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Abstract

Objective

Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase

mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an

important signaling role in inflammatory processes. Since subclinical inflammation is a hall-

mark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we

asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body

fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid

profiles, insulin sensitivity, insulin release, and glucose homeostasis.

Study Design

Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-

phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and

characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-

euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic

resonance imaging, and intravenous glucose tolerance tests were available, and peripheral

blood mononuclear cells (PBMCs) were used for gene expression analysis.

Results

After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associ-

ated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity,
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insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-

level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with

plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reach-

ing the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More pre-

cisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With

respect to the SNPs’ in vivo functionality, rs4288294 was significantly associated with

PIK3CGmRNA expression in PBMCs.

Conclusions

We could demonstrate that common genetic variation in the PIK3CG locus, possibly via

altered PIK3CG gene expression, determines plasma HDL-cholesterol concentrations.

Since HDL2-, but not HDL3-, cholesterol is influenced by PIK3CG variants, PI3Kγmay play

a role in HDL clearance rather than in HDL biogenesis. Even though the molecular path-

ways connecting PI3Kγ and HDL metabolism remain to be further elucidated, this finding

could add a novel aspect to the pathophysiological role of PI3Kγ in atherogenesis.

Introduction
Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes which catalyze the phosphoryla-
tion of intracellular phosphoinositides, an important step in many signaling pathways mediat-
ing cell growth, proliferation, and differentiation [1]. PI3Ks are divided into three different
classes based on their structure, function, and substrate specificity [2]. Class-I kinases are the
best characterized PI3Ks catalyzing the phosphorylation of phosphatidylinositol 4,5-bispho-
sphate to phosphatidylinositol 3,4,5-trisphosphate. All class-I PI3Ks are heterodimers consist-
ing of two subunits: one for the catalytic function, the other one acting as an adapter or
regulatory protein. Class-I catalytic subunits have a molecular mass of about 110 kDa (referred
to as p110 subunits). Different genes encode for the four different p110 subunits, i.e., PIK3CA,
PIK3CB, PIK3CG, and PIK3CD, that give rise to the four class-I PI3K isoforms termed PI3Kα,
-β, -γ, and -δ. With respect to their function, class-I PI3Ks are subdivided into class-IA (PI3Kα,
-β, and -δ) and class-IB (PI3Kγ) kinases [3]. Class-IA kinases are associated with a regulatory
subunit termed p85 and are activated by receptor tyrosine kinases and the GTPase Ras (e.g.,
PI3Kα) [4] or by G-protein-coupled receptors via the Gβγ subunit of heterotrimeric G-proteins
and Rho-family GTPases (e.g., PI3Kβ) [5,6]. Prominent signaling pathways including class-IA
kinases are the insulin and insulin-like growth factor signaling pathways mediating activation
of Akt/protein kinase B and other downstream mediators which are important for the regula-
tion of glucose metabolism and cell proliferation.

PI3Kγ, as the only class-IB kinase, heterodimerizes with a regulatory p87 or p101 subunit
and is activated by G-protein-coupled receptors via Gβγ and Ras [7–9]. PI3Kγ is mainly
expressed in leukocytes and cells of the cardiovascular system and plays an important signaling
role in inflammatory responses. Chronic low-grade, so-called subclinical, inflammation in turn
is a major driver of metabolic diseases and their comorbidities, such as cardiovascular disease,
fatty liver disease, and type-2 diabetes [10–12]. Notably, blockade of PI3Kγ either by genetic
means (knockout) or by pharmacological inhibition revealed beneficial effects on disease out-
come in mouse models of inflammatory disorders like diet-induced obesity, hepatic steatosis,
lupus erythematodes, and atherosclerosis [13–17].
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Human in vivo studies addressing the role of PI3Kγ in inflammation and inflammation-
related metabolic diseases are still lacking. Therefore, we asked whether common genetic varia-
tion (minor allele frequency [MAF]�0.05) in the PI3Kγ gene PIK3CG exists and whether it
affects body fat content and/or distribution, serum cytokine and adipokine concentrations,
plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. To this end,
we applied a tagging single nucleotide polymorphism (SNP) approach in a total of 2,068 meta-
bolically characterised subjects at increased risk for type-2 diabetes from the Tübingen Family
(TÜF) study for type-2 diabetes.

Material and Methods

Study participants
The TÜF study currently comprises more than 2,500 non-related German Caucasians at
increased risk for type-2 diabetes, i.e., non-diabetic subjects with a family history of type-2 dia-
betes, a body mass index (BMI)�27 kg/m2, impaired fasting glycaemia, and/or previous gesta-
tional diabetes [18]. All participants underwent physical examination, routine blood tests, and
oral glucose tolerance tests (OGTTs). Furthermore, we assessed the medical history, smoking
status, and alcohol consumption habits. From the TÜF study, 2,068 subjects with complete
anthropometric data sets and documented absence of medication known to influence glucose
tolerance, insulin sensitivity, or insulin secretion were genotyped. In the overall study popula-
tion, 2,066 complete OGTT data sets, 1,243 adiponectin and leptin measurements, and 383
interleukin 6 (IL-6), tumour necrosis factor α (TNF-α), and monocyte chemoattractant protein
1 (MCP-1) measurements were available. Furthermore, data from hyperinsulinaemic-euglycae-
mic clamps (HECs), magnetic resonance spectroscopy (MRS) of the liver, whole-body mag-
netic resonance imaging (MRI), and intravenous glucose tolerance tests (IVGTTs) derived
from partially overlapping subgroups of 499, 481, 361, and 306 individuals, respectively, were
analysed. The clinical characteristics of the overall study population and the major subgroups
are given in Table 1. In a very small subgroup of the overall study population (N = 34), high-
density lipoprotein (HDL)-cholesterol fractionation data were available from an earlier investi-
gation [19]. This subgroup was not analysed in the earlier investigation [19]. From 29 ran-
domly selected participants, peripheral blood mononuclear cells (PBMCs) were prepared und
subjected to gene expression analysis.

