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ABSTRACT

Advances in high-throughput measurements of biological specimens necessitate the development of biologically
driven computational techniques. To understand the molecular level of many human diseases, such as cancer,
lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations.
The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely
based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is
entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various
samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast
to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating
indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information
on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of
control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific
correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species
were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of
perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological
controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance
biomedical research on novel gene therapies.
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1. INTRODUCTION

Despite recent progress in therapy and surgical intervention, Glioblastoma multiforms, malignant primary brain
tumors, are nearly always fatal. The in vitro model of human Glioblastoma brain tumors is the U87 cell line, the
major characteristic of which is its resistance to apoptosis (programmed cell death). Recent studies showed that
the combined perturbation of gene transfection with the p53 tumor suppressor gene prior to chemotherapy with
SN-38 triggers cell death in the (otherwise immortal) Glioblastoma cell line.1,2 At first a proteomic study showed
a down-regulation of Galectin-1 in response to the combined perturbation,1 which motivated the elucidation of
lipid regulations.2 In order to measure the lipidome, a specialized mass spectrometry (MS) technique was
developed.3 On an organism-wide scale, changes in complex polar lipid levels were reliably identified. The
set of all commonly regulated lipids might reveal dysregulations of e.g. metabolic pathways or functionally
similar proteins. However, the molecular details of the perturbation-affected lipid coregulations still remain to
be elucidated.

We aimed to identify partial correlations of lipid concentrations while accounting for the biological interpreta-
tion of the perturbation. To that end, we used Gaussian Graphical Models (GGMs), which are statistical graph
models based on partial correlation coefficients. We chose to use a GGM over simple Pearson correlations since
correlations are only detected for direct but not indirect dependencies.4 Beyond conventional GGM analysis,
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where one GGM is calculated for the entire data set, we introduce a disease-driven GGM calculation. With this
here introduced differential GGM approach, we can now address the question whether a correlation in the GGM
is biologically relevant or not. In general, not every identified correlation on the entire dataset is equally relevant
to the disease, especially if the majority of the dataset are control measurements. While identifying only those
lipids that respond to the biologically relevant perturbations but not to control perturbations, we answered the
key question: Which lipids or lipid classes are co-affected by the perturbation by wild-type (wt) p53 transfection
prior to SN-38 chemotherapy triggering apoptosis of the brain tumor cell lines?

2. GLIOBLASTOMA AND ITS LIPIDOME

U87 cells transfected with wt tumor suppressor gene p53 prior to treatment with the chemotherapeutic drug
SN-38 underwent modest apoptosis and cell cycle arrest in G2, while chemotherapy alone did not trigger the
same phenotype.1 The reverse order of SN-38 treatment prior to p53 transfection results in almost complete
apoptosis and complete G2 arrest. To analyze the lipid variations as a response to the effective perturbation,
high-throughput MS/MS experiments were conducted as follows. Cell lysates of all perturbed cell lines were
analyzed for variations of lipid levels (Fig. 1a).2,3 A specialized Fourier-Transform Ion-Cyclotron-Resonance
(FT-ICR) MS/MS technique was developed to separate complex lipids.3 With the FT-ICR MS/MS, polar lipids,
such as phospholipids, as well as complex glycolipids, such as gangliosides were reliably identified. Quantitative
analysis of relative abundance profiles of polar lipids were obtained from cell lysates, whereby lipid levels were
measured across six different perturbations and wt (without perturbation) with two technical replicates. Out
of the large set of lipids, 167 polar lipids were measured with FT-ICR MS/MS across six lipid classes (varying
primarily in their respective head groups). While lipid head groups can uniquely be identified with MS/MS,
the associated fatty acid side chains cannot be independently resolved. An example for a complex lipid with
ambiguous fatty acid side chains is PS(C36:4) that could have e.g. C18:2/C18:2 fatty acids incorporated, but
also C16:0/C20:4 or C16:2/C20:2, etc.. Note, that some lipid classes, like gangliosides, have one variable and one
fixed fatty acid side chain, thus, both side chains can unambiguously inferred. The MS/MS result – the matrix
to be analyzed in this study – holds concentrations of lipids for each cell line for all perturbations.

