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Zusammenfassung

Chronische Lungenkrankheit, auch bekannt als Bronchopulmonale Dysplasie (BPD),
ist eine Lungenkrankheit die meist Frühgeborene betrifft. Die Lungenkrankheit hat
einen signifikanten Einfluss auf die Krankhaftigkeit und Sterblichkeit von betroffe-
nen Patienten. Bronchopulmonale Dysplasie wird in Woche 36 nach der Geburt
diagnostiziert. Eine frühere Diagnose könnte die Prävention und Behandlung von
BPD verbessern. Wie versuchen eine frühere Diagnose von BPD zu finden, indem
wir mit Hilfe einer neuen groß angelegten Studie des Proteoms von Frühgeborenen
nach frühen Protein-Biomarker suchen. In Zusammenarbeit mit dem Klinikum der
Ludwig-Maximilians Universität (LMU) München führen wir eine Studie über Pro-
teomik in Blut, Urin und Trachealsekret durch.

Wir erstellen mit den Proteom Daten und den klinischen Daten statistische Mod-
elle um die Beziehung von jedem Protein mit dem Grad der BPD zu analysieren. Als
Resultat finden wir eine Menge von möglichen Protein-Biomarker. Wir versuchen
außerdem eine neue verbesserte Diagnose von BPD zu finden. Dabei konstruieren wir
statistische Modelle bestehend aus Daten von Magnetresonanztomographie, der Lun-
genfunktion und der Diagnose nach 36 Wochen. Mit der neuen Diagnose bestehend
aus MRT Lungendaten suchen wir wiederum nach Biomarkern. Schlussendlich sind
die Proteine, die in mehreren Resultaten vorkommen, die Protein-Biomarker Kandi-
daten. Die Literatur der Kandidaten OSM und CFH zeigt, dass sinnvolle Biomarker
in den Resultaten vorhanden sind.

Frühe Protein-Biomarker sind wichtig für die Frühdiagnose von BPD und für eine
Verbesserung der Behandlung der Patienten. Die Suche nach Protein-Kandidaten ist
ein essenzieller Schritt für die Identifizierung von Protein-Biomarkern.



Abstract

Chronic lung disease (CLD), also known as Bronchopulmonary Dysplasia, is a lung
disease affecting predominately preterm infants and has a significant contribution to
morbidity and mortality of the affected infants. Bronchopulmonary Dysplasia is first
diagnosed in week 36 after birth. An earlier diagnosis would be a way to improve
the prevention and treatment of BPD. We try to find an early diagnosis of BPD by
searching for protein biomarkers with a new comprehensive study of the proteome
of preterm infants. In cooperation with the hospital of the Ludwig-Maximilians-
University (LMU) Munich we performed a study of large scale proteomics in blood,
tracheal and urine secretion.

With the available proteome data and clinical data we set up statistical models
to analyse the association of protein expression with the grade of BPD. We were able
to identify a set of candidate early protein biomarkers. Furthermore we attempted
to create an improved novel diagnosis of BPD by building statistical models with
the Magnetic resonance imaging, lung function data and the diagnosis at week 36
after birth. With this diagnosis consisting of MRI lung data we again search for
biomarkers. Finally we denoted proteins present in the results of multiple models as
candidate protein biomarkers. The literature of the candidates OSM and CFH show
that reasonable biomarkers are existing in the results.

Early protein biomarkers are important for the early diagnosis of BPD and for the
improvement of the treatment of the patients. Searching for candidates is a essential
step for the identification of protein-biomarkers.
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1 Introduction

Bronchopulmonary Dysplasia (BPD) (also known as Chronic lung disease (CLD))
is a lung disease affecting mostly preterm infants and has a significant contribution
to morbidity and mortality of the affected infants [12]. Commonly BPD occurs in
infants treated with mechanical ventilation and oxygen therapy to counteract their
respiratory distress syndrome or an other severe lung diseases [9]. BPD is mostly
defined as the disruption of the growth of the lung [9]. Preterm infants weighting
less than 1000 g at birth have a 75% risk to get BPD and the risk increases with
decreasing weight [12].

The lung disease has prenatal and postnatal factors and long term effects that
can persist into adolescence and early adulthood [12].

Clinical practices like prenatal steroid use, improved ventilation strategies and
improved nutrition have resulted in considerable improvements of the clinical out-
comes of BPD. But until today there are no really safe and effective therapies to
prevent or to reverse BPD. So the overall incidence of the disease has not improved
in the last 10 years [9, 12]. In 2005 there have been more than 16000 cases of BDP
which corresponds a rate of 3.9 per 1000 infants in the USA [2]. Overall ”BPD
remains a heavy burden on health care resources” [9].

Bronchopulmonary Dysplasia is first diagnosed in week 36 after birth with a set
of criteria including days of oxygen supply and days of mechanical ventilation. Since
early treatment of the preterm infants can counteract the development of BPD, it
would be desirable to find an alternative early diagnosis of BPD. Such a diagnosis can
be created with early protein biomarkers, but one of the unsolved problems is that
until today there is no comprehensive large scale study to identify these early protein
biomarkers for BPD. So the question is to find candidate early protein biomarkers
of BPD in preterm infants with protein expression data.

A possibility to find protein biomarkers are large scale measurement methods.
These are still a relative new way to study traits and diseases but they become more
and more common with the improvement of the different measurement technologies.
For the study of a proteome there are different methods such as mass spectrometry or
microarray-based custom regents binding to specific proteins like in the new method
SOMAscan™.

In order to address the problem of identifying early protein biomarkers we worked
together with the hospital of the Ludwig-Maximilians-University (LMU) Munich on
a study of large scale proteomics in blood, tracheal and urine secretion with these two
methods of a cohort of 40 preterm patients at different time points after birth. With
this new protein data our goal in the thesis is to identify early protein biomarkers to
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diagnose the disease earlier and more accurate. However the big dataset consisting
of large-scale proteome data, clinical data, MRI and lung function measurements is
complex and therefore demands so for statistical analysis techniques to determine
the possible biomarkers.

We set up statistical models to analyse the relationships of each protein with BPD
so that we found a set of candidate early protein biomarkers. We also attempt to
create an improved diagnosis of BPD by incorporating Magnetic resonance imaging
(MRI) data of the preterm infants in the cohort (compare Figure 1). With new
models including our new diagnosis composed of T1 and T2 lung data we find a set
of additional protein biomarkers. The newly found possible biomarkers can now be
further analysed.

In chapter 2 we initially describe regression analyses and biological background
informations, which are important for the understanding of the methods introduced
later. Subsequently in chapter 3 we give an overview about detailed information
about the diagnosis of BPD. In the next chapter we characterize the different protein
and MRI datasets. We analyse the structure of the datasets and particularly the large
proportion of missing values and null values in the protein datasets measured with
mass spectrometry and in the MRI data. In chapter 5 we describe the methods
used throughout this work. We here first address the problem of missing data by
imputation with the value distributions in each dataset. With the complete data
we further describe the structure and computation of the different models to get
the protein biomarkers. In the first approach we compute models with the protein
expression and the diagnosis of Bronchopulmonary Dysplasia with linear regression
analysis. In the second approach we compute the models of the first method with a
new diagnosis determined by elastic net regression and lasso of a model containing
the common diagnosis and the MRI dataset. Finally in Section 6 we analyse and
interpret the resulting potential protein biomarkers. We determine a low percentage
of overlapping proteins between the different models, which we can explain with
the different assessments of the diagnoses to the disease. In the outlook we explain
improvements and possible future directions of the study.
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Figure 1: Protein expression data, clinical data and a diagnosis are used for the
statistical models to attempt to find early protein biomarkers. We search for a
new improved diagnosis by creating a model with the clinical data, the diagnosis,
magnetic resonance imaging (MRI) and lung function data.
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2 Background

Here we introduce statistical methods like linear regression and the shrinkage meth-
ods lasso and elastic net. After the statistical part we will give an overview about
the biological background of proteomics and magnetic resonance imaging.

