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Abstract

Background: Genome-wide association studies (GWAS) with metabolic traits and metabolome-wide association
studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic,
environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all
possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new
biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a
ratio between two metabolite concentrations carries more information than the two corresponding metabolite
concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain.

Results: Here we explore the statistical properties of the p-gain through simulation of its density and by sampling of
experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs
and show that B/(2*α) is a conservative critical value for the p-gain, where α is the level of significance and B the
number of tested metabolite pairs.

Conclusions: We show that the p-gain is a well defined measure that can be used to identify statistically significant
metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future
association studies with metabolic traits.

Keywords: p-gain, Metabolomics, MWAS, GWAS, Genome-wide association studies, Metabolome-wide association
studies

Background
With the advent of modern metabolomics techniques,
hundreds of endogenous organic compounds (metabo-
lites) from tissue samples, cell cultures and body fluids
can now be measured in a highly standardized and often
non-targeted manner. Current technologies are based on
liquid chromatography–mass spectrometry (LC-MS), gas
chromatography–mass spectrometry (GC-MS), flow in-
jection analysis mass spectrometry (FIA-MS/MS) or nu-
clear magnetic resonance spectroscopy (NMR) [1–3].
Genome-wide association studies (GWAS) with large

numbers of metabolic traits and metabolome-wide asso-
ciation studies (MWAS) with a wide range of biomedical
relevant traits are enabled by the newly achieved high-
throughput metabolomics capabilities.
Specific ratios between selected pairs of metabolite

concentrations (metabolite ratios) have been introduced
in the past as biomarkers in many biomedical applica-
tions. For instance, medium-chain acyl-CoA dehydro-
genase deficiency (MCADD) is detected in systematic
“newborn screens” on the basis of elevated blood con-
centrations of octanoylcarnitine (C8) and other acylcar-
nitines, in combination with ratios between acylcarnitine
concentrations, including hexanoylcarnitine (C6), decan-
oylcarnitine (C10), decenoylcarnitine (C10:1), C8/C6,
C8/C10, and C8/C12 (dodecanoylcarnitine) [4]. The ratio
between blood phenylalanine to tyrosine concentrations is
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used to identify heterozygous carriers of phenylketonuria
(PKU) risk alleles [5]. Metabolite ratios are also used
as biomarkers to detect specific exposures. For instance,
the urinary hydroxyproline to creatinine ratio was pro-
posed as an indicator for personal nitrogen dioxide (NO2)
exposure [6].
With modern high-throughput technologies, the con-

cept of metabolite ratio analysis has been scaled up to
systematically analyzing all possible combinations of
ratios between metabolite pairs in a hypothesis-free ap-
proach. A number of recently published papers highlight
the power of this approach: Altmaier et al. [7] applied
hypothesis-free metabolite ratio analysis to pre-clinical
drug testing in diabetic mice. They linked ratios between
sphingolipids that differ by two carbon moieties to a
modified beta-oxidation and ratios between different
classes of phospholipids to modified activity of enzymes
in the phospholipid pathways. In a metabolite associ-
ation study with smoking, Wang-Sattler et al. [8] identi-
fied an association with ratios between ester- and ether-
bond phospholipids. The biochemical properties of these
phospholipids allowed pinpointing the association to the
enzymatic action of alkylglycerone phosphate synthase.
Using similar approaches, Altmaier et al. [9] identified
biochemically relevant associations between metabolite
ratios and self-reported nutrition habits, and Suhre et al.
[10] used metabolite ratios to identify functional biomar-
kers for pre-clinical drug testing of FABP4 inhibitors.
Gieger et al. [11], Illig et al. [12] and Suhre et al. [13]
introduced hypothesis-free testing of metabolite ratios to
GWAS. They showed that using ratios can increase the
power of GWAS by tens of orders of magnitude. The
leading metabolic traits in 14 out of 15 genetic associa-
tions reported by Illig et al. [12] and 20 out 37 associa-
tions by Suhre et al. [13] are ratios between metabolite
concentrations (Table 1). Most interestingly, they found
that the biochemical nature of the associating metabolite
pairs was in nearly all cases directly related to the bio-
chemical function of an enzyme or transporter gene that
was encoded at the respective loci.
Several reasons explain why metabolite ratios provide

