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Abstract 62 

Researchers have been examining the biological function(s) of isoprene in isoprene-emitting 63 

species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the 64 

thermo-tolerance of plants and protects them against oxidative stress, thus mitigating a wide 65 

range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are 66 

still under debate. Here we assessed the impact of isoprene on the emission of NO and S-nitroso-67 

proteome of isoprene-emitting (IE) and non-isoprene-emitting (NE) gray poplar (Populus × 68 

canescens (Aiton.) Sm.) after acute ozone fumigation. The short-term oxidative stress induced a 69 

rapid and strong emission of NO in NE compared to IE genotypes. Whereas IE and NE plants 70 

exhibited under non-stressful conditions only slight differences in their S-nitrosylation pattern, 71 

the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced 72 

changes compared to the IE plants. The results suggest that the nitrosative pressure (NO burst) is 73 

higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free 74 

radical NO. Proteins belonging to the photosynthetic light and dark reactions, the TCA cycle, 75 

protein metabolism, and redox regulation exhibited an increased S-nitrosylation in NE samples 76 

compared to IE plants upon oxidative stress. Because the post-translational modification of 77 

proteins via S-nitrosylation often impacts enzymatic activities, the present data suggest that 78 

isoprene indirectly regulates the production of ROS via the control of the S-nitrosylation level of 79 

ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO 80 

signaling molecules are generated within a plant cell. 81 

 82 

Introduction 83 

It has been demonstrated that isoprene protects plants against a plethora of abiotic stresses 84 

(Singsaas et al., 1997; Behnke et al., 2007; Velikova et al.; 2008, Vickers et al., 2009a). Since 85 

the discovery of the positive influence of isoprene emission on plants’ photosynthetic processes 86 

in the early 1990s (Sharkey and Singsaas, 1995), many efforts have been made to explain the 87 

primary mechanism of isoprene functioning. Most attention was given to the hypothesis that 88 
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isoprene improves the thermotolerance of the photosynthetic machinery by stabilizing 89 

chloroplast (thylakoid) membranes during short, high-temperature episodes (Sharkey and 90 

Singsaas, 1995; Loreto and Schnitzler, 2010). Successive studies underlined that isoprene helps 91 

maintain high rates of chloroplastic electron transport and CO2 assimilation during heat stress 92 

and accelerates recovery from stress (Singsaas and Sharkey, 2000; Velikova and Loreto, 2005; 93 

Velikova et al., 2006; Behnke et al., 2010b; Way et al., 2011).  94 

One mechanistic explanation is that isoprene molecules are dissolved in thylakoid membrane, 95 

and prevent membrane lipid denaturation following oxidative stress (Sharkey and Yeh, 2001). It 96 

was suggested that isoprene acts directly to stabilize the membrane (Sharkey and Yeh, 2001; 97 

Siwko et al., 2007). However, recent experiments with phosphatidylcholine liposomes showed 98 

that physiologically relevant intra-membrane concentrations of isoprene do not alter membrane 99 

viscosity (Harvey et al., 2015). Nevertheless, Velikova et al. (2011) reported that during high-100 

temperature treatments, isoprene stabilized the macro-organization of the pigment-protein 101 

complexes of light-harvesting complex II in the thylakoid grana and the disorganization of 102 

macro-assemblies in isoprene-emitting chloroplasts began at higher temperatures compared to 103 

their non-emitting counterparts. Moreover, Velikova et al. (2011) showed decreased membrane 104 

permeability and more efficient primary photochemistry at PSII in isoprene-emitting plants at 105 

high temperatures (40–45 °C). However, how isoprene contributes to this protection is still 106 

unknown. 107 

The antioxidant hypothesis is the second mechanistic explanation by which isoprene may 108 

directly or indirectly exert its protective effect in plant cells. Plants that were fumigated with 109 

isoprene, showed less visible ultra structural (chloroplast) damage and less impairment of 110 

photosynthetic processes upon acute ozone fumigation than plants where isoprene was absent 111 

(Loreto et al., 2001). In conjunction with this hypothesis leaf levels of H2O2 (Loreto and 112 

Velikova, 2001; Behnke et al., 2010a), singlet oxygen (Affek and Yakir, 2002; Velikova, et al., 113 

2004), and the free radical nitric oxide (NO) (Velikova et al., 2005) were found to be lower in 114 

stressed plants when leaf internal isoprene was present. Taken together, these findings strongly 115 

indicate that endogenous isoprene modulates the oxidative and nitrosative load in plant tissue 116 

upon abiotic stress. However, the mechanism by which this modulation occurs remains 117 

unknown.  118 

The generation of NO and reactive oxygen species (ROS; such as H2O2, singlet oxygen) is a 119 

general plant response to many environmental stresses (such as acute ozone, drought, salinity, 120 
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heavy metals; e.g., Mahalingam et al., 2006; Rodriguez-Serrano et al., 2006; Pasqualini et al., 121 

2008; Corpas et al., 2011; Noctor et al., 2014). Excess generation and accumulation of NO and 122 

ROS can cause modifications of cellular macromolecules such as nucleic acids and membrane 123 

lipids and proteins, thus leading to malfunctioning of enzymes and organelles, ultimately 124 

inducing cell death (Mittler, 2002). Even under optimal conditions, these compounds are 125 

continuously produced in primary plant metabolism as side products of the chloroplastic and 126 

mitochondrial electron transport chains (Foyer and Noctor, 2003). Cellular levels of ROS and 127 

NO are tightly regulated by an efficient antioxidant defense system composed of scavenging 128 

enzymes and of a non-enzymatic barrier (Foyer and Noctor, 2003). In this context, isoprene may 129 

constitute a part of the non-enzymatic oxidative defense system (Vickers et al., 2009a) and may 130 

substitute for other antioxidants (Peñuelas et al., 2005; Behnke at al., 2009).  131 

 132 

A more indirect mode of isoprene functioning is also under debate (for a review, see Vickers et 133 

al., 2009b). Chloroplasts, the main targets of the proposed isoprene function(s), are a major 134 

source of NO (Jasid et al., 2006). It is suggested that endogenous NO in chloroplasts can exert 135 

either antioxidant or prooxidant effects on chloroplast macromolecules and influence the 136 

integrity of membrane processes (Jasid et al., 2006). NO can prevent in chloroplasts the Fenton 137 

reaction by scavenging iron, thus avoiding the formation of hydroxyl radicals (Wink et al., 1995) 138 

that can be efficiently quenched by isoprene (Huang et al., 2011). Chloroplasts are also the main 139 

site of carbon and nitrogen metabolism and ROS production. Isoprene may modulate directly or 140 

indirectly the oxidative and nitrosative state of chloroplasts undergoing stress by modulating 141 

NO-related signaling pathways. Due to their lipophilic structure, it is probable that isoprene and 142 

NO converge inside plants, but to what extent the molecular dialogue between isoprene and NO 143 

can affect NO- and ROS-related signaling is unknown.  144 

NO signaling regulates many plant development processes, such as stomatal closure (Neill et al., 145 

2002), germination (Bethke et al., 2004), flowering (He et al., 2004), senescence (Guo and 146 

Crawford, 2005) and hormonal signaling (Simontacchi et al., 2013). NO signaling also plays a 147 

well-established role during plant-pathogen responses (Delledone et al., 1998; Durner et al., 148 

1998) and abiotic stress reactions (Corpas et al., 2011). The hypersensitive response (HR) upon 149 

pathogen invasion is an example of programmed cell death and shares many similarities with 150 

plant’s ozone response (Sandermann et al., 1998). In both cases (biotic and abiotic elicitor), the 151 
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activation of HR is associated with a burst of NO and ROS occurring in the same time range 152 

(Ahlfors et al., 2009).  153 

NO exerts its signaling action by directly altering proteins through post-translational 154 

modifications (PTMs; i.e., S-nitrosylation, metal nitrosylation, and tyrosine nitration). S-155 

nitrosylation, the covalent binding of NO to the thiol side of protein-cysteine residues to form 156 

nitrosothiols (SNOs) is regarded as the most important PTM of NO signaling in plants (Moreau 157 

et al., 2010). The binding and removal of NO is not strictly an enzymatic process and depends 158 

strongly on the redox status of the cell (Lindermayr et al., 2009). However, the enzymatic 159 

removal of the NO group via de-nitrosylation has been reported (Benhar et al., 2009) ensuring 160 

the reversibility of the modification. S-nitrosylation and de-nitrosylation events together form the 161 

S-nitrosylation pattern of a cell under physiological conditions, which may strongly change upon 162 

stress (e.g., Abat and Deswal, 2009; Ortega-Galisteo et al., 2012). S-nitrosylation of enzymes 163 

can either inhibit or activate their function (Astier et al., 2012). It has been suggested that S-164 

nitrosylation is involved in the regulation of ROS level under abiotic stress (Ortega-Galisteo et 165 

al., 2012; Lindermayr and Durner, 2015) by targeting the ROS metabolizing enzymes. 166 

 167 

The present work assesses the proposed mechanism of isoprene in modulating NO signaling. 168 

Because S-nitrosylation, the covalent binding of NO to cysteine moieties, is the main method of 169 

NO signaling, we identified targets of S-nitrosylation in isoprene-emitting (IE) and non-170 

isoprene-emitting (NE) gray poplar plants by using the biotin switch assay in conjunction with 171 

mass spectrometry. After taking an inventory of putative S-nitrosylated proteins in IE and NE 172 

gray poplar plants under non-stressful conditions, we applied short acute ozone stress triggering 173 

changes in the NO emission and S-nitroso-proteome depending on the presence of isoprene. 174 

 175 

RESULTS AND DISCUSSION 176 

1. Whole proteome analysis highlights some alterations in the protein profile of NE gray 177 

poplars under control conditions 178 

LC-MS/MS identification and label-free quantitative analysis of unstressed leaf samples revealed 179 

some differences in global protein abundances between IE (WT and EV) and NE (Ra1 and Ra2) 180 

genotypes (Figure 1). We identified and quantified 2,025 proteins, among these proteins, 1,388 181 

proteins were identified with ≥ 2 unique peptides and 1,071 proteins of them could be quantified 182 

with ≥ 2 unique peptides. Globally, the differences in protein abundance between IE and NE 183 
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samples were small (Figure 1) with 97% of the proteins within a logarithmic fold change of ± 1 184 

(Figure 1A). The largest, significant fold changes between IE and NE were observed for the 185 

terpenoid cyclase (TC) and, as expected, for the isoprene synthase (ISPS), the target of the 186 

RNAi-mediated suppression of the isoprene emission. Moreover, the Rubisco large chain, a 50S 187 

ribosomal protein, a ubiquinone biosynthesis protein, and the chloroplast inner membrane import 188 

protein Tic22 exhibited a significant lower expression in NE. A higher expression was observed 189 

for the basic pentacysteine 4, the EP3-3 chitinase, and the eukaryotic aspartyl protease family 190 

protein (Figure 1A). 191 

The orthogonal partial least square (OPLS) was employed to dissect the differences between the 192 

IE and NE genotypes (Figure 1B, C, and D). Among 116 discriminant proteins able to 193 

discriminate between IE and NE, 31 proteins were higher expressed, and 85 proteins were lower 194 

expressed in the NE genotype, compared to IE (Supplemental Table S1). 195 

Proteins with a higher abundance in NE comprised 11 enzymes that are involved in protein 196 

degradation (e.g., subtilase, serine protease, ubiquitin family protein) and protein folding (heat 197 

shock protein 70, HSP70) . This increase in NE may be indicative of a substantial increase in 198 

protein degradation in this genotype. Two other more expressed proteins in NE are related to 199 

histones (winged-helix DNA-binding transcription factor, histone superfamily protein). This 200 

observation fits with the strong expression of histones in the chloroplast proteome of NE plants 201 

(Velikova et al., 2014). NE samples also showed a higher abundance of proteins involved in the 202 

stress response. These are the germin-like protein (+0.4) and the EP3-3 chitinase. The germin-203 

like proteins have, besides their action in plant development, a proposed role in the plant defense 204 

response (Lane et al., 2002). The expression of these proteins is induced upon various biotic and 205 

abiotic stresses, and overexpression of the germin-like proteins enhanced the resistance against 206 

powdery mildew in barley (Zimmermann et al., 2006). Similarly, various biotic and abiotic 207 

stresses can induce the expression of plant chitinases (Kasprzewska et al., 2003). They catalyze 208 

the hydrolysis of β-1,4-bonds in chitin and are classified as PR proteins, e.g., EP3 chitinase from 209 

Daucus carrota is involved in the programmed cell death (PCD) (Kasprzewska et al., 2003). 210 

Interestingly, each line had a specific proteome-pattern, suggesting that genetic transformation 211 

process can affect the whole proteome and cause off-targeted effects (Day et al., 2000; Latham et 212 

al., 2006). 213 

 214 
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For the visualization of the proteomic differences between lines and treatments we applied 215 

Voronoi treemaps (Figure 2, 4, and 6) as introduced by Bernhardt et al. (2009). The major 216 

difference in the protein profiles of NE and IE plants (Figure 2) was the lower abundance of 217 

several proteins in the NE genotype mostly involved in the light- and dark-reactions of 218 

photosynthesis. By contrast, only one protein related to photosynthesis was more abundant in NE 219 

(i.e., ferredoxin reductase). The reduction in protein content comprises subunits of the PSI and 220 

PSII complexes (e.g., oxygen-evolving complex, PSII assembly factor, and thylakoid luminal 221 

proteins), the cytochrome b6f complex, the ATP synthase, and the large chain of Rubisco, 222 

confirming the proteomic survey of IE and NE poplar chloroplasts (Velikova et al., 2014). It 223 

might be speculated that NE plants have a lower demand for components of the photosynthetic 224 

apparatus and also for the supply of chlorophyll because several enzymes of the tetrapyrrole 225 

biosynthesis pathway that generate essential compounds, such as chlorophyll and heme (Tanaka 226 

et al., 2011), are also strongly reduced in concentration in the NE genotype. The lower amount of 227 

protein members of the photosynthetic apparatus may influence the physiology of NE poplars 228 

under unstressed conditions and upon stress. While initial physiological measurements showed 229 

no significant differences in the net CO2 assimilation rates of both genotypes (Behnke et al., 230 