2.1 Regression analysis

2.1.1 Linear regression

In statistics regression is the modeling of an output y = y1 + ... + yd with the
quantitative inputs variables X = x1+ ...+xn. The model describes how the output
is affected by the input. The linear regression model has the assumption that X and
y are approximately linear related to each other. If n is greater than 1, and so there
are multiple inputs, the process is called multiple linear regression. The formula of
the linear regression model is

y = β0 +
n∑

j=1

xjβj + ε (1)

where the Gaussian random variable ε is the error ε ∼ N (0, σ2), β0 the intercept and
β1,...,n are unknown parameters for each input variable. The least squares method

is a common method to estimate the coefficients β̂ = (β̂0, β̂1, ..., β̂n)
T to predict an

outcome ŷ. The method estimates these coefficients by minimizing the residual sum
of squares

RSS(β) =
d∑

i=1

(yi − β0 −
n∑

j=1

xijβj)
2 (2)

with the data X1...n = (x11, ...,xnd)
T | d = |y| and y. We can now calculate β as a

closed-form solution [11].

2.1.2 Shrinkage methods

The least squares estimates of linear regressions can have a high prediction error [11].
Furthermore the interpretation of the results of a linear regression gets difficult if the
model contains a huge number of predictors. This is especially true for determining
the subset of predictors with the strongest effects [11] . One possibility to improve
these problems is subset selection of a model. It selects a subset of the predictors
x1, ...,xa and discards the other to simplify the model and to reduce possibly pre-
diction error. The problem with subset selection is that it is a discrete method and
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therefore has often high variance. Shrinkage methods like lasso and elastic net are
more continuous and have so less problems with high variance [11]. Shrinkage meth-
ods shrink the coefficients by for example setting a penalty on the size of them like
the regression method ridge regression. Another possibility of shrinking coefficients
is to set the fraction of the coefficients exerting no influence to the prediction of
the output variable to zero like the method Least Absolute Shrinkage and Selection
Operator (lasso) [11].

Lasso and elastic net shrink the set of input variables and coefficient to only the
variables which exert influence to the prediction of the output. Elastic net solves the
problem

min
β

[
1

2d

d∑
i=1

(yi − β0 −
n∑

j=1

xijβj)
2 + λPα(β)

]
(3)

Pα(β) = (1− α)
1

2
||β||2L2 + α|β|L1 (4)

=
n∑

j=1

[
1

2
(1− α)β2

j + α|βj|)
]
· (5)

Here Pα(β) is called the elastic-net penalty consisting of the L1 lasso penalty and
the L2 ridge penalty [8, 17]. The special case of the method α = 0 is equal to ridge
regression, which shrinks the size of the coefficients of correlated input variables
towards each other so that these variables appear in the result. Coefficients get
never zero. The method lasso corresponds to elastic net with α = 1. In contrast to
ridge regression lasso tends to take only one of the correlated input variables, which
we can consider as a loss of information on highly correlated variables. Between
α = 0 and α = 1 elastic net is a compromise between ridge regression and lasso.
With an increasing α = [0 : 1] the method increases the number of coefficients
βj = 0 monotonically from 0 to the lasso solution [8]. The parameter λ is a factor
how much the coefficients are shrunken. λ is varied to compute a path of solutions
[11].

The solution of elastic net cannot be solved in closed-form. The R package glmnet
[8] tackles this problem with cyclical coordinate descent algorithms to find optional
solutions. The glmnet algorithm calculate the coefficients β̂ with a coordinate decent
approach for a set of λ values. With cross validation of this set of λ values we can
find the optimal solution [17].
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2.2 Proteomics

The term proteome describes all proteins in a cell or a organism at specific point
of time. Omics-techniques in molecular biology comprise genomics, transcriptomics,
proteomics and metabolomics and are defind as the characterisation and quantifica-
tion of the different ”omes”. Proteomics is a large-scale study of a proteome in a spe-
cific organism. The objective of proteomics is to characterise the protein expression
quantitatively as well as the changes in protein expression caused by perturbations
like diseases and drugs [1]. There are different methods to measure the expression
of proteins. In the next two sections we introduce the measurement methods Mass
spectrometry with MaxQuant and SOMAscan™[14]. These methods all are for the
measurement of proteins.

2.2.1 Mass spectrometry

We can use mass spectrometry for the identification and measurement of proteins.
This method uses untargeted proteomics which does not preselect proteins. Untar-
geted proteomics attempts to measure and identify all proteins in a sample commonly
with shotgun liquid chromatography coupled with tandem mass spectrometry [10].
The first step in the workflow is to separate the different proteins for example with
liquid chromatography, where in contrast to gas chromatography the mobile phase of
the separation is a liquid. Mass spectrometers break the peptides of a pure protein
sample into ions to measure the mass-charge ratio of them. With the spectrum of
this ions the mass of the whole peptide is calculated (compare Figure 2). The protein
is now identified by the sequence of the measured ions. The extent of the expression
of a protein is measured by a computational comparison of their peaks [18]. There
can be problems with the identification and quantification of proteins. Protein peaks
can overlap so that they can not be identified and quantified. Here in our thesis
the identification of the proteins and the calculations of the expression values were
computed by MaxQuant [7].

2.2.2 SOMAscan

SOMAscan™ is a quantitative tool to measure proteins with targeted proteomics.
In contrast to untarged proteomics targeted proteomics selectively isolates, identi-
fies and quantifies proteins [13]. The targeted approach can overcome fundamental
limitations of the untargeted protein measurement like the limited sensitivity [13].

The targeted method SOMAscan™ can measure up to 1129 proteins by using
a reagent called SOMAmer for each protein. The SOMAmers consist of modified
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Figure 2: Example of resulting spectrum with the relative abundance on y-axis and
the mass-charge ratio m/z on x-axis. Figure from [15].

nucleic acids which bind to specific protein tertiary structures. The proteins Pi bind
to the specific reagents S located on beads. The residual secretion and SOMAmers
are removed by washing. The process performs a biotinylation with the protein and
the reagent to bind them to each other. Photocleavable linker break the binding of
the beads to the regents. After the release, the nucleic acid reagents are separated
from the protein by capturing first the complex with a SA bead and than detach the
SOMAmer. The resulting nucleic acid sequences are quantitatively measured using
DNA microarrays (see Figure 3) [14].

Problems can result from the bias that only proteins which were chosen be-
forehand are measured. Hence for example biomarkers can be missed. A sensible
selection is very important to get reasonable results.

2.3 Magnetic resonance imaging

Proton magnetic resonance imaging (MRI) is a imaging technique to probe the
anatomy of the body. The method uses radio waves and magnetic fields to get
high quality 2D or 3D images. With the MRI it is possible to study dynamic pro-
cesses like for example the respiratory motion of the lung. We can use it to get
combined morphological and functional information. The adjustment of the MRI is
constantly changed during a MRI scan to get different views and also to compensate
failed images. For example the terms T1 and T2 are time constants for signal decay.
Each of them can be used to analyse the body differently. Such as a high signal
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Figure 3: An overview of the process of the SOMAscan method. SOMAmers con-
sist of modified nucleic acids and can bind to specific protein tertiary structures.
In the workflow the proteins are captured on SOMAmer-coated beads. Then the
method washes the residues away and biotinylates the proteins and the SOMAmers.
Photocleavable linker separate regents from the beads. SA beads capture protein
complexes and the SOMAmers are split from the protein. The quantification of the
SOMAmers is performed by using DNA microarrays. (from [14])

with T1 we can interpret as a inflammatory activity. Because there is no radiation
exposure of the patients in MRI it is specifically attractive for the usage in infants
[4, 5].
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3 Diagnosis of neonatal chronic lung disease

The diagnosis of bronchopulmonary dysplasia is split into 3 grades, from grade 1
mild to 3 severe BPD. In the following we use the grade 0 as no disease. Table 1
shows the NHI diagnostic criteria for BPD.