additional information in these association studies: (1)
Ratios between related metabolite pairs reduce the over-
all biological variability in the dataset and thereby in-
crease statistical power. For instance, study participants
may have strongly varying nutrition habits, which intro-
duce high variance in the distribution of that nutrient,
but also in those of its biochemical break-down pro-
ducts. However, individuals who consume a higher
amount of a certain nutrient also exhibit higher levels of
its biochemical break-down products. Ratios between
these metabolites can thus be considered as some kind
of internal normalization. (2) Systematic experimental
errors, such as variance in the concentration of external

standards result in errors that are comparable for cer-
tain metabolite pairs. Such errors are cancelled out in
ratios and thereby reduce the overall noise in the data-
set. (3) Probably most importantly, when a metabolite
pair is connected by a biochemical pathway, metabolite
ratios approximate the corresponding reaction rate
under idealized steady state assumptions. Metabolite
ratios then represent a biologically most relevant entity,
namely the flux through a biochemical pathway. For ex-
ample, in Suhre et al. [13], the association of SNP
rs174547 at the FADS1 locus displayed a p-value of
p = 2.3 × 10-21 and an explained variance of 5.2 % with
concentrations of the omega-6 fatty acid 20:4, whereas
the p-value of association with ratios between the fatty
acids 20:4 and 20:3 was p = 9.987 × 10-66 with an
explained variance of 15.3 % [13]. The FADS1 locus
encodes a fatty acid delta-5 desaturase. This is a key en-
zyme in the metabolism of long chain polyunsaturated
omega-3 and omega-6 fatty acids. The fatty acids 20:4
and 20:3 are the respective product and substrate pair
of the FADS1 reaction [14]. The strengthening in the as-
sociation of a genetic variant in the FADS1 locus and
the ratio between its substrate-product pair thus
matches the biological function of the FADS1 enzyme.
Had the biochemical function of FADS1 not been
known, it could have been inferred from these observa-
tions. This example shows how the biochemical proper-
ties of the associated metabolite pairs can provide
information on the functional background of the asso-
ciations. Examples of published studies that use associ-
ation with hypothesis-free testing of metabolite ratios
are provided in Table 1 to further highlight this
concept.
In order to quantify the strengthening of the associ-

ation when analyzing metabolite ratios in comparison
to using metabolite concentrations, the p-gain was
introduced [11]. The p-gain is defined as the increase
in the strength of association, expressed as the change
in p-value when using ratios compared to the smaller
of the two p-values when using two metabolite con-
centrations individually. So far, the number of analyzed
metabolite concentrations was applied as an ad-hoc
critical value for the p-gain. Any association that dis-
played a p-gain below this number was considered to
have occurred by chance. This approach can merely be
regarded as an intuitive rule of thumb, since a statis-
tical determination of the distribution of the p-gain
and herewith of the critical values has not yet been
conducted. In this paper, we derive critical values
through determination of the distribution of the p-gain
and provide a density table for readout of critical
values. In addition, we investigate the characteristics
of the p-gain in the situation of Bonferroni correction
for multiple tests.
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Results and discussion
Formal definition of the p-gain
Testing ratios between two metabolite concentrations a
and b should be independent of their order. It is therefore
advisable to use log-scaled metabolite ratios in the tests for
association. Due to the property log(a/b) = -log(b/a) this
also halves the multiple testing burden. Moreover, in many
of the cases we tested, the distribution of metabolite ratios
was observed to be better represented by a log-normal dis-
tribution than by a normal distribution. For instance, a test
of normality in the study by Illig et al. [12] showed that in
85.1 % of the cases, the log-transformed ratio distribution
was significantly better represented by a normal distribu-
tion than when untransformed ratios were used.
The p-gain was introduced in order to measure whether

the association with a genetic locus is significantly stron-
ger for a metabolite ratio than for the belonging metabol-
ite concentrations. As notation, we use ‘p-value(M1 | X)’,
short ‘P(M1)’, to reference the p-value corresponding to a
test for association between a trait X (in a GWAS this
would be a genetic locus represented by a SNP and in an
MWAS it would be a phenotypic trait) and the metabolite
M1. With this definition, the p-gain for the association of
the ratio M1/M2 of metabolites M1 and M2 with a trait X
is defined as

