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ABSTRACT

Motivation: Single-cell experiments of cells from the early mouse
embryo yield gene expression data for different developmental
stages from zygote to blastocyst. To better understand cell fate
decisions during differentiation, it is desirable to analyse the
high-dimensional gene expression data and assess differences
in gene expression patterns between different developmental
stages as well as within developmental stages. Conventional
methods include univariate analyses of distributions of genes at
different stages or multivariate linear methods such as principal
component analysis (PCA). However, these approaches often
fail to resolve important differences as each lineage has a
unique gene expression pattern which changes gradually over
time yielding different gene expressions both between different
developmental stages as well as heterogeneous distributions
at a specific stage. Furthermore, to date, no approach taking
the temporal structure of the data into account has been
presented.
Results: We present a novel framework based on Gaussian
process latent variable models (GPLVMs) to analyse single-cell qPCR
expression data of 48 genes from mouse zygote to blastocyst
as presented by (Guo et al., 2010). We extend GPLVMs by
introducing gene relevance maps and gradient plots to provide
interpretability as in the linear case. Furthermore, we take the
temporal group structure of the data into account and introduce
a new factor in the GPLVM likelihood which ensures that small
distances are preserved for cells from the same developmental
stage. Using our novel framework, it is possible to resolve
differences in gene expressions for all developmental stages.
Furthermore, a new subpopulation of cells within the 16-cell stage
is identified which is significantly more trophectoderm-like than the
rest of the population. The trophectoderm-like subpopulation was
characterized by considerable differences in the expression of Id2,
Gata4 and, to a smaller extent, Klf4 and Hand1. The relevance of Id2
as early markers for TE cells is consistent with previously published
results.
Availability: The mappings were implemented based on Prof. Neil
Lawrence’s FGPLVM toolbox1; extensions for relevance analysis and
including the structure of the data can be obtained from one of the
authors’ homepage.2
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1 INTRODUCTION
During embryonic mouse development, the initially totipotent 1-
cell zygotes become restricted in their potential and through a
sequential differentiation process, different lineages are generated.
Differentiation of embryonic stem cells of the mouse is thought
to start in the 8-cell stage (Johnson and McConnell, 2004). First,
differentiation between inner cell mass (ICM) and trophectoderm
(TE) can be observed. The TE gives rise to extra-embryonic
structures such as the placenta while the ICM subsequently
differentiates into primitive endoderm (PE) and the epiblast (EPI).
Although the PE will also give rise to extra-cellular structures
providing nutrient supplies for the embryo, the pluripotent EPI
gives rise to the foetus (Fig. 1). For a better understanding of the
mechanisms and timing of cell fate decisions, it is desirable to assess
gene expression patterns at different stages of the developing cells.
Conventional techniques measure these gene expressions from pools
of cells; however, as fate decisions are made by individual cells, this
may mask the dynamics of single cells (Guo et al., 2010). Recent
technical advances allow for measuring the expression of multiple
genes in single cells by means of a quantitative polymerase chain
reaction (PCR) method (Taniguchi et al., 2009). Such methods are
a promising tool which will provide a new wealth of data in the
future. To gain insights in underlying fate decisions, it is important
to develop computational techniques allowing for a comprehensive
analysis of this new type of data. In this article, we present our new
approach at the example of the cellular development of the mouse
zygote to blastocyst; however, our methodology is not limited to this
particular example and can be applied to a range of other datasets
and cell types.

