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Abstract

Fluorescence diffuse optical tomography (fDOT) provides 3D images of 

luorescence distributions in biological tissue, which represent molecular and 

cellular processes. The image reconstruction problem is highly ill-posed and 

requires regularisation techniques to stabilise and ind meaningful solutions. 

Quadratic regularisation tends to either oversmooth or generate very noisy 

reconstructions, depending on the regularisation strength. Edge preserving 

methods, such as anisotropic diffusion regularisation (AD), can preserve 

important features in the luorescence image and smooth out noise. However, 

AD has limited ability to distinguish an edge from noise. We propose a 

patch-based anisotropic diffusion regularisation (PAD), where regularisation 

strength is determined by a weighted average according to the similarity 

between patches around voxels within a search window, instead of a simple 

local neighbourhood strategy. However, this method has higher computational 

complexity and, hence, we wavelet compress the patches (PAD-WT) to speed 

it up, while simultaneously taking advantage of the denoising properties of 

wavelet thresholding. Furthermore, structural information can be incorporated 

into the image reconstruction with PAD-WT to improve image quality and 

resolution. In this case, the weights used to average voxels in the image are 
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calculated using the structural image, instead of the luorescence image. The 

regularisation strength depends on both structural and luorescence images, 

which guarantees that the method can preserve luorescence information even 

when it is not structurally visible in the anatomical images. In part 1, we tested 

the method using a denoising problem. Here, we use simulated and in vivo 

mouse fDOT data to assess the algorithm performance. Our results show that 

the proposed PAD-WT method provides high quality and noise free images, 

superior to those obtained using AD.

Keywords: luorescence diffuse optical tomography, image reconstruction, 

anisotropic diffusion, nonlocal means, structural information, multimodal 

imaging, regularisation
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1. Introduction

Fluorescence diffuse optical tomography (fDOT), also known as luorescence molecular 

tomography, is an optical imaging modality that uses near-infrared excitation light sources 

to obtain luorescence emission measurements of biological tissue, mostly small animals 

(Ntziachristos 2006, Stuker et al 2011, Darne et al 2014). Detection can be performed using 

a charged-couple device (CCD) camera, placed opposite the source, that is rotated around 

the subject of study. These tomographic measurements are used to recover three-dimensional 

(3D) images of the luorescence distribution. Many luorescence dyes have been developed, 

and many are commercially available (PerkinElmer Inc., Life Technologies), which can be 

used to label proteins, small molecules, antibodies, cancer cells, in order to non-invasively 

monitor disease progression and response to potential therapeutics, inlammation, glucose 

uptake, skeletal changes, infection progression, just to name a few of many applications.

Due to the diffusive nature of light when propagating through biological tissue, the 

image reconstruction is an ill-posed problem and images have low spatial resolution, which 

is one of the main limitations and challenges to overcome in fDOT. Regularisation methods 

that impose a priori constraints on the solution can be used to reduce the ill-posedness 

of the problem and obtain a stable and meaningful solution. Furthermore, the use of a 

priori anatomical information is known to improve the accuracy of the reconstructed images 

signiicantly. This information can be provided by a high resolution anatomical imaging 

modality, such as x-ray computed tomography (XCT) (Ale et al 2010, Correia et al 2011,  

Abascal et al 2011).

It is common to use the so-called L2 norm regularisation, which tends to produce smooth 

solutions, thus blurring edges in the images. Recently, a lot of attention has been drawn to 

L1 norm regularisation methods, which have the ability to smooth out noise while preserv-

ing edges in images, but are computationally more complex (Freiberger et al 2010a, 2010b, 

Correia et al 2011, Abascal et al 2011, Dutta et al 2012). In Correia et al (2011) we proposed 

to use a nonlinear anisotropic diffusion regularisation method that can incorporate anatomi-

cal information and showed that spatial localisation and size of luorescence inclusions can 

be accurately estimated. This method is based on edge detection techniques, where an image 

gradient is calculated and any gradient above a certain threshold is considered to be an edge. 

However, when noise levels are signiicant, noise may produce large gradients and, therefore, 
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may erroneously be considered to be an edge. On the other hand, low contrast objects may be 

considered to be noise, and hence smoothed in the reconstruction process.

Similar to fDOT, Positron emission tomography (PET) and single photon emission com-

puted tomography (SPECT) suffer from low resolution and greatly beneit from the inclusion 

of anatomical information in the reconstruction process. Bowsher et al (2004) introduced 

one of the most popular methods for incorporating anatomical information into PET/SPECT 

image reconstruction. This method promotes smoothing of radiotracer activity values in a set 

η, of ixed size, which consists of the most similar neighbours in the anatomical image. It is 

based on the assumption that neighbouring voxels with similar intensities in the anatomical 

image, within a search window W, are more likely to have the same radiotracer concentration 

than those with different intensities. However, the number of selected neighbours affects the 

quality of the reconstructed images, since irrelevant voxels may be included in η and impor-

tant voxels neglected, causing an over or undersmoothing effect on the activity image. In order 

to overcome this limitation, Kazantsev et al (2012) proposed to use spatially variant set sizes 

based on anatomy and showed that it gives better results than choosing a constant set size. 

Furthermore, they used an edge preserving potential function, which penalises less the outliers 

than homogeneous regions, instead of the quadratic function used by Bowsher et al (2004), 

which favours smooth solutions. More speciically, they used an anatomically weighted aniso-

tropic diffusion framework with Huber as the edge-preserving function.

In the original method proposed by Bowsher et al (2004), voxels with high similarity were 

assigned a weighting factor equal to 1 and the remaining 0. Other, more robust functions, can 

be used, which proved to be more accurate than a simple binary selection (Bousse et al 2010, 

Kazantsev et al 2011).