p-gain
M1

M2
jX

� �
:¼ min p-value M1ð jXð Þ; p-value M2ð jXÞÞ

p-value M1=M2

� ��X�

ð1Þ

Conservative critical p-gain values for common statistics
Although the p-gain is now frequently used in MWAS
and in GWAS with metabolic traits, only a rule of
thumb for the determination of critical values has been
applied so far. The p-gain was considered as being sig-
nificant when its value exceeded the number of analyzed
metabolite concentrations, that is, the number of add-
itionally performed tests [11–13]. Here we derive critical
values of the p-gain by determination of the distribution
to define a more sensible threshold. As the distribution
of the p-gain depends on the correlation structure
among the metabolites, conservative critical values are
beneficial in case of analyzing multiple sets of metabo-
lites, since they can be applied to all analyzed settings.
For this purpose, we use a universal p-gain defined as
the ratio of p-values belonging to two uncorrelated
metabolites:

p-gain
M1

M2
jX

� �
: ¼ p-value M1ð jXÞ

p-value M1=M2ð jXÞ;

cor M1;M1=M2ð Þ ¼ 0

ð2Þ

Critical values of the distribution of this p-gain are
conservative to the critical values of the distribution of
the p-gain given in equation (1), because

p-value M1ð jXÞ≥min p-value M1ð jXð Þ; p-value M2ð jXÞÞ

Table 1 Selected examples of published associations with hypothesis-free testing of metabolite ratios

Metabolite ratio Association Interpretation Reference

SM(OH)C28:0/SM(OH)C26:0 Diabetic (db/db) versus
wild type mice

Increased beta-oxidation in
diabetic mice

Altmaier et al.,
Endocrinology, 2008

PC aa C36:3/PC aa C36:4 FADS1 genotype Genetic variance in delta-5
fatty acid desaturation

Gieger et al.,
PLoS Genetics, 2008

PC aa Cx:y/PC ae Cx:y Smoking Reduced or lack of activity of
the enzyme alkyl-DHAP in smokers

Wang-Sattler et al.,
PLoS One, 2008

PC aa C40:3/PC aa C42:5 ELOVL2 genotype Genetic variance in elongation
of fatty acids

Illig et al.,
Nature Genetics, 2010

Medium chain fatty acids /
long chain fatty acids

Diabetes state Perturbed lipid metabolism
associated with diabetes

Suhre et al.,
PLoS One, 2010

PC aa C40:5/PC aa C40:6 Self-reported
nutritional intake of
polyunsaturated fatty acids

Confirmation of questionnaire
based life-style parameters

Altmaier et al.,
Eur. J. Endocrinology, 2011

Ratios between phospholipids with lipid side
chains from the C16:0, C16:1, C18:0, C18:1 pool
and C20:3, C20:4, C22:4 PUFAs

Plasma, tissue (mouse)
and cell lines (human) treated
with FABP4 inhibitor

Molecular inhibition of FABP4
activity

Suhre et al.,
J Biomol Screen, 2011

Formate/ acetate in human urine NAT2 genotype Genetic variance in
N-acetylase activity

Suhre et al.,
Nature Genetics, 2011

Ratio between phosphorylated and
unphosphorylated fibrinogen peptides

ABO, ALPL, and
FUT2 genotypes

Genetic variance in
fibrinogen phosphorylation

Suhre et al.,
Nature, 2011

In all studies pairs of metabolites were identified by a high increase in the strength of association when ratios were used. Note that all of these metabolite pairs
are found to be biochemically related to the concrete biological questions of these studies (Interpretation). However, they were singled out from the large
number of all possible metabolite pair combinations on the basis of the p-gain without any prior hypotheses.
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and therefore

p-valueðM1jXÞ
p-valueðM1=M2jXÞ ≥

minðp-valueðM1jXÞ; p-valueðM2jXÞÞ
p-valueðM1=M2jXÞ

The variation of the distribution of the p-gain defined in
equation (2) depends on the correlation between M1 and
M1/M2. For example, highly correlated metabolic traits
contain mainly the same information and have similar p-
values in association tests. This results in p-gain values
which are close to one. Hence, the variation of the distri-
bution is small. In contrast, weakly correlated metabolic
traits contain different information and may have different
p-values in association tests. This results in p-gain values
distributed broadly around the one. Therefore, assuming
cor M1;M1=M2ð Þ ¼ 0 , as it was done in equation (2),
results in a distribution of the p-gain with largest possible
variation and leads to the most conservative critical values.
In the situation of the universalized p-gain (equation