The most comprehensive analysis to date linking cell fate decision
during the development of the zygote to the blastocyst to gene
expression data has been performed by (Guo et al., 2010). The
authors analysed the expressions of 48 genes in single cells.
Therefore, the expression levels of these 48 genes were measured at
different stages of the cellular development (from 1-cell stage of the
mouse embryo to 64-cell stage) on a single-cell level. (Guo et al.,
2010) have analysed these data by performing a PCA of expressions
of 48 genes for cells at the 64-cell stage. Although it was possible
to use results from the PCA to resolve transcriptional differences
between TE, PE and EPI cells, no differences in gene expression
patterns for cells until the 16-cell stage could be resolved using
PCA. Although this analysis provided valuable insights into cell
fate decisions after the 16-cell stage, the authors reported that no
differences in gene expression patterns could be found for earlier
stages in the cell development. In a subsequent analysis, the authors
identified Id2 and Sox2 as the earliest markers for differentiation of
outer and inner cells followed by inverse correlations of Fgfr2/Fgf4
in the inner cell mass. However, Id2 and Sox2 could only be
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Fig. 1. The totipotent blastomere differentiates first into inner and outer cells. Next, after approximately 3.5 days, the ICM differentiates into PE cells and
EPI cells (A). The data-driven illustration is shown on the right hand side. For PCA (panel B), differentiation into ICM and TE can be seen, followed by
differentiation from ICM into PE and EPI. ICM and PE/EPI as well as early cell stages could not be resolved. For our novel approach (bottom right), all
developmental stages could be resolved and a new TE-like sub-population at the 16-cell stage was discovered. The dashed arrows reflect that the lower
subpopulation at the 16-cell stage is significanlty more TE-like than the other

identified by a univariate analysis of the distribution of gene
expressions within the 16-cell stage and the 32-cell stage. Although
PCAproved to be a useful technique to identify some markers for TE,
PE and EPI stage, a different approach for dimensionality reduction
which embeds the high-dimensional data nonlinearly in a two-
dimensional or three-dimensional space, may yield deeper insights.
Thus, differentiation is thought to start as early as at the 8-cell
stage (Johnson and McConnell, 2004); if this is reflected in early
changes in gene expression patterns, it may be possible to identify
these changes by embedding the data in a low-dimensional space.
Taking into account potentially complex interrelations between
different genes may result in an embedding better reflecting the true
structure of the data and allowing for reliable identification of new
subpopulations and markers, also in these early cell stages. However,
identifying a suitable alternative to PCA is challenging for several
reasons.

First, there is usually a trade-off between interpretability and
complexity of an embedding: linear techniques such as PCA are
usually well interpretable as those factors which are most important
at specific areas of the mapping can be identified by analyzing
the loadings of the PCA. In contrast, the results of many more
complex, nonlinear embeddings (Sammon, 1969; Shieh et al., 2011;
van der Maaten and Hinton, 2008) are hard to interpret as no explicit
mapping between the low-dimensional latent space and the high-
dimensional data space (or vice-versa) is related to the embedding.

Second, it is not clear how the group structure of the data,
i.e. the fact that different instances of the data come from one
of seven different developmental stages, can be considered when
performing the embedding. At one extreme, it is possible to perform
one embedding of all the data pooled together without considering
its structure; at the other extreme, it is possible to perform a
separate embedding for each developmental stage. Both approaches
have severe drawbacks, as in the first approach potentially useful
information is discarded while in the latter approach similarities
across cell stages are not considered.

In the following, we present a novel approach for a nonlinear,
interpretable embedding of gene expression data from different
developmental stages of the mouse embryo which takes the group
structure of the data into account. The benefits of our approach are
illustrated at the example of gene-expression data from the mouse
zygote to the blastocyst, as presented in (Guo et al., 2010). We show
how it can allow for a comprehensive analysis of single-cell data
from different groups of cells, potentially yielding better insights
into cell fate decisions than previously proposed approaches.

2 METHODS
To capture first transcriptional differences indicating a commitment to
specific cell fates, it is important to analyse gene expression patterns at
different cell stages (time points in the differentiation process). Therefore,
Guo et al. (2010) analysed mRNA levels of 48 genes in parallel. The authors
performed a linear PCA of the gene expression data at the 64-cell stage for
dimension reduction purposes. At this cell stage, TE, EP and EPI cells can be
clearly differentiated based on the expression of known markers and can also
be identified as clusters in the PCA. Next, the gene expression data for earlier
cell stages were projected onto the first 2 PCs (of the 64-cell stage PCA) to
assess transcriptional changes at earlier stages. No differences between the
projected gene expression patterns can be seen for cell stages 2–8, and the
authors report that no distinguishing characteristics among cells at the 2-, 4-
and 8-cell stage could be found.