Gestational age
<32 weeks >32 weeks

Timepoint of assessment

Treatment with oxygen >21% for at least 28 days >21% for at least 28 days
Bronchopulmonary dysplasia

Mild

Moderate

Severe

* Whichever comes first.

36 weeks post-menstrual 
age or discharge *

>28 days but <56 days 
postnatal age or 
discharge *

Breathing room air at 36 
weeks post-menstrual
age, or discharge* 

Breathing room air at 36 
weeks post-menstrual
age, or discharge*

Need for <30% O2 at 36 
weeks post-menstrual
age, or discharge* 

Need for <30% O2 to 56 
days postnatal age, or
discharge*

Need for >30% O2, with 
or without positive 
pressure ventilation or 
continuous positive 
pressure at 36 weeks 
post-menstrual age, or 
discharge* 

Need for >30% O2, with 
or without positive 
pressure ventilation or 
continuous positive 
pressure at 56 days 
postnatal age, or 
discharge*

Table 1: NHI diagnosic critieria for bronchopulmonary dysplasia. Table adapted
from [12].

A multitude of factors own a influence to the disease, but they are not fully stud-
ied and understood. The following paragraphs about factors and consequences of
BPD are based on [12] and [9]. Premature infants have weaknesses in the antiox-
idant enzyme systems and they also own insufficient numbers of antioxidants like
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the vitamins C and E. With an oxidation therapy the lung has a excessive exposure
to oxygen and such hyperoxia can occur, leading to increased production of cyto-
toxic oxygen free radicals. The radicals can overcome the weak defend system of the
preterm infants and can so induce lung injury.

The lung damage with mechanical ventilation by Pulmonary volutrauma, which
is an overdistention of the lung, is also possibly a cause of the development of the
lung disease in infants.

An other factor is the vascular endothelial growth factor (VEGF) signalling con-
tributing to vascular disease through hyperoxia. Endothelial-epithelial interactions
particularly with VEGF signalling, has a critical role for a healthy lung growth.
Reduced or disrupted VEGF signalling leads to hindered vascular growth and alve-
olarization.

Other risk factors are prenatal and postnatal inflammations of the lung in the
infants. Proinflammatory citokines like interleukins Interleukin-1beta (IL-1β) and
Interleukin-6 (IL-6) have a raised expression from the birth to 6 months after birth.
For example IL-1β causes release of inflammatory mediators and the activation of
inflammatory cells [12].

Furthermore genetic factors are contributing to Bronchopulmonary Dysplasia.
So for example polymorphisms in the genes tumor necrosis factor alpha (TNF), Toll
like receptor 10 and VEGF possibly have a important role in the development of the
disease. In summary inflammations, hyperoxia, a week defence system, mechanical
ventilation and genetic predispositionshave all a contribution to the injury and the
prenatal and postnatal growth of the lung.

Implications of Bronchopulmonary Dysplasia are increased respiratory rates (tachyp-
noea) with shallow breathing and retractions and also on ausculation wheezes can be
heard. These breathing characteristic with the increased rates increase dead space
ventilation. The dynamic lung compliance is reduced because of small airway nar-
rowing, fibrosis, oedema resulting of large collateral vessels shunting blood flows to
the lung, and atelectasis [12].

In the first 2 years the preterm infants often need to go once again to the hospital
especially because of respiratory syncytial virus infections [12] . Long and compre-
hensive studies of patients into adulthood are not present and so long term outcomes
of patience with BPD are not well known [12] .
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4 Materials

4.1 Protein data

For the identification of protein biomarkers of BPD we require protein expression data
and clinical data for a defined set of patients. We use the clinical data to eliminate
environmental effects from the computations. As clinical data we include the weight,
the gender, if the infants had an early onset infection, the degree of Respiratory
Distress Syndrome (RDS), the usage of steroids and the gestational age (Table 4.1).
We have 3 different protein expression datasets available. These are measured in
blood plasma, tracheal segregation and urine by the group of Anne Hilgendorff at
the hospital of the Ludwig-Maximilians-University (LMU) Munich. They measured
the blood protein expression data with the SOMAscan™method (compare Section
2.2). Here 18 patients have each mostly 3 blood protein measurements at different
time points between day 1 and 224 after birth.
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Density distribution of the expression values 
across the samples of the blood dataset
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Figure 4: Density distribution of the logarithmic expression values of the first 7 days
across the samples/patients of the blood dataset. Here we observe that the log2
protein expressions are approximately normally distribution. The distributions have
a long tail at the higher expression values.
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Patient Gestational.age Weight Gender Early.onset.infection BPD RDS mechVent days Steroide 0xygen days
1 24 580 f no 1 2 55 yes 53
2 27 885 m no 0 1 33 no 0

11 30 1630 f no 0 1 21 no 7
12 30 1125 f no 0 2 19 yes 1
14 30 1630 m no 0 0 0 no 0
15 30 930 m no 0 0 12 no 1
19 30 1770 m no 0 0 3 no 0
20 26 780 m yes 1 2 56 no 63
21 26 575 m yes 3 4 70 no 176
22 25 750 f yes 0 2 53 yes 1
23 28 1040 f no 2 3 40 no 20
24 27 760 f no 3 3 78 yes 186
25 28 700 m no 0 2 33 no 0
28 30 1370 m no 0 2 12 yes 8
34 27 930 f no 1 4 44 yes 32
35 27 760 f no 2 4 56 yes 67
37 29 1510 m no 1 1 17 no 35
38 26 820 m no 1 2 49 yes 44
39 27 815 f yes 3 3 53 yes 72
40 25 720 m no 1 2 56 yes 59
41 30 995 f no 0 1 9 no 0
42 30 1440 f no 0 1 0 no 0
44 29 1090 m yes 1 3 34 no 40
46 31 1100 f no 0 1 6 yes 0
47 28 950 f yes 1 2 31 no 31
49 25 700 m yes 1 3 60 yes 36
56 30 1300 f no 0 2 5 no 3
57 30 1440 m no 0 1 4 no 4
58 27 655 f no 1 1 45 no 48
59 25 730 f no 1 2 56 yes 66
60 27 915 m no 0 2 35 no 9
61 24 530 f no 2 3 73 yes 105
62 27 1200 m yes 0 0 15 no 0
63 30 1415 f no 0 2 2 no 1
64 24 415 f no 2 3 73 yes 87
65 28 930 f no 0 0 38 yes 6
66 28 730 f no 0 2 43 yes 9
72 24 850 f no 3 2 68 yes 91
73 28 1500 m no 0 2 28 no 6
74 26 920 m yes 1 4 57 no 49

Table 3: Clinical data of the 40 patients in the cohort. Columns in the table:
mechVent days = days of mechanic ventilation; 0xygen days = days of oxygen supply;
Gestational age in weeks; weight in grams; Respiratory Distress Syndrome (RDS) grades
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We have also protein expression data measured in urine and tracheal secretion
with mass spectrometry and analyzed with MaxQuant. For normalization we take
the logarithm log10 of protein expression values. A large fraction of these two datasets
consist of missing values (see Figure 9 and 10). The expression values are measured
at multiple time points after the birth of the preterm infant.

4.2 MRI data

The diagnosis in week 36 is divided into 4 disease grades ranging from 0 to 3. This
categorization in groups is not very precise and also the nuances between the patients
in one group are here not considered. So since the diagnoses with BPD grades do not
describe the disease well, Magnetic resonance imaging (MRI) data of the patients is
included in one approach.

The MRI data consist of lung, heart function, the size of the lung and of T1 and
T2 values. Some values are missing due to some difficulties by the measurement of
the different variables (Figure 5). The lungs of the infants are very small and for
that reason it is difficult to determine the different measurement values. An other
problem is that the infants can move in the MRI scanner and so the quality of the
picture can be bad (Section 2.3).
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Figure 5: Missing values in the MRI data. White are missing values and blue are
known values.