Ethics statement
All participants gave informed written consent to the study which adhered to the Declaration
of Helsinki. The study protocol was approved by the Ethics Committee of the Medical Faculty
of the Eberhard Karls University Tübingen.

Determination of body fat content/distribution
Waist circumference (in cm) as a crude proxy of abdominal fat mass was measured at the mid-
point between the lateral iliac crest and the lowest rib in the supine position. BMI as a crude mea-
sure of whole-body adiposity was calculated as weight divided by squared height (in kg/m2). The
percentage of body fat was measured by bioelectrical impedance (BIA-101, RJL systems, Detroit,
MI, USA). To precisely quantify total adipose tissue (TAT) and visceral adipose tissue (VAT)
contents, whole-body MRI was performed [20]. The intrahepatic lipid (IHL) content was quanti-
fied by localized stimulated echo acquisition mode 1H-MRS [21].
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OGTT
After an overnight fasting period of 10 h, a standardised 75-g OGTT was performed. For the
determination of plasma glucose, serum insulin and C-peptide levels, venous blood samples
were drawn at baseline and at time-points 30, 60, 90, and 120 min of the OGTT.

IVGTT and HEC
In study participants who agreed to undergo both the IVGTT and the HEC, the IVGTT was
performed after a 10-h overnight fast and prior to the HEC according to the Botnia regimen
[22]. After having collected baseline samples at time-points -10 and -5 min, a glucose bolus of
0.3 g/kg body weight was given intravenously at time-point 0. Blood samples for the measure-
ment of plasma glucose and serum insulin were obtained at time-points 2, 4, 6, 8, 10, 20, 30, 40,
50, and 60 min of the IVGTT. The HEC was started after a 10-h overnight fast or, if combined
with an IVGTT, at time-point 60 min after the IVGTT glucose bolus by giving a primed infu-
sion of short-acting human insulin (40 mU/m2/min) for 120 min. Concomitantly, variable
infusion of glucose (20%) was started to clamp the plasma glucose concentration at fasting lev-
els. Blood samples for the measurement of plasma glucose were obtained at 5-min intervals.
Serum insulin levels were measured at baseline (or prior to the glucose bolus of the IVGTT)
and at the steady state (the last 30 min) of the clamp.

Table 1. Clinical data of the overall study population and the major subgroups.

Parameter Overall
(N = 2,068)

Adipokines
(N = 1,243)

Cytokines
(N = 383)

HEC
(N = 499)

MRS
(N = 481)

MRI
(N = 361)

IVGTT
(N = 306)

N (women/men) 1,334/734 814/429 248/135 268/231 306/175 222/139 175/131

Age (y) 39.6 ±12.6 39.0 ±12.3 40.4 ±12.6 39.8 ±12.0 44.2 12.0 45.4 ±11.6 44.6 ±11.3

BMI (kg/m²) 30.8 ±9.5 29.4 ±8.5 28.4 ±6.0 27.2 ±5.5 30.3 ±5.0 29.9 ±5.3 29.2 ±5.3

Body fat content (%) 33.5 ±12.8 31.7 ±11.6 30.9 ±9.5 28.3 ±9.6 34.6 ±9.6 33.0 ±8.9 31.8 ±8.8

NGT/IFG/IGT/IFG+IGT 1,443/258/200/
167

890/135/118/100 271/37/44/31 382/39/46/
32

310/68/55/
48

230/43/48/
40

204/31/43/28

Glucose, fasting (mmol/L) 5.16 ±0.54 5.13 ±0.54 5.10 ±0.52 5.02 ±0.54 5.27 ±0.49 5.24 ±0.50 5.17 ±0.49

2-h Glucose (mmol/L) 6.36 ±1.61 6.31 ±1.63 6.44 ±1.70 6.18 ±1.70 6.82 ±1.52 6.90 ±1.58 6.79 ±1.66

Leptin (ng/mL) - 28.0 ±31.5 - - - - -

Adiponectin (μg/mL) - 14.4 ±7.4 - - - - -

IL-6 (pg/mL) - - 0.882 ±0.840 - - - -

TNF-α (pg/mL) - - 2.75 ±5.41 - - - -

MCP-1 (pg/mL) - - 181.7 ±91.6 - - - -

ISI, HEC (*106 L*kg-1*min-1) - - - 0.084
±0.052

- - -

IHL (% signal) - - - - 1.27 ±1.09 - -

TAT (% body weight) - - - - - 30.5 ±9.2 -

VAT (% body weight) - - - - - 3.33 ±1.71 -

AIR (pmol/L) - - - - - - 934 ±617

Data are given as counts or means ±SD. AIR–acute insulin response; AUC–area under the curve; BMI–body mass index; C-Pep–C-peptide; CRP–C-

reactive protein; Glc–glucose; HEC–hyperinsulinaemic-euglycaemic clamp; IFG–impaired fasting glycaemia; IGT–impaired glucose tolerance; IHL–