(2)) we can use the convolution formula for density
ratios which yields a split density (see Methods):

f P M1ð Þ
P M1=M2ð Þ

p-gainð Þ ¼

1
2

0 < p-gain < 1

1
2�p � gain2

p-gain ≥ 1

8>>><
>>>:

ð3Þ

as displayed in Figure 1 (black line). To determine crit-
ical values, we derive the cumulative distribution func-
tion of the density, i.e.

F P M1ð Þ
P M1=M2ð Þ

p-gainð Þ ¼
Zp-gain

0

f P M1ð Þ
P M1=M2ð Þ

xð Þdx ¼

1
2
p-gain 0 < p-gain < 1

1−
1

2�p-gain p-gain ≥ 1

8>>><
>>>:

ð4Þ
Herewith, the critical value becomes 1

2�α with α denot-
ing the level of significance. In the case of typically used
α levels of 0.05, this yields a corresponding critical value
for the p-gain of ten. General quantiles are provided in
Table S1 (Additional file 1).

Critical values for multiple testing
In MWAS and in GWAS with metabolomics a large
number of ratios are tested in parallel. Therefore, a cor-
rection for multiple testing has to be applied. We select
Bonferroni correction as the most conservative method.

When admitting a type I error rate of α and applying a
correction for B tests, i.e. aiming at a level of significance
of α=B , the critical value for the p-gain then becomes
B= 2�αð Þ (see Methods). For example, assumption of a
type I error rate of α= 0.05 leads to a critical value of
10�Bwhich implies that for Bonferroni correction of B
tests the uncorrected critical value of ten can be multi-
plied by the number of tests B. Hence, the critical value
of the p-gain in the situation of multiple testing is not
equal to the number of analyzed metabolite concentra-
tions, which was used so far as an ad-hoc criterion, but
rather ten times the number of tested ratios.

P-gain for correlated metabolites
The case of uncorrelated metabolites (equation (2)) is con-
servative with respect to the p-gain as defined in equation
(1). Here we analyze the density of the p-gain as defined in
equation (1) for selected correlation settings. In the situ-
ation of correlated metabolic traits the convolution for-
mula cannot be applied anymore. Thus, we simulate the
density using a copula to generate the correlation among
the metabolic traits. A copula is a joint probability distribu-
tion whose one-dimensional marginal distributions are
uniformly distributed over the interval [0,1]. It takes the
dependency among the marginal distributions into account
(see Methods). Quantiles for the p-gain densities of corre-
lated metabolic traits are provided in Table S1 (Additional
file 1) for various correlation settings. It can be observed
that when any of the correlations corðM1; ratioÞ or
corðM2; ratioÞ increase, the values of the quantiles of the
p-gain decrease. This observation can be explained by the
fact that the variation of the p-gain can be reduced by in-
creasing the correlation between a metabolite concentra-
tion and the ratio (i.e. corðM1; ratioÞ or corðM2; ratioÞ). A
reduction of the variation of the p-gain leads to smaller
critical values. On the other hand, for fixed corðM1; ratioÞ
and corðM2; ratioÞ, an increase in the correlation between
M1 and M2 leads to an increase in the values for the p-gain
quantiles when the correlation between M1 and M2 is not
close to 0. Extending these observations to the most ex-
treme case of having fully correlated metabolite concentra-
tions which are uncorrelated with their ratio (i.e.
corðM1;M2 ¼ 1; corðM1; ratioÞ ¼ 0; corðM2; ratioÞ ¼ 0Þ
we get the largest critical values and thus these critical
values are conservative to all correlation settings. This
idealized case reduces the p-gain as defined in equation
(1) to the p-gain as defined in equation (2). For this
case, we derived the distribution using the convolution
formula as well as through a simulation. In both cases,
the simulated and calculated density as well as the
belonging critical values coincided (Table S1, Figure S1
(Additional file 1)). To determine the density of the p-
gain for a given correlation setting among the
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metabolite concentrations and their ratio, the exact dis-
tribution of the p-gain for a given metabolite ratio can
be simulated using the R-script which is provided as
Supplemental Material (Additional file 2).

