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Abstract: The purpose of this short paper is to show the invalidity of a Fourier
series expansion of fractional order as derived by G. Jumarie in a series of papers. In
his work the exponential functions einωx are replaced by the Mittag-Leffler functions
Eα (i(nωx)α) , over the interval [0, Mα/ω] where 0 < ω < ∞ and Mα is the period
of the function Eα (ixα) , i.e., Eα (ixα) = Eα (i(x + Mα)α) .
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1. Introduction

The Mittag-Leffler function which is named after the Swedish mathematician
Mittag-Leffler, who introduced it in 1903 [17], has recently been the object of many
research papers because it plays an important role in Fractional Calculus. It appears
in solutions of some fractional differential and integral equations and as a result it
has found some physical applications [14].

The Mittag-Leffler function is an entire function of order 1/α, α > 0, defined by
the power series

Eα(z) :=

∞
∑

k=0

zk

Γ(1 + kα)
, z ∈ C.

It is easy to see that

E1(z) = ez, E2(z2) = cosh z.

Because the Mittag-Leffler function generalizes the exponential function, one won-
ders if it generalizes or at least shares some properties of the exponential function.
Several people explored that idea, among them is G. Jumarie, who derived the
following proposition [8]
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Proposition 1.1. Suppose that f : R+
0 → R is continuous and possesses for all

k ∈ N Riemann-Liouville fractional derivatives of order kα, with 0 < α ≤ 1. Let
h > 0. Then

(1) f(x + h) =
∞
∑

k=0

hkα

Γ(1 + kα)
f (kα)(x),

where Dα is the modified Riemann-Liouville fractional derivative.

He used this proposition to show that

(2) f(x + h) = Eα(hαDα)f(x),

which he then employed to establish that

(3) DαEα(λxα) = λEα(λxα), x ≥ 0.

This equation is a generalization of the relation

d

dx
eλx = λeλx,

and reduces to it when α = 1. Moreover, he also showed that the semi-group
property eλxeλy = eλ(x+y) may be extended to

(4) Eα(λxα)Eα(λyα) = Eα(λ(x + y)α), 0 < α ≤ 1, λ ∈ C.

In fact, in [12] he gave several proofs of this relation.
Analogous to the definition of cos x and sin x in terms of the exponential function,

Jumarie defined cosα(xα) and sinα(xα) by

Eα(ixα) = cosα(xα) + i sinα(xα), x ≥ 0.

which leads to

cosα
2(xα) + sinα

2(xα) = Eα(ixα)Eα(−ixα).

Therefore,

cosα
2(xα) + sinα

2(xα) = 1,

is equivalent to

Eα(ixα)Eα(−ixα) = 1,

that is

(5) (Eα(ixα))−1 = Eα(−ixα).

But here we note that this relation does not follow from the functional equation

Eα(λxα)Eα(λyα) = Eα(λ(x + y)α)

because if we put y = −x, we have

Eα(λxα)Eα(λ(−x)α) = Eα(λ(x − x)α) = Eα(0) = 1

which implies that

(6) (Eα(λxα))−1 = Eα(λ(−x)α),

and when combined with (5) leads to

(7) (Eα(ixα))−1 = Eα(i(−x)α) = Eα(−ixα).
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Under the assumption that there exists a real number Mα > 0 such that Eα(iMα
α )

= 1, the periodicity of the function Eα(ixα), and hence, the periodicity of cosα(xα)
and sinα(xα), will follow since

Eα(ixα) = Eα(ixα)Eα(iMα
α ) = Eα(i(x + Mα))α).

The orthogonality of cosα(mx)α and sinα(mx)α now follows from the periodicity
of these functions together with the fact that

cosα
2(xα) + sinα

2(xα) = 1.

It was also shown that cosα(mx)α and sinα(mx)α form an orthogonal basis for
L2[0, Mα]. In [8], Sec. 6, he obtained an expansion in terms of fractional sine and
cosine functions as follows. Let f be a periodic function with period Mα/ω. Then
f can be expanded in a Fourier-type series of the form

f(x) = a0/2 +

∞
∑

n=1

an cosα(nωx)α + bn sinα(nωx)α,

where

an = 2

(

ω

Mα

)α ∫ Mα/ω

0

f(x) cosα(nωx)α(dx)α,

and

bn = 2

(

ω

Mα

)α ∫ Mα/ω

0

f(x) sinα(nωx)α(dx)α.

Parseval’s relation takes the form
∫ Mα/ω

0

f2(x)(dx)α =
1

2

(

Mα

ω

)α ∞
∑

n=0

(

a2
n + b2

n

)

.

These results paved the way to developing a parallel approach to harmonic anal-
ysis based on these fractional cosine and sine functions.

Fascinated with these results, the authors of this article tried to derive new results
using these fractional trigonometric functions and their orthogonality. However,
they soon realized that there were some errors in Jumarie’s derivations and some
of the above relations cannot hold. The purpose of this paper is to show exactly
that.

