±0.010 (error bars indicate the s.d. obtained via 10-fold cross-validation)

between actual DNA content and predicted DNA content using regression (see Methods section). We believe this reduction in correlation from the value of

0.896 obtained for fixed cells to be a consequence of the greater variability of the uptake of the live DNA dye compared with the staining achieved with

fixed cells. Despite the reduction in correlation a value of 0.786 is still high enough to make this a viable method for the cell cycle analysis of live cells.

As previously, we determine the fraction of cells in the G1, S and G2/M phases using the Watson pragmatic curve fitting algorithm. (b) We predict an

increase of 13.4% in the G2/M phase after the cells were treated with 50mM Nocodazole, which is in good agreement with the average increase of

19.0±11.0% in G2/M as was found for three independent cell populations under the same treatment (Supplementary Figure 3). The phase-blocked data

set was not labelled with any marker. Instead, we trained our machine learning algorithm on the untreated data set, which was labelled with a DRAQ5 DNA

stain (see a) and used the trained machine learning algorithm to predict the DNA stain of the blocked cells.
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Live cells. Half of the cells were resuspended in 100ml of wash buffer and DRAQ5
(Cat no DR50200, Biostatus) added to a final concentration of 5 mM before running
on the ImageStream X.

Fixed cells. The other half of cells was fixed in 70% ethanol for at least 1 h. After
fixation, the cells were washed once in wash buffer and treated with 0.1% Triton
X-100 (Cat no X100-100 ML, Sigma, USA) for 10 min. Cells were spun down and
incubated for 1 h with anti-phospho-Ser/Thr-Pro, MPM2 Cy5 conjugate MPM2
(1:100, Cat no 16-220, Millipore, USA) made up in PBS containing 0.2% Tween
(Cat no 27,434-8, Sigma, USA) and 0.1% BSA (Cat no A4503-100G, Sigma, USA).
Cells were washed once in wash buffer and stained with a 10 mg ml� 1 PI (Cat no
P4170, Sigma, USA) and 11 mg ml� 1 Ribonuclease A (Cat no R5125, Sigma, USA)
solution made up in PBS (100 ml). Cells were stained with PI for at least 30 min and
run on the Imagestream X.

Fission yeast. Cell culture conditions and growth media were as previously
described by Moreno et al.24 PN1 (wild-type haploid, strain 972h� mating type,
lab stock) cells were grown in YE4S media and maintained in exponential phase.
B5� 106 cells were harvested for fixation in 70% ice cold ethanol before storage at
4 �C. Cells were then washed and resuspended in 1 ml of 50 mM sodium citrate,
treated with 0.1 mg ml� 1 RNase A (Sigma-Aldrich, UK) at 37 �C overnight.
Subsequently cells were stained with PI (2 mg ml� 1) and FITC (2 mg ml� 1) before
sonication (B20 s) using a sonication probe (JSP, Inc., USA). Cells were then
resuspended in a volume of 500 ml, before running on the Imagestream X.
Subsequent cell cycle stage assignment was performed as described by Patterson
et al.20 In brief, this assignment is based on a combination of morphometric and
intensity features extracted from PI images. Low PI intensity cells containing two
nuclei are defined as G1. High PI intensity cells containing two nuclei containing
cells are defined as S. Elongated, low intensity PI, uni-nucleate cells are defined as
G2. Elongated, high intensity PI, single cells are defined as M phase
(Supplementary Fig. 5).

Curve fitting for DNA histograms. We used the Watson pragmatic algorithm
(Supplementary Code 6) to obtain probability distributions for the cells being in
G1, S and G2/M phase of cell cycle.

