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Abstract

A measuring system combining subnanosecond laser- induced fluorescence with microscopic
signal detection was installed and used for diverse projects in the biomedical and environ-
mental field. These projects are ranging from tumor diagnosis and enzymatic analysis to
measurements of the activity of methanogenic bacteria which effect biogas production and
waste water cleaning. The advantages of this method and its practical applicability are
discussed.

Introduction

Time -resolved microfluorescence has proved to be a highly sensitive method, not only for
the detection ofl fast kinetics, but also f ?r4analysing micoscopic biologigal samples such
as single cells , bacteria , nucleic acids , chromosomes or amino acids . By using this
method a high spatial resolution is combined with the measurement of fluorescence decay
curves down to the subnanosecond range. Therefore, even low fluorescence signals of complex
samples with spectrally overlapping bands can be detected on the basis of their characteri-
stic decay times. In addition, stray light and background luminescence arising from the
samples or the optical detection system are discriminated easily. An experimental setup
for using this measuring technique was recently installed in our institute and applied to
diverse projects in biomedical and environmental diagnosis, as described in the following.

Experimental apparatus

The samples were placed in a fluorescence microscope (Fig. 1) or a chamber for mico -cu-
vettes, and irradiated alternatively by the picosecond pulses from a modelocked UV Ar laser
(364 nm) or a cavity dumped dye laser operated at 420 nm.

Pulses with a repetition rate of 250 kVIz or 80 kHz, respectively, were selected from
the original 82 MHz pulse train of the Ar laser in order to limit the average power density
to 0.05 ... 0.1 mW /mm2 and to avoid heating or damaging of the samples. The fluorescence de-
cay curves were obtained after appropriate spectral filtering using a single photon counting
system with a time -to -pulse height converter and statistical accumulation of the measured
events. The time- resolution of the entire detecting system was about 0.3 ns.
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Figure 1. Experimental setup for time- resolved fluorescence microscopy.
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Tumor diagnosis

For dilagnosis and phototherapy of tumors fluorescent dyes, e.g. hematoporphyrin derivati-
ve (HpD) , which are retained selectively in tumor cells, are used increasingly. The pho-
tosensitizing properties of HpD are well known, but many questions concerning the intracel-
lular distribution and the phototherapeutic efficiency of distinct HpD components are still
unresolved. Time -resolved fluorescence microscoppy seems to be useful in treating these
questions. First of all, this method allows different fluorescent compounds to be separa-
ted. As demonstrated in Fig. 2 two components with decay times of (9 - 2) ns and (1.6 -0.5)ns
were measured for Brown- Pearce tumor cells incubated with HpD.
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Figure 2. Fluorescence decay curves of Brown -
Pearce carcinoma cells (excitation wavelength 420 nm,
detection range 610 -690 nm). The semilogarithmic plot
reveals two exponential components for the cells in-
cubated with HpD.

Preliminary measurements of the distri-
bution of HpD within single urinary blad-
der cells (spatial resolution 10 µm)
showed higher fluorescence intensity
around the cell nucleus as compared to
different parts of the cytoplasm. This
seems to prove a higher amount of HpD
within the nucleus, the nuclear membrane
or adjacent particles such as mitochon-
dria.

Fluorogenic enzyme reactions

Fluorogenic enzyme reactions are used in the determination of small numbers of enzyme
molecules or enzyme linked antibodies (enzyme immunoassay). Although the detection sensiti-
vit4y of tese reactions is usually rather Ngh (one enzyme molecule typically produces
10 ...10 fluorescent molecules per minute ), it remains limited due to stray light and
background fluorescence from the solvent or products of non -specific reactions.

An increase in detection sensitivity can be obtained using time -resolved measurements.
Fig. 3 shows the fluorescence decay curve of 4- methylumbelliferone (MU) produced by enzyme
coupled IgM antibodies against cytomegalovirus from only 10 nl of blood serum.
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Pearce carcinoma cells (excitation wavelength 420 nm, 
detection range 610-690 nm). The semilogarithmic plot 
reveals two exponential components for the cells in­ 
cubated with HpD.

Accordinggto results obtained from HpD 
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different phototherapeutic efficiencies, 
respectively. Also the autofluorescence 
of the cells can be distinguished from 
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time of about 1 ns, as obtained from the 
non incubated reference cells.
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Fluorogenic enzyme reactions are used in the determination of small numbers of enzyme 
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10 ...10 fluorescent molecules per minute ), it remains limited due to stray light and 
background fluorescence from the solvent or products of non-specific reactions.
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Figure 3. Time-resolved fluorescence of en­ 
zymaticly produced 4-methylumbelliferone 
(MU) in comparison with scattered laser 
light (excitation wavelength 364 nm, de­ 
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Methanogenic bacteria

Bacterial cells are often identified on the basis of specific fluorescent coenzymes.
This also holds for methanogenic bacteria which are important for both biogas production
and waste water treatment. Direct quantitative fluorometric determination of coenzyme F420
present in all methanogenic species, however, has so far been prevented by interference
with ether fluorescent c ?mpounds. Using time -resolved detection different decay times of
(0.7 - 0.3) ns and (2.5 - 0.5) ns for F420 and 7- methylpterin, another fluorescent compound,
respectivelly were obtained from samples of Methanobacterium thermoautotrophicum, and al-
lowed these components to be separated.

In addition, active and inactive bacterial cells could be differentiated from measure-
ments of fluorescence bleaching. When the irradiating power density was raised to about
5 mW /mm2 or more, a significant photobleaching effect was observed. This fading was limited
to the short -lived fluorescence due to coenzyme F420 when the bacteria were in an active
state (Fig. 4), but affected all fluorescent components (F 7- methylpterin and long -lived
background fluorescence) when the bacteria were inactive (Pig. 5). Accordingly, by using
this method it seems possible to control the activity of methanogenic bacteria during biogas
production.
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Figure 4. Time -resolved fluorescence of Metha-
nobacterium thermoautotrophicum in active
state (excitation wavelength 420 nm, detection
range 460 -570 nm). Reduction of the short -
lived fluorescent component due to photoblea-
ching.
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Figure 5. Time -resolved fluorescence of
Methanobacterium thermoautotrophicum in
inactive state (excitation wavelength 420 nm,
detection range 460 -570 nm). Reduction of
all fluorescent components due to photoblea-
ching.

Discussion and Outlook

As demonstrated for 3 projects, time -resolved microfluorescence is a powerful method
for analysing complex samples in biomedical diagnosis or environmental analysis. However,
according to its complexity the measuring system described in this paper seems to be reser-
ved for basic or applied research. For routine applications, both the excitation source
and the detection system must be modified, e.g. by using flashlamps or pulsed lasers and
less sensitive detection electronics. In this case the temporal resolution is reduced from
the subnanosecond to the nanosecond or even microsecond range, thus limiting the applicabi-
lity of the method to processes with sufficiently long time constants. A diagnosti0instru-
ment for measuring long -lived fluorescent probes coupled to antibodies or antigens has
recently been developed. yyrther apparatus, e.g. for measuring long -lived radiophotolumines-
cence of glass dosimeters are in the stage of refinement. But also for surveying the acti-
vity of methanogenic bacteria in biogas reactors or sewage treatment plants, time- resolved
fluorescence seems to be an appropriate method, if instead of nanosecond decay times, the
time course of photobleaching is determined within the range of several seconds.
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