2. Preliminary Result

In this section we show by examples that some of Jumarie’s results are invalid.
First, we observe from Eq. (7) that we should have Eα(i(−x)α) = Eα(−ixα). But
from the definition

Eα(λxα) =

∞
∑

k=0

λkxαk

Γ(1 + kα)
,

we have

Eα(−ixα) =

∞
∑

k=0

(−1)kikxαk

Γ(1 + kα)

and

Eα(i(−x)α) =

∞
∑

k=0

(−1)αkikxαk

Γ(1 + kα)
,
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and for the last two representations to be equal, we must have (−1)k = (−1)αk

which happens only if α = 1.
We can also show directly that Eα(ixα)Eα(−ixα) 6= 1. For,

Eα(ixα)Eα(−ixα) =

(

∞
∑

k=0

(ixα)k

Γ(1 + αk)

)(

∞
∑

m=0

(−ixα)m

Γ(1 + αm)

)

=





∞
∑

k,m=0

(−1)m(ixα)k+m

Γ(1 + αm)Γ(1 + αk)





=

∞
∑

n=0

inxαn
n
∑

k=0

(−1)n−k

Γ(1 + αk)Γ(1 + α(n − k))

=

∞
∑

n=0

inxαnAn(α),

where

An(α) =
n
∑

k=0

(−1)n−k

Γ(1 + αk)Γ(1 + α(n − k))
.

It is easy to see that A0 = 1, A2k+1 = 0, ∀k ∈ N0. However,

A2 =
1

Γ(1 + 2α)
− 1

Γ2(1 + α)
+

1

Γ(1 + 2α)

=
2

Γ(1 + 2α)
− 1

Γ2(1 + α)

=
2Γ2(1 + α) − Γ(1 + 2α)

Γ(1 + 2α)Γ2(1 + α)
6= 0.

In fact, all the even A2k 6= 0, but all of them are equal to zero only if α = 1.
In Figure 1, the product p(x, α) := Eα(ixα)Eα(−ixα) is plotted for several values

of 0 < α ≤ 1.
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Figure 1. The product Eα(ixα)Eα(−ixα) for several values of
0 < α ≤ 1.
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Moreover, if there existed a real number M > 0 such that Eα(iMα) = 1, we
must have cosα(Mα) = 1, sinα(Mα) = 0. But for example, for α = 1

2 , we have

cos1/2(x1/2) = e−x and sin1/2(x1/2) =
∞
∑

k=0

(−1)k xk+1/2

Γ(k + 3/2)
.

Using the Pochammer notation, we have Γ(k + 3/2) = Γ(3/2)(3/2)k and hence

sin1/2(x1/2) =
x1/2

Γ(3/2)

∞
∑

k=0

(−1)k xk

(3/2)k

=
x1/2

Γ(3/2)

∞
∑

k=0

(1)k(−x)k

(3/2)k(1)k

=
x1/2

Γ(3/2)

∞
∑

k=0

(1)k(−x)k

(3/2)kk!
=

x1/2

Γ(3/2)
Φ(1, 3/2; −x),

where Φ(a, b; x) is the confluent hypergeometric function. Using the relation

Φ(a, b; x) = exΦ(b − a, b; −x)

we obtain

Φ(1, 3/2; −x) = e−xΦ(1/2, 3/2; x),

or

sin1/2(x1/2) =
x1/2

Γ(3/2)
e−xΦ(1/2, 3/2; x).

But in view of the relationship between the confluent hypergeometric and the error
function

Erf(z) = zΦ
(

1/2, 3/2; −z2
)

=

∫ z

0

e−t2

dt,

it is clear that the only solution for cos1/2(M1/2) = 1 and sin1/2(M1/2) = 0 is
M = 0, i.e., there is no period for these fractional trigonometric functions for
α = 1

2 .
In the next section we show that our results hold not only for α = 1/2 but for

all 0 < α < 1.

3. The Main Result

In this section we extend the results of the previous section from α = 1/2 to all
0 < α < 1. To this end, we need the following definition.

Definition 3.1. A function f : R+ → R is called completely monotonic (CM) if
f ∈ C∞ and ∀ n ∈ N0 ∀ x ∈ R+ : (−1)nf (n)(x) ≥ 0.

Theorem 3.1. Let 0 ≤ α < 1. Then there does not exist an Mα > 0 so that

Eα(iMα
α ) = 1 or, equivalently, cosα(Mα

α ) = 1 and sinα(Mα
α ) = 0.

Moreover, the relation

(8) Eα(λxα)Eα(λyα) = Eα(λ(x + y)α), 0 < α ≤ 1, λ ∈ C,

can hold only if α = 1.
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Proof. We first note that cosα(xα) = E2α(−x2α). This is verified by direct compu-
tation or by referring to the duplication formula [13, Eqn. 2.14]. It suffices to show
that cosα(xα) < 1 for all x > 0.