Image acquisition by imaging flow cytometry. We used the ImageStream X
platform to capture images of both live and fixed asynchronously growing Jurkat
cells. For each cell, we captured images of brightfield and darkfield as well as

fluorescent channels to measure the PI that quantifies DNA content and a MPM2
antibody to identify cells in mitosis. After image acquisition, we used the IDEAS
analysis tool (this is software that accompanies the ImageStream X software) to
discard multiple cells or debris, omitting them from further analysis, as described
in the tutorial (Supplementary Note 1). The resulting data are provided on
www.cellprofiler.org/imagingflowcytometry.

Typical ImageStream settings. Sample volume: 2.6 ml (extracted from the 100ml
loaded). Flow diameter: 7 mm. Velocity of flow: 44 m s� 1. Resolution: 0.5 mm.
Magnification: � 60. Camera sensitivity: 256 on all channels. Camera gain:
1. Brightfield LED intensity: 88 mW. Darkfield laser intensity: 1 mW. 488 nm laser
intensity: 25 mW. 642 nm laser intensity: 150 mW.

Image processing. The image sizes from the ImageStream cytometer range
between 30� 30 and 60� 60 pixels (data provided on www.cellprofiler.org/ima-
gingflowcytometry). We reshape their sizes to 55� 55 pixel images by either
adding pixels with random values that we sampled from the background of the
image for images that are smaller or by discarding pixels on the edge of the image
for images that are too large. We note that the discarded pixels are only from the
image background and not from the segmented cell. This procedure therefore does
not affect the analysis. To demonstrate this we analysed if discarding pixels from
larger images has an effect on the results on our method (Supplementary Table 6)
and found robust results over a broad parameter range. Only if we reshape the
images to sizes that are smaller than the cells’ diameter (that is, parts of the cells get
cropped) does the quality of the method decrease. We then tile the images to
15� 15 montages, with up to 225 cells per montage. Example montages are pro-
vided (data provided on www.cellprofiler.org/imagingflowcytometry). A script to
create the montages is provided (Supplementary Code 1) and its use is described in
the tutorial (Supplementary Note 1) and on the webpage.

Segmentation and feature extraction. We load the image montages of 15� 15
cells into the open-source image software CellProfiler (version 2.1.1). The darkfield
image shows light scattered from the cells within a cone centred at a 90� angle and
hence does not necessarily depict the cell’s physical shape nor does it align with the
brightfield image. Therefore, we do not segment the darkfield image but instead use
the full image for further analysis. In the brightfield image, there is sufficient
contrast between the cells and the flow media to robustly segment the cells.
We segment the cells in the brightfield image by enhancing the edges of the
cells and thresholding on the pixel values. We then extract features, which we
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Figure 5 | Label-free prediction of DNA content and cell cycle phases for fission yeast cells. (a) Based only on brightfield and darkfield features,

we find a Pearson’s correlation of r¼0.855±0.006 (error bars indicate the s.d. obtained via 10-fold cross-validation) between actual DNA content and

predicted DNA content using regression (see Methods section). Note that the fission yeast cell cycle is different from the Jurkat cell cycle since the two

daughter cells divide between the S and G2 phases (and not at the end of M phase as is the case for Jurkat cells). (b–e) For cells that are actually in a

particular phase (for example, b shows cells in G1), the bar plots show the classification results (see Methods section) (for example, b shows that the

cells in S, G2 and M are errors). (f) Bar plot of the true positive rates of the cell cycle classification. Using boosting with random undersampling to

compensate for class imbalances, we obtain true positive rates of 70.2±2.2% (G1), 90.1±1.1% (S), 96.8±0.3% (G2) and 44.0±8.4 (M).
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categorized into size and shape, granularity, intensity, radial distribution and
texture. The CellProfiler pipeline to carry out all of these steps is provided
(Supplementary Code 2). The measurements are exported in a text file,
an example of which is provided (data provided on www.cellprofiler.org/
imagingflowcytometry). The measurements are post-processed using a script to
discard cells with missing values (Supplementary Code 3). The use of these steps is
described in the tutorial (Supplementary Note 1) and on the webpage.