2007; 2009; 2010a), recent observations reported lower gas exchange (Way et al., 2013) and 231 

electron transport rates (Velikova et al., 2015) in the NE genotype compared to the IE genotype.  232 

 233 

In accordance to previous observations (Velikova et al., 2014), the down-regulation of 234 

antioxidant enzymes in the NE genotype can be confirmed at the cellular proteome level. The 235 

down-regulated enzymes are three different APX isoforms, superoxide dismutase (SOD), the 236 

glutathione S-transferase F11 (GST), and the monodehydroascorbate reductase (MDHAR) 237 

(Figure 2). The level and activity of APX and SOD often correlate, and coordinated increases in 238 

either gene expression have been shown to improve tolerance to oxidative stress in cassava (Xu 239 

et al., 2014). Due to the lower setting of several antioxidant enzymes in NE plants, the strict 240 

control of the ROS production could be de-regulated explaining the higher in vitro accumulation 241 

of H2O2 in NE leaves upon high light and temperature treatment (Behnke et al., 2010a). 242 

Overall, the proteomic characterization of IE and NE cell extracts from unstressed poplars shows 243 

that the knock-down of the ISPS enzyme results in a distinct, cellular and chloroplastidic 244 

(Velikova et al., 2014) rearrangement of proteins and enzymes involved in photosynthetic 245 

processes, glycolysis and TCA cycle, redox regulation and protein translation (Figure 2). 246 
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2. Isoprene suppression results in slight modification of the S-nitroso-proteome of gray poplar 247 

plants under unstressed conditions 248 

Similar to the overall proteomic survey, a label-free LC-MS/MS approach was applied to 249 

quantitatively compare the S-nitroso-proteome of the IE and NE genotypes in control conditions 250 

and immediately following the short acute ozone exposure (next section). In total 203 S-251 

nitrosylated proteins were identified (Supplemental Table S2) after biotin-switch and subsequent 252 

pull-down.  253 

Globally, IE and NE plants exhibited only minor differences in the S-nitrosylation pattern of 254 

unstressed plants (Supplemental Table S4). Five of these discriminant proteins were found to be 255 

more S-nitrosylated in NE plants (Supplemental Table S4, Figure 6B). These are Rubisco 256 

activase, α-N-arabinofuranosidase (ARA), phosphoribulokinase (PRK), HSP70, and O-257 

acetylserine(thiol)lyase (OAS-TL). By contrast, only one protein, a PSII assembly protein, was 258 

less S-nitrosylated in the NE genotype compared to the IE genotype. 259 

Rubisco activase and PRK, two important enzymes in the CO2 fixation are known targets of 260 

several redox-based PTMs (i.e., S-nitrosylation, tyrosine nitration, and glutathionylation; 261 

Lindermayr et al., 2005; Lozano-Juste et al., 2011; Tanou et al., 2012) showing that a strong 262 

overlap in the signaling pathways of different PTMs exists and that the CBB cycle is strongly 263 

redox-regulated (Michelet et al., 2013). Interestingly, Rubisco activase is not only crucial for the 264 

maintenance of the high Rubisco activation state (Portis et al., 2003) but also for the 265 

photosynthetic light reactions because the knock-down of the Rubisco activase leads to a slower 266 

electron transport rate (ETR) and a decrease in the content of PSII components (Cai et al., 2010). 267 

Referring to the reduction of ETR and the content of PSII proteins in NE chloroplasts (Velikova 268 

et al., 2014), the higher proportion of constitutive S-nitrosylated Rubisco activase and PRK may 269 

be functionally related to these alterations. However, no functional characterization of S/de-270 

nitrosylation events on the enzyme activities of the Rubisco activase and PRK has been thus far 271 

reported. 272 

The S-nitrosylation of ARA was recently described (Vanzo et al., 2014). ARA hydrolyses the 273 

cleavage of terminal arabinofuranosyl residues from the pectin matrix and is involved in 274 

secondary cell wall biogenesis in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) 275 

(Aspeborg et al., 2005).  276 

The OAS-TL, catalyzing the last step in the cysteine biosynthesis and sulfur assimilation, has 277 

one predicted S-nitrosylation site (Supplemental Table S2), but whether S/de-nitrosylation 278 
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impacts enzyme functionality is unknown. Mentionable, Alvarez et al. (2011) demonstrated that 279 

tyrosine nitration, another route of NO signaling (Corpas et al., 2009) inhibits the enzymatic 280 

activity of OAS-TL. 281 

HSP70 is a prominent target of S-nitrosylation in plants (e.g., Lindermayr et al., 2005; Abat and 282 

Deswal, 2009). Heat shock protein (HSP) accumulation in response to heat stress has been 283 

reported (Kotak et al., 2007) and there is evidence that NO and H2O2 act as signals that promote 284 

the gene expression of HSPs under thermal stress (Volkov et al., 2006). Whether the higher 285 

degree of S-nitrosylation of HSP70 in NE plants is functionally related to the higher thermal 286 

sensitivity (e.g., Behnke et al., 2007; 2010b) of this genotype requires further analysis. 287 

 288 

3. Acute ozone fumigation stimulates NO emission and modifies the S-nitroso-proteome of IE 289 

and NE gray poplar  290 

3.1. NO emissions of IE and NE gray poplar following acute ozone 291 

Under control conditions, emissions of NO did not differ significantly between NE and IE poplar 292 

genotypes, although a tendency in higher emission from NE was observed (Figure 3). Emissions 293 

of NO were rapidly induced after the ozone exposure in both genotypes, but NO emissions were 294 

much more induced in NE shoots. In both genotypes NO emissions reached maximal rates after 295 

approximately 3.5 hours following the ozone treatment. In the NE genotypes the NO emission 296 

rates remained high until 7 hours post ozone exposure. In contrast the NO emissions in IE started 297 

to decline after the maximum finally reaching almost similar rates as before the ozone treatment. 298 

In NE plants NO emission rates also decreased but still showed doubled intensities at the end of 299 

the observation period compared to the initial conditions. Such a difference in NO emission 300 

between different isoprene emitter types is supported by previous results showing a stronger 301 

stimulation of NO emission in Populus nigra L. leaves with chemically inhibited isoprene 302 

emission exposed to oxidative stress (Velikova et al., 2008). Inverse correlation between 303 

isoprene emission and NO production was also observed in ozonized reed (Phragmites australis 304 

L.) leaves (Velikova et al., 2005). The finding that NE poplar emits significantly higher rates of 305 

NO upon ozone fumigation compared to the natural isoprene-emitting genotype (IE) is an 306 

indication that isoprene interferes in the signaling pathway activated by NO-ROS interactions.   307 

   308 

     309 

 www.plant.org on February 8, 2016 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plant.org


 

11 

 

3.2. Comparison of the IE and NE S-nitroso-proteome reveals the consequences of isoprene 310 

suppression in poplar plants following acute ozone 311 

Irrespective to the plant genotypes, ozone induced strong changes in the S-nitroso-proteome. 312 

Possible changes in global protein abundance by the ozone treatment have been taken into 313 

account. The intensities of the S-nitrosylated proteins were normalized to the corresponding 314 

global protein abundances of the control (C) and ozone-treated (O) leaves, respectively.  315 

Principle component analysis (PCA) with these normalized data revealed that the pronounced 316 

differences in the abundance of S-nitrosylated proteins between NE and IE appear after ozone 317 

treatment, as indicated by a clear separation between ozonated NE and IE samples in the first and 318 

second principal components (Supplemental Figure S1A). The functional categorization of the 319 

203 S-nitrosylated proteins revealed a strong dominance of proteins related to photosynthetic 320 

processes (21%), followed by protein synthesis, degradation and folding processes (19%) and 321 

redox regulation and signaling (8%; Supplemental Figure S1B, Supplemental Table S2). 322 

We again used OPLS to study the S-nitroso-protein patterns of control and ozonated samples in 323 

more detail (Figure 5). The separation between treatments and genotypes can be explained by the 324 

63 discriminant S-nitrosylated proteins (out of 203) (Figure 4, Supplemental Table S3).  325 

The general ozone response shared by both genotypes demonstrated a strong ozone-induced 326 

increase in the abundance of S-nitrosylated proteins, but the changes in the S-nitroso-proteome 327 

of the NE genotype were much more pronounced than in IE. While in IE plants the S-328 

nitrosylation level of 16 proteins (13 up, 3 down) was changed upon acute ozone stress 329 

(Supplemental Table S5A, Figure 6C), the S-nitrosylation level of 54 proteins (53 up, 1 down) 330 

was altered in the NE genotype upon ozone treatment (Supplemental Table S5B; 6E).  331 

  332 

3.3. Target sites of NO action in IE and NE gray poplar  333 

The S-nitroso-proteins, of which the S-nitrosylation abundances significantly differ between the 334 

IE and NE genotypes within the ozone-treated plants, are listed in Table 1. These proteins belong 335 

to several pathways, such as photosynthesis, the CBB cycle, glycolysis, the TCA cycle, redox 336 

metabolism, cell wall metabolism, amino acid degradation, and metal handling (Figure 6F). 337 

 338 

3.3.1. Carbon metabolism and photosynthetic proteins in NE  339 

Many enzymes and structural components of carbon metabolism and thus of photosynthesis and 340 

catabolizing pathways (glycolysis, TCA cycle) became S-nitrosylated upon ozone (Supplemental 341 
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Table S3, Figure 5), and for most of the enzymes, the ozone treatment modulated the S-342 

nitrosylation pattern of IE and NE genotypes differentially (Table 1; Figure 6F). Notably, many 343 

enzymes of the CBB cycle became more S-nitrosylated in NE compared to IE when acutely 344 

stressed by ozone. These enzymes are the sedoheptulose-bisphosphatase (SBPase), Rubisco 345 

activase, ribose-5-phosphate isomerase (RPI), PRK, glyceraldehyde-3-phosphate dehydrogenase 346 

(GAPDH), TPI, and phosphoglycerate kinase (PGK). The SBPase and the TPI became S-347 

nitrosylated in NE plants upon ozone treatment, whereas the corresponding amount of protein 348 

was constitutively down-regulated in NE control plants, emphasizing that many proteins are 349 

regulated on several levels. Out of the group of CBB cycle enzymes, only TPI and Rubisco are 350 

biochemically characterized, and both appeared to be inhibited by S-nitrosylation (Abat et al., 351 

2008; Abat and Deswal, 2009). The cytosolic GAPDH was reported to be inhibited by S-352 

nitrosylation as well (Holtgrefe et al., 2008; Zaffagnini et al., 2013). However, it is unclear if this 353 

is true for the chloroplastidic GAPDH, which shares only low structural similarity with the 354 

cytosolic isoenzyme (Shih et al., 1991). In Arabidopsis S-nitrosoglutathione reductase knock-out 355 

plants, the S-nitrosylated proteins are significantly enriched in chlorophyll metabolism and 356 

photosynthesis. These plants consistently show lower chlorophyll levels and altered 357 

photosynthetic properties, suggesting that S-nitrosylation is an important regulatory mechanism 358 

in these processes (Hu et al., 2015). 359 

The TCA cycle enzymes malate dehydrogenase (MDH) and aconitase 1 (ACO1) showed an 360 

increase of the S-nitrosylation level upon ozone exposure in NE (Table 1, Figure 6F). Both 361 

enzymes become inactivated by S-nitrosylation (Gupta et al., 2012; Ortega-Galisteo et al., 2012). 362 

Inactivation of ACO1 by NO leads to an accumulation of citrate, which as a retrograde signal, 363 

induces alternative oxidase resulting in a stimulation of the nitrogen and amino acid metabolism 364 

(Gupta et al., 2012). The comprehensive metabolomic analyses of the NE and IE genotypes 365 

(Way et al. 2013; Kaling et al., 2015) revealed increased concentrations of compounds from the 366 

amino acid metabolism, TCA cycle and glycolysis. These findings suggest that the TCA cycle 367 

and perhaps glycolysis are constitutively down-regulated in NE plants compared to IE plants and 368 

become even more repressed during oxidative/nitrosative stress. 369 

 370 

3.3.2. Antioxidant enzymes in NE 371 

Several antioxidant enzymes (i.e., CAT2, APX, thioredoxin-dependent peroxidase 1) also 372 

showed more pronounced S-nitrosylation levels in NE compared to IE (Table 1, Figure 6F). 373 
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Transgenic plants with reduced protein levels or activities of CAT and APX revealed an 374 

accumulation of H2O2, an early event in PCD (Dat et al., 2003), and cytosolic APX was found to 375 

be S-nitrosylated at the onset of PCD (de Pinto et al., 2013; Yang et al., 2015; Lindermayr and 376 

Durner, 2015). The enhanced S-nitrosylation of CAT and APX in the NE genotype upon ozone 377 

fumigation may analogically lead to increased H2O2 levels compared to IE. Interestingly, 378 

chloroplast (Velikova et al., 2014) and whole proteome analyses (Supplemental Table S1) reveal 379 

that the protein levels of several antioxidant enzymes are constitutively lower in the NE 380 

genotype (e.g., APX, SOD, chloroplastidic peroxiredoxin). By contrast, total ascorbate content 381 

was found to be higher in NE plants (Behnke et al., 2009; Way et al., 2013) compared to IE 382 

plants. Ascorbate can directly scavenge ROS or act as a reducing substrate for APX (Foyer and 383 

Noctor, 2011). It was suggested earlier that the increase of non-volatile antioxidant metabolites 384 

in the NE genotype might compensate for the absence of isoprene (Behnke et al., 2009; Way et 385 

al, 2013). In view of the present data, we assume that the altered S-nitrosylation status of many 386 

