Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability

Theo Schwemer, † Christopher P. Rüger, † Martin Sklorz, † and Ralf Zimmermann † . * \$\frac{1}{2} \text{ and Ralf Zimmermann} \text{ } \$\frac{1}{2} \text{ } \$\text{ }

- †Joint Mass Spectrometry Centre / Chair of Analytical Chemistry, University of Rostock, 18051 Rostock, Germany
- ‡HICE Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health Aerosols and Health, 85764 Neuherberg, Germany, www.hice-vi.eu
- §Joint Mass Spectrometry Centre / Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany

Supporting Information

^{*} Corresponding author: martin.sklorz@uni-rostock.de

Table of Contents

- **Table S-1.** Sample acquisition and preparation
- **Table S-2.** GC parameters
- **Table S-3.** APCI source and FT-ICR MS parameters
- **Table S-4.** Compound class distribution of fuels and particulate matter with applied KI correlation based on intensity weights
- **Table S-5.** Polycyclic aromatic hydrocarbons used for calibration of retention index with corresponding Kováts Indices from NIST08 database
- **Figure S-1.** Comparison of compound class distributions with and without applying KI correlation for compound filtering according to GC APCI FT-ICR analysis of diesel fuel (DF), particulate matter of diesel fuel (DF-PM), heavy fuel oil (HFO) and particulate matter of heavy fuel oil (HFO-PM)
- **Figure S-2.** Intensity weighted DBE distribution of the major compound classes for GC APCI FT-ICR analyses with summed relative intensity of compound classes (standardized to summed intensity of all detected compounds) of a) DF ultra low sulfur (≤ 10 ppm) diesel fuel according DIN EN 590; b) DF-PM − primary combustion particulate matter of diesel fuel; c) HFO − heavy fuel oil containing 2.7 % sulfur, which is a representative fuel for ship operation outside of sulfur emission control areas; d) HFO-PM primary combustion particulate matter of heavy fuel oil
- Figure S-3. Carbon number vs. DBE plot of two abundant compound classes for all samples (diesel fuel (DF), particulate matter of diesel fuel (DF-PM), heavy fuel oil (HFO) and particulate matter of heavy fuel oil (HFO-PM)); left column are CH classes and right column are CHO2 classes
- **Figure S-4.** Kendrick plot detected chromatographic features in heavy fuel oil (HFO) with (green) and without (blue) retention index correlation for filtering of assigned elemental compositions

Table S-1: Sample acquisition and preparation

engine	four stroke single-cylinder direct-injected ship diesel test engine			
used fuels	heavy fuel oil (HFO 180) and distillate fuel (DF) according to EN 590			
sample acquisition	engine exhaust gas was collected for four hours on quartz fiber filter discs after cooling the exhaust gas to near room temperature by appropriate dilution with compressed air			
exhaust gas dilution ratios	1:10 for diesel fuel and 1:40 for heavy fuel oil			
sample preparation particulate matter	the filters were extracted twice with 25 ml methanol/dichloromethane (50/50, v/v) for 15 min using an ultrasonic bath. Both extractions were combined and filtered via a 0.2 μ m PTFE-membrane filter. An aliquot of 5 mL was concentrated to about 0.1 mL by applying a stream of pure nitrogen at room temperature			
sample preparation fuel	1:100 dilution in a mixture of methanol/dichloromethane (50/50, v/v) and directly analyzed without further treatments			

Table S-2: GC parameters

GC Type	CP 3800 (Agilent, former Varian Technologies, Palo Alto, CA, USA)			
injector	1079 programmable temperature vaporizer injector equipped with a			
	ChromatoProbe device			
column	HT5 column (25 m length x 0.53 mm i.d. x 0.15 µm film thickness,			
	SGE Analytical Science, Australia)			
injection	splitless			
injection volume	2 μL			
injection program	program 60°C (1 min) → 300°C with 50°C/min			
oven program	program 40°C(6 min)→ 320°C with 10°C/min			
flow rate	v rate constant at 10 mL/min of 99.999% Helium			
temperature	320°C			
transfer line	320 C			