Determination of ground truth. To train the machine learning algorithm we need
a subset of cells where the cell’s true state is annotated, that is, the ground truth is
known. For the experiment shown in Fig. 1, the cells were labelled with a PI and a
MPM2 stain. As the ground truth (expected results) for the cells’ DNA content, we
extracted the integrated intensities of the nuclear PI stain with the imaging software
CellProfiler (Supplementary Code 2). The mitotic cell cycle phases were identified
with the IDEAS analysis tool by categorizing the MPM2-positive cells into
anaphase, prophase and metaphase using a limited set of user-formulated
morphometric parameters (Supplementary Figure 2) on their PI stain images
followed by manual confirmation. The telophase cells were identified using a
complex set of masks (using the IDEAS analysis tool) on the brightfield images to
gate doublet cells. We used those values as the ground truth to train the machine
learning algorithm and to evaluate the prediction of the nuclear stain intensity.

We note that the ground truth is measured using the same modality, that is, the
ImageStream system; this preserves the consistency of the presentation of the cell for
measurement. If we seeded the cells on a plate to use microscopy the cell’s shape and
morphology would be very different. However, the method we describe here could
equally well be used to determine cell phenotypes from brightfield and darkfield
images from traditional microscopy provided the ground truth is measured using the
same microscopy platform. For the analysis of short-lived mitotic phases then large
numbers of cells would be required; however, this should not be problematic given
the development of high-throughput imaging systems. The advent of three-
dimensional high-resolution microscopy has given rise to images with an even richer
information content and provided enough cells could be measured then these
systems would make good candidates for the method proposed here.

Machine learning. For the prediction of the DNA content, we use LSboosting
as implemented in Matlab’s fitensemble routine (Supplementary Code 4). For
the assignment of the mitotic cell cycle phases, we use RUSboosting as also
implemented in Matlab’s fitensemble routine (Supplementary Code 5). In both
cases, we partition the cells into a training and a testing set. The brightfield and
darkfield features of the training set as well as the ground truth of these cells are
used to train the ensemble. Once the ensemble is trained, we evaluate its predictive
power on the testing set. To demonstrate the generalizability of this approach and
to obtain error bars for our results the procedure is 10-fold cross-validated. To
prevent overfitting the data the stopping criterion of the training was determined
via fivefold internal cross-validation. All of these steps are described in the tutorial
(Supplementary Note 1) and on the webpage.

In addition, we analysed which features have the most significant contributions for
the prediction of both the nuclear stain and the mitotic phases by ‘leave one out’
cross-validation (Supplementary Table 3). We find that leaving one feature out has
only a minor effect on the results of the supervised machine learning algorithms we
used, likely because many features are highly correlated to others. The most important
features are intensity, area and shape and radial distribution of the brightfield images.

Retrospective data analysis. The described method can be used retrospectively
to analyze data that was not originally acquired with label-free phenotype identi-
fication in mind. As demonstrated in the paper, either of two requirements must be
met: (1) the phenotype of interest must be recognizable by eye or
quantifiable/classifiable by image analysis, given the existing label-free images, or
(2) the phenotype must be recognizable by eye or quantifiable/classifiable by image
analysis in a separately stained subset of images prepared at the same time. Either
of these approaches will provide the ground truth required to train the algorithms
for label-free identification from retrospective image data on cells that are
otherwise identically prepared and imaged, but lacking any stains. This approach
offers the possibility to study the properties of different cell phenotypes using data
that previously did not allow distinguishing the phenotypes.

The same overall approach could also in theory be used to carry out label-free
assays (whether retrospectively or not) using the image data from conventional
microscopy as opposed to imaging flow cytometry. Adherent cells that are
reasonably flattened improve the visibility of morphological features by which to
determine phenotypes; however, the non-uniform presentation of each cell (versus
imaging flow cytometry) is a disadvantage. Whether any particular application is
feasible would be an empirical question.
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