ROS-metabolizing enzymes results in a higher oxidative load in plant cells where isoprene is 387 

absent. This difference in the cellular redox homeostasis of both genotypes likely exists under 388 

physiological (unstressed) conditions, as indicated by higher H2O2 levels in the light-exposed 389 

chloroplasts of NE leaves (Behnke et al., 2010a).  390 

 391 

3.3.3. Cell wall and lignin biosynthesis related proteins in NE 392 

The S-nitrosylation levels of proteins involved in cell wall reconstruction and lignin biosynthesis 393 

were also increased by ozone stress in the NE compared to IE genotype (Table 1, Figure 6F). 394 

These proteins are the two α-L-arabinofuranosidases proteins (ARA, the fasciclin-like 395 

arabinogalactan protein (FLA)) and the cinnamyl alcohol dehydrogenase-like protein (CAD). 396 

FLAs are an expanded protein family in plants (Johnson et al., 2003) with implications for 397 

processes such as xylem differentiation, cell division, adhesion, and signaling (Seifert and 398 

Blaukopf, 2010; Janz et al., 2010). The ARA, a glycosyl hydrolase, is also connected with 399 

secondary cell wall formation and cell wall reorganization (Sumiyoshi et al., 2013). Generally, 400 

poplar leaves respond to ozone stress with an up-regulation of gene expression and enzyme 401 

activities of phenylpropanoid and lignin biosynthetic proteins (Richet et al., 2012), which lead to 402 

higher contents of condensed lignin, hydroxycinnamic acids, and flavonoids (Booker and Miller, 403 

1998; Cabané et al., 2004). We recently described the de-nitrosylation of PAL and COMT in WT 404 

gray poplar upon ozone exposure (Vanzo et al., 2014) and demonstrated for PAL that in vitro 405 
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PAL activity increased as a result of de-nitrosylation. Because PAL is a key regulatory enzyme 406 

controlling the metabolic flux in the phenylpropanoid and down-stream biosynthetic pathways 407 

(Booker and Miller, 1998; Cabané et al., 2004), the activities of the other enzymes of the 408 

phenolic secondary metabolism, e.g., COMT (Vanzo et al., 2014) or CAD, may also be rapidly 409 

regulated by S-nitrosylation. In the NE but not the IE genotype, the CAD protein, catalyzing the 410 

final step in the synthesis of monolignols (Di Baccio et al., 2008), was found to be S-nitrosylated 411 

after ozone exposure (Table 1). However, whether these differences in S-nitrosylation levels are 412 

related to the different constitutive and stress-induced metabolomic differences (Way et al. 2013; 413 

Kaling et al. 2015), i.e., of phenolic compounds in NE and IE genotypes, requires additional 414 

analysis.  415 

 416 

3.3.4. Thiamine biosynthetic proteins in NE 417 

Interestingly two enzymes of the thiamine biosynthetic pathway were identified as putative 418 

targets of S-nitrosylation (Supplemental Table S2, Figure 4). These enzymes are the thiamine 419 

thiazole synthase (THI) and the thiamine biosynthesis protein, the latter showing an increase in 420 

S-nitrosylation in NE genotypes upon ozone. Non-targeted metabolomics indicated that NE 421 

leaves have high levels of thiamin monophosphate (Way et al., 2013), a precursor of thiamin 422 

biosynthesis. Thiamine pyrophosphate (TPP) is an important coenzyme required for many 423 

cellular processes, i.e., the TCA cycle and the MEP pathway (Goyer, 2010), where it acts as a 424 

cofactor of 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Chloroplasts of NE genotypes 425 

accumulate excessive amounts of dimethylallyl diphosphate (DMADP), the metabolic precursor 426 

of isoprene (Ghirardo et al., 2014). DMADP inhibits in vivo the activity of DXS (Ghirardo et al., 427 

2014) by competing for the same substrate-binding site with TPP (Banerjee et al., 2013). 428 

Whether the differences in stress-induced changes in the S-nitrosylation of thiamine biosynthetic 429 

enzymes in NE and IE genotypes are regulatory orchestrated with the differences of the TCA and 430 

MEP pathway intermediates and PTMs is, however, unknown. 431 

 432 

3.3.5. UV-B photoreceptor in NE   433 

Ozone treatment led to a strong increase in the S-nitrosylation levels of the UV resistance locus 8 434 

(UVR8) protein in both genotypes (Table 1, Figure 6A) with more pronounced S-nitrosylation in 435 

NE (Supplemental Table S5B, Figure 6E). UVR8 is a receptor protein for UV-B radiation and 436 

localized as homodimer in the cytosol (Rizzini et al., 2011). UV-B induces the dimer 437 
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dissociation, the translocation of the UVR8 monomers into the nucleus and the activation of the 438 

transcription factors elongated hypocotyl 5 and MYB12, leading to the expression of a range of 439 

genes encoding flavonoid biosynthetic enzymes, DNA repair machineries, and antioxidant 440 

proteins (Favory et al., 2009; Heijde and Ulm, 2012). It has been proposed that NO-mediated S-441 

nitrosylation is involved in the nuclear translocation of UVR8 (Tossi et al., 2011), similar to the 442 

nuclear translocation of GAPDH undergoing S-nitrosylation (Hara et al., 2005). The present data 443 

confirm UVR8 as a target of protein S-nitrosylation (Figure 4, Supplemental Table S2). UV-B 444 

exposure and ozone fumigation share many common metabolic and regulatory components, such 445 

as the increase in ROS formation and the up-regulation of antioxidants (Rao et al., 1996). One 446 

may suggest that the S-nitrosylation of the UVR8 photoreceptor, triggering transcriptional 447 

changes favoring the production of ROS-quenching polyphenols (Quideau et al., 2011), may be a 448 

general response to oxidative stress. This assumption would indicate a higher amount of phenolic 449 

compounds in the NE genotype undergoing conditions of oxidative stress. However, UV-B 450 

treatment of the NE genotype resulted in a reduced accumulation of UV-B absorbing compounds 451 

compared to IE (Kaling et al., 2015). Additional work is therefore necessary to clarify the 452 

importance of UVR8 in the regulation of different regulations of phenolic compound 453 

accumulation in NE genotypes compared to the natural situation of isoprene emitters. 454 

 455 

Conclusions 456 

The present data demonstrate that the isoprene in poplar leaves influences rapid stress-induced 457 

changes in NO emission and thus in the pattern of the in vivo S-nitroso-proteome. In accordance 458 

with the higher NO emission rates in NE, the S-nitroso-proteome of this genotype was more 459 

susceptible to ozone-induced changes compared with IE plants. Our results demonstrate that the 460 

nitrosative pressure is lower when isoprene is present in leaf cells. The main target sites of NO 461 

action in NE poplar are proteins related to the light and dark reactions of photosynthesis, the 462 

TCA cycle, protein metabolism, and redox regulation (Figure 7). CAT2, APX, and thioredoxin-463 

dependent peroxidase 1, all being involved in the detoxification of ROS (Mittler, 2002) showed 464 

an increase in S-nitrosylation in NE plants upon oxidative stress. These results indicate that 465 

isoprene indirectly regulates ROS formation via control of the S-nitrosylation levels of ROS-466 

metabolizing enzymes. There is evidence (Ortega-Galisteo et al., 2012; de Pinto et al., 2013) that 467 

S-nitrosylation inhibits the activities of CAT and APX, thus increasing the accumulation of H2O2 468 

(Dat et al., 2003; Vandenabeele et al., 2004; Davletova et al., 2005) as a prerequisite of the 469 
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plant’s defense response (Apel and Hirt, 2004; de Pinto et al., 2006). Considering the observed 470 

lower constitutive amount of many anti-oxidative enzymes in the NE proteome, the present data 471 

indicate that the anti-oxidative defense system in poplar that maintains ROS production under 472 

strict control is re-arranged in NE genotypes at the protein level and at the level of protein S-473 

nitrosylation.  474 

Overall, the data strongly support the hypothesis (Vickers et al., 2009b) that unsaturated volatile 475 

isoprenoids such as isoprene can alter signaling pathways by modulating to what extent and how 476 

rapidly ROS and NO signaling molecules are generated within a cell, thus likely modulating the 477 

velocity and extent of the physiological response upon biotic and abiotic stress (Ahlfors et al., 478 

2009; Wang et al., 2013). 479 

 480 

Materials and Methods 481 

Plant material and growth conditions 482 

All experiments were performed with the natural hybrid (WT) gray poplar (Populus × canescens 483 

(Aiton.) Sm.; INRA clone 7171-B4; syn. Populus tremula × Populus alba), a naturally strong 484 

isoprene-emitter. Additionally, empty vector control plants (EV) were used. In addition to these 485 

two isoprene emitting (IE) lines, two well-characterized isoprene non emitting (NE) lines 486 

(35S::PcISPS-RNAi lines Ra1 and Ra2; see Behnke et al., 2007) were chosen for the 487 

experiments. Plantlets were amplified by micropropagation and cultivated (27:24 °C (day/night), 488 

16-h photoperiod, approx. 100 µmol photons m-2 s-1) under sterile conditions on half-489 

concentrated MS medium in 1 L glass containers each accommodating 6–7 plantlets each. Every 490 

8–10 weeks, plantlets were transferred to fresh medium. Rooting shoots were transferred to soil 491 

substrate (50% v/v Fruhstorfer Einheitserde, 50% v/v silica sand (particle size 1–3 mm)) and 492 

grown under a plastic lid to maintain high humidity. Plantlets were adapted to ambient air by 493 

gradually opening the lid. After approximately 4 weeks on soil, plants were transferred to bigger 494 

pots (2.2 L; 25% v/v Fruhstorfer Einheitserde, 25% v/v silica sand, 50% v/v perlite) and further 495 

cultivated in the greenhouse. The soil was initially mixed with a slow release-fertilizer (Triabon 496 

(Compo, Münster, Germany) and Osmocote (Scotts Miracle-Gro, Marysville, USA); 1:1, 10 g L-497 
1 soil). Climate conditions in the greenhouse were: 22:18 °C (day:night), 16-h photoperiod, 498 

supplemental lighting was used (200-240 µmol photons m-2 s-1).  499 

 500 
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Experimental set up and ozone fumigation 501 

The ozone experiment was performed in two sun simulators (for details, see Thiel et al., 1996) in 502 

Munich. The sun simulators mimic the spectral irradiance in nature nearly perfectly, simulating 503 

natural irradiation. In both chambers (control (C), and ozone (O)), 24 8-week-old plants were 504 

placed (6 plants from each genotype; IE: WT, EV; NE: Ra1, Ra2) and acclimated to the 505 

prevailing temperature and light conditions (27/18 °C (day/night), approx. 800 µmol photons m-2 506 

s-1) for 7 days. The ozone pulse (800 nl L-1 for 1 h) was given at 10.00 am. Immediately after 507 

fumigation, leaf numbers 9 and 10 (counted from the apex) were frozen in liquid nitrogen for 508 

later biochemical and proteomic analyses.  509 

 510 

Analysis of NO emissions following acute ozone exposure 511 

Measurements were made at the branch level in a dynamic cuvette system (Vanzo et al., 2014). 512 

Whole plants were cut and immediately recut under water, and the branch with 18 leaves was 513 

introduced into a gas-tight glass cuvette (38.3 L, 500 µmol m-2 s-1 PPFD, air temperature 25 °C ± 514 

1 °C, and flux 11.5 l min-1) and exposed to synthetic air made by mixing pure O2, N2 and CO2 515 

from cylinders. Concentrations of the three gases (20%, 80%, 400 μL L-1, respectively) were set 516 

with mass flow controllers. Net CO2 assimilation and transpiration were monitored as differences 517 

between cuvette inlet and outlet air by infrared-absorption (Fischer-Rosemount Binos 100 4P, 518 

Hasselroth, Germany). When net CO2 assimilation was stable, ozone fumigation (with 800 nl L-519 
1) was applied for 1 hour. Part of the cuvette outflow was diverted to a NO – NO2 – NO3 520 

analyzer (ECO PHYSICS AG, Switzerland, model CLD 88 Y p). The detection limit of this 521 

instrument is 50 ppt. The NO emission (ΦNO, nmol mol-1) from the leaves was calculated as 522 

described in Velikova et al. (2008). Calculations were made based on the gas diffusion: ΦNO = 523 

[NOcv xΦair]/S, where NOcv (nmol mol-1) is the NO concentration in the cuvette, Φair (mol s-1) is 524 

the airflow rate in the cuvette and S is the leaf area in the cuvette (m2). 525 

 526 

 527 

Biotin switch assay and LC-MS/MS-based identification and quantification of S-nitrosylated 528 

proteins 529 

Six biological replicates per treatment were analyzed from each genotype (IE: WT, EV; NE: 530 

Ra1, Ra2). The detection of in vivo S-nitrosylated proteins was performed via a modified biotin 531 

switch assay (Vanzo et al., 2014). Frozen leaf powder was mixed with HENT buffer (100 mM 532 
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HEPES-NaOH pH 7.4, 10 mM EDTA, 0.1 mM Neocuproine, 1% (v/v) Triton X-100) in a 533 

mixing ratio of leaf powder:buffer 1:5 (w/v). The HENT buffer contained 30 mM NEM and 534 

protease inhibitor cocktail tablets (Complete, Roche, Grenzach-Wyhlen, Germany). The 535 

homogenate was mixed on a shaker for 30 seconds, incubated on ice for 15 min and centrifuged 536 

twice (14,000 g for 10 min). The protein concentration of the supernatant was adjusted to 1 µg 537 

µL-1with HENT buffer. For blocking, four-times the volume (v/v) of HENS (225 mM HEPES-538 