intrahepatic lipids; IL-6—interleukin-6; Ins—insulin; ISI–insulin sensitivity index; IVGTT–intravenous glucose tolerance test; MCP-1 –monocyte

chemoattractant protein 1; MRI–magnetic resonance imaging; MRS–magnetic resonance spectroscopy; NGT–normal glucose tolerance; OGTT–oral

glucose tolerance test; TAT–total adipose tissue; TNF-α –tumor necrosis factor α; VAT–visceral adipose tissue

doi:10.1371/journal.pone.0144494.t001
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Laboratory measurements
Plasma glucose levels (in mmol/L) were measured with a bedside glucose analyser (glucose oxi-
dase method, Yellow Springs Instruments, Yellow Springs, OH, USA). Serum insulin and C-
peptide concentrations (in pmol/L, both) were determined by commercial chemiluminescence
assays for ADVIA Centaur (Siemens Medical Solutions Diagnostics, Fernwald, Germany).
Plasma triglycerides, total cholesterol, HDL and low-density lipoprotein (LDL) cholesterol,
and wide-range C-reactive protein (in mg/dL, all) were measured using the ADVIA 1800 clini-
cal chemical analyser. HDL2- and HDL3-cholesterol concentrations (in mg/dL) were determined
after ultracentrifugation, as described earlier [23]. Apolipoprotein A1 (apoA1; in mg/dL) was
measured by immunonephelometry. Blood cell counts were realized on the ADVIA 2120 haema-
tology analyser (Siemens Healthcare Diagnostics, Eschborn, Germany). Serum adiponectin
(in μg/mL) and leptin concentrations (in ng/mL) as well as TNF-α, IL-6, andMCP-1 concentra-
tions (in pg/mL, all) were determined by enzyme-linked immunosorbent assays (adiponectin
and leptin–Linco Research, St. Charles, MO, USA; TNF-α and IL-6 –R&D Systems, Wiesbaden-
Nordenstadt, Germany; MCP-1 –Bender MedSystems, Vienna, Austria). Plasma free fatty acid
(FFA) levels (in μmol/L) were determined enzymatically (NEFAC kit, WAKO Chemicals, Neuss,
Germany).

Calculations
Insulin sensitivity was calculated from fasting data, the OGTT, and the HEC. Based on fasting
data, homoeostasis model assessment of insulin resistance (HOMA-IR) was calculated as c
(Glc0[mmol/L])�c(Ins0[mU/L])/22.5 with c = concentration, Glc = glucose, and Ins = insulin
[24]. The OGTT-derived insulin sensitivity index (ISI-OGTT) was calculated as 10,000/{c
(Glc0[mmol/L])�c(Ins0[pmol/L])�c(Glcmean[mmol/L])�c(Insmean[pmol/L])}½ [25]. The HEC-
derived ISI (ISI-HEC) was calculated as glucose infusion rate necessary to maintain euglycae-
mia during the last 20 min (steady state) of the clamp (in μmol/kg/min) divided by the steady-
state insulin concentration (in pmol/L). Insulin secretion was calculated from the OGTT and
the IVGTT. From the OGTT, one insulin-based and one C-peptide-based index were calcu-
lated as area under the curve (AUC)0-30 min Insulin/AUC0-30 min Glucose and AUC0-120 min

C-Peptide/AUC0-120 min Glucose, respectively [26]. AUC0-30 min Insulin/AUC0-30 min Glucose
was calculated as {c(Ins0[pmol/L])+c(Ins30[pmol/L])}/{c(Glc0[mmol/L])+c(Glc30[mmol/L])}.
AUC0-120 min C-Peptide/AUC0-120 min Glucose was calculated according to the trapezoid
method as ½{½c(C-Pep0[pmol/L])+c(C-Pep30[pmol/L])+c(C-Pep60[pmol/L])+c(C-Pep90
[pmol/L])+½c(C-Pep120[pmol/L])}/½{½c(Glc0[mmol/L])+c(Glc30[mmol/L])+c(Glc60[mmol/
L])+c(Glc90[mmol/L])+½c(Glc120[mmol/L])} with C-Pep = C-peptide. From the IVGTT,
insulin secretion was calculated as acute insulin response (AIR) according to the trapezoid
method as ½{½c(Ins0[pmol/L])+c(Ins2[pmol/L])+c(Ins4[pmol/L])+c(Ins6[pmol/L])+c
(Ins8[pmol/L])+½c(Ins10[pmol/L])}. The gender-dependent Framingham risk score for cardio-
vascular disease risk was calculated and converted to 10-year risk categories according to the
instructions of the National Institutes of Health (www.nhlbi.nih.gov/health-pro/guidelines/
current/cholesterol-guidelines/quick-desk-reference-html/10-year-risk-framingham-table).