However, these conclusions were based on a linear PC analysis. To test
whether nonlinear effects play a role and could allow the identification
of distinguishing characteristics of gene expression patterns at earlier cell
stages, a nonlinear embedding of the high-dimensional gene expression data
in a low-dimensional latent space was performed. To yield an interpretable
embedding, it is desirable to define an explicit mapping, either from data
space into latent space (as for PCA) or from latent space into data space.
Therefore, a nonlinear probabilistic generalization of PCA (Gaussian process
latent variable model (GPLVM)) (Lawrence, 2004) was performed. Although
a variety of other nonlinear methods for dimensionality reduction have been
proposed in recent years (Shieh et al., 2011; van der Maaten and Hinton,
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2008), the resulting embeddings for these methods are difficult to interpret
as no explicit mapping is defined.

2.1 Guassion process latent variable model
Let the gene expressions in the data space be denoted by Y =
[y1,...,yN ]T ,Yi ∈RD and latent variables in the low-dimensional latent space
be denoted by X =[x1,...,xN ]T ,Xi ∈RQ , with D being the dimension of the
data space (here: 48), Q the dimension of the latent space (usually 2 or 3)
and N the number of samples in the dataset. Then, probabilistic PCA can be
written as

yn =Wxn +ηn (1)

with i.i.d. observation noise ηn: p(ηn)=N (ηn|0,β−1I ) (Bishop, 2006). While
for probabilistic PCA, we would marginalize over X and optimize the
transformation matrix W , for GPLVM we marginalize over W and optimize
the latent variables X . If we place a prior over W in the form of p(W )=∏D

i=1 N (wi|0,α−1I ) where wi is the ith row of W and integrate over W we
find (Lawrence, 2004):

p(Y |X ,β)= 1

(2π )DN/2|K |D/2
exp

(
− 1

2
tr(K−1YY T )

)
(2)

with K =αXX T +β−1I . This marginalized likelihood is the product of D
Gaussian processes with linear covariance matrix K . If we now substitute
the linear kernel in K with a different kernel such as an rbf kernel or a
rational quadratic kernel, we will yield a GPLVM. We can then learn a
latent representation of the data X as well as the kernel hyperparameters by
optimizing the log-likelihood. The latter can be written as

LGPLVM =− DN

2
ln(2π )− D

2
ln|K |− 1

2
tr(K−1YY T ). (3)

To optimize the log-likelihood, nonlinear optimisers such as scaled conjugate
gradient (Nabney, 2001) can be used after having determined the gradient of
the log-likelihood with respect to the latent points and the kernel parameters.

To assess the benefit of using a nonlinear dimensionality reduction
scheme, we performed GPLVM as well as a PCAon the data. The embeddings
were evaluated by calculating the nearest neighbour error in the latent space
for the following cell types: 1-cell stage, 2-cell stage,..., 16-cell stage, TE
cells, PE cells, ICM cells and EPI cells.

2.2 Structure-preserving GPLVM
Although GPLVM facilitates an interpretable nonlinear embedding of the
high-dimensional gene-expression data including a gene relevance analysis,
it has several drawbacks. Thus, it does not preserve local distances and does
not take the structure of the input data into account.

An important characteristic of dimensionality reduction approaches in
general, is how the algorithm preserves distances between points in the
original data space. Algorithms such as t-SNE (van der Maaten and Hinton,
2008) or Sammon’s mapping (Sammon, 1969) find an embedding by
preserving local distances (i.e. points which are close together in the data
space will be close in the latent space). GPLVM, in contrast, generates a
smooth mapping from the latent space to the data space; this implies that
two points which are distant in the data space will be distant in the latent
space, too. This can be interpreted as preserving dissimilarities (rather than
local distances or similarities) (Lawrence, 2006). While it can be desirable
to preserve local distances, it is important to not put too much focus on
this property as there are two dangers related to the preservation of local
distances: first, points that are distant in the data space may be close
in the latent space and important differences could be masked. Second,
the focus on small local distances leads to a relatively high sensitivity to
noise. (Lawrence, 2006) generalize GPLVM to preserve local distances by
introducing back-constraints.