NaOH pH 7.2, 0.9 mM EDTA, 0.1 mM Neocuproine, 2.5% (w/v) SDS)) was freshly prepared, 539 

and 30 mM NEM was added to the protein extracts. The samples were incubated at 37°C for 30 540 

minutes. Excess NEM was removed by precipitation with ice-cold acetone, and the protein 541 

pellets were re-suspended in 0.5 ml HENS buffer (without NEM) per mg of protein in the 542 

starting sample. Biotinylation was achieved by adding biotin-HPDP and SIN (1 mM and 3 mM 543 

final concentrations, respectively) with further dark incubation at RT for 1 hour. The controls for 544 

false-positive signals (FP) were treated with SIN in the presence of NEM for 25 minutes at 37°C 545 

before the biotinylation step (Supplemental Figure S2). After biotinylation, the proteins were 546 

precipitated with acetone and subjected to affinity purification of biotinylated proteins by 547 

NeutrAvidin agarose, as described elsewhere (Lindermayr et al., 2005). For affinity purification 548 

of biotinylated proteins, the precipitated proteins were re-suspended in HENS buffer (100 µL per 549 

mg protein in the starting sample) and 2 volumes of neutralization buffer (20 mM HEPES, pH 550 

7.7, 100 mM NaCl, 1 mM EDTA, and 0.5% (v/v) Triton X-100). Biotinylated proteins were 551 

incubated for 1 hour at RT with the NeutrAvidin-agarose (30 µL per mg protein). The agarose-552 

matrix was washed extensively with 20 volumes of washing buffer (600 mM NaCl in 553 

neutralization buffer) and bound proteins were eluted with 100 mM β-mercaptoethanol in elution 554 

buffer (20 mM HEPES, pH 7.7, 100 mM NaCl, 1 mM EDTA) and precipitated with ice-cold 555 

acetone. 556 

 557 

In-solution digest of S-nitrosylated proteins after NeutrAvidin affinity purification 558 

The pellets from the acetone-precipitation were dissolved in 30 µL of 50 mM ammonium 559 

bicarbonate. For protein reduction, 2 µL of 100 mM DTT were added and incubated for 15 min 560 

at 60 °C. After cooling to RT, the free cysteine residues were alkylated by adding 2 µL of freshly 561 

prepared 300 mM iodoacetamide solution for 30 min. A tryptic digest was performed overnight 562 

at 37 °C using 0.5 µg of trypsin (Promega, Mannheim, Germany) per sample. The digestion was 563 

stopped by adding trifluoroacetic acid and then stored at -20 °C. 564 
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 565 

Preparation of whole-cell extracts (WCE) for overall proteomic analyses 566 

From each genotype (IE: WT, EV; NE: Ra1, Ra2), 6 biological replicates per treatment were 567 

analyzed. Fifty mg of frozen, homogenized leaf tissue were mixed with 1 mL HENT buffer 568 

containing a protease inhibitor cocktail tablet and incubated on ice for 10 min. After 569 

centrifugation (14,000 g, 10 min), Triton X-100 was removed by passing samples over a 570 

Sephadex G-25 column (GE Healthcare, Little Chalfont, UK) using HEN buffer (without Triton 571 

X-100). After determination of the protein content by the Bradford assay, aliquots containing 10 572 

µg of protein were prepared for LC-MS/MS analysis and subsequent label-free quantification. 573 

 574 

Filter-aided proteome preparation (FASP) digest of proteins from WCEs 575 

From each of the WCEs, an aliquot containing 10 µg of protein was digested using a modified 576 

FASP procedure (Wisniewski et al., 2009). The proteins were reduced and alkylated using DTT 577 

and IAA and then centrifuged through a 30 kDa cut-off filter device (PALL, Port Washington, 578 

USA), washed thrice with UA buffer (8 M urea in 0.1 M Tris/HCl pH 8.5) and twice with 50 579 

mM AmBic. The proteins were digested for 2 hours at room temperature using 1 µg Lys-C 580 

(Wako Chemicals, Neuss, Germany) and for 16 hours at 37°C using 2 µg trypsin (Promega, 581 

Mannheim, Germany). The peptides were collected by centrifugation (10 min at 14,000 g), and 582 

the samples were acidified with 0.5% TFA and stored at -20 °C. 583 

 584 

Mass spectrometry 585 

Digested samples (after affinity purification or from WCE) were thawed and centrifuged (14,000 586 

g) for 5 minutes at 4 °C. The LC-MS/MS analysis was performed as previously described on an 587 

Ultimate 3,000 nano-HPLC coupled to a LTQ-OrbitrapXL (Thermo Fischer Scientific, Bremen, 588 

Germany) (Hauck et al., 2010). Every sample was automatically injected and loaded onto the 589 

trap column at a flow rate of 30 μl min-1 in 5% buffer B (98% acetonitrile (ACN)/0.1% formic 590 

acid (FA) in HPLC-grade water)) and 95% buffer A (2% ACN/0.1% FA in HPLC-grade water). 591 

After 5 minutes, the peptides were eluted from the trap column and separated on the analytical 592 

column by a 135-minute gradient from 7% to 32% of acetonitrile in 0.1% formic acid at 300 nl 593 

min-1 flow rate followed by a short gradient from 32% to 93% acetonitrile for 5 minutes. The 594 

gradient was set back between each sample to starting conditions and left to equilibrate for 20 595 

minutes. The 10 most abundant peptide ions from the MS pre-scan were fragmented in the linear 596 
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ion trap if they showed an intensity of at least 200 counts and if they were at least +2 charged. 597 

During fragmentation, a high-resolution (6 x 104 full-width half maximum at 400 m/z) MS 598 

spectrum was acquired in the Orbitrap with a mass range from 300 to 1,500 Da. 599 

 600 

Label-free analysis using Progenesis LC-MS 601 

The acquired spectra were loaded to the Progenesis LC-MS software (v2.5, Nonlinear Dynamics 602 

Ltd, Newcastle upon Tyne, UK) for label-free quantification and analyzed as previously 603 

described (Hauck et al., 2010; Merl et al., 2012). Features of only one charge or features with 604 

more than seven charges were excluded. The raw abundances of the remaining features were 605 

normalized to allow for the correction of factors resulting from experimental variation. Rank 1-3 606 

MS/MS spectra were exported as a MASCOT generic file and used for peptide identification 607 

with MASCOT (v2.2 and 2.3.02, Matrix Science, London, UK) in the Populus trichocarpa 608 

protein database (v4; 17,236,452 residues; 45,036 sequences). The search parameters were 609 

10 ppm peptide mass and 0.6 Da MS/MS tolerance, one missed cleavage allowed. 610 

For the identification and quantification of S-nitroso-proteins, N-ethylmaleinimidation and 611 

carbamidomethylation were set as variable modifications, as well as methionine oxidation. A 612 

MASCOT-integrated decoy database search calculated a false discovery rate (FDR) of 0.17% 613 

using a MASCOT ion score cut-off of 30 and a significance threshold of P < 0.01. 614 

For the identification and quantification of total proteins in the WCEs of leaves, 615 

carbamidomethylation was set as a fixed modification, and methionine oxidation and 616 

deamination of asparagine/glutamine as variable modification. A MASCOT-integrated decoy 617 

database search calculated a FDR of < 1%. The MASCOT Percolator algorithm was used to 618 

distinguish between correct and incorrect spectrum identification (Brosch et al., 2009), with a 619 

maximum q value of 0.01. The peptides with a minimum percolator score of 15 were used 620 

further. 621 

For each dataset, the peptide assignments were re-imported into the Progenesis LC-MS software. 622 

After summing up the abundances of all of the peptides that were allocated to each protein, the 623 

identification and quantification results were exported and are given in Supplemental Table S6. 624 

 625 

Visualization of proteome data 626 

For proteomics visualization we applied Voronoi treemaps as introduced by Bernhardt et al., 627 

(2009). The presented Treemaps subdivide the 2D plane into subsections according to the 628 
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hierarchical data structure of gene functional assignments as taken from the corresponding A. 629 

thaliana orthologs (http://www.arabidopsis.org/tools/bulk/go/index.jsp), which were obtained 630 

via the POPGENIE (http://www.popgenie.org) database. For the top level the total area is 631 

subdivided into main categories, afterwards the main categories into subcategories and the 632 

subcategories into equally sized cells representing significantly changed proteins. According to 633 

this classification the "heat shock protein 70" (Fig. 2B), was assigned to the subcategory "protein 634 

folding" (Fig. 2A) and this to the category "amino acid and protein synthesis" (Fig. 2A). In the 635 

overview images functional classes were encoded by using colors depending on categories. 636 

Expression change was encoded by using a blue via grey to orange color gradient with blue for 637 

decreased, grey for unchanged and orange for increased expression. 638 

 639 

Statistics 640 

The differences in the overall proteome and the S-nitroso-proteome of the IE and NE genotypes 641 

between control and ozone-treated samples were analyzed as previously described (Vanzo et al., 642 

2014) using Principal Component Analysis (PCA) and Orthogonal Partial Least Square 643 

regression (OPLS) statistical methods from the software packages ‘SIMCA-P’ (v13.0.0.0, 644 

Umetrics, Umeå, Sweden). The results were validated by ‘full cross validation’ (Erikssonet al., 645 

2006) using a 95% confidence level. 646 

Raw abundances from the label-free analysis of proteome were extracted from the Progenesis 647 

LC-MS/MS software (v2.5, Nonlinear Dynamics Ltd). Protein intensities were normalized to the 648 

corresponding (averaged) protein abundance in whole-cell extracts (WCE) of the control (C) and 649 

ozone-treated (O) leaves. The PCA was performed on normalized, summed S-nitroso-protein 650 

intensities (centered and scaled with 1 SD-1), which were pre-processed by logarithmic (base 10) 651 

transformation and used as X-variables. Six independent biological replicates were used for each 652 

C and O treatment and for IE and NE genotypes, respectively. The size of the analyzed matrix 653 

was 2024-by-24 and 206-by-24 for the overall proteome and the S-nitroso-proteome, 654 

respectively. The OPLS was performed as PCA by giving as Y-variable a value of 0 to C 655 

samples and a value of 1 to O samples. S-nitroso-proteins showing Variable of Importance for 656 

the Projection (VIP) greater than 1 and the uncertainty bars of the jack-knifing method smaller 657 

than the respective VIP value were defined as discriminant proteins that can separate O from C 658 

samples and IE from NE samples. Additionally, discriminant proteins were tested for 659 
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significance difference (P < 0.05) between C and O samples using Student’s t-test and two-way-660 

ANOVA (SPSS, v22.0, SPSS Inc., Chicago, USA).   661 

662 
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Supplemental Material 663 

 664 

Supplemental Table S1. Proteins, that discriminately separate non–isoprene emitting (NE) from 665 

isoprene emitting (IE) gray poplar samples in the OPLS model of the whole proteome. 666 

 667 

Supplemental Table S2. Complete list of LC-MS/MS identified S-nitrosylated proteins in 668 

isoprene-emitting (IE) and non-isoprene-emitting (NE) gray poplar leaves (control and ozone).  669 

 670 

Supplemental Table S3. Proteins, that discriminately separate non–isoprene-emitting (NE) from 671 

isoprene-emitting (IE) gray poplar samples in the control (C) and ozone (O) treatment in the 672 

OPLS of the S-nitroso proteome.  673 

 674 

Supplemental Table S4. Constitutively S-nitrosylated proteins, which are differentially 675 

abundant in isoprene-emitting (IE) and non-isoprene-emitting (NE) gray poplar under steady-676 

state conditions (only control samples).  677 

 678 

Supplemental Table S5. S-nitrosylated proteins, which are differentially abundant in ozone and 679 

control treatments of (A) isoprene-emitting (IE) and (B) non-isoprene-emitting (NE) gray poplar 680 

samples.  681 

 682 

Supplemental Table S6. Full data set for protein identification of total proteins from whole cell 683 

extracts (WCE) and S-nitroso-proteins with corresponding protein abundances after label-free 684 

quantification. 685 

 686 

Supplemental Figure S1. S-nitrosylated proteins detected in the control and ozone samples of 687 

the isoprene emitting and non-isoprene emitting genotypes. A) PCA score plot. B) Functional 688 

categorization of the 203 identified S-nitrosylated proteins in IE and NE poplar. 689 

 690 

Supplemental Figure S2. Detection of endogenously S-nitrosylated proteins in non-isoprene-691 

emitting (NE) gray poplar. (A) Western blot showing in vivo S-nitrosylated proteins including 692 

controls for false-positives (FP); (B) Ponceau S staining of total protein.  693 

 694 
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Figure legends 1017 

 1018 

Figure 1. Whole proteome comparison of isoprene-emitting (IE, black) and non-isoprene-1019 

emitting (NE, red) gray poplar leaves. A) Volcano plot showing the magnitude of differential 1020 

protein abundance in NE and IE (Log2 (fold change)) compared to the measure of the statistical 1021 

significance (-Log10 (P-value, t-test)). Vertical, dashed lines indicate the log fold change of ± 1, 1022 

and the horizontal line a significance value of α = 0.05. The proteins with the highest and 1023 

significant fold changes between NE and IE samples are highlighted and numbered: 1 = 1024 

terpenoid cyclase, 2 = isoprene synthase, 3 = Rubisco large chain, 4 = 50S ribosomal protein, 5 = 1025 

ubiquinone biosynthesis protein, 6 = chloroplast inner membrane import protein Tic22, 7 = basic 1026 

pentacysteine 4, 8 = EP3-3 chitinase, 9 = eukaryotic aspartyl protease family. B)  Discriminant 1027 

proteins that explain the separation between IE and NE (116 in total, Supplemental Table S1) 1028 

grouped according their functional category. Black bars mean up-regulated in IE, red bars 1029 

indicate an up-regulation in the NE samples. Score (C) and loading (D) plots of OPLS of the 1030 

whole proteome. C) Plants were divided into IE group (black circles, n = 6) and NE group (red 1031 

circles, n = 6). Ellipse indicates the tolerance based on Hotelling's T2 with a significance level of 1032 