Selection of tagging SNPs
To identify tagging SNPs, a genomic area of 43.8 kb on human chromosome 7q22 including
the complete PIK3CG gene (11 exons, 10 introns) and 2 kb of its 5’-flanking (promoter) region
was analysed in silico. Based on genomic data from the Central European (CEU) population of
the 1000 Genomes Project (http://browser.1000genomes.org/index.html), we identified 10 rep-
resentative SNPs that tag all the other common SNPs (MAF�0.05) in this region with an
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r2�0.8 (100% coverage) using the tagger analysis tool of Haploview (http://www.broadinstitute.
org/scientific-community/science/programs/medical-and-population-genetics/haploview/
haploview). These tagging SNPs were rs4727666 (A/G) in the 5’-flanking region, rs3823963
(T/A) in intron 1, rs1129293 (C/T) in exon 3 (Ser675Ser), rs17401277 (C/T) in intron 6,
rs59813697 (A/C), rs4288294 (C/T), rs849405 (A/G), rs116697954 (C/T), and rs2037718
(C/G) in intron 10, and rs10216210 (G/C) in exon 11 (3’-untranslated region). Importantly,
the PIK3CG gene is flanked 68 kb upstream by a long intergenic non-coding RNA gene
(RNA5SP236) and 137 kb downstream by the PRKAR2B gene, and no obvious linkage blocks
were observed that span the PIK3CG locus and one of these adjacent genes.

Genotyping
DNA was isolated from whole blood using a commercial kit (NucleoSpin, Macherey & Nagel,
Düren, Germany). Genotyping of the tagging SNPs was performed by mass spectrometry using
the massARRAY genotyping platform (Sequenom, Hamburg, Germany) and the manufactur-
er’s iPLEX software. SNPs rs849405, rs2037718, and rs10216210 resisted massARRAY multi-
plex assay design and were, therefore, genotyped by allelic discrimination using commercial
TaqMan assays (Applied Biosystems, Foster City, CA, USA). The call rates were�96%. The
genotyping results were validated in 50 randomly selected subjects by bidirectional sequencing,
and no deviations were observed.

PBMC isolation and quantitative real-time polymerase chain reaction
(qPCR)
PBMCs were isolated from whole blood by density gradient centrifugation using the Ficoll-
based Lymphocyte Separation Medium 1077 from PAA Laboratories (Cölbe, Germany). Cells
were washed with phosphate-buffered saline, lysed with RLT buffer (Qiagen, Hilden, Ger-
many), and homogenized using QIAshredder (Qiagen). Total-RNA was isolated with RNeasy
columns (Qiagen), treated with RNase-free DNase I, and reverse transcribed into cDNA using
the Transcriptor First Strand cDNA Synthesis kit from Roche Diagnostics (Mannheim, Ger-
many). QPCR of PIK3CG, CETP (encoding cholesteryl ester transfer protein), PLTP (encoding
phospholipid transfer protein), LCAT (encoding lecithin-cholesterol acyltransferase), SCARB1
(encoding scavenger receptor B1), and RPS13 (encoding ribosomal protein S13) mRNA
expression was performed in technical duplicates on a LightCycler 480 (Roche Diagnostics)
using Probes Master and fluorescent reporter probes from the Universal Probe Library (Roche
Diagnostics). Primers were designed using the Roche Probe Design 2.0 software (Roche Diag-
nostics) and purchased from TIB MOLBIOL (Berlin, Germany). Primer sequences, reporter
probes, and qPCR conditions are given in S1 Table. All gene expression data were normalized
to the housekeeping gene RPS13 using the ΔCt method.

Statistical analyses
Hardy-Weinberg equilibrium was tested using χ² test with one degree of freedom. Continuous
variables with skewed distributions were loge-transformed prior to statistical analysis. Multiple
linear regression analyses were performed using the least-squares method. For the analyses in
the overall study population, the trait of interest was chosen as outcome variable and the SNP
genotype (in the additive inheritance model) as independent variable. Gender, age, BMI,
OGTT-derived insulin sensitivity, and lipid-lowering medication (dummy variable for drug
classes) were considered as confounding variables and included wherever appropriate. To
account for multiple testing (10 SNPs tested in parallel), we corrected the α-level of significance
according to Bonferroni and considered a p-value<0.0051 as statistically significant. SNP
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associations with p-values�0.0051 and<0.05 were termed nominal. Associations of SNPs
rs4288294 and rs116697954 (in the additive inheritance model) with the gender-dependent
Framingham risk score (10-year risk categories as nominal outcome variable) were tested in
694 women and 364 men with BMI and lipid-lowering medication as confounding variables
using nominal logistic regression analysis. The effects of the two SNPs (i) on HDL2- and
HDL3-cholesterol in 34 subjects and (ii) on gene expression in PBMCs from 29 donors were
assessed by multiple linear regression analysis. Due to very low numbers of homozygous minor
allele carriers in these latter analyses, the SNPs were tested in the dominant inheritance model
only (CC vs. CT+TT). Based on the strictly focused and hypothesis-driven nature of these fol-
low-up investigations (focused on two SNPs only; all other SNPs were not followed up because
they failed significance for association with HDL-cholesterol and/or apoA1 in the overall study
population), we here abstained from correcting the α-level for multiple testing and considered
a p-value<0.05 as statistically significant. All analyses were performed with the JMP 10.0 soft-
ware (SAS Institute, Cary, NC, USA).

Results
In this study, an overall study population of 2,068 subjects was subjected to genotyping. Of
these, nearly two thirds were female (64.5%). The mean age was 39.6 years, the mean BMI
30.8 kg/m², and 69.8% of the participants displayed normal glucose tolerance whereas 12.5%
had isolated impaired fasting glycaemia, 9.7% isolated impaired glucose tolerance, and 8.1%
impaired fasting glycaemia and impaired glucose tolerance. The clinical characteristics of the
overall study population and the major subgroups are given in Table 1.

The 10 non-linked tagging SNPs were representative for all other common genetic variants
(MAF�0.05) in the PIK3CG gene locus (100% coverage) and were all found to be in Hardy-
Weinberg equilibrium (p>0.09). The MAFs observed in our study population were similar to
those reported for the CEU population by the 1000 Genomes Project (all differences between
MAFTÜF and MAFCEU �5%).