Furthermore, an issue exists which is more generally related to using
dimensionality reduction methods on data with a known structure, as

presented in (Guo et al., 2010). Both linear and nonlinear dimensionality
reduction methods such as PCA or GPLVM do not take information on
the structure of a dataset into account when generating a mapping. However,
when including information on the local structure of the data (i.e. which cells
correspond to which cell stage) it is important not to focus too much on this
property to avoid an artificial separation of similar data points (e.g., a specific
cell type such as TE cells can occur during two different developmental stages
which should be reflected in the embedding; i.e,. TE cells from two different
cell stages should be allowed to overlap).

In the following, we present a novel approach solving both of the above
issues, the lack of preservation of local distances and the consideration of
prior knowledge on the structure of a dataset. Therefore, we simultaneously
address the common challenge which underlies both issues: in both cases
it is desirable to find a trade-off between the benefits of classical GPLVM
(preservation of dissimilarities across the whole dataset) and the potential
benefits of including local information on local distances as well as local
structure. This can be achieved by placing an appropriate prior p(X ) on the
embedding X which should encourage the preservation of local structure as
well as local distance. More formally, we can first define a cost function
which minimizes stress within the given sub-structures of the data. This cost
function should encourage that data points from the same developmental
stage which are close in data space should be close in latent space, too. We
chose to use a weighted sum of squares as proposed by (Sammon, 1969),
focussing on matching small local distances for data from the same group
(i.e., developmental stage).

C = 1

dtot

K∑
i=1

∑
m,n∈Ii∧m<n

(d(Ym,Yn)−d(Xm,Xn))2

d(Ym,Yn)
(4)

with K being the number of substructures and Ii being the set of indices
corresponding to all data-points in the ith substructure. d(Ym,Yn) are the
pairwise distances in the data space and d(Xm,Xn) the pairwise distances in
the latent space;

dtot =
K∑

i=1

∑
m,n∈Ii∧m<n

1

d(Ym,Yn)
.

Next, this cost function is used to place a ‘data prior’ p(X ) on X :

p(X )∝exp
(−γ C

)
(5)

with γ being a tuning parameter controlling the influence of the local
structure. The effect of different choices of γ is discussed in the next sections.
Consequently, the log posterior function can be written as

L=LGPLVM −γ C +const (6)

As for the GPLVM, minimization is performed using the Netlab
implementation of the scaled conjugate gradient algorithm (Nabney, 2001).
This can be interpreted as a regularized GPLVM and is somewhat reminiscent
of dynamic GPLVMs (Wang et al., 2006) which allow for embedding
motion sequences by placing an appropriate prior on X and of discriminative
GPLVMs which use a training set to learn a supervised embedding by making
use of an LDA-based prior (Urtasun and Darrell, 2007).

Our novel approach satisfies well the requirements needed for embedding
high-dimensional gene expression data in a low-dimensional space: first,
due to the preservation of dissimilarities, it results in a global representation
of the data which facilitates the identification of cell types across different
developmental stages. Second, it allows for a reliable identification of sub-
clusters within a developmental stage as the preservation of small local
distances ensures that points within a sub-cluster are similar to each other (i.e.
the euclidean distance in the data space is small). Third, the nonlinear nature
of the embedding will allow for appropriate representation of the potentially
complex interrelation between genes while—via the mapping from latent
space to data space—ensuring interpretability.

2.3 Interpretability of GPLVM-based embeddings
As GPLVMs establish a nonparametric mapping from the latent space to
the data space, interpreting mappings is not straight-forward. We introduce
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relevance maps illustrating which gene is most important at specific locations
of the embedding. These maps are generated by first determining for a 20×20
grid in the low-dimensional latent-space the corresponding values in data
space. To make a prediction for a new point x∗ in the latent space, we can
make use of the probabilistic mapping from latent-space to data space. As
for each point in the latent space, the corresponding point in data space has
a Gaussian distribution, it is possible to determine the mean value in the
data space ŷ∗. From standard Gaussian processes (Rasmussen and Williams,
2006), we find that this can be written as

μ(x∗)= ŷ∗ =kT (x∗)K−1Y , (7)

with k(x∗) being the N ×1 vector of covariances (σ (x1,x∗),...σ (xN ,x∗))
which can be calculated using the previously learnt kernel hyperparameters.