Only the combined perturbation of p53 adenoviral transfection prior to SN-38 chemotherapy is biologically
relevant for this study. In order to identify those lipids that specifically respond to the combined perturbation a

Figure 1. From Cells to Lipid Correlations. a. U87 cell lines were perturbed and subsequently lysed prior to MS
analysis. Subsequently, lipid concentrations of 167 polar lipid species were obtained. b. The raw data of this study holds
lipid quantifications for various perturbations (the samples). Pairwise correlations of lipids result in an undirected graph
of lipid-to-lipid interactions holding the partial correlation values. Only statistically significant correlations are included
in the resulting network. Edge widths indicate correlation strengths.
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series of control experiments were conducted, which were permutations of the single perturbations as described
previously,2,5 e.g. SN-38 alone, empty virus transfection or empty virus transfection prior to chemotherapy. In
order to unravel the lipid remodeling that effected or was affected by apoptosis of U87 cells, the comparison of wt
cell lines with the p53 plus SN-38 perturbations is not sufficient. For example, lipid remodeling can be the result
of singular effects, like the transfection of the empty adenovirus, only the wt p53 adenovirus or solely the SN-38
chemotherapy. Only the entire dataset with all perturbations and wt allows to statistically exploit the wealth of
all perturbation effects, which might not be feasible by comparing only two biologically relevant perturbations.

3. GAUSSIAN GRAPHICAL MODELS

Traditionally, correlation networks have been used to obtain information on coregulations of variables L =
(l1, . . . , lp), |L| = p measured across all samples S = (s1, . . . , sn), |S| = n; with X = (xls) the raw data matrix
used for calculations. In case of the present metabolite data, a correlation coefficient will provide information on
the degree of dependence between the measured variables. This pairwise correlation is thereby calculated based
on the measurements across all samples – the cell lines with various perturbations (Fig. 1b).

The standard measure of pairwise correlations are Pearson product-moment correlation coefficients P = (ρij),
which quantify the linear dependency between two variables li and lj . A common problem of Pearson correlation
coefficients are indirect effects giving rise to a plethora of unspecifically high correlation coefficients throughout
omics datasets.4 GGMs attempt to estimate conditional dependencies between measured variables over all
samples rather than marginal dependencies, thereby eliminating such indirect correlations. The derivation of
partial correlation coefficients can also be explained by linear regression: The partial correlation between the
lipids l1 and l2 is the correlation of the residuals that result from linearly regressing l1 and l2 against the remaining
lipids (l3, . . . , lp).6 In out study, the partial correlation ζij provides information on the coregulation of two lipids
li, lj .

To generate a GGM, the number of samples with respect to the number of variables determine the approach
used for the calculation. If the number of samples n exceeds the number of variables p, full-order partial
correlations Z = (ζij) can be calculated in a straight-forward manner from the inverse of the covariance matrix
P as

Ω = (ωij) = P−1

Z = (ζij) = −ωij/
√

ωiiωjj .

Statistical tests are next applied to determine whether a partial correlation ζij is significantly different from
zero ζ∗ij (we mark a significant partial correlation with an asterisk) resulting in the GGM Z∗. Of the partial
correlation matrix Z we construct Z∗ as