0.05. D) Each functional group of proteins is indicated with different colors. The outer and inner 1033 

ellipses indicate 100% and 75% explained variance, respectively. Each point represents an 1034 

independent plant in the score plot and an individual protein in the loading plot. OPLS model 1035 

fitness: R2(X) = 69.9%, R2(Y) = 100%, r2 = 98.6%, Q2(cum) = 79.3% using 1 predictive 1036 

component. RMSEE = 0.072; RMSEcv = 0.227. P < 0.05, cross-validated ANOVA.  1037 

 1038 

Figure 2. Voronoi Treemaps showing the overall proteome changes of isoprene-emitting (IE: 1039 

WT/EV) and non-isoprene-emitting (NE: Ra1/Ra2) gray poplar leaves. The Treemaps subdivide 1040 

the 2D plane into subsections according to the hierarchical data structure of gene functional 1041 

assignments, taken from the corresponding Arabidopsis thaliana L.  orthologs 1042 

(http://www.arabidopsis.org/tools/bulk/go/index.jsp), which were obtained via the POPGENIE 1043 

(http://www.popgenie.org) database. Protein expression changes are displayed according to their 1044 

functional categories: Hierarchically structured functional assignments were displayed in 1045 

treemaps (A, B). C) Expression changes (log2 ratios of condition 1 vs condition 2) were color-1046 

coded. Orange codes for increased in NE (log2 ratio 4), grey means unchanged and blue codes 1047 

for decreased (log2 ratio 4) expression in NE genotype.  1048 
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 1049 

Figure 3. Time-course curves of NO emission rates in shoots of isoprene-emitting (IE: WT/EV) 1050 

and non-isoprene-emitting (NE: Ra1/Ra2) gray poplars before and after ozone fumigation (800 1051 

nL L-1 for 1 h) Measurements were performed at 25°C and 500 μmol m-2 s-1 PPFD. Values are 1052 

means of four biological replicates ± SE. The vertical gray bar indicates the period of ozone 1053 

fumigation. 1054 

 1055 

Figure 4. Voronoi Treemaps showing the 63 S-nitrosylated proteins discriminant in IE and NE 1056 

genotypes (see also Supplemental Table S3) and assigned to functional categories at the 1st level 1057 

(A) and 3rd level (B). 1058 

 1059 

Figure 5. Score (A) and loading (B) plots of the OPLS of S-nitrosylated protein abundances 1060 

from control and ozone samples of isoprene emitting (IE = WT/EV) and non-isoprene-emitting 1061 

(NE = Ra1/Ra2) genotypes. A) Plants were divided into ozone group (triangles, n = 12) and 1062 

control group (circles, n = 12). Ellipse indicates the tolerance based on Hotelling's T2 with a 1063 

significance level of 0.05. B) Each functional group of proteins is indicated with different colors. 1064 

The outer and inner ellipses indicate 100% and 75% explained variance, respectively. Each point 1065 

represents an independent plant in the score plot and an individual protein in the loading plot. 1066 

OPLS model fitness: R2(X) = 48.7%, R2(Y) = 100%, r2 = 69%, Q2(cum) = 59% using 1 1067 

predictive component. RMSEE = 0.224; RMSEcv = 0.293. -values of cross-validated ANOVA: 1068 

NE/IE (genotype), P < 0.05; O/C (treatment), P < 0.01. 1069 

 1070 

Figure 6. Voronoi Treemaps showing changes in the S-nitroso-proteome depending on (A) 1071 

ozone treatment (O/C) and (B) genotype (NE/IE). Ozone-induced changes in the S-nitroso-1072 

proteome of (C) isoprene-emitting (IE = WT/EV) and (E) non-isoprene-emitting (NE = 1073 

Ra1/Ra2) genotypes. Ratios of S-nitrosylation rates in NE/IE under control conditions (D) and 1074 

(F) ozone treatment. S-Nitrosylated proteins were assigned to the functional categories displayed 1075 

in Figure 4. Expression changes (log2 ratios of two conditions (see A, B, C, D, E, and F)) were 1076 

color-coded. Orange means increased (log2 ratio -3), grey means unchanged and blue means 1077 

decreased (log2 ratio 3) expression. 1078 

 1079 
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Figure 7. Scheme of the possible interactions of isoprene with NO formation processes and 1080 

biochemical target sites of NO in non-isoprene-emitting (NE) gray poplar (modifed after Moreau 1081 

et al. 2010). 1082 

 1083 

  1084 
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TABLES 1085 

 1086 

Table 1. Log-fold changes of the abundances of S-nitrosylated proteins between isoprene-1087 

emitting (IE) and non-isoprene-emitting (NE) gray poplar after ozone fumigation (only ozone 1088 

samples) which differ significantly between lines (VIP score). The intensities of the S-1089 

nitrosylated proteins were normalized to the corresponding global protein abundances of ozone-1090 

treated (O) leaves. Functional categorization was done according to MapMan BIN 1091 

(http://ppdb.tc.cornell.edu/dbsearch/searchacc.aspx). * LC-MS/MS quantification based on one 1092 

unique peptide. 1093 

 1094 

Accession 
VIP 
score 

SE 
Log2 

NEO/IEO 
Annotation MapMan BIN category 

P-value 
(t-test) 

POPTR_0004s01030 1.73 0.60 0.9 Glycine cleavage T-protein family 
Amino acid 

metabolism/degradation 
0.091 

POPTR_0004s01320* 1.49 0.78 0.7 Glyoxalase I homolog 
Amino acid 

metabolism/degradation 
0.075 

POPTR_0001s37650* 1.61 0.58 0.5 Fasciclin-like arabinogalactan 1 Cell wall 0.115 

POPTR_0016s02620* 1.36 1.07 0.8 
Alpha-N-arabinofuranosidase 1 

(ARA1) 
Cell wall 0.023 

POPTR_0006s02850* < 1 - 0.6 
Alpha-N-arabinofuranosidase 

(ARA) 
Cell wall 0.045 

POPTR_0006s12740* 1.45 1.08 1.6 Cell division protein 48 (CDC48) Cell/division 0.065 

POPTR_0001s25630* 1.92 0.74 1.0 
Thiamine biosynthesis protein 

(ThiC) 

Co-factor and vitamine 

metabolism 
0.025 

POPTR_0015s08540* 2.08 0.66 1.5 Aldehyde dehydrogenase 2B4 Fermentation 0.010 

POPTR_0008s05640 1.61 0.46 1.0 Triosephosphate isomerase (TPI) Glycolysis 0.007 

POPTR_0008s08400* < 1 - 1.1 Phosphoglycerate kinase Glycolysis 0.013 

POPTR_0006s10480 1.50 0.86 0.9 Ferretin 1 Metal handling 0.079 

POPTR_0016s14950* < 1 - 1.6 
2,3-Bisphosphoglycerate mutase, 

putative 

Metal handling/binding, 

chelation and storage 
0.002 

POPTR_0016s14310 1.54 0.74 0.4 
NADPH dependent ketone 

reductase (AOR) 
Misc 0.052 

POPTR_0006s19810* 1.48 0.83 1.0 Leucyl aminopeptidase (LAP2) Protein/degradation 0.008 

POPTR_0001s35230* 1.73 0.83 1.4 Ribosomal protein L12-A Protein/synthesis 0.008 

POPTR_0001s26970* < 1 - 1.6 Ribosomal protein Protein/synthesis 0.009 

POPTR_0004s23490* < 1 - 1.7 Elongation factor 1 gamma 1, Protein/synthesis 0.024 
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putative 

POPTR_0002s00840 2.39 1.06 0.9 
Glyceraldehyde-3-phosphate 

dehydrogenase, subunit B 
PS/calvin cyle 0.135 

POPTR_0010s20060 2.28 0.29 1.2 Sedoheptulose-1,7-bisphosphatase PS/calvin cyle 0.000 

POPTR_0010s20810 2.15 0.91 0.6 Rubisco activase PS/calvin cyle 0.134 

POPTR_0013s03700 1.79 0.59 0.5 
Ribose 5-phosphate isomerase, 

type A protein 
PS/calvin cyle 0.079 

POPTR_0003s09830 1.63 0.84 0.6 Phosphoribulokinase (PRK) PS/calvin cyle 0.009 

POPTR_0001s08420* 1.55 0.94 0.9 
Ferredoxin-plastoquinone 

reductase (PGR5-like A) 
PS/lightreaction 0.001 

POPTR_0008s15100* 1.14 0.48 3.1 Photosystem I subunit D-2 PS/lightreaction 0.148 

POPTR_0002s01080 1.55 0.80 0.8 Catalase 2 (CAT2) Redox 0.053 

POPTR_0005s17350* 1.27 1.10 1.3 Ascorbate peroxidase (APX) Redox 0.001 

POPTR_0001s44990* 1.18 1.00 1.0 
Thioredoxin-dependent peroxidase 

1 (PrxII B) 
Redox 0.011 

POPTR_0009s02070 < 1 -  0.7 Ascorbate peroxidase (APX) Redox 0.020 

POPTR_0009s07040* 2.33 0.83 0.7 
NIFS-like cysteine desulfurase, 

chloroplastic 
S-assimilation 0.131 

POPTR_0002s01990* 1.82 0.53 1.2 
Cinnamyl alcohol dehydrogenase-

like protein (CAD) 
Secondary metabolism 0.011 

POPTR_0007s04700* 1.89 1.18 1.7 UVB-resistance protein (UVR8) Stress/abiotic 0.043 

POPTR_0005s10990 2.03 1.24 0.6 Aconitase 1 (ACO1) TCA / org.transformation 0.064 

POPTR_0008s16670 1.36 1.08 1.2 Malate dehydrogenase TCA / org.transformation 0.002 

 1095 

 1096 

 1097 
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Figure 1. Whole proteome comparison of isoprene-emitting (IE, black) and non-isoprene-

emitting (NE, red) gray poplar leaves. A) Volcano plot showing the magnitude of differential 

protein abundance in NE and IE (Log2 (fold change)) compared to the measure of the 

statistical significance (-Log10 (P-value, t-test)). Vertical, dashed lines indicate the log fold 

change of ± 1, and the horizontal line a significance value of ! = 0.05. The proteins with the 

highest and significant fold changes between NE and IE samples are highlighted and 

numbered: 1 = terpenoid cyclase, 2 = isoprene synthase, 3 = Rubisco large chain, 4 = 50S 

ribosomal protein, 5 = ubiquinone biosynthesis protein, 6 = chloroplast inner membrane 

import protein Tic22, 7 = basic pentacysteine 4, 8 = EP3-3 chitinase, 9 = eukaryotic aspartyl 

protease family. B) Discriminant proteins that explain the separation between IE and NE (116 

in total, Supplemental Table S1) grouped according their functional category. Black bars 

mean up-regulated in IE, red bars indicate an up-regulation in the NE samples. Score (C) and 

loading (D) plots of OPLS of the whole proteome. C) Plants were divided into IE group 

(black circles, n = 6) and NE group (red circles, n = 6). Ellipse indicates the tolerance based 

on Hotelling's T2 with a significance level of 0.05. D) Each functional group of proteins is 

indicated with different colors. The outer and inner ellipses indicate 100% and 75% explained 

variance, respectively. Each point represents an independent plant in the score plot and an 

individual protein in the loading plot. OPLS model fitness: R2(X) = 69.9%, R2(Y) = 100%, r2 

= 98.6%, Q2(cum) = 79.3% using 1 predictive component. RMSEE = 0.072; RMSEcv = 

0.227. P < 0.05, cross-validated ANOVA. 
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Figure 2. Voronoi Treemaps showing the overall proteome changes of isoprene-emitting (IE: 

WT/EV) and non-emitting (NE: Ra1/Ra2) gray poplar leaves. The Treemaps subdivide the 

2D plane into subsections according to the hierarchical data structure of gene functional 

assignments, taken from the corresponding Arabidopsis thaliana L.  orthologs 

(http://www.arabidopsis.org/tools/bulk/go/index.jsp), which were obtained via the 

POPGENIE (http://www.popgenie.org) database. Protein expression changes are displayed 

according their functional categories: Hierarchically structured functional assignments were 

displayed in treemaps (A, B). C) Expression changes (log2 ratios of condition 1 vs condition 

2) were color-coded. Orange codes for increased in NE (log2 ratio 4), grey means unchanged 

and blue codes for decreased (log2 ratio 4) expression in NE genotype. 
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Figure 3. Time-course curves of NO emission rates in shoots of isoprene-emitting (IE: 

WT/EV) and non-isoprene-emitting (NE: Ra1/Ra2) gray poplars before and after ozone 

fumigation (800 nl L-1 for 1 h) Measurements were performed at 25°C and 500 µmol m-2 s-1 

PPFD. Values are means of four biological replicates ± SE. The vertical gray bar indicates the 

period of ozone fumigation. 
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Figure 4. Voronoi Treemaps showing the 63 S-nitrosylated proteins discriminant in IE and 

NE genotypes (see also Supplemental Table S3) and assigned to functional categories at the 

1st level (A) and 3rd level (B). 
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Figure 5. Score (A) and loading (B) plots of the OPLS of S-nitrosylated protein abundances 

from control and ozone samples of isoprene emitting (IE = WT/EV) and non-isoprene-

emitting (NE = Ra1/Ra2) genotypes. A) Plants were divided into ozone group (triangles, n = 

12) and control group (circles, n = 12). Ellipse indicates the tolerance based on Hotelling's T2 

with a significance level of 0.05. B) Each functional group of proteins is indicated with 

different colors. The outer and inner ellipses indicate 100% and 75% explained variance, 

respectively. Each point represents an independent plant in the score plot and an individual 

protein in the loading plot. OPLS model fitness: R2(X) = 48.7%, R2(Y) = 100%, r2 = 69%, 

Q2(cum) = 59% using 1 predictive component. RMSEE = 0.224; RMSEcv = 0.293. !-values 

of cross-validated ANOVA: NE/IE (genotype), P < 0.05; O/C (treatment), P < 0.01. 
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Figure 6. Voronoi Treemaps showing changes in the S-nitroso-proteome depending on (A) 

ozone treatment (O/C) and (B) genotype (NE/IE). Ozone-induced changes in the S-Nitroso-

proteome of (C) isoprene-emitting (IE = WT/EV) and (E) non-isoprene-emitting (NE = 

Ra1/Ra2) genotypes. Ratios of S-nitrosylation rates in NE/IE under control conditions (D) 

and (F) ozone treatment. S-Nitrosylated proteins were assigned to the functional categories 

displayed in Figure 4. Expression changes (log2 ratios of two conditions (see A, B, C, D, E, 

and F)) were color-coded. Orange means increased (log2 ratio -3), grey means unchanged and 

blue means decreased (log2 ratio 3) expression. 
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Figure 7. Scheme of the possible interactions of isoprene with NO formation processes and 

biochemical target sites of NO in isoprene-emitting (IE) non-isoprene-emitting (NE) gray 

poplars (modifed after Moreau et al. 2010). 
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Supplemental Figure S1. S-nitrosylated proteins detected in the control and ozone samples 

of the isoprene emitting (IE, black) and non-isoprene emitting (NE, red) genotypes. S-nitroso-

proteins from IE and NE leaf extracts were detected by the Biotin switch assay, purified via 

affinity chromatography und identified by LC-MS/MS. A) PCA score plot based on protein 

abundances of S-nitrosylated proteins in IE and NE samples (control and ozone). The green 

square highlights the control samples (circles, n = 12), the blue square the ozone samples 

(triangles, n = 12). Within the ozone samples, the clustering of the NE samples is highlighted. 