Recently, the nonlocal means method (NLM), initially proposed by Buades for image 

denoising (Buades et al 2005), was used in PET image reconstruction as a regularisation 

method with (Chun et al 2012, Nguyen and Lee 2013) and without anatomical information 

(Chen et al 2008, Wang and Qi 2012). In the NLM method, pixels are averaged according 

to similarity between patches around pixels within a search window W, instead of a simple 

averaging strategy within a local neighbourhood. NLM exploits the redundancy of informa-

tion within an image, by assuming that patches from different regions contain similar patterns 

and averaging them effectively reduces noise. NLM has superior denoising performance than 

local-based methods, but at the expense of higher computational complexity. To overcome this 

drawback, several methods have been proposed to accelerate the NLM without loss of denois-

ing performance (Buades et al 2005, Mahmoudi and Sapiro 2005, Coupé et al 2008, Brox 

et al 2008, Orchard et al 2008, Tasdizen 2008). As a regulariser, NLM penalises less (ana-

tomical) image patches that are very different and penalises more similar patches. Methods 

based on NLM regularisation have the advantage of being edge-preserving, able to preserve 

features within patches and do not require an explicit selection of the number of most similar 

neighbours.

Here, inspired by the recent developments in PET/SPECT and the NLM method, we pro-

pose an improved version of our nonlinear anisotropic diffusion regularisation method (AD) 

for fDOT image reconstruction (Correia et al 2011). In our previous work we considered a 

local neighbourhood. Here, we consider a patch-based approach where we use robust edge-

preserving weighting and potential functions. Patch dimensions are reduced using wavelet 

compression, not only to reduce computational complexity but also to increase the robust-

ness of the method to noise. Therefore, the new method combines the advantages of NLM, 

AD and wavelet shrinkage methods (Donoho and Malik 1994). Furthermore, a priori struc-

tural information (SI) can be easily incorporated into the image reconstruction method. We 

refer to the new regularisation method as patch-based anisotropic diffusion with wavelet patch 
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compression (PAD-WT). Since the AD and NLM methods were initially proposed for image 

processing, in part 1 we performed a thorough analysis of the performance of the PAD-WT 

method using a 2D denoising test problem (an ill-posed inverse problem). The aim of this 

study was to test the hypothesis that the PAD-WT method is superior to NLM, AD and that 

wavelet transform (WT) can be used to eficiently compress patches. Here, in part 2, we use 

PAD-WT as a regularisation function in fDOT image reconstruction and assess the eficacy of 

the method using simulated and in vivo mouse fDOT data.

2. Methods

A glossary of the notation and acronyms is presented in tables 1 and 2.

2.1. Forward problem

In intensity-based fDOT, the forward model is described by a set of coupled diffusion equa-

tions in a domain Ω (Arridge and Shotland 2009):

0,e e
a
e e

κ µ−∇ ⋅ ∇Φ + Φ = (1)

f ,f f
a
f f e

κ µ−∇ ⋅ ∇Φ + Φ = Φ (2)

with boundary conditions on ∂Ω

R n J2 ,e e eˆκΦ + ⋅ ∇Φ = − (3)

R n2 0,f f fˆκΦ + ⋅ ∇Φ = (4)

n ,e,f e,f e,fˆκΓ = − ⋅ ∇Φ (5)

where J− is the excitation source lux, Φ is the photon density, R is a boundary term that incor-

porates the refractive index mismatch, Γ is the boundary measurement on ∂Ω, and n̂ is the 

outer normal vector. The diffusion coeficient is given by 
s a

1

3

1( )κ µ µ= +′ − , where aµ  is the 

absorption coeficient and 
s
µ′ is the reduced scattering coeficient. The superscript e,f indicates 

the excitation and emission wavelengths, respectively. The luorescence yield coeficient f is 

related to the quantum yield of the luorophore and its concentration. For CCD camera mea-

surements we have:

y ,e,f e,f e,f[ ] ( → )= Φ = Θ ∂Ω Σ ΓM P (6)

where y is the measured data, M is a measurement operator that gives the data, Θ are the 

unknown source and detector coupling coeficients and the operator P represents the projec-

tion from the domain boundary ∂Ω to the camera Σ (igure 1).

The forward problem is computed numerically using the inite element method (FEM) on 

a tetrahedral mesh based on the geometry being considered, and then mapped into a Cartesian 

voxel grid (Schweiger and Arridge 2014). In the FEM, the domain Ω is divided into E  

elements, joined at S nodes. The solution of the diffusion equations is approximated by the piece-

wise function uj
N

j j
e,f

1
e,f

Φ = ∑ Φ= , where uj are the basis functions. In the FEM framework 

equations (1)–(5) can be expressed as:

K Q,e eΦ = (7)
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K H,f fΦ = (8)

where

K u u u u
R

u ud
1

2
d ,i j i j i j

e,f e,f
a
e,f

( ) ( )∫ ∫κ µ= ∇ ⋅ ∇ + Ω+ ∂Ω
Ω ∂Ω

 (9)

Table 1. Deinition of variables.

Quantity Meaning

κ Diffusion coeficient

µa Absorption coeficient

µ′
s

Reduced scattering coeficient

Φ Photon density

J− Excitation source lux

R Refractive index mismatch parameter in the boundary condition

n̂ Outer normal vector

Γ Boundary measurement

M Measurement operator

P Projection operator, from boundary to camera

Σ Camera

S Dimension of the solution space

f Fluorescence yield coeficient

A Jacobian matrix

Ms Number of source-detector positions

ψM Number of wavelet coeficients used in the data compression

Ψ Regularisation function

ε Relative error between two consecutive iterations

Nitout Number of outer iterations

Nit in Number of inner iterations

g Diffusivity or edge-preserving function

δ Step length

λ Damping factor

τ Time step

T Threshold

x Structural image

W Search window

W Maximum distance from central voxel

P Patch size

N Patch length

w Weighting factor

w Weight in patch-based methods

h Parameter that controls the decay of the weights

N Neighbourhood or patch

ϖ Wavelet coeficients

ℓ Number of wavelet coeficients used in the wavelet patch compression

β Constant in the σ∝h2 2 relation

σ Noise standard deviation

Nr Number of noise realisations
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Q
R

J u
1

2
d ,i ( )∫= ∂Ω

∂Ω

− (10)

H f u d .i
e∫= Φ Ω

Ω
 (11)

Therefore, the solution e,fΦ  can be found by inverting the matrix K e,f.