Z∗ = (ζ∗ij) =
{

ζij if ζij is significant
0 else

and we denote ∃ζ∗ij for ζ∗ij > 0. A GGM is an undirected graph obtained by partial correlation calculation with
subsequent statistical testing for edge significance (Fig. 2a). The graph nodes represent the measured variables
whereas the edge weights correspond to significant partial correlation coefficients. If the number of samples is
smaller than the number of variables (n < p) the straight-forward GGM calculation cannot be applied but a
regularization and a likelihood estimation step have to be included. For n < p the covariance matrix is rank-
deficient,7–9 as a consequence the covariance matrix is not positive definite and can, thus, not be inverted. In
the case of the present lipidomics data, we indeed have n < p with p = 157 lipids and n = 8∗ samples. To
estimate the GGM for n < p, Strimmer and colleagues10 introduced an all-in-one approach. One estimation step
is a shrinkage approach and is applied9,10 to obtain the true correlation matrix P̂ . The other estimation step
distinguishes actually existing edges from “null” edges in the GGM by fitting a statistical model assuming these
two population of edges. The GGM is finally build by adjusting for local false-discovery rates (FDR).9,10 This
method of regularized GGMs was already applied to transcriptomics datasets6,11 and will here be applied to our
lipidomics dataset.

∗Eight samples were measured with two technical replicates. Analyses were performed on the raw data including the
replicates.
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When calculating the GGM, all samples are assumed to be independent,7 but inspection of the present
lipidome dataset showed a strong correlation between all samples. Although correlations between the technical
replicates were higher than between perturbations, the overall correlation of disease and control samples was
very high (> .95). In case of dependent samples the covariance estimates are no longer optimal: its standard
deviation monotonically increases with larger correlation coefficients of samples.8 Note that the result of the
strong correlation between all samples already indicates that the successful perturbation of cells transfected with
wt p53 prior to SN-38 chemotherapy has strong effects only on few lipids and not the lipid levels in general.
To account for the high dependencies between samples, we calculated the GGM mimicking that all samples are
replicates of one another. Since seven of the eight samples are only measured as controls (which were introduced
as control replicates with respect to the one perturbation of interest), this approach is reasonable for our study.

4. DIFFERENTIAL GGM

To identify those partial correlations of lipids only resulting from the biologically relevant perturbation and not
from side effects of one perturbation, we implemented the following concept of disease-specificity. For simplicity,
we name the biologically relevant perturbation “disease” in contrast to the “controls” in the following, although
this combination of perturbation is the one inhibiting tumor cell growth. Let S be the set of n samples composed
of control and one disease sample S = (s1, . . . , sn) = (sD, sC1 , . . . , sCn−1) = (sD, sC.) with the disease sample
sD and the union of all control samples sC.

. Imagine ζ∗(S) to be a significant correlation on the entire dataset
S. It may then be a result of a perfect correlation of controls not substantially affected by the disease samples
or be a result where primarily the disease samples induce a correlation on the entire dataset (controls alone are
not correlated). In other words: if a correlation has no specific relevance to the disease, we would still detect
a correlation when using a truncated dataset with solely control samples. These correlations, which are mostly
a result of strong control sample correlation, can be considered “false positive” with respect to true disease
relevance. In order to gather all truly disease relevant correlation, we also have to account for the reverse case,
equivalently the “false negatives” with respect to disease relevance. If a correlation exists on the control samples
sC.

but is suppressed on the entire dataset S, the disease samples do not follow the correlation of the controls,
wherein the correlation is again relevant with respect to the disease. This reverse case corresponds to the concept
of suppressed variables, which denotes a variable to be a suppressor if it suppresses the correlation between some
other variable to the remaining variables.12,13

All disease relevant partial correlations were assessed in an approach inspired by jackknife resampling.14

GGMs are calculated by leaving out one sample from the dataset (Z∗
S\si

) during each iteration, resulting in a
set of partial correlation coefficients for each lipid pair (li, lj) of {ζ∗(S), ζ∗(S\sD), ζ∗(S\sC1), . . . , ζ