To this end, we use a result from [18] which states that the Mittag-Leffler function
Eα(−x) is completely monotonic for all 0 ≤ α ≤ 1 and x ≥ 0. As x 7→ xα is a
Bernstein function for 0 < α < 1 and the composition Eα(− ·) ◦ (·)α of the CM
function Eα(− ·) with the Bernstein function x 7→ xα is again a CM function [20,
Theorem 3.7. (ii)], we see that E2α(−x2α) is a CM function for 0 < α < 1

2 .

As E2α(0) = 1 and E2α(−x2α) → 0+ (see, for instance, [15, Eq. (3.3)]), the
complete monotonicity for 0 < α < 1

2 and x > 0 now implies that there cannot
exist an Mα > 0 such that cosα(Mα

α ) = 1.
Now suppose 1

2 < α < 1. It is shown in [13, Section 5.2] that in this case the
Mittag-Leffler function E2α can be written as a sum of two functions, f2α and g2α,
where the former is CM and the latter oscillatory. More precisely,

E2α(−x2α) = f2α(−x2α) + g2α(−x2α),
1

2
< α < 1, x ≥ 0,

where

f2α(−x2α) :=
1

π

∫

∞

0

e−sx2α

s2α sin(2απ)

s4α + 2s2α cos(2απ) + 1
ds,

and

g2α(−x2α) :=
2

α
e−x2α cos(π/2α) cos

(

x2α sin
π

2α

)

.

The function f2α is CM, satisfies f2α(0) = 1 − 2
α , and increases towards zero from

above, whereas the function g2α is oscillatory with exponentially decaying amplitude
and g2α(0) = 2

α . Hence, E2α(−x2α) < 1, for all 1
2 < α < 1 and x > 0. Thus, there

cannot exist an Mα in this case either.
The case α = 1

2 was considered above.
Next we show that the purported functional equation (8) can hold only if α = 1.

First note that Eα(λxα) = Eα ◦ h(x), where h(x) := λxα. Writing Fα for the
composition Eα ◦ h, Eq. (8) reads

(9) Fα(x)Fα(y) = Fα(x + y).

However, the only nonzero continuous solutions of Eq. (9) are exponential functions
of the form ecx, where c ∈ C; see for instance [1, Chapter 2]. Therefore, Fα(x) =
Eα(λxα) = ecx, for all x. Successively differentiating the power series for Eα(λxα)
and ecx and letting x → 0, shows that λ = c and α = 1. �

Figure 2 below depicts some graphs of cosα(xα) = E2α(−x2α), for 0 < x ≤ 1.
The case α := 1 produces the cosine function.

In [12], the purported functional equation for Eα(λxα) is derived using several
approaches. One of them is the product rule

(10) Dα(fg) = gDαf + fDαg.

However, this rule is not correct.
To see this, let g := f := x1/2. It is straight-forward to establish that for x ≥ 0,

p > −1, and 0 < α < 1, the fractional derivative of xp is given by

Dαxp =
Γ(1 + p)

Γ(1 + p − α)
xp−α.
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Figure 2. cosα(xα) for several values of 0 < α ≤ 1.

Hence, the left-hand side of (10) computes to

Dα(x) =
x1−α

Γ(2 − α)
,

whereas the right-hand side equals

2x1/2Dα(x1/2) =

√
π x1−α

Γ(3
2 − α)

.

Both sides are identical only if α = 1.
Similarly, the two purported chain rules, which are also employed in the deriva-

tion of (8), namely

Dα(f ◦ u)(x) =
df

du
Dαu(x) and Dα(f ◦ u)(x) = (Dα

u f) ·
(

du

dx

)α

,

are not correct. To validate this, take for the former, f(x) := x2 and u(x) := x1/2,
x ≥ 0. Then, for any 0 < α ≤ 1, one has

(11) Dα(f ◦ u)(x) = Dαx =
x1−α

Γ(2 − α)

and

(12)
df

du

∣

∣

∣

∣

u=x1/2

· Dαu(x) = 2x1/2Dαx1/2 =

√
π x1−α

Γ(3
2 − α)

,

and this two expressions are identical only if α = 1. Now for the latter, take
f(u) := u1/2 and u(x) := x2, x ≥ 0. Then, for any 0 < α ≤ 1, we again have

Dα(f ◦ u)(x) = Dαx =
x1−α

Γ(2 − α)
,

whereas now

(13) (Dα
u f)

∣

∣

u=x2
·
(

du

dx

)α

= Dα
u (u1/2)

∣

∣

u=x2
(2x)α =

2α−1
√

π x1−α

Γ(3
2 − α)

.

Eqns. (11), (12), and (13) are identical only if α = 1.
For illustrative purposes, we plotted the difference Eα(λ(x+y)α)−Eα(λxα)Eα(λyα)

in Figure 3 for (x, y) ∈ [0, 2]2, λ = 1, α = 1
4 (left), and α = 3

4 (right).
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Figure 3. The difference Eα(λ(x + y)α) − Eα(λxα)Eα(λyα).
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