Table S-3: APCI source and FT-ICR MS parameters $\,$

source	atmospheric pressure chemical ionization source with a specialized gas phase inlet ¹⁶				
mass spectrometer	Apex Qe Series II FT-ICR MS system (Bruker Daltonics, Billerica, MA, USA / Bruker Daltonics GmbH, Bremen, Germany)				
magnet	7 T magnet (Bruker Biospin, France)				
operating mode	positive mode				
needle current	3 μΑ				
source temperature	320 °C				
sheath gas	nitrogen with a flow rate of 2 L/min				
auxiliary gas	nitrogen with a flow rate of 0.6 L/min				
dry gas	nitrogen with a flow rate of 2 L/min				
nebulizer gas	nitrogen with a pressure of 3×10^5 Pa				
acquisition rate	approximately 0.6 Hz				
resolution at m/z 300	200 000				
mass range	100 – 700 Da				
acquisition software	Bruker Compass Data Analysis 4.0 SP 5 software package				
transient operations	zero-filled, square sine-bell apodization and fast Fourier transformation into frequency domain applied				
mass-calibration	precalibration with fatty acid methyl ester mix (C10 - C24; Supelco, Bellefonte, PA, USA) and internal calibration with an averaged mass spectrum of the chromatogram, using well known PAH signals of the samples and column bleed covering a m/z-range of 128 to 540				
standard deviation of linear mass calibration	< 0.3 ppm				
used Signal-to-noise ratio for export to MATLAB	≥ 9				

Table S-4: Compound class distribution of fuels and particulate matter with applied KI correlation based on intensity weights

compound classes	diesel fuel	heavy fuel oil	particulate matter of diesel fuel	particulate matter of heavy fuel oil
СН	75.4%	34.8%	15.5%	48.8%
СНО	3.9%	7.8%	11.6%	11.5%
СНО2	19.4%	13.9%	61.4%	17.0%
СНОЗ	1.0%	1.8%	6.1%	2.3%
СНО4	0.0%	0.0%	0.5%	0.5%
CHN	0.2%	11.0%	0.6%	0.8%
CHNO	0.0%	0.1%	2.4%	1.4%
CHS	0.0%	23.6%	0.1%	15.6%
CHSO	0.0%	6.3%	0.0%	0.2%
others	1.1%	0.7%	2.8%	2.0%

 Table S-5:
 Polycyclic aromatic hydrocarbons used for calibration of retention index with corresponding Kováts Indices from NIST08 database

number	substance	elemental	protonated	Kováts
		composition	m/z [Da]	Index [IU]
1	Naphthalene	$C_{10}H_{8}$	129.06988	1187.3
2	Acenaphthylene	$C_{12}H_{8}$	153.06988	1460.8
3	Acenaphthene	$C_{12}H_{10}$	155.08553	1479.9
4	Fluorene	$C_{13}H_{10}$	167.08553	1582.9
5	Phenanthrene	$C_{14}H_{10}$	179.08553	1775.0
6	Pyrene	$C_{16}H_{10}$	203.08553	2111.7
7	Chrysene	$C_{18}H_{12}$	229.10118	2458.5
8	Benzo[a]pyrene	$C_{20}H_{12}$	253.10118	2765.1
9	Dibenz(gh)anthracene	$C_{22}H_{14}$	279.11683	n.a.
10	Benzo[ghi]perylene	$C_{22}H_{12}$	277.10118	3151.6
11	Coronene	$C_{24}H_{12}$	301.10118	n.a.

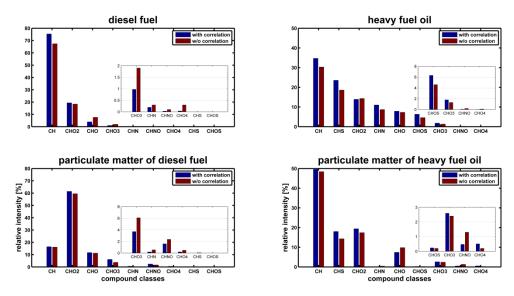


Figure S-1. Comparison of compound class distributions with and without applying KI correlation for compound filtering according to GC APCI FT-ICR analysis of diesel fuel (DF), particulate matter of diesel fuel (DF-PM), heavy fuel oil (HFO) and particulate matter of heavy fuel oil (HFO-PM)