Normalising the measured luorescence photon density f[ ]ΦM  by the measured excitation 

photon density e[ ]ΦM  reduces the effects of Θ (Soubret et al 2005). The normalised forward 

problem in fDOT is given by:

y
y

y
Af ,

f

e

e f

e
ˆ

[ ]

[ ]
= =

Φ Φ

Φ
=

∗M

M
 (12)

where fΦ ∗ is the solution to the adjoint diffusion equation for a source located on the boundary 

∂Ω at the detector position (Arridge 1999) and A is the Jacobian or sensitivity matrix. For a set 

of Ms source-detector positions, where the detector is a camera with M Mx y×  pixels, it follows 

Table 2. List of acronyms.

Acronym Meaning

AD Anisotropic diffusion

CCD Charged-couple device

CNR Contrast to noise ratio

DSI Dice similarity index

LR Linear reconstruction with quadratic regularisation

NCH Normalised cumulative histogram

NLM Nonlocal means method

PAD Patch-based anisotropic diffusion

PAD-WT Patch-based anisotropic diffusion with wavelet patch compression

ROI Region of interest

SI Structural information

VAR Variance

WT Wavelet transform

XCT X-ray computed tomography

Figure 1. Camera Σ records parallel projections of Γe,f distributions on the boundary 
∂Ω of the domain Ω.
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that the measurements ye,f are vectors of size M M Ms x y× ×  and A is a matrix of dimensions 

M M M Ss x y( )× × × , where S is the dimension of the solution space that, once mapped into a 

regular grid, has dimensions S S Sx y z× × . However, data compression based on wavelet com-

pression is used to reduce the dimensions of the data for computational eficiency (Rudge  

et al 2010, Correia et al 2013). Therefore, the dimensions of the vectorised compressed data 

are reduced to M Ms× ψ, where Mψ is the number of retained wavelet coeficients. Similarly, 

the size of the row compressed Jacobian is reduced to M M Ss( )× ×ψ .

2.2. Image reconstruction

The image reconstruction in fDOT consists in solving the problem:

f y Af farg min
1

2f

2{ }∥ ˆ ∥ ( )α= − + Ψ∗ (13)

where α is the regularisation parameter and Ψ is a regularising functional that represents a 

priori information.

2.2.1. Anisotropic diffusion. Equation (13) can be solved using quadratic or L2 norm regulari-

sation, i.e. f
1

2

2∥ ∥Ψ = , or iteratively using the split operator method with anisotropic diffusion 

regularisation introduced in Correia et al (2011) and summarised in algorithm 1:

The solution is updated at each iteration k by a two-step algorithm. The irst step, equation (14), 

is the Levenberg–Marquardt method, where λ is the damping factor and δ is the step length; 

and the second step, equation (15), is the nonlinear anisotropic diffusion method (Perona and 

Malik 1990), where Nit in speciies the number of inner or AD iterations, 0, 1[ ]τ∈  is the time 

step, iW( ) is the set of neighbours of voxel i with constant dimension, iW( )| | is the number of 

neighbours (here ( )| | =iW 6, 2 neighbours per direction) and g is an edge-preserving function 

such as Huber, Tukey, Total Variation, Perona–Malik, etc (Correia et al 2011). Here, we use 

the Perona–Malik function deined by ( )( )| − | = +
| − |⎛

⎝
⎜

⎞

⎠
⎟g f f 1 1j i

f f

T

2
j i

, for a voxel j iW( )∈ . 

The parameter T is the threshold and can be selected using the normalised cumulative histogram 

(NCH) of the gradient (Perona and Malik 1990, Correia et al 2011). This method is commonly 

used in edge detection problems. The NCH indicates the probability ℘ of a gradient taking on a 

value less than or equal to the value X that the bin represents, i.e. f f Xj i( ⩽ )℘ | − | . It increases 

monotonically and the smoothness/sharpness of the curve indicates how smooth/sharp the edges 

Algorithm 1: Two-step image reconstruction algorithm.

while (convergence criteria not satisied) do

( ) ( ˆ )[ ] [ ] [ ]δ λ= + + −
+ −

f f A AA I y Afk k T T k1/2 1
 (14)

 [ ] [ ]=+ +f fk k1, 1 1/2

  for = ⋯t 1, , Nit in do

( )
( )( )[ ] [ ]

( )

[ ] [ ] [ ] [ ]∑ ∑
τ

= +
| |

| − | −+ + +

∈

+ + + +f f
i

g f f f f
W

k t k t

i j i
j
k t

i
k t

j
k t

i
k t1, 1 1,

W

1, 1, 1, 1,

 
(15)

  end for

 [ ] [ ]=+ + +f fk k1 1,Nit 1in

 k  =  k  +  1

end while
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are. The threshold can be calculated from the NCH by setting the threshold at, for example, 90 

percent.

The algorithm runs until one of three stopping criteria is met, i.e. until the relative error ε 

is smaller than some given tolerance value, ε increases in comparison to the previous iteration 

or if the maximum number of outer iterations is reached Nitout. The relative error at the kth 

iteration between two consecutive iterations is deined as ∥ ∥ ∥ ∥ε = − −f f f/k k k k1 .

In a multimodality framework equation (15) becomes:

f f
i

x g f f f f
W

w ,k t k t

i j i

i j j
k t

i
k t

j
k t

i
k t1, 1 1,

W

,
1, 1, 1, 1,

( )
( ) ( )( )[ ] [ ]

  ( )

[ ] [ ] [ ] [ ]∑ ∑
τ

= +
| |

| − | −+ + +

∈

+ + + +

 (16)

where xwij( ) is a weighting factor related to the structural image x (Correia et al 2011). It is 

an edge detection function similar to g that reduces diffusion across edges (coming from x).