Next, to quantify which variable in the data space (here: which gene) is
most important at a specific location in the latent space, we can derive μ(x)
with respect to x:

dμ

dx
= dk(x)

dx
K−1Y . (8)

The gradient of the expected value at a number of points in the latent
space was calculated. This was done for a 20×20 grid of the entire
map and the most important gene (greatest norm of the gradient) was
displayed. We term this ‘gene relevance map’. It can be interpreted as a
nonlinear generalization of loadings within the linear PCA framework. As
for commonly displayed plots of PCA loadings, gene relevence maps can
help the user to interpret the embedding by identifying which genes are most
important for different regions; for example, this can be particularly helpful
for regions corresponding to transitions between different stages/groups as
it can help to identify genes which play a key role for this transition.

Furthermore, we calculated the gradient at specific locations in the map
to display the change in expression levels of all 48 genes.

2.4 Analysed data
Gene expression data from 442 single cells at different developmental stages
as presented in Guo et al. (2010) were analysed. For each cell stage, the
number of analysed embryos varied between 5 and 10; cell numbers (cell
stage) were confirmed by counting cells after dissection. As in the original
research article, gene expressions were normalized to endogeneous controls
by subtracting, for each cell, the average of its Actb and Gapdh levels. The
labels for TE, ICM, PE and EPI cells shown in the figures in Section 3 were
derived from Figure 1 in (Guo et al., 2010) by assigning each cell to the
closest cluster (EPI, TE or PE). Further details on the dataset can be found
in Guo et al. (2010), specifically in the section ‘Experimental Procedure’.

3 RESULTS

3.1 Nonlinear method yields a better embedding than
linear PCA and ICA

In Figure 2, the results of a PCA and an ICA performed on
expressions of all cells from cell stages 1 to 64 are shown. In
comparison, Figure 3a shows a nonlinear GPLVM of the same
data and illustrates the benefits of including nonlinearities: while
in the PCA representation, TE cells and PE cells can be separated,
there is a strong overlap for cells from the 1-cell stage to the
8-cell stage. Furthermore, ICM cells and EPI cells are strongly
overlapping. In contrast, all cell types and cell stages can be well
separated using GPLVM. To quantify the differences in embeddings,
we calculated the nearest neighbour error in the latent space for the
classes illustrated with different colours in Figures 2 and 3a (1-cell
stage, 2-cell stage,..., 16-cell stage, TE cells, PE cells, ICM cells and
EPI cells). This resulted in 99 errors for PCA, 105 errors for ICA and
5 errors for GPLVM; when performed in the data space, the nearest

A B

Fig. 2. Standard PCA (a) and ICA (b) for all cells from 1 to 64 cell stage

A B

Fig. 3. (a) GPLVM for all cells from 1 to 64 cell stage. The uncertainty
corresponding to the probabilistic mapping from latent space to data space
is colour-coded (high SD dark, low SD light); (b) nearest neighbour errors
for the original high-dimensional space and three embeddings in 2D of all
cells from 1 to 64 cell stage

A B

Fig. 4. GPLVM for all cells from 2 to 64 cell stage. (a) Standard GPLVM.
The nearest-neighbour error was 11. (b) Structure-preserving GPLVM for
all cells from 2 to 64 cell stage with locality parameter γ =104 for all cell
stages. The nearest-neighbour error was 11

neighbour analysis yielded 10 errors (Fig. 3b). It is worth noting
the unusual result of a lower number of errors in latent space than
in data space. (Guo et al., 2010) point out that due to experimental
conditions the data from 1-cell stage are systematically different
from the other cells stages; this is reflected in the GPLVM mapping,
too. That is why for the subsequent analysis, we only considered
data from the 2-cell stage onwards. In Figure 4, the corresponding
mapping is shown. It can be seen the mapping separated all cell
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A B

Fig. 5. Structure-preserving GPLVM for all cells from 2 to 64 cell stage with
different values of γ . (a) γ =100 for cell stages 2 to 8, γ =15000 for the
16-cell stange and γ =20000 for the 32- and 64-cell stages. Cells assigned to
the TE-like subcluster are within the purple triangle. The nearest-neighbour
error was 6. (b) γ =100 for cell stages 2 to 8, γ =20000 for the 16-cell
stange and γ =30000 for the 32- and 64-cell stages. The nearest-neighbour
error was 5

stages well, with the exception of two outliers. Although being
labelled as PE cells, the gene expressions of these cells were
significantly different from the gene expressions of all other PE cells.
More specifically, when comparing the gene expression levels of
the outliers to the other PE cells, Bmp4, Dppa1 and Tspan8 differed
strongest, resulting in both cells sharing characteristics with TE cells.
Results of univariate analyses of the data and of an hierarchical
clustering can be found in Guo et al. (2010).