∗(S\sCn−1)}
for all existing significant partial correlations. Figure 2b illustrates the approach to build a differential GGM
by evaluating the set of leave-one-out GGMs with respect to the criterion of disease-specificity. A pseudo-code
formalizes the differential GGM approach:

ggm <- empty set of GGMs
ggm(0) <- result of GGM with S
for (i = 1:n){

ggm(i) <- result of GGM with S\Si
}

dGGM <- empty set of differential GGM edges
for (e=(li,lj) : all possible edges){

if (e fulfills IAij w.r.t. ggm) {
dGGM -> add e between nodes li and lj

}
}
return dGGM
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Figure 2. Raw data transformed to disease specific correlations. a. The lipidome raw data is a matrix of samples
over variables. The samples are the individual perturbations which are grouped into control samples and the sample(s)
of interest to the study, here simply called ‘disease’. Partial correlations of all variables are obtained and later evaluated
with respect to statistical significance. b. To investigate whether a significant partial correlation is specific for the disease
sample, partial correlations (as in a) were calculated for the entire dataset as well as for datasets where each one sample
was left out. Unless a correlation is significant in all GGMs, it is considered disease-specific.

In detail, we extract those interactions IAij of (li, lj) which fulfill the criterion to be disease relevant by comparing
all GGMs with respect to the disease sample sD as

IAij = [¬∃ζ∗(S\sD) ∧ ∀si∈{S,S\sC.}∃ζ∗(si)] ∨ [∃ζ∗(S\sD) ∧ ∀si∈{S,S\sC.}¬∃ζ∗(si)].

In other words, we consider an edge disease-specific if it fulfills either one of two criteria: (1) The edge is not
significant in the GGM of S\sD, the dataset S without the disease sample sD, while it is significant in the GGM
constructed from the entire dataset S as well as in all GGMs of S\sC. where each one control sample was left out
for the calculation. (2) The reverse case holds if the edge is significant on the dataset without the disease sample
(S\sD) – equivalent to a correlation of control samples – while the edge is not significant if the disease sample
is present in the dataset (that are the datasets of S and any S\sC.

). As a result, we obtained one differential
GGM of only direct lipid-lipid correlations resulting from the combination of wt p53 transfection prior to SN-38
chemotherapy for the Glioblastoma lipidome.
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5. RESULTS

We generated GGMs for all perturbation combinations of the Glioblastoma lipidome according to out jackknife-
inspired approach. The FDR cutoff value was set to q = 0.01. Compared to conventional GGM applications
(analysis only of the entire dataset), we can break down each significant correlation with respect to the contribu-
tion of each sample. If we examine the lipidome solely from the perspective of conventional GGM calculations,
we would obtain 256 significant lipid-lipid correlations. Thereof 25 correlations are disease relevant with respect
to the perturbation of p53 gene therapy prior to SN-38 chemotherapy (Fig. 3a). Surprisingly, less than 10%
of all significant interactions of a GGM from the entire dataset were actually disease-specific, or figuratively
speaking true positive. Drawing any biological conclusions from correlations on the entire data set may therefore
be misleading. In addition, we identified 9 significant lipid-lipid correlations which are suppressed by the disease
relevant sample. Subsequently, we were able to identify 34 lipid-lipid interactions on the Glioblastoma lipidome
which are significantly correlated upon p53 gene therapy prior to SN-38 chemotherapy.

The resulting disease-specific, differential GGM is depicted in Figure 3b. Since we obtained correlations across
all six lipid species, our results are more comprehensive than the results of previous analyses2,5 where lipid species
were always handled separately. Closer inspection of the 45 lipids involved in the disease relevant differential

Figure 3. Lipids specifically regulated when Glioblastoma cell lines were effectively perturbed. a. Relative
number of disease specific and unspecific lipid-lipid partial correlations in the GGM. Analysis of the entire dataset is
named “conventional” GGM with respect to disease specificity. b. Disease relevant GGM which is associated with the
combined perturbation of p53 adenoviral transfection prior to SN-38 chemotherapy in U87 Glioblastoma cell lines. Edges
between lipid nodes are drawn if a significant correlation exists. Positive and negative correlations were color-coded in pink
and blue, respectively; Suppressed correlations drawn with dotted lines. Edge line widths indicate degree of dependencies
(absolute partial correlation value). The numbers C:D indicates the number of carbon atoms (C) and double bonds (D)
of the fatty acid side chain(s). c. Modularity matrix was calculated by using lipid classes as cluster label for the GGM
shown in b. Modularity values were color-coded between −0.2 and +0.2 from yellow to blue, respectively. Modularity
values close to 1 indicate strong inner-cluster connectivity and little links outside its cluster.