2.2.2. Patch-based anisotropic diffusion. We propose the following modiication to the sec-

ond step of the previous image reconstruction method:

wf f f g f f f f ,k t k t

i j i

i j
k t

j
k t

i
k t

j
k t

i
k t1, 1 1,

W

,
1, 1, 1, 1, 1,

( ) ( )( )[ ] [ ]

( )

[ ] [ ] [ ] [ ] [ ]∑ ∑τ= + | − | −+ + +

∈

+ + + + +

 
(17)

where wij is the weight that measures the similarity between two cubic neighbourhoods 

(patches with ixed size P N N N= × × ) centred at voxel i and j, in a search window 

W 2 1 2 1 2 1( ) ( ) ( )= + × + × +W W W  centred at voxel i, where W is the maximum distance 

from voxel i (refer to part 1 for further details). The weight wij is deined as:

w f
C i

f f

h

1
exp ,ij

i j

2
( )

( )

( ( ) ( ))⎧
⎨
⎩

⎫
⎬
⎭

= −
−D N N

 (18)

where iN  and jN  are the neighbourhoods centred at pixel i and j, respectively. The parameter 

h is the smoothing parameter, which is related to the noise standard deviation σ and patch 

dimensions (Coupé et al 2008, Tasdizen 2008, Duval et al 2011), and C(i) is a normalising 

constant given by:

C i
f f

h
exp

j

i j

2
( )

( ( ) ( ))⎧
⎨
⎩

⎫
⎬
⎭

∑= −
−D N N

 (19)

and

f f f f ,i j

p

ip jp

1

N N N
2( ( ) ( )) ( )∑− = −

=

× ×

D N N (20)

where fip and fjp represent the p element of the patches f i( )N  and f j( )N , respectively. Therefore, 

the weights wij are large when patches are similar and small when they are much different.  

If structural information is available, then w wf xij
k t

ij
1,( ) ( )[ ] =+ . Note that the patch-based 

anisotropic diffusion (PAD) method becomes the local AD when N  =  1 and 1=W .

Here, we also propose to apply a WT compression method to reduce the dimensions of the 

patches and speed up the PAD method. Hence, the PAD-WT is our proposed regularisation 

method, where the weights in equations (17) and (18) are calculated using:

T Correia et alPhys. Med. Biol. 61 (2016) 1452



1460

f f ,i j

p

ip jp

1

2( ( ) ( )) ( )
ℓ

∑ ϖ ϖ− = −
=

D N N (21)

where ipϖ  and jpϖ  represent the p wavelet coeficient of the wavelet transformed patches f i( )N  

and f j( )N , respectively.

In the PAD-WT method, h depends on the size of the compressed patches ℓ, i.e. the number 

of wavelet coeficients kept to represent patches. These parameters are related through the 

following relationship: h2 2ℓβ σ= , where β is a constant. The constant β can be empirically 

tuned and σ is estimated using the NCH.

The new patch-based regularisation step is based on the NLM denoising method (Buades 

et al 2005). Refer to part 1 of this two-part paper for more technical details on the NLM, AD 

and proposed PAD(-WT) methods.

3. Evaluation

Simulations and in vivo mouse data were used to compare the new image reconstruction method 

using PAD-WT regularisation to our previous method using local AD (Correia et al 2011) and 

a single-step linear reconstruction using quadratic regularisation (LR), which is equivalent to 

solving non-iteratively the irst step of our two-step algorithm (see equation (14)).

Both PAD-WT and AD regularisation steps, equations (15) and (17), respectively, were solved 

iteratively. Note that the solution of the irst step was computed on a tetrahedral mesh generated 

using the Matlab package Iso2mesh (Fang and Boas 2009), and then, since AD and PAD-WT are 

image-based methods, mapped into a regular grid covering the domain of the mesh. The number 

of outer iterations was set to Nit 150out =  and we chose the number of inner iterations Nit in 

required per outer iteration empirically. The time step was set to 1τ =  for both AD and PAD-WT 

methods. The parameter λ was deined as trace AA0
T( )λ λ= . The parameter 0λ  and remaining 

parameters used in the algorithms are described in the results section. All reconstructions were 

run on a linux PC with an Intel Xeon E5-2665 CPU @ 2.4 GHz using Matlab Mex-iles.

3.1. Simulation studies

We used the digimouse atlas (Dogdas et al 2007) to simulate a mouse with: (1) a lung dis-

ease, such as pulmonary inlammation (igure 2, movie 1 (stacks.iop.org/PMB/61/1452/

mmedia)); (2) tumour-like lesions within the lungs (igure 2). The generated inite element 

mesh had 63 591 nodes, 256 268 elements and dimensions 28 mm  ×  18 mm  ×  26 mm. The 

mesh was iner within the region of interest (ROI), i.e. lungs, and coarser elsewhere (see  

igure 3). We used a simpliied two-tissue model and assigned different optical properties to the 

lungs ( 0.033aµ =  mm−1 and 2.2
s
µ =′  mm−1) and other tissue ( 0.01aµ =  mm−1 and 1

s
µ =′  

mm−1). We calculated the optical properties using the parameters provided by Alexandrakis  

et al (2005) at a wavelength of 680 nm. We also used the atlas information to segment the lungs 

from the digimouse XCT images, to provide a realistic basis for the simulation and structural 

information (igure 4). In the irst simulation, we assumed that the luorescence signal was dis-

tributed throughout the whole lung structure with contrast f  =  2 a.u. (arbitrary units) (igure 2,  

movie 1 (stacks.iop.org/PMB/61/1452/mmedia)). In the second study, we simulated two 

nearly spherical luorescent targets embedded in the lungs, with contrast f  =  2 a.u. and size of 

approximately 1.5 mm (igure 2). The centre of the targets was positioned at z  =  0 mm.

In both simulations, the source and detector (CCD camera), placed opposite the 

source, were rotated around the chest of the digimouse. We calculated projection images 
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of size 128 128×  for 36 source-detector positions evenly distributed around the mouse 

at z  =  0 mm (figure 2). Data consisted of fluorescence and excitation projections cor-

rupted by Gaussian random noise with a standard deviation equal to 20% of the mean 

value, and were used to test the hypothesis that our proposed method is robust to high 

levels of noise. Data space was compressed as in Rudge et al (2010), Correia et al 

(2013) by setting M 64=ψ . We reconstructed images using a simple LR, our previous AD 

method (Correia et al 2011) and our new PAD-WT method, with and without structural 

information.