Dependence on sample size in real data
In order to examine the behavior of the p-gain in the
situation of real data, we compute the observed correl-
ation structure among metabolite ratios which were
published in Suhre et al.[13] (Table S2). This dataset
includes nearly uncorrelated metabolites, such as the
ratio between 1-methylxanthine and 4-acetamidobu-
tanoate (association with the NAT2 locus) as well as
highly correlated metabolites, such as the androsterone
sulfate to epiandrosterone sulfate ratio (association with
the AKR1C locus). The distributions of exemplary me-
tabolite ratios are presented in Figure 1. As expected,
the densities for correlated metabolic traits display
smaller variations than the density for uncorrelated
metabolic traits. The observed p-gain values in 1,768
samples of the KORA study vary between 2.79 x 103

and 1.68 x 1066 for the 20 loci published in Suhre et al.
(see Table S3 (Additional file 1)). Using this dataset we
conducted simulation tests to address the influence of the
sample size on the observed p-gain values. We chose ran-
domly sets of samples sizes between 100 and 2000 sam-
ples from the KORA study and calculated the p-gain for

these sets. The results of this analysis illustrate the depend-
ence of the p-gain values on the sample size (Table S3
(Additional file 1)). For example, we observe for the as-
sociation between the ACADS locus and the butyrylcar-
nitine to propionylcarnitine ratio a median p-gain value
of 1.4 x 102 for a sample size of N = 100, of 1.1 x 105 for
N = 500, of 2.8 x 1010 for N = 1000, of 3.1 x 1015 for
N = 1500 and of 1.4 x 1021 for N = 2000.

Conclusions
We derived critical values for the p-gain to determine sig-
nificance in various situations. We recommend the use of
metabolite ratios and the p-gain statistic when analyzing
large scale metabolomics data sets and to apply the critical
values with correction of multiple testing as provided in
this paper. Given the success of the approach in the meta-
bolomics field, hypothesis free testing of ratios between
biologically related quantitative traits should also be con-
sidered for association studies with other ‘omics datasets.

Methods
Study description
The KORA (Cooperative Health Research in the Region of
Augsburg) study is a series of independent population-
based epidemiological surveys and follow-up studies of
participants living in the region of Augsburg, Southern
Germany [15]. All participants are residents of Germany
with a German nationality. All participants gave signed
informed consent. The study was approved by the local
ethics committee (“Bayerische Landesärztekammer”). The
present study includes data of the follow-up study KORA
F4 (2006-2008) of the KORA S4 survey (1999-2000). For
genotyping, we included 1,814 randomly selected partici-
pants of KORA F4. The KORA F4 samples were geno-
typed with the Affymetrix Human SNP Array 6.0 and
imputed with IMPUTE v0.4.2 based on Hap Map II [12].

Blood collection
We collected blood samples between 2006 and 2008
during the KORA F4 examinations. To avoid variation
due to circadian rhythm, blood was drawn in the morning
between 8:00 a.m. and 10:00 a.m. after a period of over-
night fasting. Blood was drawn into serum gel tubes, gen-
tly inverted two times and then allowed to rest for 30 min
at room temperature (18− 25°C) to obtain complete co-
agulation. The material was then centrifuged for 10 min
and 2,750 g at 15°C. Serum was divided into aliquots and
kept for a maximum of 6 h at 4°C, after which it was
deep-frozen to −80°C until analysis.

Metabolomics measurements
On 1,768 fasting serum samples of the KORA F4 study
for which we had already genotypes available, metabolic
profiling was done using ultrahigh performance liquid-

Figure 1 Distribution of the p-gain. This Figure shows the
distribution of the p-gain for the calculated conservative p-gain of
uncorrelated traits as well as for four loci which were significant in
Suhre et al. [13]. The ACADS locus was found to be associated with
butyrylcarnitine/propionylcarnitine, FADS1 with 1-arachidonoyl-
glycerophosphoethanolamine/1-linoleoylglycerophosphoethanol-
amine, GCKR with glucose/mannose and NAT2 with 1-methyl-
xanthine/4-acetamidobutanoate. The correlations among the
metabolite concentrations as well as with the metabolite ratio are
summarized in Table S2.
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phase chromatography and gas chromatography separ-
ation coupled with tandem mass spectrometry [16–18] at
Metabolon, an US-based commercial supplier of meta-
bolic analyses. They achieved highly efficient profiling (24
minutes/sample) with low median process variability
(<12%) of more than 250 metabolites, covering over 60
biochemical pathways of human metabolism. A more
detailed description of the metabolomics measurement
and quality control can be found in Suhre et al. [13].