B) Functional categorization of the 203 identified S-nitrosylated proteins in IE and NE poplar 

(control and ozone). The category ‘Other’ comprises C1-metabolism (1 protein), fermentation 

(1), gluconeogenesis (1), hormone metabolism (1), mitochondrial electron transport (1), 

nucleotide metabolism (1), N-metabolism (2), and S-assimilation (2). 
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Supplemental Table S1. Proteins, that discriminately separate non–isoprene-emitting (NE) from 

isoprene emitting (IE) gray poplar samples in the OPLS model of the whole proteome. Proteins 

with a VIP score > 1 and uncertainty bars of jack-knifing method smaller than the respective VIP 

value are considered discriminant. Additionally, proteins with VIP scores < 1 were added to the 

list when they showed a significant difference between IE and NE in the t-test (P < 0.05). OPLS 

analysis was performed on LC-MS/MS protein abundances obtained from whole leaf extracts 

from two IE (WT/EV, n = 6 biological replicates per line) and two NE (Ra1/Ra2, n = 6 

biological replicates per line) genotypes. Log2 ratios between NE and IE are given to show 

different amounts of the proteins. SE = standard error of jack-knifing method. Annotation and 

functional classification was achieved by several databases (Phytozome, PopGenIE, MapMan 

BIN). Proteins highlighted in bold are discussed in the text. * Identified and quantified by only 

one unique peptide. 
 

 
VIP 
score SE Log2 

(NE/IE) Description MapMan BIN category 

UP in NE      

Amino acid & Protein metabolism    

POPTR_0005s08480 1.822 1.377 0.22 2-isopropylmalate synthase 1  Amino acid 
metabolism.synthesis 

POPTR_0009s16390* 2.050 1.231 1.47 Eukaryotic aspartyl protease family 
protein  Protein.degradation  

POPTR_0009s11450 2.099 0.595 0.72 NAD(P)-binding Rossmann-fold 
superfamily protein  Protein.targeting.chloroplast  

POPTR_0010s21270 1.895 1.131 0.23 Heat shock protein 70  Protein.folding  

POPTR_0008s11610* 1.821 1.045 0.78 Methionine aminopeptidase 1B  Protein.degradation  

POPTR_0011s14290* 1.832 1.415 0.33 OTU-like cysteine protease family protein Protein.degradation  

POPTR_0002s12610* < 1 - 0.58 Peptidase S8, subtilisin-related Amino acid 
metabolism.degradation 

POPTR_0012s14320* 1.941 1.682 0.31 Serine protease Protein.degradation  

POPTR_0014s02650 2.252 0.570 0.56 Subtilase Protein.degradation  

POPTR_0009s13560 2.016 0.638 0.53 Ubiquitin family protein Protein.degradation  

POPTR_0006s22210 2.043 1.103 0.27 Ubiquitin-conjugating enzyme  Protein.degradation  

Cell & Development     

POPTR_0011s16520 1.899 1.208 0.56 Tubulin beta chain  Cell.organisation  

POPTR_0007s11360* 1.842 1.082 0.50 Phospholipase A  Development.storage proteins  

Histone      

POPTR_0013s04000* 1.928 1.124 1.09 Winged-helix DNA-binding 
transcription factor  

DNA.synthesis/chromatin 
structure.histone  

POPTR_0010s22080 2.059 1.287 0.64 Histone superfamily protein  DNA.synthesis/chromatin 
structure.histone  



Hormone & Lipid metabolism 

POPTR_0002s01780 2.018 1.224 0.45 Sterol-C-methyltransferase, putative Hormone 
metabolism.brassinosteroide 

POPTR_0001s21750*  < 1 - 0.51 Lipid-transfer protein Lipid metabolism.lipid transfer  

Photosynthesis     

POPTR_0005s11500 1.936 1.782 0.26 Ferredoxin reductase  PS.lightreaction  

Redox & Stress     

POPTR_0001s40920* 2.191 0.733 0.98 3-Hydroxyacyl-CoA dehydrogenase  Biodegradation of Xenobiotic 

POPTR_0002s24400* 1.881 0.872 0.76 Cytochrome b5 isoform Redox  

POPTR_0019s12360 2.030 1.313 1.48 EP3-3 chitinase  Stress.biotic  

POPTR_0003s06370 1.907 1.776 0.42 Germin-like protein Stress.abiotic 

Transcription     

POPTR_0002s02820* 1.829 0.903 2.20 Basic pentacysteine 4  RNA.regulation of 
transcription  

POPTR_0018s02960 2.004 1.253 0.37 Nucleoid DNA-binding protein RNA.regulation of 
transcription  

Unknown      

POPTR_0009s11830* 1.899 0.789 0.69 Glycosyl hydrolase family 17 protein Not assigned 

POPTR_0016s05780 2.484 1.397 0.58 Unknown Not assigned 

Potri.011G061000* 2.199 0.534 0.54 UDP-glucosyl transferase Not assigned 

POPTR_0006s26630 2.057 0.975 0.47 Unknown Not assigned 

POPTR_0003s01730 2.261 0.830 0.46 Beta-glucosidase Not assigned 

Potri.T099600* 1.873 0.698 0.38 Hydroxyacylglutathione hydrolase Not assigned 

POPTR_0007s04720 2.215 0.885 0.30 Glucan-1,3-!-glucosidase Not assigned 

      

DOWN in NE      

Amino acid & Protein metabolism 

POPTR_0014s10800* 1.997 0.712 -0.38 Class II aaRS and biotin synthetases 
superfamily protein  Protein.aa activation 

POPTR_0001s41530 2.128 1.566 -0.19 Cyclophilin-like peptidyl-prolyl cis-trans 
isomerase Protein.folding  

POPTR_0016s10970 2.120 0.888 -0.51 FKBP-like peptidyl-prolyl cis-trans 
isomerase family protein Protein.folding  

POPTR_0010s04610 2.016 1.179 -0.20 Insulinase (Peptidase family M16) protein  Protein.degradation  

POPTR_0002s08590* 2.542 1.727 -0.97 Peptidase M20/M25/M40 family protein  Amino acid 
metabolism.degradation 

POPTR_0022s00410 2.389 0.762 -0.48 Translation elongation factor EF1B, putative Protein.synthesis 

POPTR_0010s19960* 1.931 1.024 -0.55 26S proteasome non-ATPase regulatory 
subunit 7 Protein.degradation  

POPTR_0014s14010 1.889 0.941 -0.64 Aspartate aminotransferase 1  Amino acid 
metabolism.synthesis 

POPTR_0018s02250 1.842 0.616 -0.72 Aspartate aminotransferase 2 Amino acid 
metabolism.synthesis 

POPTR_0002s01320 2.129 0.792 -0.39 Cell division protein ftsH homolog Protein.degradation  



POPTR_0002s23710* 2.436 1.732 -1.15 Chloroplast inner membrane import protein 
Tic22 Protein.targeting.chloroplast  

POPTR_0014s13560 1.922 0.910 -0.71 FTSH protease precursor Protein.degradation  

POPTR_0009s17070* < 1 - -0.42 Glutamyl-tRNA synthetase Protein.aa activation 

POPTR_0013s06430 1.968 1.647 -0.36 GrpE nucleotide exchange factor Protein.folding  

POPTR_0014s16280 < 1 - -0.26 Heat shock protein, putative Protein.folding  

POPTR_0001s12920 < 1 - -0.30 FKBP-type peptidyl-prolyl cis-trans 
isomerase Protein.folding  

POPTR_0005s08050 < 1 - -0.21 Myo-inositol-1 phosphate synthase Amino acid metabolism 

POPTR_0001s01960 < 1 - -0.37 NAD-dependent epimerase/dehydratase Protein.targeting.chloroplast  

POPTR_0003s12960 1.999 0.604 -0.51 Peptidase M1 family protein Protein.degradation  

POPTR_0011s17170*  < 1 - -0.41 Photosystem I reaction center subunit V PS.lightreaction.photosystem 
I.PSI  

POPTR_0008s17700  < 1 - -0.22 Proteasome subunit beta Protein.degradation 

POPTR_0010s13410* 2.233 1.263 -0.92 Ribosomal protein 50 S L15 Protein.synthesis 

POPTR_0271s00220 1.882 1.552 -0.51 Ribosomal protein 50S Protein.synthesis 

POPTR_0008s12000* < 1 - -0.46 Ribosomal protein 50S L15 Protein.synthesis 

POPTR_0018s11170 2.383 1.293 -1.19 Ribosomal protein 50S L35  Protein.synthesis 

POPTR_0001s44110 2.272 1.548 -0.86 Ribosomal protein 50S subunit L24 Protein.synthesis 

Potri.013G136600 2.472 0.679 -0.76 Ribosomal protein L22 Protein.synthesis 

POPTR_0006s13480 < 1 - -0.22 Ribosomal protein 60S L4 Protein.synthesis 

POPTR_0002s05330 1.829 0.623 -0.41 Ribosome recycling factor Protein.synthesis 

POPTR_0001s29870* 1.915 1.449 -0.36 Serine carboxypeptidase-like 18  Protein.degradation  

POPTR_0018s06210 2.240 1.167 -0.28 Similarity to nucleotide-binding protein Protein.folding  

Co-factor & Vitamine metabolism 

POPTR_0011s00500 2.171 0.849 -0.46 Thiamine thiazole synthase Co-factor and vitamine 
metabolism 

POPTR_0006s14200* 2.632 1.211 -1.11 Ubiquinone biosynthesis protein Co-factor and vitamine 
metabolism 

Misc      

POPTR_0008s20590 1.880 1.611 -0.51 Dienelactone hydrolase family protein Misc 

POPTR_0014s05740* < 1 - -0.49 PAP fibrillin Misc.fibrillin 

POPTR_0001s40780* < 1 - -0.59 Cytochrome P450 Misc.cytochrome P450 

Photosynthesis     

POPTR_0002s18740 2.091 1.611 -0.21 Flavin containing amine oxidoreductase Tetrapyrrole synthesis 

POPTR_0019s04970 1.951 0.633 -0.38 NADH-dependent cyclic electron flow 1  PS.lightreaction  

POPTR_0001s40130 2.288 1.331 -0.35 Uroporphyrinogen decarboxylase  Tetrapyrrole synthesis 

Potri.T058600 < 1 - -0.27 Apocytochrome f PS.lightreaction  

Potri.T171800 1.887 1.294 -0.40 ATP synthase PS.lightreaction  



POPTR_0004s01470 2.089 1.611 -0.26 ATP synthase gamma chain 1 PS.lightreaction  

Potri.011G113500* 1.830 0.757 -0.37 Cytochrome b PS.lightreaction  

Potri.T058600 2.513 1.318 -0.27 Cytochrome b6f complex PS.lightreaction  

POPTR_0016s02570 1.845 0.662 -0.53 Didicarboxylate diiron protein Tetrapyrrole synthesis 

POPTR_0013s14520 1.907 0.931 -0.51 Photosynthetic electron transfer C  PS.lightreaction.cytochrome 
b6/f  

POPTR_0003s05110 2.083 1.832 -0.42 Photosystem I protein PS.lightreaction 

POPTR_0008s15100 2.176 0.512 -0.71 Photosystem I 20kD protein PS.lightreaction 

POPTR_0002s25510 2.016 0.617 -0.70 Photosystem I reaction center subunit IV  PS.lightreaction 

POPTR_0007s04160 2.034 1.176 -0.47 Photosystem I subunit PS.lightreaction 

POPTR_0005s22780* 1.974 1.120 -0.62 Photosystem II family protein PS.lightreaction 

POPTR_0005s22830 1.877 0.539 -0.29 Photosystem II oxygen-evolving complex 
protein 2 precursor  PS.lightreaction 

POPTR_0007s07780 < 1 - -0.19 Photosystem II stability/assembly factor 
HCF136, putative PS.lightreaction 

Potri.T006000 2.132 1.368 -1.28 Ribulose bisphosphate carboxylase large 
chain PS.calvin cycle 