In the association analyses, parameters of body fat content and body fat distribution were
adjusted for gender and age. Blood glucose levels, insulin sensitivity measures, and adipokine
and cytokine levels were adjusted for gender, age, and BMI. Insulin secretion indices were
adjusted for gender, age, BMI, and insulin sensitivity, and finally, plasma lipid concentrations
were adjusted for gender, age, BMI, and anti-hyperlipidaemic medication (among the 2,016
subjects analyzed for plasma lipids, 97.3% did not receive anti-hyperlipidaemic medication,
2.4% were on statins, 0.1% on fibrates, 0.1% on ezetimibe, and<0.05% on combination
therapy).

After appropriate adjustment, none of the tested SNPs showed significant association with
body fat content and/or distribution, adipokine or cytokine concentrations, insulin sensitivity,
insulin secretion, or blood glucose concentrations (p>0.0127, all; S2–S6 Tables). However, six
SNPs displayed at least nominal associations with HDL-cholesterol levels without affecting
total or LDL-cholesterol, and two of them, i.e., rs4288294 and rs116697954, reached the level
of study-wide significance (p = 0.0003 and p = 0.0004, respectively; unadjusted data in Table 2;
adjusted data and effect sizes in Fig 1). Both SNPs are located in intron 10, separated from each
other by 747 bp. Their minor T-alleles were associated with increased HDL-cholesterol levels.
Notably, the minor alleles of the four nominally associated SNPs (rs3823963, rs1129293,
rs2037718, and rs10216210) were associated with decreased HDL-cholesterol (Table 2). To fur-
ther strengthen these results, we tested whether the six SNPs associated with HDL-cholesterol
also showed association with the major apolipoprotein of HDL, i.e., apoA1. Among the two
SNPs significantly associated with HDL-cholesterol, rs4288294 was nominally (p = 0.0100)
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Table 2. Associations of PIK3CG tagging SNPs with plasma lipid concentrations (NOGTT = 2,016).

Genotype NOGTT FFA, fasting
(μmol/L)

Triglycerides,
fasting (mg/dL)

Total cholesterol,
fasting (mg/dL)

LDL-cholesterol,
fasting (mg/dL)

HDL-cholesterol,
fasting (mg/dL)

rs4727666 AA 1,241 593 ±242 117 ±78 191 ±37 119 ±33 54.1 ±14.5

AG 604 597 ±261 121 ±71 192 ±36 120 ±33 53.1 ±13.5

GG 92 577 ±205 138 ±107 200 ±35 124 ±30 52.6 ±14.2

p - - 0.6 0.0255 0.08 0.0418 0.1

rs3823963 TT 671 601 ±283 121 ±78 193 ±37 121 ±33 54.4 ±14.3

TA 952 590 ±221 118 ±73 191 ±36 119 ±33 53.7 ±14.2

AA 310 595 ±240 123 ±93 191 ±35 119 ±32 52.7 ±14.0

p - - 0.8 0.8 0.2 0.5 0.0081

rs1129293 CC 927 600 ±265 121 ±77 193 ±37 120 ±34 54.1 ±14.2

CT 831 589 ±228 118 ±74 191 ±36 119 ±32 53.6 ±14.4

TT 176 589 ±228 122 ±100 189 ±36 118 ±33 52.4 ±13.1

p - - 0.9 0.6 0.2 0.6 0.0291

rs17401277 CC 1,765 596 ±251 120 ±77 192 ±36 120 ±33 53.6 ±14.1

CT 193 574 ±213 113 ±66 189 ±35 116 ±31 54.3 ±14.3

TT 8 514 ±210 202 ±267 238 ±58 142 ±40 57.0 ±16.6

p - - 0.1 1.0 0.9 0.5 0.8

rs59813697 AA 1,574 593 ±250 119 ±79 192 ±37 120 ±33 53.8 ±14.1

AC 354 599 ±236 120 ±73 191 ±35 118 ±31 53.3 ±14.4

CC 21 599 ±221 142 ±109 205 ±40 134 ±42 52.8 ±13.3

p - - 0.5 0.8 0.9 0.8 0.3

rs4288294 CC 730 588 ±226 124 ±85 194 ±36 121 ±32 52.9 ±13.7

CT 965 598 ±251 117 ±73 190 ±36 118 ±33 53.6 ±14.2

TT 300 590 ±280 116 ±71 195 ±40 122 ±36 55.9 ±15.0

p - - 0.7 0.09 0.9 0.4 0.0003

rs849405 AA 1,607 592 ±237 119 ±76 191 ±37 119 ±33 54.0 ±14.2

AG 380 608 ±287 122 ±83 195 ±38 123 ±34 52.5 ±13.9

GG 29 551 ±204 119 ±51 195 ±34 122 ±27 53.0 ±15.9

p - - 1.0 0.9 0.1 0.0469 0.2

rs116697954 CC 650 586 ±224 126 ±90 194 ±36 121 ±33 52.8 ±13.9

CT 926 603 ±254 118 ±72 190 ±36 118 ±33 53.5 ±13.8

TT 371 588 ±266 115 ±70 194 ±38 121 ±34 55.9 ±15.3

p - - 0.9 0.2 0.8 0.4 0.0004

rs2037718 CC 710 601 ±282 117 ±73 193 ±37 120 ±34 54.6 ±14.7

CG 971 592 ±225 119 ±76 192 ±37 119 ±32 53.3 ±13.7

GG 333 585 ±229 125 ±91 192 ±36 121 ±34 52.8 ±14.0

p - - 0.7 0.5 0.5 0.9 0.0055

rs10216210 GG 1,114 595 ±258 120 ±75 193 ±37 120 ±33 54.1 ±14.3

GC 756 596 ±233 117 ±74 191 ±37 120 ±33 53.3 ±14.1

CC 144 573 ±220 125 ±107 190 ±36 117 ±33 52.4 ±13.2

p - - 0.8 0.5 0.3 0.6 0.0280

Metabolic data are shown as unadjusted raw data (means ±SD). Associations between SNP genotypes (additive inheritance model) and plasma lipid