21



5 Methods

We performed multiple differing approaches to identify early protein biomarkers
whereby we find different sets of biomarkers. We only use protein expression measure-
ments of the first 7 days to account for our problem to find early protein biomarkers
(Section 4.1). Generally we perform the computation of lasso and elastic net with
leave-one-out cross-validation implemented in the R package glmnet [8]. In the fol-
lowing we will first describe the imputation of missing values by sampling out of a
normal distribution which is parametrized according to the data. After we present
two different workflows to find early protein biomarkers. The approach A works with
lasso and linear regression applied to the diagnosis of BPD and the large scale protein
data. In contrast the workflow B creates a new prediction of BPD with the help of
the MRI data and than uses this prediction to perform the method introduced in
the first approach.

5.1 Imputation of unknown values

If we want to apply a method to a dataset with missing values, there is no ideal way
to handle them. We can either try to remove these values or we can try to impute
the missing data. Here we choose simple but unbiased methods to compute these
values.

5.1.1 Protein dataset

As mentioned in Section 4 in the urine and tracheal protein dataset are lots of missing
values (Figure 9 and 10). We do not know if these are not measured due to technical
difficulties of mass spectroscopy or are not present in the body fluid. We decided to
impute these values by assuming that the protein expression is normally distributed.
First we remove the proteins with more than 30% missing measurements. With the
removing of proteins we can possibly loose proteins with significant effects. But in
the following imputations reasonable protein expression means are important and
these are only possible with a large fraction of non null values. The 0 values NAx of
a protein p is calculated with the formula

NAx = N ((0.3 quantil of N (meanp, 1.5)), 1) · (6)

The 30% quantile of the normal distribution with the mean of the respective protein
expression values is here applied to account the explanation of 0 means no expression.
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Prediction Meaning
BPD multinomial BPD with 0,1,2,3
BPD0 binary with BPD 0 and combined BPD 1,2,3
BPD1 binary with combined BPD 0,1 and combined BPD 2, 3

Days of mechanical ventilation length of the mechanical ventilation in days
Days of oxygen supply length of the supply with oxygen in days

Table 4: Overview of the different diagnoses used in Section 5.

5.1.2 MRI dataset

We have also a problem with unknown values in the MRI dataset (Figure 5. Here
the measurements are missing and not measured and so we have to impute these
values. We use the R package MICE [6] to impute the missing data.

5.2 Identification of disease-associated proteins

The general idea of our first approach is to explain the expression of the protein with
a prediction variable by excluding the available cofactors consisting of clinical data
(Table 4.1) and the general influence of the patients. Hence the protein biomarkers
are the proteins which are significantly influenced by the prediction. We model this
concept by using linear regression analysis with the clinical data as predictor variables
and the expression of one protein as the output. But because we restrict the protein
measurements to the first 7 days and we have several input variables we have a big
model with few information. So we first shrink the model with lasso to reduce the
number of variables and than we calculate the linear regression of the smaller model
to obtain p-values for the prediction and and account for multiple testing.

Figure 6 shows an overview of the following workflow. We first match the samples
of the imputed protein expression data and the clinical data including the diagnosis.
Then we perform lasso in step 3 for all proteins a ∈ {1 : N}, N = |proteins| with

ya = β0 + βdiagnosis ∗ xdiagnosis + βclinical ∗Xclinical +
s∑

j=1

βj ∗Xj + ε (7)

ya is defined as the protein expressions of protein a. In the formula xdiagnosis is either
BPD0, BPD1, days of mechanical ventilation or days of oxygen supply (defined in
Table 4) and Xclinical are the clinical variables of Table 4.1. s is the number of
subjects, which have more than one measurement and we define Xj as a Boolean
vector marking the subject j. These variables indicate the influence of each subject.
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Figure 6: Overview of the workflow A described in Section 5.2. Workflow steps for
the identification of proteins associated with BPD.
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With this computation we obtain for each protein a shrunken model. We pick in step
4 in Figure 6 only the models which select a non-zero coefficient for the diagnosis.
This model selection is the starting basis of the multiple linear regressions which
have the form

yb = β0 + βdiagnosis ∗ xdiagnosis + βselected ∗Xselected + ε (8)

Here protein b ∈ {1 : m} with m = |selected proteins|. Xselected are the selected
input variables (compare step 5) in the shrunken model without the prediction and
βdiagnosis are new coefficients associated to each of this variables. Next in Figure 6
step 7 we determine the associated p-value of the prediction for all proteins of the
shrinkage models and correct these with the Benjamini and Hochberg procedure to
correct the multiple testing error. The results are presented in Section 6.

5.3 Identification of proteins associated with MRI patterns

In the following approach we want to improve the prediction of BPD and identify
proteins associated with the new prediction. Figure 7 B shows an overview of the
workflow. The problems of the predictions in Table 4 are that the gradation of the
strength of Bronchopulmonary Dysplasia are determined very late at week 36 and
the classification in 4 grades is vague. Also days of mechanical ventilation and days
of oxygen supply are only unsatisfying characteristics of BPD (Section 3). We want
to accomplish this improvement by including the MRI dataset. In the new workflow
we first search for a new diagnosis in the MRI data with Lasso and elastic net and
apply it to a new model similar to Section 5.2.

5.3.1 Identification of disease-associated MRI patterns

The Correlation plot Figure 8 shows the strong correlation of 4 sets of measurement
variables to each other. Especially T1, T2 and lung volume variables have each a
strong positive correlation in their group. Lasso takes only one variable of these
highly correlated sets into account, so that information is possibly lost (compare
Section 2.1.2). Elastic net includes these strong correlations [17] and for this reason
we also perform the following method with elastic net. Figure 7 describes the follow-
ing workflow. Similar to A we match the samples of the imputed MRI data and the
clinical data. In step 3 we calculated elastic net with an α ∈]0− 1[ and lasso α = 1
with the equation

ydiagnosis = β0 + βMRI ∗XMRI + βclinical ∗Xclinical + ε · (9)
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Figure 7: Overview of the workflow B described in Section 5.3. Searching for a new
improved prediction of BPD in the MRI and lung function data. With the new
prediction we perform workflow A (Section 5.2).
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The diagnosis above is a prediction of Table 4 and XMRI are the variables of the
MRI dataset. The results are coefficients for each MRI parameter (see step 4). With
this reduced sets of parameters we can define new biological meaningful diagnoses
by choosing prediction variables of the MRI data.

5.3.2 Identification of MRI-associated proteins

We calculate the same steps like in 5.2 (Figure 6) but with the improved prediction
Xprediction from approach B step 5 in the formula 10 and 11. In the models we
exclude missing data in the new prediction and hence we exclude the associated
measurements in step 2. Like in step 3 in A we calculate a lasso regression with the
model

ya = β0 + βprediction ∗ xprediction + βclinical ∗Xclinical +
s∑

j=1

βj ∗ xj + ε (10)

and the linear regression in step 6 with

yb = β0 + βprediction ∗ xprediction + βselected ∗Xselected + ε · (11)

The other steps are equal to the steps in workflow A. Finally we get again a set of
proteins, which we can now use for further analyses.
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Figure 8: Correlation plot of the MRI dataset. Blue means positive and red negative
correlation. The boxes are sets of closely correlated measurement pairs. The size
of the circles show the strength of the correlation. The correlations are computed
without imputed values. The missing values for the computation of the correlations
are omitted.
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6 Results and Discussion

6.1 Imputation

In the protein expression datasets measured in urine and tracheal secretion and in
the MRI data there are large percentages of unknown values. With the methods in
Section 5.1 we imputed these values so that they are reasonably in the comparison to
the known data. The resulting density plots of the protein expression data are showed
in Figure 12 and 11. Here the imputed values of the tracheal and the urine protein
expression data do not contain zeros anymore now. Also these resulting imputed
protein expressions approach normal distributions. We also imputed the values of
the MRI dataset for the method in Section 5.1.2. Although there is a relative high
variance with this imputation between different imputations it is sufficient enough
to draw the conclusions in Section 6.3.
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Figure 9: Density distribution of the loga-
rithmic expression values (log10) of the first 7
days across the samples of the urine dataset.
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Figure 10: Density distribution of the log-
arithmic expression values (log10) of the first
7 days across the samples of the tracheal
dataset.
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Figure 11: Density distribution of the loga-
rithmic expression values (log10) of the first 7
days across the samples of the urine dataset
with the imputation of the 0 values with the
method in Section 6.1.
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Figure 12: Density distribution of the log-
arithmic expression values (log10) of the first
7 days across the samples of the tracheal
dataset with the imputation of the 0 values
with the method in Section 6.1.
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6.2 Results of the identification of disease-associated pro-
teins

Using the method described in Section 5.2 we calculated the coefficients with 4
different types of diagnosis BPD0, BPD1, days of mechanical ventilation and days of
oxygen supply (see Table 4) and with the blood and the imputed urine and tracheal
protein expression data.