3.2 Structure-preserving GPLVM can resolve new
sub-populations within developmental stages

To take the structure of the data into account, an additional term
is introduced in the likelihood, which encourages the preservation
of small distances of data points from the same developmental
stage (i.e. 2-cell stage, 4-cell stage,..., 64-cell stage). If the locality
parameter is chosen too low, the additional term C in the likelihood
does not have a visible effect on the embedding; if it is chosen too
high, the algorithm focusses too much on small distances and the
data are broken up in many isolated small clusters of similar data-
points. In Figure 4b, such embedding is illustrated for the locality
parameter γ =104. It is also possible to introduce different values of
γ for different cell stages, reflecting prior knowledge on the variation
of the gene expressions within a specific cell stage. As we believe
there is little variation within the different stages from two cells
to eight cells, we can choose a lower value of γ for these data. In
contrast, as it is known that at the 32-cell stage and the 64-cell stage,
cells have already undergone differentiation into 2 and 3 different
cell types, respectively, we can choose a higher value for γ for
these data to allow for greater heterogeneities. This is illustrated in
Figure 5. It can be seen that for all mappings we find a separation
of the cells at the 16-cell stage into two sub-clusters; depending on
the choice of γ , this separation occurs at different degrees in the
embedding. In Figure 6, differences in mean gene expression are
shown for the two sub-clusters for different mappings. In Figure 6a
all cells in the 16-cell stage were assigned to one of two clusters
based on a Gaussian mixture model. In Figure 6, it can be seen
that the separation was consistent across different embeddings: Id2,
Gata4 and, to a smaller extend Hand1 and Klf4, are differentially

A B

Fig. 6. Difference in gene expression between the two subclusters at the
16-cell stage for different mappings. The error bars show the variation of
gene expression within the smaller subcluster (1 SD in each direction). For
convenience, genes with the strongest differences are labelled in the plots.
The order of all genes from top to bottom is Actb, Ahcy, Aqp3, Atp12a,
Bmp4, Cdx2, Creb312, Cebpa, Dab2, DppaI, Eomes, Esrrb, Fgf4, Fgfr2,
Fn1, Gapdh, Gata3, Gata4, Gata6, Grhl1, Grhl2, Hand1, Hnf4a, Id2, Klf2,
Klf4, Klf5, Krt8, Lcp1, Mbnl3, Msc, Msx2, Nanog, Pdgfa, Pdgfra, Pecam1,
Pou5f1, Runx1, Sox2, Sall4, Sox17, Snail, Sox13, Tcfap2a, Tcfap2c, Tcf23,
Utf1 and Tspan8

expressed in the subclusters derived from both mappings shown in
Figure 5. Changes in Gata4 between the 8-cell stage and the 16-
cell stage are illustrated in detail in Figure 7. This difference in
expression levels also corresponded to a smaller distance between
the cells in the subcluster closer to the TE region and TE cells than
between the cells in the other subcluster and TE cells. This was
quantified by calculating the minimum distance between any cell in
the 16-cell stage and TE cells. For both mappings, cells located in the
subcluster closer to TE cells had a significantly smaller Euclidean
distance in data space to TE cells than cells from the other sub-
cluster (P <10−5 for both mappings, t-test). Thus, the separation of
cells in the 16-cell stage into two subclusters with one subcluster
being significantly more TE-like than the rest of the population is
consistent for different choices of the locality parameter.