concentrations were tested by multiple linear regression analyses (standard least squares method) with gender, age, BMI, and anti-hyperlipidaemic

medication as covariates. Nominal associations (p<0.05) are marked by using bold fonts, significant associations (p<0.0051 after Bonferroni correction for

10 SNPs) by using bold fonts and underlining. AUC–area under the curve; BMI–body mass index; FFA–free fatty acids; HDL–high-density lipoproptein;

LDL–low-density lipoprotein; OGTT- oral glucose tolerance test; SNP–single nucleotide polymorphism

doi:10.1371/journal.pone.0144494.t002

PI3KγGene Variation and HDL

PLOSONE | DOI:10.1371/journal.pone.0144494 December 10, 2015 8 / 17



and rs116697954 significantly (p = 0.0017) associated with apoA1 levels after adjustment for
gender, age, BMI, and anti-hyperlipidaemic medication, and both SNPs’minor T-alleles were
associated with elevated apoA1 levels. Among the four SNPs nominally associated with HDL-
cholesterol, rs2037718 and rs10216210 were also nominally associated with apoA1 concentra-
tions (p = 0.0242 and p = 0.0127, respectively; minor alleles associated with reduced apoA1 lev-
els); rs3823963 and rs1129293 did neither reveal significant nor nominal associations with
apoA1 (p�0.1, both). These results reflect our SNP results with HDL-cholesterol.

For independent replication of the HDL data, we looked into the meta-analysis data for
HDL-cholesterol from genome-wide association studies and Metabochip analyses
(N�94,255) made publicly available by the Global Lipids Genetics Consortium (GLGC,
http://www.sph.umich.edu/csg/abecasis/public/lipids2013, [27]). Unfortunately, none of
the six SNPs with at least nominal association with HDL-cholesterol in this study was
depicted on the arrays used by the GLGC. Using the SNP Annotation and Proxy Search
platform of the Broad Institute (http://www.broadinstitute.org/mpg/snap/ldsearch.php),
we could identify proxies (with r²>0.8) depicted on the GLGC arrays for four of the six
SNPs. However, none of the proxy SNPs reached the level of nominal significance in the
GLGC data for association with HDL-cholesterol adjusted for gender and age (p�0.07, all;
subjects on lipid-lowering medication were excluded from the meta-analysis). Association
data additionally adjusted for BMI were not available from GLGC. Performing the analyses
in our study population without adjustment for BMI raised the p-value of SNP rs4288294
from 0.0003 to 0.0055 (rendering this hit only nominally associated) and of SNP
rs116697954 from 0.0004 to 0.0018. Furthermore, BMI exclusion from adjustment

Fig 1. Associations of PIK3CG SNPs rs4288294 (A) and rs116697954 (B) with plasma HDL-cholesterol concentrations. Adjustment of plasma HDL-
cholesterol concentrations (N = 2,016) was achieved by multiple linear regression modelling with gender, age, BMI, and anti-hyperlipidaemic medication as
confounding variables. On the x-axes, the number of minor T-alleles is given. The SNPs were tested in the additive inheritance model. HDL–high-density
lipoprotein; SNP–single nucleotide polymorphism.

doi:10.1371/journal.pone.0144494.g001
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abolished the associations of three SNPs described before as nominal hits (rs3823963,
rs1129293, and rs10216210; p�0.08, all).

From 694 female and 364 male study participants, blood pressure and cigarette consump-
tion data were available. Therefore, we tested in these subjects whether the two significantly
HDL-associated SNPs, i.e., rs4288294 and rs116697954, associate with the gender-dependent
Framingham risk score for cardiovascular disease risk. After adjustment for BMI and anti-
hyperlipidaemic medication, SNPs rs4288294 and rs116697954 were significantly associated
with the risk score for women (p = 0.0354 and p = 0.0313, respectively; no Bonferroni correc-
tion applied in this focused follow-up investigation), with female minor T-allele carriers having
a reduced cardiovascular disease risk. Neither SNP was associated with the risk score in the
smaller group of men (p = 0.2, both).

Then, we addressed the question whether the two SNPs affect HDL2- and/or HDL3-choles-
terol concentrations. To this end, we looked into HDL fractionation data generated during an
earlier investigation [19]. In this subgroup of 34 TÜF participants (clinical characteristics given
in S7 Table), the minor T-alleles of SNPs rs4288294 and rs116697954 were significantly associ-
ated with higher HDL2- (p = 0.0404 and 0.0433, respectively), but not HDL3- (p = 0.8 and
p = 0.5, respectively), cholesterol after adjustment for gender, age, and BMI (Fig 2). In this anal-
ysis, CT+TT were jointly analyzed (dominant inheritance model) due to the very low number
of TT homozygotes (N = 5 and 7, respectively). Of the 34 participants, 15 had fatty liver (intra-
hepatic lipid content�5.5%) whereas 19 had no fatty liver. Inclusion of the presence/absence
of fatty liver as a nominal confounding variable in the multiple linear regression analysis did
not affect the association of SNP rs4288294 with HDL2-cholesterol (p = 0.0412; association
with HDL3: p = 0.8). The association of SNP rs116697954, the SNP with the smaller effect size
on HDL-cholesterol in the overall population (Fig 1B), with HDL2-cholesterol did no longer
reach the level of significance (p = 0.06; association with HDL3: p = 0.5).