In addition we computed the method by including days of oxygen supply and
days of mechanical ventilation at the same time. Instead of using only one variable
as diagnosis we here used two. If lasso selected minimum one of the two variables ,
we performed linear regression with the non-zero variables. After these regressions
we used again the proteins where one or both of the coefficients of days of oxygen
supply and mechanical ventilation are non-zero. We created two lists, one where
the coefficients of days of oxygen supply are non-zero and the same with mechanical
ventilation. So we got two list of proteins each with 2 columns containing the p-values
of days of oxygen supply and mechanical ventilation. For each list one of the columns
is complete and we can corrected the p-values in this column for multiple testing.

As the result of this method we obtained tables of proteins for the prediction
variables for each secretion type (see appendix A.1). Furthermore all proteins own
a p-value corrected for multiple testing. To further interpret the results we apply a
p-value threshold. Here we set the significance level of the p-values to p < 0.05. The
resulting lists of significant proteins are candidates to be protein biomarkers of BPD.

In Table 5, showing the number of significant proteins for each computation, we
observe that blood and tracheal secretion have the highest number of significantly
associated proteins. In contrast to these in the urine sets there are only significant
p-values with the prediction BPD0. The reason can be the imputation of the missing
values. Therefore we discarded a large part of the proteins and we set the constants
of the imputation fixed. With the discarding we can loose significant proteins and
the same can happen with a suboptimal imputation. The fundamental issues are the
missing values due to the problems of mass spectrometry.

We computed days of mechanical ventilation and days of oxygen supply together,
because we wanted to find out if they complement each other. We observed rarely
cases where both variables have coefficients not equal zero. The results are so very
similar to the list of proteins with only one prediction variable. Some differences can
occur if lasso selected slightly different variables.

To further study the results, we especially analysed the proteins which are signif-
icant in multiple tables. These proteins have probably a close relationship to BPD.
So our general idea to interpret these tables is that we analysed the intersections of
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Number of proteins in the result sets of
Blood Tracheal Urine

BPD0 21 28 2
BPD1 45 4 0
Mechanical ventilation 4 10 0
Mechanical ventilation + oxygen supply 2 0 0
Oxygen supply 13 16 0
Oxygen supply + Mechanical ventilation 13 18 0
T1 24 - -
T2 0 - -

Table 5: Number of significant proteins of the different secretion types and the dif-
ferent prediction variables. Mechanical ventilation = days of mechanical ventilation;
Oxygen supply = days of oxygen supply. Days of mechanical ventilation + days of
oxygen supply means that we both include in the model and select and correct days
of mechanical ventilation. Days of oxygen supply + days of mechanical ventilation
works the other way around.

the protein lists to find possible new protein biomarkers.
The Venn diagram in Figures 13 and 19 show the intersection of the blood protein

sets. We can see that mostly only a small amount of the proteins are contained in 2
or more lists. The tracheal result in Figure 14 has also this feature.
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Figure 13: Venn diagram of the significant proteins of the blood dataset with the pre-
dictors BPD1, days of oxygen supply (oxygen days) and mechanical ventilation. The
gene complement factor H (CFH) is the intersection between the 3 sets of proteins.
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Figure 14: Venn diagram of the significant proteins of the tracheal dataset with the
predictors BPD0, days of oxygen supply (oxygen days) and mechanical ventilation.
The intersection of the 3 sets is the gene WAP four-disulfide core domain 2 (WFDC2).
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The gene complement factor H (CFH) is present in BPD0, BPD1, days of oxygen
supply and days of mechanical ventilation of the significant blood secretion results.
The p-value of the coefficient BPD1 is 3.277 ∗ 10−3. CHF is significantly associated
with the disease when no and mild BPD is compared to medium and severe BPD.
In Figure 15 we can see that after the elimination of the side effects of the clinical
variables there is a distinct increase of the expression values by infants having a
severe disease with a BPD degree of 2 and 3 to infants with a BPD degree of 0
and 1. The gene CFH is overexpressed in preterm infants with BPD. The encoded
protein of the gene CFH has ”an essential role in the regulation of complement
activation, restricting this innate defense mechanism to microbial infections” [16].
Preterm infants have often infections so CFH as a biomarker can be reasonable.
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Figure 15: Boxplot of the logarithmic gene expression of complement factor H (CFH)
and BPD1. In the plot we eliminate the effects of the clinical data by subtracting
βclinical∗Xclinical and the intercept of the linear regression model from the logarithmic
gene expression. So the plot only shows the relationship of BPD with the protein
expression. The corrected p-value of BPD1 in the linear regression is 0.003277.

An other candidate biomarker is the gene oncostatin M (OSM). Figure 13 shows
that the gene exists in the lists of days of oxygen supply and days of mechanical
ventialtion. In the plot in Figure 16 we can see a reasonable line of the data points.
With increasing days of oxygen supply of the infants the expression of OSM increases.
The p-value of days of oxygen supply is 9.035∗10−3 in the linear regression with OSM.
The encoded protein of OSM has a regulation function of the cytokine production,
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like interleukin 6 (IL-6), colony stimulating factor 3 (CSF3) and colony stimulating
factor 2 (CSF2) from the endothelial cells [3]. The pro-inammatory cytokine IL-6
induces broblast and collagen production in BPD (compare Section 3) [12]. This
suggests that CFH can have a influence on BPD and can work as a protein biomarker.
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Figure 16: Plot of the logarithmic gene expression of oncostatin M (OSM) on the
y-axis and days of oxygen supply (oxygen days) on the x-axis. In the plot we eliminate
the effects of the clinical data by subtracting βclinical ∗Xclinical and the intercept of
the linear regression model from the logarithmic gene expression. So the plot only
shows the relationship of OSM with the protein expression. The corrected p-value
of days of oxygen supply in the linear regression is 0.009035.
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6.3 Results of the identification of proteins associated with
MRI patterns

To possibly improve the previous results we perform the extended approach of Section
5.3. There we first search a new prediction out of the MRI data and than perform
lasso and a linear regression with this new variable and the protein expression. We
computed the first step with elastic net α = (0.1, 0.2, 0.5, 0.8) and with lasso α = 1.
We use the outputs days of mechanical ventilation, days of oxygen supply, BPD0,
BPD1 and the grade of BPD. The results of this method are for each α a set of lists
of coefficients for all variables in the MRI dataset.

In the heatmap in Figure 18 we observe that with lasso mostly clinical variables
like gestational age, Respiratory Disease Syndrome (RDS) and gender are present.
Variables like heart beat rate, which are universal and present in lots of diseases, do
not really produce a new prediction. The coefficients in Figure 17 and 18 of the lung
volume data are zero expect for the volume of the right lung.