We obtained results for 10 noise realisations (N 10r = ) to analyse the bias-variance per-

formance of the different algorithms for varying 0λ  values. We deined bias (or mean relative 

error) and variance as:

S
BBIAS

1
,

i

i
2( )∑= (22)

S
sVAR

1
,

i

i
2∑= (23)

where the solution space S was a regular grid of size 64 64 64× × , the bias image

B I
1

N
,i

r

i
r

r 1

Nr
[ ]∑=

=

 (24)

and variance image

s I I
1

N
,i

r
i

r
i

2

r 1

N
2r

( ¯)
[ ]∑= −

=

 (25)

where I i
r f f

f

i
r

i

i

, true,

true,

[ ]
[ ]

=
−

∗

, f
i

r
,

[ ]

∗
 is the value of voxel i in the reconstructed image for a given noise 

realisation r, f itrue,  is the value of voxel i in the true solution and

Figure 2. Geometry used in 
the simulations: (1) the lungs 
or (2) lesions have luorescence 
contrast f  =  2 a.u.. The * markers 
indicate the source positions.

Figure 3. Mesh cross 
section. The mesh is 
iner within the region 
of interest, i.e. the 
lungs.

Figure 4. Three 2D cross 
sectional slices of the 
anatomical image showing 
the non-homogeneous lung 
structute.
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We calculated each bias-variance curve for 0λ = 0.01, 0.05, 0.1, 0.5, 1 10 2{ }× − . We chose the 

optimal 0λ  values for each reconstruction method to be the one that returns the lowest bias and 

variance, i.e. the point closest to the axis origin.

To further evaluate the quality of the reconstructed images we calculated the contrast to 

noise ratio (CNR) deined as:

f
CNR

1

N
,

r

r

f
r

r 1

N
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r

ROIc

¯[ ]

[ ]∑
σ

=
=

 (27)

where the numerator is the mean value within a ROI of reconstruction f r[ ]

∗
, which we con-

sidered to be all the voxels within the lungs (1st simulation) or inclusions (2nd simulation) 

and the denominator is the standard deviation of ROIc, which is the complement of ROI 

(background).

3.2. In vivo mouse study

The fDOT-XCT system (igure 5) used in this study is described in Schulz et al (2010). The 

fDOT instrumentation was integrated into a commercial micro-computed tomography system 

(eXplore Locus, GE HealthCare). The XCT system comprises an x-ray source and detec-

tor mounted on a rotating gantry. The fDOT system consisted of two laser diodes (680 nm 

and 750 nm, B&W Tek) and a back-illuminated cooled CCD camera (Pixis, 512B, Princeton 

Instruments). A ilter wheel was positioned in front of the CCD to select the wavelength to be 

detected. The fDOT components were mounted on the XCT gantry orthogonal to the x-ray 

instrumentation axis, in a transmission geometry. The hybrid system enabled acquisition of 

both fDOT and XCT data over a full 360° rotation.

In the in vivo experimental study we used data obtained from an adult mouse with luo-

rescently labelled tumours embedded in the lungs. We used a double transgenic Kras+/− and 

BL6 Tyr−/− mouse model that developed lung cancer. The mouse was injected 24 h before 

imaging with a αvβ3 integrin-targeting luorescence imaging probe (IntegriSense 680 from 

PerkinElmer) (Ale et al 2013). The integrin αvβ3 signiicantly upregulates in growing and 

metastatic tumours.

The fDOT-XCT system acquired excitation and luorescence data images of size 

512 512×  (resized to 128 128× ) at 48 angular positions around the thorax area (igure 6). 

For validation of the in vivo imaging results, the mouse was cryosectioned post-mortem in a 

cryotome and, in order to acquire RGB and luorescence planar images of the cryosections, 

imaged using a multispectral-cryoslice imager (Sarantopoulos et al 2011). The cryoslice 

images used in this study correspond to the slices indicated by the arrows labelled S1 and 

S2 in igure 6.

The inite element mesh, calculated from the XCT images, had 56 228 nodes, 244 635 

elements and dimensions 35 mm  ×  22 mm  ×  43 mm. The regular grid was 64 64 64× × .  

To generate the sensitivity matrix A we considered two cases: the previous simpliied two-

tissue model, where we assigned different optical properties to the lungs and other tissue, 

and a homogeneous medium with optical properties 0.01aµ =  mm−1 and 1
s
µ =′  mm−1. Data 

space was compressed by setting M 64=ψ .
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We reconstructed images using LR, our previous AD method (Correia et al 2011) and our 

new PAD-WT method. The igure of merit used to analyse the quality of the reconstructions 

was the Dice similarity index (DSI) (Dice 1945), which is an overlap measure:
I I

I I
DSI

2 seg true

seg true

⋂
=
| |

| |+| |
 (28)

where Iseg and Itrue represent segmented images obtained by thresholding at 25% of the maxi-

mum value the images f* and ftrue, respectively. A DSI value close to 1 indicates a perfect 

overlap between Iseg and Itrue, whereas a value of 0 indicates no overlap.

Figure 5. fDOT-XCT system: (a) schematic drawing and (b) instrumentation.

Figure 6. Mouse surface generated from XCT images. The * markers indicate 
the source positions. The arrows S1 and S2 indicate the slices corresponding to the 
validation cryoslices.
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4. Results

4.1. Simulation studies

In the simulation studies, we observed that the PAD-WT method converged faster to the inal 

solution using a high patch compression, i.e. keeping a small number of wavelet coeficients 

of the compressed patches. After testing different levels of compression we found that  

setting P /8ℓ ⌈ ⌉= | |  gave good results, where ⌈ ⌉⋅  denotes the ceil function. For all reconstruc-

tions we set 0.1δ =  and calculated the parameters T and h using the NCH and setting a threshold 

at 97% and 90%, respectively. The constant β was set to 1. For the PAD-WT method we set 

Nit 5in = , whereas for the AD method we used Nit 150in = .