Statistical analyses
Density of p-gain for uncorrelated metabolites (calculation)
The p-gain for two uncorrelated metabolites is defined
as:

p-gain
M1

M2
jX

� �
: ¼ p-value M1ð jXÞ

p-value M1=M2ð jXÞ ;

cor M1;M1=M2ð Þ ¼ 0

We calculated the density of the p-gain of two uncor-
related metabolites by using the convolution formula for
ratios:

f P M1ð Þ
P M1=M2ð Þ

p-gainð Þ ¼
Zþ1

−1
jtjfP M1ð Þ p-gain�tð Þ�fP M1=M2ð Þ tð Þdt

8 p-gain 2 Rþ

with P(M1) and P(M1/M2) having a uniform distribution
on the interval [0,1]. Transformations lead to

f P M1ð Þ
P M1=M2ð Þ

p-gainð Þ

¼
Zþ1

�1
tj j fP M1ð Þ p-gain�tð Þ�fP M1=M2ð Þ tð Þdt

¼
Z1

0

t�fP M1ð Þ p-gain�tð Þdt

¼

Z1=p-gain

0

t dt ¼ 1

2�p-gain2 ; p-gain≥1

Z1

0

t dt ¼ 1
2
; 0 < p-gain < 1

8>>>>>>><
>>>>>>>:

The corresponding cumulative distribution is

F P M1ð Þ
P M1=M2ð Þ

p-gainð Þ ¼
Zp�gain

0

f P M1ð Þ
P M1=M2ð Þ

tð Þdt

¼

1
2
p-gain; 0 < p-gain < 1

1−
1

2�p-gain ; p-gain ≥ 1

8>>><
>>>:

Therefore,

F P M1ð Þ
P M1=M2ð Þ

p-gainð Þ ¼ 1−
α

B

� �

, 1−
1

2�p-gain ¼ 1−
α

B

� �

, p-gain ¼ B
2α

; if
α

B
≤0:5;

with α=Bbeing the significance level α, Bonferroni-cor-
rected for B tests.

Density of the p-gain (simulation)
To determine the density of the p-gain we assumed a
given correlation structure among the metabolic traits.
This confers to a correlation structure among p-values
corresponding to these metabolic traits. With these corre-
lated p-values the density of the p-gain can be derived. For
simulation of the variables with a given correlation struc-
ture we choose the “copula” package [19,20] of the R-Pro-
ject Environment [21]. The simulated variables were
marginal distributions of a multivariate distribution with a
uniform distribution on the interval [0,1]. We then trans-
formed the simulated variables with an inverse normal
transformation to gain a normal distribution which is es-
sential for linear regressions. To simulate the p-values
belonging to these variables, we generated additional vari-
ables and conducted linear regressions where these add-
itional variables were the independent and the variables
simulated with the copula the dependent variables. The
received p-values contain a correlation structure which
belongs to the correlation structure of the metabolic traits.
Out of these p-values, we calculated a density of the p-
gain empirically and derived critical values for given sig-
nificance levels. An R-script with the simulation com-
mands is provided with the supplemental material.

Dependence of p-gain values on sample size
We determined the dependency of the p-gain of the
sample size by drawing randomly between 100 and 2000
samples from the KORA data (with replacement). For
each sample size, we repeated this analysis 1500 times.
For all sample subsets we calculated the p-gain. We then
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determined the median p-gain as well as the 1st and 3rd

quantile of the p-gains for each sample size.

Additional files

Additional file 1: Supplementary Figure S1 and Tables S1-S3. This
file contains supplementary information.

Additional file 2: R-script for simulation of the distribution of the
p-gain. This file contains supplementary information.
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