In a first attempt to mechanistically understand the effects of the major HDL-associated
SNPs rs4288294 and rs116697954, we measured PIK3CGmRNA expression in PBMCs from
29 randomly selected study participants (22 women, 7 men; age 40.9 ±12.9 years; BMI 32.1
±4.3 kg/m²; means ±SD) and performed multiple linear regression analysis. Among the
anthropometric data available, we identified age (p = 0.0070), body height (p = 0.0209), and
waist-hip ratio (p = 0.0275) as significant independent determinants of PIK3CG gene expres-
sion explaining about 34% of the variation in PIK3CGmRNA levels and therefore included
these parameters as covariates in the multiple linear regression model. Even though not signifi-
cant, we included gender as well because of the marked gender imbalance in this subgroup
(22 women, 7 men). Again, the two SNPs were tested in the dominant inheritance model due
to the very low number of TT homozygotes (N = 6 and 7, respectively). Applying this regres-
sion model, we observed significantly increased PIK3CG gene expression in minor T-allele
carriers of SNP rs4288294 (p = 0.0420; Fig 3A). The effect of SNP rs116697954, which had a
smaller effect on HDL-cholesterol in the overall study population, did not pass the significance
threshold (p = 0.3; Fig 3B). Even though PBMCs are probably not a major source of cholesteryl
ester transfer protein (CETP; mainly expressed in liver and lymph nodes), lecitihin-cholesterol
acyltransferase (LCAT; rather ubiquitously expressed), phospholipid transfer protein (PLTP;
mainly expressed in thymus, retina, and lung), and scavenger receptor B1 (SRB1; encoded by
the SCARB1 gene; mainly expressed in the adrenal cortex), important proteins involved in
HDL metabolism/turnover, we reasoned that if a non-coding genetic variant exerts an effect on
these genes’ expression at their major expression sites this should also be reflected in cells with
more moderate expression levels. Indeed, only CETPmRNA expression ranged at the detection
limit (Cp-value>35), whereas the mRNA levels of LCAT (Cp-value 32.7), PLTP (Cp-value
32.0), and SCARB1 (Cp-value 30.5) were reproducibly detectable in PBMCs by qPCR.
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Fig 2. Associations of PIK3CG SNPs rs4288294 (A) and rs116697954 (B) with HDL2- and
HDL3-cholesterol concentrations. The HDL-cholesterol subfractions HDL2 and HDL3 were obtained by
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However, we could not detect any significant association of the two SNPs tested, i.e., rs4288294
and rs116697954, with the expression of these genes (p>0.1, all).

Discussion
In this work, we investigated the impact of common genetic variation in the PIK3CG locus,
represented by 10 non-linked non-coding tagging SNPs, on inflammatory traits and inflamma-
tion-related metabolic traits in individuals at increased risk for type-2 diabetes.

Contrary to our expectations, none of the SNPs directly influenced blood inflammatory
markers, such as leukocyte number, plasma CRP levels, or serum IL-6, TNF-α, or MCP-1 con-
centrations. Moreover, we did not observe any associations with metabolic traits like body fat
content, body fat distribution, serum adipokine concentrations, plasma glucose levels, insulin
sensitivity, or insulin secretion. However, we identified two SNPs with study-wide significant
effects on plasma HDL-cholesterol (rs4288294 and rs116697954). Homozygous carriers of
these SNPs’minor T-alleles had 5–6% higher HDL-cholesterol levels compared to homozygous
major allele carriers. Moreover, we found four additional SNPs nominally associated with
HDL-cholesterol with their minor alleles being associated with reduced HDL-cholesterol. Even

ultracentrifugation. Adjustment of HDL2- and HDL3-cholesterol concentrations (N = 34) was achieved by
multiple linear regression modelling with gender, age, and BMI as confounding variables. The SNPs were
tested in the dominant inheritance model. HDL–high-density lipoprotein; SNP–single nucleotide
polymorphism.

doi:10.1371/journal.pone.0144494.g002

Fig 3. Associations of PIK3CG SNPs rs4288294 (A) and rs116697954 (B) with PIK3CG gene expression in PBMCs. After isolation of PBMCs from
whole blood, the cellular PIK3CGmRNA content was determined by qPCR. Adjustment of PIK3CGmRNA expression (N = 29) was achieved by multiple
linear regression modelling with gender, age, body height, and waist-to-hip ratio as confounding variables. The SNPs were tested in the dominant inheritance
model. PBMCs–peripheral blood mononuclear cells; qPCR–quantitative real-time polymerase chain reaction; SNP–single nucleotide polymorphism.

doi:10.1371/journal.pone.0144494.g003
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though not significant and with divergent effect directions, these additional findings support
our suggestion that the PIK3CG locus affects plasma HDL-cholesterol and argue against a
mere chance finding. Opposing effect directions of non-coding SNPs may have multiple rea-
sons: e.g., one SNP in a cis-regulatory element, such as an enhancer structure, may strengthen
the binding of a transcription factor to this element whereas another SNP within the same ele-
ment–and some so-called stretch enhancers can span several kb [28]–may weaken it; or one
SNP may enhance/weaken the binding of a transcriptional activator to the locus whereas
another SNP may enhance/weaken the binding of a transcriptional repressor.