POPTR_0012s02510 < 1 - -0.29 Thylakoid lumenal 17.4 kDa protein PS.lightreaction  

POPTR_0004s17530 1.846 0.799 -0.36 Triosephosphate isomerase  PS.calvin cycle 

Potri.T071000 1.916 1.193 -0.26 Uroporphyrinogen decarboxylase Tetrapyrrole synthesis 

Primary metabolism    

POPTR_0015s14380 2.184 0.910 -0.30 Enolase  Glycolysis 

POPTR_0010s05400 1.866 0.526 -0.24 Pyruvate phosphate dikinase Major CHO 
metabolism.degradation 

POPTR_0012s09720 2.063 1.063 -0.53 Adenylate kinase  Nucleotide metabolism 

POPTR_0008s16670 2.273 1.166 -0.19 Cytosolic malate dehydrogenase TCA 

POPTR_0013s00930 2.221 0.678 -0.56 Haloacid dehalogenase-like hydrolase family 
protein 

Minor CHO 
metabolism.trehalose  

POPTR_0006s11620 1.974 0.866 -0.43 Starch branching enzyme II Major CHO 
metabolism.synthesis.starch 

POPTR_0009s13210 1.994 1.080 -0.40 Triosephosphate isomerase Glycolysis 

Redox & Stress     

POPTR_0015s12190 < 1 - -0.77 Superoxide dismutase Redox.dismutases and 
catalases 

POPTR_0006s00800 1.872 1.710 -0.29 Cytochrome P450  Misc 

POPTR_0002s01650 1.903 1.588 -0.45 Glutathione S-transferase F11  Stress 

POPTR_0009s13650 2.156 0.630 -0.36 L-ascorbate peroxidase Redox.ascorbate and 
glutathione  

POPTR_0005s17350 1.951 1.432 -0.33 L-ascorbate peroxidase, putative Redox.ascorbate and 
glutathione  

POPTR_0005s20140 1.821 0.609 -0.50 L-ascorbate peroxidase, thylakoid Redox.ascorbate and 
glutathione  

POPTR_0001s35220 2.007 0.734 -0.44 Monodehydroascorbate reductase, 
probable 

Redox.ascorbate and 
glutathione  

Secondary metabolism  

Potri.T104400 1.910 1.281 -0.53 Adenosine-5-phosphosulfate reductase Secondary metabolism 



Potri.007G118400* < 1 - -3.25 Isoprene synthase Secondary 
metabolism.isoprenoids 

POPTR_0017s06920 2.884 1.165 -4.01 Terpenoid cyclase Secondary 
metabolism.isoprenoids 

Unknown      

POPTR_0002s22560 < 1 - -0.26 Unknown Not assigned 

Potri.013G138001 1.951 1.343 -0.30 Unknown Not assigned 

POPTR_0001s19130* < 1 - -0.33 Unknown Not assigned 

POPTR_0003s19210* 1.830 1.236 -0.35 Unknown Not assigned 

POPTR_0015s04810* < 1 - -0.50 Unknown Not assigned 

POPTR_0009s06450* 1.865 1.324 -0.53 Unknown Not assigned 

POPTR_0014s11390* 2.004 0.858 -0.72 Unknown Not assigned 

Potri.013G049700* 2.141 0.907 -0.73 Unknown Not assigned 

Potri.009G053800* 1.894 0.561 -0.81 2-oxoglutarate/malate translocator Not assigned 

POPTR_0010s16030 2.175 1.164 -0.87 Pop3 peptide Not assigned 

POPTR_0017s01540* 2.380 1.049 -0.96 Class I glutamine amidotransferase-like 
superfamily protein Not assigned 

 

 

 



Supplemental Table S2. Complete list of LC-MS/MS identified S-nitrosylated proteins in 

isoprene-emitting (IE) and non-isoprene-emitting (NE) gray poplar leaves (control and ozone). 

Proteins were extracted from IE and NE leaf samples, subjected to the Biotin switch assay, 

purified by affinity chromatography and identified by LC-MS/MS. The functional categorization 

of S-nitrosylated proteins was done according to MapMan BIN 

(http://ppdb.tc.cornell.edu/dbsearch/mapman.aspx). The protein identification is based on the 

unique peptide count given in the right column. The prediction of the putative S-nitrosylated 

cysteine (Cys) within the primary amino acid sequence was performed with the software GPS-

SNO 1.0 (Xue et al., 2010). 

 

Accession Functional category Annotation Mascot ion 
score 

Unique 
peptide 
count 

Predicted S-
nitrosylation 
site (Cys-NO) 

POPTR_0005s09860 Amino acid synthesis Acetylornithine aminotransferase 175.4 4   

POPTR_0017s08060 Amino acid synthesis HOPW1-1-interacting 1 51.6 1 91, 443 

POPTR_0010s05530 Amino acid synthesis Alanine aminotransferase 211.9 4 226, 417 

POPTR_0017s12240 Amino acid synthesis Pyridoxal phosphate-dependent transferase 291.0 5 6, 8, 19, 240, 
334 

POPTR_0010s16330 Amino acid synthesis S-adenosylmethionine synthetase 1 98.5 2   

POPTR_0002s19000 Amino acid synthesis S-adenosylmethionine synthetase 2 118.0 2 20 

POPTR_0013s13150 Amino acid synthesis O-acetylserine(thiol)lyase 181.3 4 68 

POPTR_0001s07870 Amino acid synthesis Primary amine oxidase 35.6 1   

POPTR_0004s20220 Amino acid degradation Methionine synthase, vitamin-B12 
independent 108.9 2 116 

POPTR_0009s07200 Amino acid degradation Dihydropyrimidinase 111.7 2   

POPTR_0006s25630 Amino acid degradation Glyoxalase 34.6 1 125 

POPTR_0004s01320 Amino acid degradation Glyoxalase I homolog 52.3 1   

POPTR_0017s08610 Amino acid degradation S-adenosyl-L-homocysteine hydrolase 88.1 2 42 

POPTR_0004s01030 Amino acid degradation Glycine cleavage T-protein family 119.2 3   

POPTR_0001s26970 Protein synthesis Ribosomal protein 40.8 1 6 

POPTR_0001s06260 Protein synthesis Ribosomal protein 59.2 1 121 

POPTR_0001s35230 Protein synthesis Ribosomal protein 51.0 1   

POPTR_0019s11310 Protein synthesis Ribosomal protein 46.9 1 13 

POPTR_0001s22620 Protein synthesis Ribosomal protein 31.6 1   

POPTR_0001s16430 Protein synthesis Ribosomal protein 40S 36.4 1 38 

POPTR_0006s21210 Protein synthesis Ribosomal protein 49.5 1   



POPTR_0002s09970 Protein synthesis Ribosomal protein 36.1 1 12 

POPTR_0002s06680 Protein synthesis Ribosomal protein 44.1 1   

POPTR_0001s45810 Protein synthesis Ribosomal protein 60S 32.6 1   

POPTR_0013s13220 Protein synthesis Ribosomal protein 39.6 1 229 

POPTR_0001s20480 Protein synthesis Eukaryotic translation initiation factor 4A1 132.5 3   

POPTR_0004s23490 Protein synthesis Elongation factor 1-gamma 1, putative 43.8 1   

POPTR_0006s13310 Protein synthesis Elongation factor Tu family protein 110.1 2   

POPTR_0001s08770 Protein synthesis RAB GTPase homolog E1B 359.2 5   

POPTR_0007s08390 Protein synthesis Ribosomal protein 129.2 3 131 

POPTR_0003s11300 Protein synthesis Translation elongation factor 78.1 2 635 

POPTR_0006s12560 Protein targeting Plastid transcriptionally active 4 35.1 1   

POPTR_0006s10930 Protein targeting Vacuolar sorting receptor homolog 1 36.9 1 321 

POPTR_0006s19810 Protein degradation Cytosol aminopeptidase  42.2 1   

POPTR_0018s11600 Protein degradation Cytosol aminopeptidase  141.1 3   

POPTR_0002s02010 Protein degradation Subtilisin-like serine endopeptidase family 
protein 129.4 3 390, 655 

POPTR_0001s40300 Protein degradation Ubiquitin-conjugating enzyme 36 39.2 1   

POPTR_0001s40780 Protein degradation F-box family protein 34.3 1 30 

POPTR_0014s02410 Protein degradation Granulin repeat cysteine protease family 
protein 143.2 2 161, 200 

POPTR_0012s10770 Protein degradation CLPC homologue 1 157.0 4 58, 405 

POPTR_0002s01320 Protein degradation FTSH protease 1 129.4 3   

POPTR_0004s14960 Protein degradation Presequence protease 1 89.8 2 760 

POPTR_0018s14840 Protein folding Activator of Hsp90 31.5 1 93 

POPTR_0010s14660 Protein folding Chaperone protein htpG family  148.5 3 67, 170 

POPTR_0018s07410 Protein folding Chaperonin  77.0 2   

POPTR_0009s01470 Protein folding Chaperonin  278.1 6 14 

POPTR_0008s05470 Protein folding Heat shock protein 70 254.8 5 319, 326, 609 

POPTR_0010s21270 Protein folding Heat shock protein 70 201.7 4 319, 326, 609 

POPTR_0004s23310 Protein folding Heat shock protein 70, chloroplast 335.5 7   

POPTR_0001s47020 Protein folding Heat shock protein 90  243.3 5 190 

POPTR_0001s03980 Protein folding TCP-1/cpn60 chaperonin family protein 460.9 7   

POPTR_0003s20870 Protein folding TCP-1/cpn60 chaperonin family protein 519.8 8   

POPTR_0007s07780 Protein folding Photosystem II stability/assembly factor 31.7 1 15 

POPTR_0008s00350 C1-metabolism Serine transhydroxymethyltransferase 1 204.1 4 129, 367 

POPTR_0016s02620 Cell wall & Organization Alpha-L-arabinofuranosidase 37.8 1 8 



POPTR_0006s02850 Cell wall & Organization Alpha-L-arabinofuranosidase 68.8 1   

POPTR_0006s12740 Cell wall & Organization Cell division protein 48 (CDC48) 50.7 1 428 

POPTR_0001s37650 Cell wall & Organization Fasciclin-like arabinogalactan 1 35.5 1   

POPTR_0001s09910 Cell wall & Organization Glycosyl hydrolase 32.6 1   

POPTR_0013s01500 Cell wall & Organization Plant invertase/pectin methylesterase inhibitor 
superfamily 32.2 1 75 

POPTR_0004s11700 Cell wall & Organization Reversibly glycosylated polypeptide 2 33.4 1   

POPTR_0001s09180 Cell wall & Organization Tubulin, beta chain 32.3 1 12 

POPTR_0001s29670 Cell wall & Organization Tubulin/FtsZ family protein 108.8 2 20, 347 

POPTR_0001s25630 Co-factor & Vitamine 
metabolism ThiaminC 71.9 1   

POPTR_0004s01990 Co-factor & Vitamine 
metabolism Thiazole biosynthetic enzyme 335.9 5 101 

POPTR_0005s11300 Co-factor & Vitamine 
metabolism 3-Dehydroquinate synthase, putative 30.8 1 303 

POPTR_0008s07710 Co-factor & Vitamine 
metabolism 4-Nitrophenylphosphatase, putative 58.5 1   

POPTR_0015s08540 Fermentation Aldehyde dehydrogenase  32.6 1 181, 274 

POPTR_0009s08520 Gluconeogenesis NAD-malate dehydrogenase, peroxisomal 76.1 2 150 

POPTR_0010s16120 Glycolysis Dihydrolipamide dehydrogenase 603.7 9   

POPTR_0008s10020 Glycolysis Dihydrolipoamide dehydrogenase 1184.4 17   

POPTR_0006s11800 Glycolysis Enolase 87.9 2 409 

POPTR_0015s14380 Glycolysis Enolase 85.6 2 409 

POPTR_0008s08340 Glycolysis Glyceraldehyde-3-phosphate dehydrogenase  31.3 1 236, 240 

POPTR_0012s09570 Glycolysis Glyceraldehyde-3-phosphate dehydrogenase  170.0 2 154 

POPTR_0002s22600 Glycolysis Glyceraldehyde-3-phosphate dehydrogenase  369.1 7 344 

POPTR_0008s08400 Glycolysis Phosphoglycerate kinase 138.8 3   

POPTR_0008s05640 Glycolysis Triosephosphate isomerase 103.1 2 13, 127 

POPTR_0004s07280 Glycolysis UDP-glucose pyrophosphorylase 2 91.0 2   

POPTR_0017s01390 Glycolysis UDP-glucose pyrophosphorylase 2 120.2 2   

POPTR_0012s06940 Hormone metabolism Leucine-rich repeat protein kinase family 
protein 36.7 1 598, 1026 

POPTR_0004s10240 Lipid metabolism Allene oxide cyclase 39.2 1 64 

POPTR_0001s32660 Lipid metabolism Acyl-transferase family protein 36.7 1 4 

POPTR_0002s09330 Lipid metabolism Acetyl-CoA carboxylase 1 43.3 1 340, 1176, 
2071 

POPTR_0018s11820 Major CHO-metabolism Aldehyde dehydrogenase  192.2 4   

POPTR_0014s07940 Major CHO-metabolism Beta-amylase, putative 44.8 1 285, 326 

POPTR_0008s19960 Major CHO-metabolism ADP glucose pyrophosphorylase large subunit 
1 35.1 1   

POPTR_0006s10480 Metal handling Ferretin 1 144.0 3 100 

POPTR_0016s13260 Metal handling Ferritin 85.1 2 87 



POPTR_0016s14950 Metal handling 2,3-Bisphosphoglycerate-independent 
phosphoglycerate mutase, putative 50.5 1 357 