The T1 and T2 variables stand out in the result. In the lasso result in Figure
18 there are positive T2 coefficients like T2 left down and T2 right top and a T1
variable T1 right down. Here the terms left/right, down/top determine the posi-
tion of the measurement in the lung. With lower α values the number of non-zero
coefficients of T1 and T2 variables clearly increases in contrast to for example the
lung volume variables (compare Figure 17 and appendix A.2). Because the T1 and
T2 variables are closely correlated (Figure 8) this indicates that T1 and T2 have an
strong relationship with BPD.

The T1 coefficients are generally negative and the T2 coefficients are positive.
The coefficients of ”BPD0” are an exception, because the variable represent the
infants with no BPD. So these coefficients are refers to the coefficients of the other
prediction variables. The negative coefficients of T1 and the positive coefficients
of T2 denotes that with increasing severity of BPD the values of the T1 variables
decrease and the T2 variables increase.
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Figure 17: Heatmap of the elastic net results of the method in Section 5.3 with
α = 0.5. The heatmap shows the coefficients for each output variable. BPD0, BPD1,
BPD2, BPD3 are the results of the output with the grades of BPD as multinomial
variable. bpd0 01 corresponds to BPD0 in Table 4 and bpd1 01 corresponds to BPD1
in Table 4. mechVent days total = days of mechanical ventilation, Oxygen days =
days of oxygen supply. All negative coefficients are red and all positive coefficients
are blue to increase the visibility of small coefficients. Coefficients with the value
zero are white in the plot.

37



B
P
D
0

B
P
D
2

B
P
D
3

m
ec
hV
en
t_
da
ys
_t
ot
al

bp
d1
_0
1

0x
yg
en
_d
ay
s

B
P
D
1

bp
d0
_0
1

gest.age
weight
Average.Flow.per.Minute..l.min..1
T1_re_unten
Volume.ges.mean_Cor_trans
Volume.links.mean_Cor_trans
Volume_ges_trans
Volume_li_trans
Volume_ges_cor
Volume_re_cor
Volume_li_cor
Average.Velocity..cm.sec..1
Heart.Rate..Beats.min.
Average.Area..cm.2.
Average.Flow.per.Minute..l.min.
Average.Velocity..cm.sec.
BSA..m.2.
T1_li_unten
T1_li_oben
T1_re_oben
T1_Gesamt
T2_li_oben
T2_re_oben
infection
T2_Gesamt
steroids
Volume_re_trans
gender
T2_li_unten
Heart.Rate..Beats.min..1
Average.Area..cm.2..1
Volume.rechts.mean_Cor_trans
T2_re_unten
RDS

Diagnoses

M
ea
su
re
m
en
ts

MRI data (α=1)

= +

= −

= 0

Figure 18: Heatmap of the lasso results (α = 1) of the method in Section 5.3.
The heatmap shows the coefficients for each output variable. BPD0, BPD1, BPD2,
BPD3 are the results of the output with the grades of BPD as multinomial variable.
bpd0 01 corresponds to BPD0 in Table 4 and bpd1 01 corresponds to BPD1 in Table
4. mechVent days total = days of mechanical ventilation, Oxygen days = days of
oxygen supply. All negative coefficients are red and all positive coefficients are blue
to increase the visibility of small coefficients. Coefficients with the value zero are
white in the plot.
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With these observations and the clinical knowledge of our cooperation parters
of the hospital of the LMU we decide to take T1 and T2 as our new predictions.
We choose the T1 total (T1 Gesamt) and T2 total (T2 Gesamt). T1 and T2 total
represent the sum of all T1 or T2 variables and are so a reasonable combination of
these variables.

We calculate the second step of the method with T1 and independently with T2.
The results are once again protein tables. By computing the method with the blood
dataset we only get significant results with T1 (Table 5). The T1 set of proteins
has no intersections with the other blood protein lists. This suggests that T1 of
the MRI data is a distinctly other classifier than the other predictors. However we
can consider these proteins as possible protein biomarkers of BPD. These proteins
possibly represent an other feature of Bronchopulmonary displasia. But further
statistical and biological investigation have to be done to get certainty.

bpd1

bpd0

T1

24

18

42

CFH
SIGLEC14
ERAP1

Figure 19: Venn diagram of the significant proteins of the blood dataset with the
predictors BPD1, BPD0 and T1.
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7 Summary and outlook

We created two different approaches to find protein biomarkers in Bronchopulmonary
Displasia with statistical methods. The general idea of the approaches is to perform
linear regression with the protein expression data, the clinical data and a diagnosis
of BPD. In the first approach we use the conventional diagnosis, the days of oxygen
supply and days of mechanical ventilation as the prediction. The second approach
searches for a new diagnosis to use in the linear regression with a statistical model
using elastic net and lasso with MRI data and the predictions of the first method.

We performed the first approach with blood, tracheal and urine protein expression
data and obtained as results lists of proteins of each segregation type and of each
diagnosis. To further analyse these results we examined intersections of the lists.
As examples CFH and OSM seem to be reasonable candidate protein biomarkers of
BPD.

By the extended approach with the MRI data we decided based on the results of
elastic net to use T1 and T2 as the new prediction of BPD. In the resulting lists of
the computation of the linear regression with T1 and T2 and the blood protein data
we obtain only significant results with the T1 variable.

There are a good amount of blood and tracheal protein biomarkers but we have
hardly no biomarkers of the urine dataset. The absence of significant proteins in the
urine dataset and the prediction with T2 suggest that improvements of the methods
are required or that there are no protein biomakers.

We can for example perform modifications on the input of the methods. Further-
more we can increase the amount of protein data by increasing the cutoff days for
the measurements of the proteins. Generally the imputation of the missing values is
a big issue. We can collect more data to address this problem. Also an improvement
of the imputation of the missing protein expression values can be by changing the
constants of the imputation method. It is possible that this can improve the resulting
protein lists. To validate the protein biomarkers a validation on a control cohort is
necessary.

With methods described here and their results we can create a set of reasonable
early protein biomarkers. With the set we can possibly build a new model that
performs as a classifier to predict BPD early after birth. So the goal is that the
clinicians only have to measure protein expression values of a distinct set of proteins
in a preterm infant and than can predict if this infant is prone to develop a BPD. This
information can help to adjust the treatment and to take preventive steps against
BPD. Also the information that some proteins have a influence on the disease can
help to study the factors of the disease.
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Furthermore we can also study the course of the disease on the protein level. It
is possible to perform our methods with protein measurements in different periods
of time. So we get sets of proteins which are characteristic for each period. A
comparison between these sets can now help to describe the development of the
disease on the protein level over time.
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A Appendix

A.1 Resulting protein lists of the linear regressions with the
protein expression and the predictions

A.1.1 Blood proteins

gene name bpd0
BCAM 0.003553
FGF19 0.003941
FGFR1 0.006498
ICOS 0.006498

CNTN5 0.006498
CFH 0.006498

FCER2 0.007862
TNFRSF9 0.007908

EPHA5 0.008463
SIGLEC14 0.013000

OSM 0.016622
TOP1 0.018339
PRSS2 0.018360

IL13RA1 0.023378
LEPR 0.024194
NBL1 0.033236

ERAP1 0.033867
CFC1 0.035949

SERPINA1 0.035949
CST2 0.035949

ICOSLG 0.039646
CCL18 0.050286
CKM 0.069105

CNTN4 0.070016
SSRP1 0.070035
MICA 0.096067
GRN 0.116817
BPI 0.129134

ULBP1 0.133655
PIM1 0.133655
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ASAH2 0.134459
THBS2 0.159510
PRSS1 0.183995
CDON 0.183995

SERPINA4 0.235944
IGFBP4 0.236809

CST1 0.238864
AGR2 0.246445
MPO 0.275685

SERPINA7 0.289186
DKK1 0.327124
PRTN3 0.335321
HAT1 0.341383

SERPIND1 0.380885
SERPINF2 0.411445
HIST1H1C 0.456441

RGMB 0.556689
CASP2 0.557140
EIF5 0.619423

PLA2G1B 0.681525
CKB 0.741141
RPS7 0.842886

TNFRSF13B 0.875571
HGFAC 0.875571

COLEC12 0.973419

Table 6: In the blood dataset the measurement results in
the first week were applied to Lasso and after to a normal
linear regression. Here with bpd0.