Proc. of SPIE Vol. 8058  805819-6

Downloaded from SPIE Digital Library on 15 Jun 2011 to 141.61.32.61. Terms of Use:  http://spiedl.org/terms



GGM revealed an overrepresentation of specific lipid classes. Sulfatides are glycosphingolipids with two variable
ceramide tails. Out of five measured sulfatides, three (60%) were differentially correlated. The three C31:1,
C34:2 and C34:2+O are all short chain ceramides with increased levels for the p53 plus SN-38 perturbation.2

We can assign the C34:2+O sulfatide a more important role with respect to the disease, as it has a prominent
role in the differential GGM with five edges. Note, that we revealed the sulfatide regulation only by inspecting
the suppressed correlations, which would have been overlooked by conventional GGM analysis. Gangliosides are
glycosphingolipids where one of the two side chains is fixed to a C18:1 fatty acid. They additionally vary in
their number of salic acid residues (mono, di or tri). In general, 17 out of 32 (53%) measured gangliosides were
coregulated in the disease-specific GGM. Of the the major gangliosides found in adult brain (GM3/GD3),15 only
one was measured by MS. Interestingly, the GM3 was found to be overrepresented with 61% in the GGM (8 out
of 13 measured). As previously shown to have decreased level for the p53 plus SN-38 perturbation,2 the long
chain gangliosides GD1 and GM1b were also found to be overrepresented in the GGM by 50% (4 of 8) and 66%
(4 of 6), respectively. Besides the two lipid classes which are overrepresented by more than a half of the measured
lipids, another interesting lipid class were Phosphoinositols (PIs). PIs are phospholipids with two esterified fatty
acyl residues and inositol as the polar head group. One fourth of the PI were found to be enriched in the GGM
(14 of 55). In the original study, the phosphatidylglycerols (PGs) were used as a generic example to show the
increased levels of all four phospholipids subclasses.2 Nevertheless, we detected an overrepresentation of PIs. A
more detailed biological analysis of the PI may reveal the affected mechanisms.

Finally, we aimed to analyze the extend to which the lipid classes were interlinked with each other in the
disease-specific GGM. We calculated the modularity † by considering each lipid class as the node class label
(Fig. 3c). We assume the lipid classes with little or no links to other classes to have a disease relevant regulation
based on their molecular characteristics and not due to e.g. fatty acid remodeling. The sulfatides show the
most prominent inner-group linkage, indicating that this class was specifically affected by the p53 plus SN-38
perturbation. The gangliosides and all four phospholipids classes were generally interlinked, indicating that a
disease relevant mechanism is rather linked to common fatty acid side chains than their unique characteristic
head groups.

6. CONCLUSION

We have developed a biologically driven technique to analyze high-throughput measurements. The novel method
of a differential GGM is inspired by the experimental design of the biological study to reveal disease relevant
information. The differential GGM was applied to the influence of p53 gene therapy prior to SN-38 chemotherapy
on U87 Glioblastoma cell lines. We identified only those lipid correlations which are solely induced by the
combined perturbation and not just by a single perturbation. Beyond prior studies of quantification histograms
and lipid profiles on single lipid classes, we succeeded in analyzing lipids across their classes for the Glioblastoma
lipidome which is easily comprehensibly. The disease-specific correlations will advance the understanding of
primary brain tumors and their mechanism to immortality.
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