4.1.1. Simulation 1. In the irst simulation study, we used window sizes 5, 7{ }=W  and 

patches of size N  =  {3, 7} in the PAD-WT reconstructions. Figure 7 shows the bias-variance 

curves obtained for the different image reconstruction methods, without and with SI (+SI). 

For all methods the lowest bias and variance is obtained with 1 100
3λ = ×
− , except for the 

LR method where 5 100
3λ = ×
− . Therefore, we used this optimal 0λ  for the reconstructions. 

Figure 8 shows the mean CNR obtained for the different image reconstruction methods, with-

out and with SI, using the optimal 0λ .

In table 3 we can see the computational time for one AD and PAD iteration for two differ-

ent window and patch sizes. For comparison, the PAD iteration time with N  =  3, 7=W  and 

without patch compression was 81.32 s. For the larger patch size, N  =  7, the iteration time was 

968.80 s. Table 3 also shows the total reconstruction time of each method, with and without SI. 

Iteration time of step one (equation (14)) of the reconstruction algorithm was approximately 

1.2 s. The computational time of the wavelet transform of patches with N  =  3 and N  =  7 was 

approximately 0.7 s and 5 s, respectively.

Figures 9 and 10 show the luorescence distribution images reconstructed from simu-

lated data using LR, the two-step algorithm using AD and PAD-WT, with and without the 

Figure 7. Simulation 1: bias-variance curves obtained for the different methods by 
varying the parameter λ0. (a) These curves were obtained by performing multiple 
reconstructions for 10 noise instances without and (b) with the aid of structural XCT 
images (+SI). In (a) two points of the LR curve, corresponding to the two lowest λ0, 
were omitted to allow better visualisation of the data.
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incorporation of SI. The two bias-variance curves (igure 7) that had their corners closer to the 

axis origin correspond to the PAD-WT method with N  =  3, 5=W  and 7=W . Figures 9 and 

10 show the PAD-WT reconstructions for N  =3 and 5, 7{ }=W , i.e. the two best reconstruc-

tions obtained using PAD-WT.

Figure 9 (movies 2–7 corresponding to igures  9(b)–(g) (stacks.iop.org/PMB/61/1452/

mmedia)) shows the estimated luorescence distribution as 3D isosurfaces at 25% of the max-

imum value. Additionally, 2D cross sections of the reconstructed volumes at z  =  −0.5 mm  

(to see the two lungs as separate structures), overlaid on the corresponding atlas cross section, 

are shown in igure 10.

4.1.2. Simulation 2. Figure 11 shows the bias-variance curves of the different reconstruction 

methods, without and with SI, that were obtained for the second simulation study. The PAD-

WT reconstructions were performed using the patch and window sizes that returned the two 

best results in the previous study, i.e. using N  =  3, 5=W  and 7=W . From the bias-variance 

curves we found 1 100
3λ = ×
−  to be the optimal value for the AD and PAD-WT methods, 

except for the PAD-WT with N  =  3, 7=W  and SI for which the optimal value was 5 10 4
×

− . 

For the LR method the estimated optimal 0λ  value was 5 10 3
×

− .

Figure 8. Simulation 1: mean CNR of the images reconstructed using different 
methods.

Table 3. Time per single (P)AD iteration and total reconstruction time until stopping 
criteria are satisied.

Method W N
Time per (P)AD  
iteration (s)

Total time  
without / with SI (s)

AD 1 1 0.57 1474 / 1127

PAD-WT 5 3 14.48 3680 / 1251

7 3 32.91 8287 / 2817

5 7 65.56 8350 / 4676

7 7 107.32 15198 / 7599
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Figure 9. Simulation 1: 3D volume rendering of the skin and skeleton, extracted from 
the digimouse atlas, and luorescence yield f reconstructed using different reconstruction 
methods (a)–(d) without SI and (e)–(g) with SI.

Figure 10. Simulation 1: 2D cross section  images showing the luorescence yield f 
reconstructed using different reconstruction methods (a)–(d) without SI and (e)–(g) 
with SI. The reconstructions are overlaid on the corresponding mouse atlas slice.

T Correia et alPhys. Med. Biol. 61 (2016) 1452



1467

Figure 12 shows the mean CNR obtained for the different image reconstruction methods, 

without and with SI, using the optimal 0λ . Figure 13 shows the corresponding luorescence 

distribution images reconstructed from simulated data using LR, the two-step algorithm using 

AD and PAD-WT (N  =  3 and 5, 7{ }=W ), with and without the incorporation of SI. The  

images are 2D cross sections of the reconstructed volumes at z  =  0 mm, overlaid on the  

corresponding atlas cross section.

4.2. In vivo mouse study

Figures 14 and 15 show the normalised luorescence distribution images obtained from 

experimental mouse data and validation images corresponding to slices S1 and S2, respec-

tively. Figures 14 and 15(a)–(d) show the images reconstructed using LR, the two-step algo-

rithm with AD and PAD-WT for N  =  3, 5=W  and 7=W , without including SI into the 

reconstruction. Figures 14 and 15(f)–(h) show the images obtained when SI is used in the 

two-step algorithm with AD and PAD-WT for the two different window sizes. The validation 

cryoslices can be seen in igures 14 and 15(e), showing the planar luorescence signals over-

laid on the RGB images. The luorescence peaks are represented in yellow. The cryoslices 

are from the thorax area (see igure 6) and display the bones of the rib cage, heart, lungs 

and (luorescently labelled) tumours of different sizes within the lungs. Figure 16 shows the 

proile plots across the luorescence cryoslice images and luorescence images reconstructed 

using the AD and PAD-WT methods, corresponding to the dashed lines labelled P1 and P2 

in igures 14 and 15(e).

The obtained DSI are shown in igure 17. These results indicate the amount of overlap 

between the validation cryoslices and images reconstructed with the different methods.