gene name bpd1
CASP2 0.001637

COL18A1 0.003020
CHEK1 0.003020
MRC2 0.003020
FUT5 0.003020

ERAP1 0.003020
GPNMB 0.003020
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TGFB2 0.003277
CFH 0.003277
JAG1 0.004544

ADAMTS13 0.007066
GREM1 0.008578
PROS1 0.009044

CLEC7A 0.009044
TNFRSF19 0.009044

CA1 0.009469
SERPINA7 0.009689

SPINT2 0.010268
AGT 0.010887

F7 0.011614
TNFRSF17 0.019574
PDGFRB 0.023035

CAST 0.025203
IL18BP 0.025203
MATN2 0.025203

SIGLEC14 0.026108
CSNK2A2 0.031703

IL11RA 0.033340
F11 0.035998
MB 0.035998

THBS2 0.035998
LTA 0.035998
CRP 0.035998
SELL 0.035998
CDNF 0.035998

PLA2G7 0.035998
EPHB2 0.035998
MMP8 0.036391
ROR1 0.036941

CDH15 0.038348
MICA 0.038936

LILRB1 0.038936
MBL2 0.040379
PPY 0.045014

SIGLEC9 0.049469
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TNC 0.053354
PRSS22 0.062417

CA6 0.064378
CHIT1 0.074787
ULBP1 0.075218
CHST15 0.080015

IGHE 0.102354
IL13RA1 0.104567
CD209 0.104567
CD33 0.104567

FOLH1 0.104567
GPC5 0.104567

PTPN2 0.117012
HGFAC 0.140069

FGR 0.140069
FCN3 0.140069

FGFR1 0.162800
FLT4 0.182944

TNFRSF25 0.182944
SERPING1 0.184359

LEPR 0.184359
SERPINF2 0.195371

CCL27 0.197973
CST5 0.197973
CD163 0.197973
RTN4R 0.217730

IL16 0.224683
KLRK1 0.229903
PRSS2 0.230026
LSAMP 0.260471

BMX 0.277976
TPO 0.279114

CCL18 0.301885
ESAM 0.333536
CST2 0.342058

ICAM5 0.352583
ICAM1 0.362472

HMGCR 0.453365
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MICB 0.508347
CXCL8 0.899009

Table 7: In the blood dataset the measurement results in
the first week were applied to Lasso and after to a normal
linear regression. Here with bpd1.

gene name mechanic ventilation
MBL2 0.009102

CNTN5 0.009102
CFH 0.017959
OSM 0.025105
RTN4 0.135552

SIGLEC14 0.137908
MICA 0.217823
KLK12 0.287561
LEPR 0.287561

ULBP1 0.296855
ASAH2 0.296855

SIGLEC9 0.308802
CKM 0.490616
TOP1 0.490616

EPHA5 0.490616
CASP2 0.490616
CCL18 0.521258

SERPINA7 0.572529
CNTN4 0.572529
HGFAC 0.572529
FGFR1 0.574097

CKB 0.659614
CST2 0.717920
CST1 0.741420

ICAM1 0.902748

Table 8: In the blood dataset the measurement results in
the first week were applied to Lasso and after to a normal
linear regression. Here with mechanic ventilation oxygen
days.
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gene name oxygen days
SERPINA7 0.002990

C3 0.003264
LEPR 0.003264

HGFAC 0.006540
PPY 0.006540
OSM 0.009035
MICA 0.027693
THBS2 0.041904
ICAM5 0.045104
EPHA5 0.045486

CFH 0.045486
ERAP1 0.045486
ICOSLG 0.047422
CCL18 0.055841
MST1 0.064956
CA6 0.075285
BPI 0.086402

IL13RA1 0.089845
SIGLEC9 0.089845

TPO 0.089845
SIGLEC14 0.089845

CGA 0.091659
BCAM 0.094721
FGFR1 0.096614

GPNMB 0.096614
LRIG3 0.104605

TNFRSF25 0.104605
PLAUR 0.109087
RETN 0.118543

CNTN4 0.126206
ACP1 0.144381
PRSS2 0.191960
MBL2 0.208418
CDON 0.208418
PRSS1 0.240323

PDGFRB 0.262640
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FGFR2 0.267745
APOE 0.267781
CASP2 0.286299
CKM 0.300352
CST2 0.348311
RPS7 0.458322
TOP1 0.603322
FGR 0.603322
PIM1 0.603322

CXCL8 0.865736

Table 9: In the blood dataset the measurement results in
the first week were applied to Lasso and after to a normal
linear regression. Here with oxygen days.

row mechanic ventilation oxygen days
MBL2 0.004733
CNTN5 0.004733
ULBP1 0.339602
KLK12 0.339602
ASAH2 0.339602
CKB 0.417287 0.363065
TOP1 0.583133
ADIPOQ 0.817044 0.718324
SIGLEC14 0.817044 0.080561
CST2 0.841175
CST1 0.841175
FGFR2 0.902748 0.718324
ICAM1 0.902748

Table 10: In the blood dataset the measurement results
in the first week were applied to Lasso and after to a nor-
mal linear regression. Here we compute it with mechanic
ventilation and oxygen days and mechanic ventilation is
selected. Only the p-values of mechanic ventilation are
corrected.
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gene name mechanic ventilation oxygen days
SERPINA7 0.002795
C3 0.003051
LEPR 0.003051
HGFAC 0.006113
PPY 0.006113
OSM 0.008445
MICA 0.025887
THBS2 0.039171
ICAM5 0.042162
EPHA5 0.044329
CFH 0.044329
ERAP1 0.044329
ICOSLG 0.044329
CCL18 0.052199
MST1 0.060719
CA6 0.070375
BPI 0.080767
SIGLEC9 0.087098
IL13RA1 0.088185
TPO 0.088185
CGA 0.089762
FGFR1 0.098167
GPNMB 0.098167
LRIG3 0.102488
TNFRSF25 0.102488
SIGLEC14 0.573575 0.102488
PLAUR 0.105749
RETN 0.114770
CNTN4 0.124832
PRSS2 0.182612
CDON 0.208581
PRSS1 0.245711
PDGFRB 0.267830
APOE 0.279766
CASP2 0.298213
CKM 0.311960
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CKB 0.207039 0.357026
RPS7 0.473530
FGR 0.634472
PIM1 0.634472
ADIPOQ 0.579114 0.719867
FGFR2 0.849510 0.735427
CXCL8 0.865736

Table 11: In the blood dataset the measurement results
in the first week were applied to Lasso and after to a nor-
mal linear regression. Here we compute it with mechanic
ventilation and oxygen days and oxygen days is selected.
Only the p-values of oxygen days are corrected.

gene name T1 Gesamt
MPO 0.00347385597573767

STAB2 0.00652314972580249
C3 0.00652314972580249

LIFR 0.00652314972580249
CKM 0.00880294869810828

TDGF1 0.00891632948850196
HAT1 0.00891632948850196

PRTN3 0.0100580060292269
TGFB1 0.0115938201212218
HMGB1 0.0115938201212218
NAAA 0.0118641409989654

SERPINA4 0.0118641409989654
BSG 0.0118641409989654

MAP3K7 0.0127150371009887
TYK2 0.0127150371009887

EPHA1 0.0173038413430662
SLC25A18 0.0173038413430662

F9 0.0173038413430662
ASAH2 0.0178694391090733

FCGR2A 0.0178694391090733
PTGS2 0.0178694391090733
CTSA 0.0271180801313128
AGR2 0.0356361623048741
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SERPIND1 0.0362192195351234
AGER 0.0591499538238937
ITGA1 0.0832256745056885

HIST1H1C 0.0879480945028115
TYMS 0.0937223068609075

F9 0.112501609107036
EPHB4 0.169657671345404
CST1 0.169657671345404

ADAM12 0.170547456016056
AHSG 0.194219873232884
PCNA 0.214282703491488
FCN3 0.222258238526902

ERAP1 0.33951421841372
MST1 0.361342793570273
LTA 0.451330662580831

PDGFRB 0.480624942387435
IGHG1 0.547891671495786

TNFRSF12A 0.617013159106812
TPO 0.621112349129242

GSTA3 0.762319192491334
OLR1 0.81087395700346

PSME3 0.829115201034299
CCL18 0.841931000912589

KIR3DL2 0.84553983917542
KDR 0.869749751077632
CFH 0.884660814429189

Table 12: In the blood dataset the measurement results
in the first week were applied to Lasso and after to a
normal linear regression. Here with T1 Gesamt.