As the embedding shown in Figure 5b resolves differences in gene
expression between the differential stages as well as within the 16-
cell stage best, the corresponding mapping was analysed in detail.
To assess which genes are most important across the different cell
stages, a gene relevance map was generated; the most important
genes (i.e., the gene changing most when moving away from a
specific position on the map) are shown in Figure 7. In Figure 7b,
the gradient at the centre of the ICM cluster is shown. It can be
seen that while Bmp4 is the most important gene, Fgfr2/Fgf4, and
Hand1 are important as well. This confirms previous findings on the
importance of Fgf signalling (Guo et al., 2010) and the relevance of
Bmp4 and Gata4 (Coucouvanis and Martin, 1999; Fujikura et al.,
2002).

Thus, in spite of the more complex nature of the GPLVM mapping,
it is possible to reproduce findings from standard PCA analyses
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Fig. 7. Relevance map showing the greatest norm of the gradient across the entire map (left) and norm of the gradient for all genes at the centre of the ICM
cluster (right). (a) Gene relevance map corresponding to the mapping in Figure 5b. The region of the map corresponding to early cell stages, including the
16-cell stage is shown in more detail (middle). Here, the gradient of Gata4 with respect to x is shown: the colour illustrates the norm of the gradient, the arrows
illustrate the direction. It can be seen how between the 8-cell stage and the TE-like subcluster at the 16-cell stage considerably greater changes in Gata4 occur
than between the 8-cell stage and the non-TE-like subcluster. For convenince, also the corresponding part of the embedding in Figure 5b is shown (middle,
top). (b) Gradient at the centre of the ICM cluster; the error bars reflect the uncertainty of the mapping (1 SD in each direction)

and, in addition to this, identify new subpopulations at early cell
stages.

4 DISCUSSION
Using a nonlinear embedding allows to assess differences in gene
expression patterns, both within the same developmental stages and
across different developmental stages which cannot be resolved
with linear PCA. We have presented a framework which combines
the advantages of nonlinear dimensionality reduction methods with
interpretability and the ability to take prior knowledge on the
structure of the data into account. This was achieved by taking
advantage of the smooth mapping within GPLVMs as this allows
for the construction of relevance maps which illustrate which
genes are most important at different stages of the embryonic
development. Furthermore, an additional term in the likelihood
of GPLVM was introduced which encourages the preservation of
small local distances between data points of the same developmental
stage. This facilitates a better discovery of novel subclasses within
the same developmental stage. Although we have presented this
framework at the example of single-cell gene expression data of
the developing mouse embryo, our algorithm is suitable for a wider
range of problems: our result indicates that it may be beneficial for
datasets consisting of single-cell gene expression data from different
groups of cells, when at least one of the groups is expected to be
heterogeneous. For example, this can be the case for other types of
stem cells such as blood stem cells from different developmental
stages or tumour cells from different clinical or pathological stages.

The separation of the 16-cell stage in two distinct subclusters
could be discovered using the extended GPLVM; it could be shown
that the cells assigned to one of the subclusters were significantly
more similar to TE cells than the cells in the other subcluster. This
indicates that these cells may be more likely to become TE cells than
ICM cells in subsequent stages of the cellular development. When
analyzing differences in the gene expressions patterns of the two
newly identified subpopulations, the strongest difference occurred
for Id2. This is consistent with the findings in (Guo et al., 2010)

who report that Id2 is the earliest TE-specific marker; however,
we also found considerable differences in the levels of Gata4 and,
to a smaller extent, Klf4 and Hand1. Although (Guo et al., 2010)
identified subpopulations with high/low Id2 at the 16-cell stage via
a univariate violin-plot, we have shown that these sub-populations
can also be resolved using the extended GPLVM framework. This
has the advantage that the differences in gene expressions across
all 48 genes can be identified simultaneously, rather than changes
in one gene only. Thus, it can be seen from the analysis of the
sub-clusters that not only Id2 is differentially expressed but also
Gata4; this suggests that not only Id2 but also the expression level
of Gata4 at the 16-cell stage could indicate whether a cell is more
likely to become a TE cell or an ICM cell. Similarly, Hand1, which
is a known marker for TE cells (Cross et al., 1995; Strumpf et al.,
2005), was differentially expressed between the two subclusters in
the 16-cell state. Furthermore, a GPLVM-based approach to identify
new subpopulations scales well to higher dimensions. Although it
is possible to analyse univariate violin-plots for 48 genes, this can
become impractical when a very high number of genes is analysed.