Figure 11. Simulation 2: bias-variance curves obtained for the different methods by 
varying the parameter λ0. (a) These curves were obtained by performing multiple 
reconstructions for 10 noise instances without and (b) with the aid of structural XCT 
images (+SI). In (a) one point of the LR curve, corresponding to the lowest λ0, was 
omitted to allow better visualisation of the data.
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The parameters used in the reconstruction of mouse data were 1 100
3λ = ×
− , 0.01δ = , 

4ℓ = , 1β = , T and h were calculated from the NCH by setting a threshold at 99% and 90%, 

respectively. For the AD method Nit 150in =  and for the PAD-WT method Nit 5in = . We used 

the homogeneous sensitivity matrix A, since the results obtained showed the best agreement 

with the validation data.

Figure 12. Simulation 2: mean CNR of the images reconstructed using different 
methods.

Figure 13. Simulation 2: 2D cross section  images showing (e) the true solution 
with an inclusion in each lung, the luorescence yield f reconstructed using different 
reconstruction methods (a)–(d) without SI and (f )–(h) with SI. The reconstructions are 
overlaid on the corresponding mouse atlas slice.
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Figure 14. Slice S1: (e) Combined RGB and luorescence validation cryoslice images, 
where the maximum luorescence signal (in yellow) in the validation cryoslice is 
indicated by the white arrow, and normalised luorescence yield f (colorbar shown) 
reconstructed using different methods (a)–(d) without SI (f )–(h) and with SI.

Figure 15. Slice S2: (e) Combined RGB and luorescence validation cryoslice images, 
where the maximum luorescence signal (in yellow) in the validation cryoslice is 
indicated by the white arrow, and normalised luorescence yield f (colorbar shown) 
reconstructed using different methods (a)–(d) without SI (f )–( h) and with SI.
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5. Discussion

We proposed to modify our split operator method for fDOT image reconstruction by using 

PAD-WT instead of AD regularisation. We tested, using simulated and in vivo mouse data, the 

hypothesis that the proposed image reconstruction method is more robust to noise. The irst 

simulation study consisted of a mouse with a lung disease, simulating an extensive inlamma-

tory response as in, for example, asthma or due to inhalation of toxic particles, most commonly 

Figure 16. Proile plots across the luorescence cryoslice images and reconstructions 
obtained using the AD and PAD-WT methods, (a)–(b) without using SI to aid the 
reconstructions and (c)–(d) using SI. (a), (c) Proiles P1 through images corresponding 
to slice S1 and (b), (d) proiles P2 through images corresponding to slice S2.

Figure 17. Dice similarity index representing the overlap between the validation 
cryoslice (a) S1 and (b) S2 and the corresponding reconstructed images obtained using 
the LR, AD and PAD-WT methods.
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by smoking. In the second simulation study, two tumour-like structures were placed within 

the lungs. Finally, in the in vivo study we used a mouse with several tumours lesions within 

the lungs.

The proposed method was motivated by the effectiveness and simplicity of the NLM 

method for image denoising. Therefore, in part 1 we used a denoising problem to compare our 

PAD-WT method with the AD method and iterative NLM. Results showed that the PAD-WT 

method provides better denoised images than the AD or NLM methods.

In the irst fDOT simulation study, the luorescent marker was distributed throughout the  

whole lung structure. We observed that our previous AD method (Correia et al 2011)  

provides noise free luorescence images (igures 9 and 10(b)) as opposed to the simple linear 

reconstruction method (igures 9 and 10(a)). However, our PAD-WT provides better estimates 

of the size and contrast of the simulated luorescence distribution (igures 9 and 10(c)–(d)). 

Furthermore, like the AD method, structural information can be incorporated to further 

improve the reconstructions (igures 9 and 10 (e)–(g)). From igures 7 and 8 we can see that 

the images generated with the PAD-WT method (for 10 noise realisations) have the lowest 

bias, lowest variance and highest CNR, whereas the worst results, with images highly domi-

nated by noise, were obtained using LR. As expected, incorporating SI into the reconstruction 

with PAD-WT resulted in quantitatively and visually superior images (igures 7–10).

The size of the search window and patches affects the performance of the PAD-WT method. 

However, the larger these are the slower is the method. We tested our method for the window 

sizes that returned the best denoising results (refer to part 1), i.e. 5, 7{ }=W , and set the patch 

length to N  =  {3, 7}, in order to ind the most suitable window and patch size for fDOT. We 

observed that the bias and variance is lower and CNR is higher for N  =  3 and 7=W  (igures 7  

and 8), i.e. the method is more robust and recovers the luorescence source location, size and 

concentration more accurately. However, computational time increases with window size, but 

by using patch compression the iteration time for the PAD-WT method with N  =  3 and 7=W  

was reduced to more than half (section 4.1 and table 3). Furthermore, igures 7 and 8 show 

that image quality improves by using 7=W  compared to 5=W , but yet images are visually 

quite similar, particularly when SI is used, at the cost of more than twice the computational 

time (table 3). Therefore, in terms of reconstruction quality, we consider 7=W  to be the 

optimal window size. Alternatively, if speed is preferred over quality, then using 5=W  is a 

good option. For a patch of length N  =  7, as used by Buades et al (2005), even though WT 

signiicantly reduces the computational time, the method is much slower and leads to worse 

qualitative results.

We observed that our method converged faster for higher patch compression levels, which 

is probably due to the denoising properties of wavelet thresholding. Therefore, PAD (or NLM) 

may consider two similar patches with different noise patterns to be different, while PAD-WT 

compares denoised patches and is more likely to succeed in this task.

In the second simulation study, the PAD-WT method with N  =  3 and 5, 7{ }=W  was used 

to reconstruct two lesions in the lungs. Results were compared to those obtained with the AD 

and LR methods. We observed that the best quantitative results were once again obtained with 

the PAD-WT method with 7=W  (igures 11 and 12). Nevertheless, as before, the images 

obtained using 5=W  and 7=W  are visually very similar (igure 13). The AD method provides 

cleaner images with less noise compared to the LR method (igure 13). Still, the AD method 

fails to ilter high contrast noise, even when SI is included in the image reconstruction. This 

is also relected in the larger bias values, when compared to the PAD-WT method (igure 11).  

In theory, one could increase the threshold T to ilter high gradient isolated points due to noise. 