T2 Gesamt
ULBP2 0.145685100583298

NOTCH3 0.145685100583298
SIRT2 0.206197825506219
IL27 0.218884839617593

MMP8 0.218884839617593
CDH2 0.218884839617593
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ESD 0.218884839617593
HMGB1 0.250411831357224
MMEL1 0.305911651800059
OLR1 0.305911651800059

C5 0.307696464591949
LRRTM3 0.311873246931524
PTGS2 0.392220104819684
ICAM1 0.394445888394011
CST1 0.394445888394011
SHBG 0.606907585824095
BIRC3 0.606907585824095
REN 0.80426650531997

CASP2 0.80426650531997
RETN 0.863112010567837
CFH 0.863112010567837

Table 13: In the blood dataset the measurement results
in the first week were applied to Lasso and after to a
normal linear regression. Here with T2 Gesamt.

A.1.2 Urine proteins

gene name bpd0
CDH11 0.039741
S100A9 0.039741

PGLYRP2 0.710985

Table 14: In the urin dataset the measurement results in
the first week were applied to Lasso and after to a normal
linear regression. Here with bpd0.

gene name oxygen days
HEXB 0.548172
S100A9 0.548172

Table 15: In the urin dataset the measurement results in
the first week were applied to Lasso and after to a normal
linear regression. Here with oxygen days.
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gene name mechanic ventilation oxygen days
HEXB 0.548172
S100A9 0.548172

Table 16: In the urin dataset the measurement results in
the first week were applied to Lasso and after to a nor-
mal linear regression. Here we compute it with mechanic
ventilation and oxygen days and oxygen days is selected.
Only the p-values of oxygen days are corrected.

A.1.3 Tracheal proteins

gene name bpd0
HPX 0.000107

ANXA5 0.000107
DAG1 0.000163
MYH9 0.000271

ANXA2 0.000502
BASP1 0.000958
ANXA4 0.000968
ATP1A1 0.002654
COL6A3 0.004358
AZGP1 0.004812
KLK11 0.006116
CLIC1 0.006308
LCP1 0.007785
CAT 0.007785

ANXA1 0.010546
SPTAN1 0.010978

GPI 0.010978
ANXA3 0.010978
TUBB 0.010978

EFEMP1 0.010978
CD36 0.011121

WFDC2 0.014275
WDR1 0.017994
PSAP 0.021352
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SPARCL1 0.025690
COL6A1 0.025690
PRDX2 0.026645
FABP5 0.028271
ITIH4 0.052163

SERPINF1 0.052163
LDHB 0.060999
CST3 0.075599
MSLN 0.076077
CTSB 0.100665
PGD 0.166084

FOLR1 0.166084

Table 17: In the trachial dataset the measurement results
in the first week were applied to Lasso and after to a
normal linear regression. Here with bpd0.

bpd1
TPPP3 0.026880
FLNA 0.026880

ANXA3 0.026880
ARHGDIA 0.026880

PGD 0.175664
MSLN 0.257452

ANXA4 0.257452
HNRNPK 0.301009
SERPINF1 0.523306

Table 18: In the trachial dataset the measurement results
in the first week were applied to Lasso and after to a
normal linear regression. Here with bpd1.

gene name mechanic ventilation
SCGB3A1 0.008852

CD59 0.008852
ANXA6 0.008852

C6 0.008852
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HNRNPK 0.008852
VCAN 0.008852

SERPINF1 0.008852
MUC16 0.014263
WFDC2 0.020104

C2 0.024424
CIB1 0.096242

CLIC6 0.096242
EFEMP1 0.096242
TPPP3 0.100086
KLK11 0.195193

ALDH3B1 0.340423
SCGB1A1 0.477492

PGD 0.683010
PROM1 0.979342

Table 19: In the trachial dataset the measurement results
in the first week were applied to Lasso and after to a
normal linear regression. Here with mechanic ventilation.

gene name oxygen days
B3GNT1 0.000704

CAT 0.001380
HPX 0.005248

FLNA 0.005248
VCAN 0.005248

EFEMP1 0.005248
SERPINF1 0.005248

KLK11 0.006370
GPI 0.006370

WFDC2 0.006370
S100A4 0.006370
FAM3C 0.006370
CTSB 0.006370

SPARCL1 0.010099
PGD 0.042071

LDHA 0.043611
HNRNPK 0.055025
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MUC16 0.127404
CD59 0.128460

WDR1 0.137277
TMC5 0.243735

ALDH3B1 0.303693
MSLN 0.349257
CST3 0.394476

C2 0.437655
TPPP3 0.458581

Table 20: In the trachial dataset the measurement results
in the first week were applied to Lasso and after to a
normal linear regression. Here with oxygen days.

gene name mechanic ventilation oxygen days
SCGB1A1 0.104310
CD59 0.108527 0.991835
PIP 0.144988
CD14 0.726054 0.099512
PROM1 0.979342
KLK11 0.979342 0.212106
SDF4 0.979342
VCAN 0.979342 0.012117

Table 21: In the trachial dataset the measurement results
in the first week were applied to Lasso and after to a nor-
mal linear regression. Here we compute it with mechanic
ventilation and oxygen days and mechanic ventilation is
selected. Only the p-values of mechanic ventilation are
corrected.

gene name mechanic ventilation oxygen days
C6 0.000264
FAM3C 0.002465
RNASE4 0.002941
DAG1 0.003331
EFEMP1 0.004367
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SERPINF1 0.004367
CAT 0.004587
HPX 0.004710
FLNA 0.004710
PLTP 0.005088
WFDC2 0.006743
S100A4 0.010386
SPARCL1 0.012030
CD36 0.012030
MUC16 0.012880
VCAN 0.657078 0.014200
ATRN 0.017876
PGD 0.040453
GPI 0.052753
LMNB1 0.076350
ITGB2 0.087378
SERPINA1 0.096407
CD14 0.388957 0.097349
EEF1A1 0.100336
CIB1 0.154495
KLK11 0.906278 0.214145
MSLN 0.343286
CST3 0.390141
AHNAK 0.533835
CD59 0.030147 0.991835

Table 22: In the trachial dataset the measurement results
in the first week were applied to Lasso and after to a nor-
mal linear regression. Here we compute it with mechanic
ventilation and oxygen days and oxygen days is selected.
Only the p-values of oxygen days are corrected.
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A.2 Results of the regressions of the MRI data and the pre-
dictors
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Figure 20: Heatmap of the lasso results α = 1 of the method in Section 5.3. The
heatmap shows the coefficients for each output variable. BPD0, BPD1, BPD2, BPD3
are the results of the output with the grades of BPD as multinomial variable. We
set all negative coefficients to -1 and all positive coefficients to +1 to increase the
visibility of small coefficients. Coefficients with the value zero stay zero in the plot.
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Figure 21: Heatmap of the elastic net results α = 0.8 of the method in Section 5.3.
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Figure 22: Heatmap of the elastic net results α = 0.5 of the method in Section 5.3.
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Figure 23: Heatmap of the elastic net results α = 0.2 of the method in Section 5.3.
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Figure 24: Heatmap of the elastic net results α = 0.1 of the method in Section 5.3.
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