Although the application of the extended GPLVM algorithm
allows for a clear separation of two subclusters in the 16-cell stage,
the parameter γ has to be chosen carefully; to find an adequate
value resulting in a mapping with the right balance of preserving
dissimilarities as well as local distances within developmental
stages, it can be necessary to vary γ over a wide range which may be
time-consuming. In general, when trying to find an appropriate value
for γ , it can be helpful to start off with standard GPLVM (γ =0).
Next, γ can be increased iteratively until the data are broken up in
many small, isolated clusters of similar data-points; in this case (as
illustrated in Fig. 5 for early cell stages), too much weight is placed
on preserving small local distances.

Depending on the application of the algorithm, it may also be
beneficial to use a different distance measure or a different cost
function to encourage the preservation of local distances. Although
we have used Euclidean distances to calculate the distances in the
data space, it is also possible to use measures such as a correlation
coefficient or the L1 measure. Furthermore, different cost functions
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instead of Sammon’s stress could be used. For example, it is possible
to use the t-SNE cost function, which first converts distances in data
space and latent space into probabilities and then minimizes the
KL divergence for probabilities in data and latent space (van der
Maaten and Hinton, 2008). For our application, we have chosen
Sammon’s stress as it focuses mostly on preserving small distances;
large dissimilarities are preserved within the GPLVM framework
which allows for an intuitive control of the trade-off between the
local preservation of distances within a cell stage and the global
preservation of dissimilarities via γ .

Recently, a variety of other nonlinear embeddings have been
proposed, such as locally linear embedding (LLE) (Roweis and Saul,
2000), isomap (Tenenbaum et al., 2000), t-SNE (van der Maaten
and Hinton, 2008), tree-preserving embedding (TPE) (Shieh et al.,
2011) or autoencoders (Hinton and Salakhutdinov, 2006). While
in principle any of these algorithms could be used to find a low-
dimensional embedding for high-dimensional gene-expression data,
they all have drawbacks. Thus, like Sammon’s mapping, LLE and
isomap focus on the preservation of local distances; as discussed
in Section 2.2, this has the drawback that important dissimilarities
may be masked and the disadvantage a high sensitivity to noise.
These drawbacks are addressed in the t-SNE and TPE algorithms,
but both techniques do not result in explicit mappings between latent
space and data space and thus lack interpretability. Although such
explicit mappings can be generated with autoencoders, they share
an important drawback with the other techniques as it is not clear
how the group structure of the data can be taken into account. That
is why we chose to use GPLVM-based embeddings.

A major weakness of the GPLVM-based approach is that it
is computationally expensive. Although computation times were
still feasible for the data presented here (∼1 h on a standard
PC), this method may be prohibitive for very large data sets.
However, in this case, sparse approximations as for Gaussian
process regression can be applied. Applying these reduced rank
approximations to the covariance matrix results in significant speed-
ups so that also large data sets can be analysed on reasonable time
scales as the computational complexity decreases from O(N 3) to
O(k2N ), with N being the number of points in the dataset and k
being the number of so-called active points (typically about 100)
(Lawrence, 2007). Thus, the GPLVM framework is a valuable tool
for analyzing RNA sequencing data from single-cell studies—which
are a promising and increasingly popular experimental technique—
as typical challenges for this type of data include the analysis of
many features and generating a mapping with uncertainty. However,
other interpretability challenges which arise from working with gene
expression data (as here) and smaller sequence parts (when moving
towards NGS techniques) remain to be addressed.

5 CONCLUSION
We have presented a novel framework for resolving differences
in gene expression patterns for the early mouse embryo based on
single-cell gene expression data. Therefore, a nonlinear mapping

between a low-dimensional latent space and the high-dimensional
data space was combined with gene relevance maps and gradient
plots in order to ensure interpretability. A novel extension to the
GPLVM algorithm taking the local structure of the data into account
and preserving small local distances within the same developmental
stage was presented. Using this new approach, we could resolve
differences of gene expressions between all cell stages as well
as identify a new sub-population at the 16-cell stage with was
significantly more TE-like than other cells at the 16-cell stage.
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