However, if we do so, the method smooths out the edges and anatomical structures and fails 

to recover the luorescent targets.
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We further validated our method using experimental data obtained from a mouse with luo-

rescently labelled tumours within the lungs. The results show that LR returns a noisy image 

(igures 14 and 15(a)), whereas AD reduces the reconstruction artefacts, except at a few regions 

near the boundary (igures 14 and 15(b)). As mentioned previously, in the presence of high 

contrast artefacts localised within a single or few voxels, which in fDOT often occurs near 

boundaries, the AD method fails to generate noise free reconstructions, even when SI is used 

(igure 15(f )). Our PAD-WT method overcomes this challenge and reconstructs a noise free 

image with the peak of the luorescence signal in the lungs (igures 14 and 15(c)–(d)). The 

luorescent lesions in the mouse lung are clearly visible in the images reconstructed using 

PAD-WT with SI (igures 14 and 15(g)–(h)) and are in agreement with the validation cryoslice 

images (igures 14 and 15(e)). The proiles P1 and P2 across the cryoslice and reconstructed 

luorescence images corresponding to slices S1 and S2, respectively, were used to validate the 

results (igure 16). Even though the proile plots for the LR method (igures 16(a)–(b)) are quite 

reasonable, it can be dificult to distinguish between artefacts and relevant information in the 

image. The AD method provides quite good results, but overestimates the luorescence yield. 

Figures 16(c)–(d) shows that a better correspondence was achieved between the cryoslice luo-

rescence proiles and the fDOT reconstructions obtained when resorting to SI. Furthermore, the 

proiles show that the results are structurally and quantitatively more accurate for the PAD-WT. 

The proposed method can recover the relative contrast and size of the lesion, ranging in size 

from 1 to 3 mm. These results emphasise the importance of SI for the accurate recovery of 

luorescence inclusions.

The highest DSI values were achieved with the PAD-WT method (igure 17). These values 

show that the luorescence signals obtained with the PAD-WT, for both window sizes, are 

similar to those observed in the corresponding cryoslices, even though they are not exactly, but 

only approximately from the same region as the fDOT images. It should be noted that the loca-

tion of the luorescence signals and anatomy is only known approximately due to the inherent 

dificulty in keeping these in the exact same position between in vivo and ex vivo experiments. 

Hence, one cannot expect a perfect overlap between Iseg and Itrue.

Background luorescence, due to nonspeciic binding of the luorescent agents used for 

imaging, can be seen in the tissue surrounding the lung area. The luorescent agent accumu-

lates preferentially in tumour tissue, but the agent may be present throughout the body even if 

at lower concentrations, providing misleading information. These signals and inherent auto-

luorescence of tissues contribute to the reduction of image contrast, which may preclude the 

detection of small lesions, with low luorescence contrast, a situation that occurs when imag-

ing tumours at an early development stage. The results, shown in igures 14 and 15(g)–(h), 

demonstrate the robustness and effectiveness of our proposed method in removing artefacts 

due to the presence of background luorescence.

Some of the other proposed methods that make use of structural information require  

segmentation techniques to classify voxels into different tissue types (Davis et al 2007, Ale 

et al 2010). However, the drawback of these methods is that they require additional computa-

tional time and accurate segmentation is a dificult task. Furthermore, these ignore the internal 

structure of organs. Both AD and PAD methods have the advantage of using noise suppression 

and edge preservation constraints directly in the regularisation term. Regularisation strength is 

controlled by weighted differences between voxel intensities or patches, in the PAD method, 

within a search window. If structural information is available, then weights are calculated 

based on similarities within the structural image. The weighted (patch-based) anisotropic 

diffusion regularisation combines the advantage of preserving/enhancing the edges of the 

reconstructed luorescence image while reducing the noise and stopping diffusion through 

boundaries deined by either the optical or structural images. In our studies, the complete 
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non-homogeneous lung structure (igure 4) was used as a priori information in the image 

reconstruction algorithms and not just the organ boundary as in segmentation based methods.

One of the advantages of using the AD method is the computational speed, even though it 

requires more inner iterations than the PAD-WT method. Nevertheless, our patch compression 

method with 5=W  allows reconstructions within a reasonable time. As a matter of fact, the 

computational time per outer iteration is longer for the AD method. Furthermore, NLM-based 

methods can easily be parallelised and implemented to exploit GPU (graphics processing  

units) acceleration (Cuomo et al 2014). Alternatively, to reduce the computational times,  

a semi-implicit scheme can be used, instead of the explicit discretisation used here, so that τ 

can be relatively large without causing numerical instability, which is particularly advanta-

geous to reduce the number of inner iterations (Correia et al 2011).

Better performance of the image reconstruction method with PAD-WT is also expected 

if we use a more eficient and automated selection of the parameters δ, Nit in, ℓ, T, h and 

0λ . Alternatively, a Bayesian approach (Zhang et al 2013) can be explored where these para-

meters (of a prior distribution, known as hyperparameters) can be updated iteratively.

In this work, we map from the FEM mesh to a regular grid with no regard to the irregular 

boundary of the object. In future work, we will attempt to perform the reconstruction on the 

mesh to avoid error propagation resulting from these mappings.

6. Conclusion

In this work, we propose to improve our previous image reconstruction approach for fDOT 

based on a split operator method with AD regularisation.

As before, a reconstruction step alternates with the regularisation step, but a patch-based 

AD regularisation is used instead. Our previous image reconstruction method with AD relies 

on image gradients within a local neighbourhood to determine the regularisation strength at 

each image voxel and has limited performance under high noise conditions. Using our pro-

posed patch-based approach we obtain a more robust estimation of the AD weights, since it 

measures voxel similarity through patches as opposed to single voxels. Moreover, structural 

information can easily be incorporated into the PAD-WT method.

As the AD method, the PAD-WT method has the ability to preserve important features in 

the reconstructions, which may be absent in the structural images, but is considerable more 

eficient in noise suppression. Moreover, the use of wavelet patch compression results in faster 

computational times.

Our method is very lexible, it works well with or without structural information, and it can 

easily be extended to other imaging modalities.
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