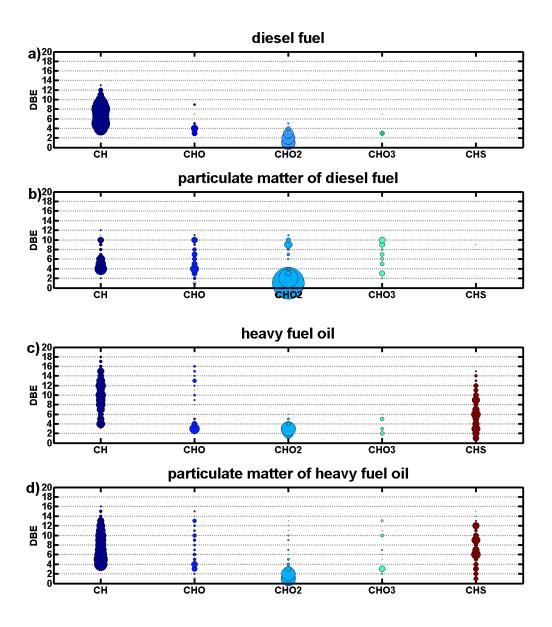


Figure S-2. Intensity weighted DBE distribution of the major compound classes for GC APCI FT-ICR analyses with summed relative intensity of compound classes (standardized to summed intensity of all detected compounds) of a) DF - ultra low sulfur (\leq 10 ppm) diesel fuel according DIN EN 590; b) DF-PM - primary combustion particulate matter of diesel fuel; c) HFO - heavy fuel oil containing 2.7 % sulfur, which is a representative fuel for ship operation outside of sulfur emission control areas; d) HFO-PM - primary combustion particulate matter of heavy fuel oil

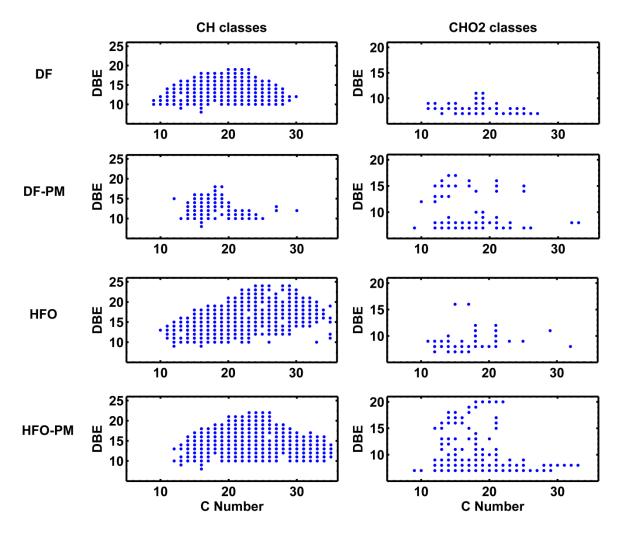


Figure S-3. Carbon number vs. DBE plot of two abundant compound classes for all samples (diesel fuel (DF), particulate matter of diesel fuel (DF-PM), heavy fuel oil (HFO) and particulate matter of heavy fuel oil (HFO-PM)); left column are CH classes and right column are CHO2 classes

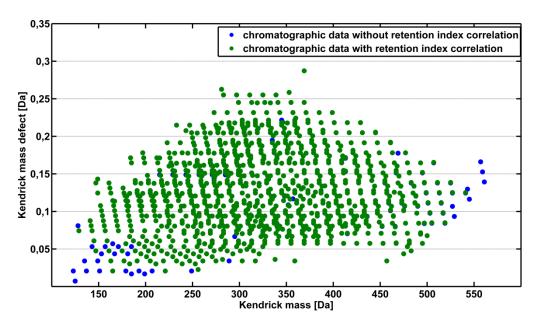


Figure S-4. Kendrick plot detected chromatographic compounds in heavy fuel oil (HFO) with (green) and without (blue) retention index correlation for filtering of assigned elemental compositions