Based on (i) the observation that the HDL-associated PIK3CG SNPs identified herein were
not depicted on the SNP arrays used by the GLGC, (ii) the possibility that the proxies found on
the arrays may not perfectly represent our hits, and (iii) the fact that our analyses diverge from
those of the GLGC meta-analysis with respect to adjustment for potential confounders, we can
add a new candidate locus to the 46 HDL loci identified up to now by meta-analysis of
genome-wide association studies [28]. However, this new candidate locus clearly awaits repli-
cation in larger study populations applying identical statistical analyses and adjustments of
data. In this context, we could show in our study that the lack of adjustment for BMI (as was
the case in the GLGC meta-analysis) abolished three of our four nominal HDL-cholesterol hits
and raised the p-value of one of our two significant hits to the nominal level. Thus, adjustment
for BMI appears crucial to identify associations of PIK3CG SNPs with HDL-cholesterol.

As a first step towards an understanding of the mechanism(s) underlying the SNPs’ associa-
tion with HDL-cholesterol, we could demonstrate that rs4288294 was significantly associated
with PIK3CG gene expression in PBMCs from 29 donors, with minor T-allele carriers display-
ing higher PIK3CG expression. Larger PBMC collections would be needed to detect a consis-
tent significant effect in minor T-allele carriers of rs116697954 (least significant number
estimated from the model: N = 83). Even though we corrected for the gender imbalance
observed in our PBMC donors (22 women, 7 men) by including gender as a confounder in our
multiple linear regression analyses, this adjustment could have been insufficient to completely
exclude any gender bias, and larger PBMC collections with a more balanced gender distribu-
tion would allow more stringent conclusions. How the PIK3CG gene product PI3Kγmolecu-
larly influences HDL formation and/or clearance is hitherto unknown, and PIK3CG knockout
mice, available for about 15 years now, have not yet been assessed for altered HDL-cholesterol
concentrations. There is one very recent interesting report providing evidence for an involve-
ment of PI3Kγ in LDL uptake by macrophages via pinocytosis favouring foam-cell formation
[29]. Whether PI3Kγ participates in HDL uptake/clearance by a similar mechanism was unfor-
tunately not investigated, but could be a possibility. Since HDL2 is formed from HDL3, our
finding that the minor T-alleles of SNPs rs4288294 and rs116697954 associate with higher
HDL2-, but not HDL3-, cholesterol may point to a role of PI3Kγ in HDL clearance rather than
in increased HDL biogenesis. With respect to the clinical relevance of these HDL subspecies,
low HDL2 concentrations were reported to have a stronger predictive value for coronary heart
disease than low HDL3 concentrations in a large prospective study [30].

For decades, high plasma HDL-cholesterol concentrations were considered as anti-atheroscle-
rotic and cardioprotective based on a large body of epidemiological and experimental data
(reviewed in [31,32]). Recently, however, a series of clinical trials aimed at increasing HDL-cho-
lesterol by pharmacological means failed to show improvements in cardiovascular risk [33–38].
Thus, the “HDL hypothesis” that states that decreased plasma HDL concentrations lead to
impaired reverse cholesterol transport thereby accelerating atherosclerosis has recently been
questioned, and further investigations are needed to clarify the reasons for these treatment stud-
ies’ inefficacy. Moreover, it remains to be shown whether the mild but physiological and lifelong
elevation in plasma HDL concentrations resulting from naturally occurring genetic variation (as
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shown here), in contrast to the artificial elevation of plasma HDL by pharmacological interven-
tion, are beneficial for cardiovascular endpoints. Maybe, it is even more HDL functionality, par-
ticularly cholesterol efflux capacity, that contributes to the assumed anti-atherosclerotic effects. A
recently published work showed a strong association between HDL-cholesterol efflux capacity
and cardiovascular events [39]. This capacity, however, is only weekly associated with HDL cho-
lesterol serum levels [39]. Certainly, studies addressing the effects of the PIK3CG SNPs on HDL
function and turnover could help defining their contribution to atherosclerosis and cardiovascu-
lar disease. We could show here that carriers of the HDL-raising minor T-alleles of rs4288294
and rs116697954 have significantly reduced cardiovascular risk according to the Framingham
risk score, at least in the larger, and thus better powered, group of women. This result however
has to be interpreted cautiously as HDL-cholesterol is an integral part of the score.

In conclusion, we could demonstrate that common genetic variants in the PIK3CG locus
(encoding PI3Kγ), possibly via effects on PIK3CG gene expression, determine plasma HDL-
cholesterol concentrations. Since HDL2-, but not HDL3-, cholesterol is influenced by the vari-
ants, PI3Kγmay play a role in HDL clearance rather than in HDL biogenesis. Even though the
molecular pathways connecting PI3Kγ and HDL metabolism remain to be further elucidated,
this finding could add a novel aspect to the pathophysiological role of PI3Kγ in atherogenesis.
Our results should encourage genetic studies assessing the effects of PIK3CG SNPs (e.g.,
rs4288294 and rs116697954) on cardiovascular endpoints that are not available in our study.
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