POPTR_0001s23310 Misc Beta-glucosidase  536.8 8   

POPTR_0005s25160 Misc Cytochrome P450 62.3 2 81 

POPTR_0003s12920 Misc Cytochrome P450 32.0 1   

POPTR_0012s10830 Misc Glycosyl hydrolase 117.5 3 69, 444, 472 

POPTR_0016s14310 Misc Oxidoreductase, zinc-binding dehydrogenase  140.9 3   

POPTR_0005s25480 Misc Purple acid phosphatase 12 95.6 2   

POPTR_0019s10280 Misc Rieske (2Fe-2S) domain-containing protein 54.9 1   

POPTR_0002s17040 Misc Thylakoid rhodanese-like protein 45.4 1 16, 52 

POPTR_0008s12550 Mit. electron transport ATP synthase alpha/beta  139.0 3   

POPTR_0006s03660 N-metabolism Glutamate synthase 1 1381.6 22   

POPTR_0016s03630 N-metabolism Glutamate synthase 1 971.7 16   

POPTR_0008s03800 Nucleotide metabolism Adenosine kinase 2 73.9 2   

POPTR_0001s26020 Photosynthesis Alanine glyoxylate aminotransferase 453.5 8   

POPTR_0002s08280 Photosynthesis Aldolase superfamily protein 34.2 1 44, 71, 404 

POPTR_0011s11390 Photosynthesis Aldolase-type TIM barrel family protein 273.6 5   

POPTR_0006s28990 Photosynthesis ATPase 70.0 2 33, 332, 440 

POPTR_0005s24670 Photosynthesis ATPase 30.5 1   

POPTR_0004s01470 Photosynthesis ATPase, F1 complex, gamma subunit 185.0 3 3 

POPTR_0015s07330 Photosynthesis D-ribulose-5-phosphate-3-epimerase 73.9 1 12 

POPTR_0005s11500 Photosynthesis Ferredoxin-NADP(+)-oxidoreductase 1 368.1 6 163 

POPTR_0007s09630 Photosynthesis Ferredoxin-NADP(+)-oxidoreductase 2 249.6 4 163 

POPTR_0004s16920 Photosynthesis Fructose-bisphosphate aldolase 2 482.3 7 34, 275 

POPTR_0015s11320 Photosynthesis Glutamate-1-semialdehyde-2,1-aminomutase 2 76.8 2   

POPTR_0002s00840 Photosynthesis Glyceraldehyde-3-phosphate dehydrogenase  314.1 7 17, 70, 265 

POPTR_0006s24570 Photosynthesis Glycine decarboxylase complex, P subunit 65.9 1 266 

POPTR_0006s09550 Photosynthesis High cyclic electron flow 1 95.1 2   

POPTR_0007s07680 Photosynthesis Hydroxymethylbilane synthase 52.5 1 8, 24 

POPTR_0004s18190 Photosynthesis Hydroxypyruvate reductase 114.8 3   

POPTR_0006s10040 Photosynthesis Light harvesting complex photosystem II 49.7 1   

POPTR_0008s06720 Photosynthesis Light harvesting complex photosystem II 54.7 1   

POPTR_0001s21740 Photosynthesis Light harvesting complex photosystem II 56.4 1   

POPTR_0001s08420 Photosynthesis PGR5-like A 49.3 1 306 

POPTR_0008s08410 Photosynthesis Phosphoglycerate kinase 426.3 9   



POPTR_0010s17860 Photosynthesis Phosphoglycerate kinase 392.2 8   

POPTR_0001s01630 Photosynthesis Phosphoribulokinase 185.9 3 53 

POPTR_0003s09830 Photosynthesis Phosphoribulokinase 343.7 6   

POPTR_0016s11450 Photosynthesis Photosynthetic electron transfer A 105.1 2 280 

POPTR_0001s11600 Photosynthesis Photosystem I reaction center, subunit III 40.4 1   

POPTR_0008s15100 Photosynthesis Photosystem I subunit D-2 32.1 1   

POPTR_0002s08410 Photosynthesis Photosystem II 22 kDa protein 66.4 1   

POPTR_0005s22830 Photosynthesis Photosystem II subunit P-1 95.9 2   

POPTR_0019s14050 Photosynthesis Photosystem II, assembly  102.6 2 60, 287 

POPTR_0002s01740 Photosynthesis Plastocyanin 1 47.1 1   

POPTR_0004s05270 Photosynthesis Protochlorophyllide reductase 46.6 1 352 

POPTR_0005s13860 Photosynthesis PS II oxygen-evolving complex 1 254.5 5   

POPTR_0007s12070 Photosynthesis PS II oxygen-evolving complex 1 309.9 6   

POPTR_0013s03700 Photosynthesis Ribose 5-phosphate isomerase, type A protein 99.1 2   

POPTR_2555s00200 Photosynthesis Ribulose bisphosphate carboxylase large chain 135.8 2   

POPTR_0008s05870 Photosynthesis RuBisCO activase 341.3 7 454 

POPTR_0010s20810 Photosynthesis RuBisCO activase 1158.0 19 453 

POPTR_0010s20060 Photosynthesis Sedoheptulose-1,7-bisphosphatase 89.8 2 96, 151 

POPTR_0005s04090 Photosynthesis Thylakoid lumen 18.3 kDa protein 54.6 1   

POPTR_0002s14730 Photosynthesis Transketolase 230.7 6   

POPTR_0004s17530 Photosynthesis Triosephosphate isomerase 97.8 2 184 

POPTR_0005s17350 Redox Ascorbate peroxidase 36.5 1 43 

POPTR_0009s02070 Redox Ascorbate peroxidase 74.6 2 32 

POPTR_0002s01080 Redox Catalase 104.7 2   

POPTR_0011s14410 Redox Glutathione S-transferase 34.1 1 66 

POPTR_0006s11570 Redox Monodehydroascorbate reductase 96.2 2   

POPTR_0006s13980 Redox Peroxiredoxin 31.1 1   

POPTR_0006s22130 Redox Peroxiredoxin B 95.7 2 3, 116 

POPTR_0002s08260 Redox Protein disulphide isomerase 75.6 2 10, 58, 61, 
403, 406 

POPTR_0009s01920 Redox Thioredoxin 44.5 1 131, 134, 
470, 473 

POPTR_0013s10250 Redox Thioredoxin 134.9 3 104 

POPTR_0001s44990 Redox Thioredoxin-dependent peroxidase 1 36.4 1   

POPTR_0012s09200 RNA 31-kDa RNA binding protein 152.3 3 73 

POPTR_0015s09810 RNA 31-kDa RNA binding protein 32.6 1   



POPTR_0005s23110 RNA Chloroplast stem-loop binding protein of 41 
kDa 82.9 2 16, 92 

POPTR_0005s01370 RNA RNA binding, chloroplast 136.5 2   

POPTR_0013s00760 RNA RNA binding, chloroplast 235.0 4   

POPTR_0001s12570 RNA U2 small nuclear ribonucleoprotein A 33.4 1   

POPTR_0009s07040 S-assimilation Chloroplast NIFS-like cysteine desulfurase 67.2 1   

POPTR_0004s01220 S-assimilation APS reductase 3 31.6 1   

POPTR_0009s01900 Secondary Metabolism 4-Hydroxy-3-methylbut-2-en-1-yl diphosphate 
synthase 37.2 1 180 

POPTR_0002s01990 Secondary metabolism Cinnamyl alcohol dehydrogenase-like protein 47.9 1   

POPTR_0006s12870 Secondary Metabolism Phenylalanine-amino lyase 104.2 2 18, 560, 691 

POPTR_0001s39630 Secondary Metabolism Polyphenol oxidase 156.1 3   

POPTR_0001s39950 Secondary Metabolism Polyphenol oxidase 131.0 2   

POPTR_0015s06230 Signaling Calcium sensing receptor, extracellular 54.6 1   

POPTR_0001s22980 Signaling Calmodulin 36.1 1   

POPTR_0005s01850 Signaling Calreticulin 53.4 1 166 

POPTR_0002s10000 Signaling General regulatory factor  171.2 3 103 

POPTR_0004s10120 Signaling General regulatory factor  114.2 2 90 

POPTR_0010s10790 Signaling Phytosulfokin receptor 1 31.2 1 70, 399 

POPTR_0019s12370 Stress EP3 chitinase 54.0 1 171 

POPTR_0001s29350 Stress Heat shock protein 80 225.1 5   

POPTR_0019s13000 Stress Tir-nbs-lrr resistance protein 33.3 1 116 

POPTR_0007s04700 Stress UVB-resistance protein (UVR8) 40.3 1   

POPTR_0005s10990 TCA Aconitase 1 73.6 2 102 

POPTR_0001s34950 TCA Carbonic anhydrase  62.6 2 171, 278 

POPTR_0001s38560 TCA Lactate/malate dehydrogenase family protein 32.1 1   

POPTR_0008s16670 TCA Lactate/malate dehydrogenase family protein 77.5 2   

POPTR_0008s03160 TCA Malate dehydrogenase 35.3 1 418 

POPTR_0012s03440 Transport Organic cation/carnitine transporter 37.2 1   

POPTR_0001s26960 Transport Unknown 36.4 1 239 

POPTR_0005s01840 Transport Vacuolar H+-translocating inorganic 
pyrophosphatase 45.8 1 123 

POPTR_0008s07920 Transport Vps51/Vps67 family (components of vesicular 
transport) protein 36.5 1 348, 56, 883 

POPTR_0002s25620 Not assigned Alcohol dehydrogenase 52.5 1 10, 271 

POPTR_0015s09990 Not assigned Haloacid dehalogenase-like hydrolase (HAD)  40.5 1   

POPTR_0004s04730 Not assigned MAC/Perforin domain-containing protein                   32.9 1              

POPTR_0001s40580 Not assigned PIF1 helicase 30.6 1 381 



POPTR_0004s07900 Not assigned Ran GTPase binding protein 33.7 1 344, 462, 471 

POPTR_0015s06950 Not assigned Unknown 33.8 1   

POPTR_0008s07430 Not assigned Unknown 31.1 1   

POPTR_0017s06680 Not assigned Unknown 33.2 1   

POPTR_0015s06140 Not assigned Unknown 30.6 1 14, 174, 478 

POPTR_0010s20020 Not assigned Unknown 42.6 1 159 

POPTR_0003s18370 Not assigned Unknown 117.6 2 11 

POPTR_0003s02860 Not assigned Unknown 45.2 1   

POPTR_0011s01315 Not assigned Unknown 67.6 2 17, 90, 438, 
534, 558 

POPTR_0011s15110 Not assigned Unknown 168.3 3 12 

POPTR_0259s00200 Not assigned Unknown 53.7 1 744, 857, 914 

POPTR_0010s24370 Not assigned Vacuolar sorting-associated protein 35.0 1 59, 342 

 

 

 

 

 



Supplemental Table S3. Proteins, that discriminately separate non–isoprene-emitting (NE) from isoprene-emitting (IE) gray poplar samples (n = 6 

biological replicates per individual line: WT, EV, Ra1, Ra2) in the control (C) and ozone (O) treatment in the OPLS of the S-nitroso proteome (P = 

0.0028; CV-ANOVA). Proteins showing VIP (Variable Importance in the Projection) scores > 1 and uncertainty bars of jackknifing method (SE) 

smaller than the respective VIP value were defined as discriminant proteins. Additionally, log2 fold changes and P-values (t-test) are given for the 

main treatment effect (IE and NE combined), for the main genotype effect (C and O combined), for the treatment effects within the IE genotype or 

within the NE genotype, and for the genotype effect within C or within O. Significant P-values are highlighted in bold (t-test, P ! 0.05).  * LC-

MS/MS quantification based on one unique peptide. 

 

     P- value (t-test) Log fold change 

      IE NE  C O 
Main 
treat. 
effect 

IE NE 
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genotype 
effect 

C O 

Accession VIP 
score SE Annotation Functional 

category 
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treat. 
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O vs. 
C 

O vs. 
C 
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vs. 
NE 
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vs. 
NE 

Log2 
O/C 

Log2 
OIE/CI

E 

Log2 
ONE/CNE 

Log2 
NE/IE 

Log2 
NEC/IEC 

Log2 
NEO/IEO 

POPTR_0017s08060* 1.21 0.99 Acetylornithine transaminase (ACOAT) Amino acid + 
Protein metabolism 1.000 1.000 1.000 1.000 1.000 1.000 0.0 0.0 0.0 0.0 0.0 0.0 

POPTR_0010s14660 1.17 1.16 Chaperone protein htpG family Amino acid + 
Protein metabolism 0.004 0.250 0.002 0.392 0.603 0.092 1.1 0.6 1.6 0.3 -0.4 0.6 

POPTR_0018s07410 1.66 0.87 Chaperonin 20 Amino acid + 
Protein metabolism 0.006 0.026 0.061 0.428 0.445 0.719 -0.9 -0.9 -0.8 -0.2 -0.2 -0.2 

POPTR_0002s01320 1.16 0.96 FtsH extracellular protease Amino acid + 
Protein metabolism 0.142 0.416 0.199 0.079 0.301 0.134 0.3 0.3 0.4 0.4 0.4 0.4 

POPTR_0004s01030 1.73 0.60 Glycine cleavage T-protein family Amino acid + 
Protein metabolism 0.002 0.260 0.001 0.098 0.950 0.021 1.4 0.8 1.8 0.7 -0.1 0.9 

POPTR_0004s01320* 1.49 0.78 Glyoxalase I homolog Amino acid + 
Protein metabolism 0.010 0.285 0.008 0.059 0.630 0.030 0.7 0.5 0.9 0.5 0.2 0.7 

POPTR_0014s02410 1.66 1.22 Granulin repeat cysteine protease Amino acid + 
Protein metabolism 0.003 0.013 0.064 0.444 0.358 0.870 0.6 0.8 0.5 0.1 0.3 0.0 

POPTR_0004s23310 1.37 0.67 Heat shock protein 70 (HSP70-2), 
chloroplast 

Amino acid + 
Protein metabolism 0.049 0.312 0.068 0.061 0.350 0.079 0.4 0.3 0.5 0.4 0.3 0.4 

POPTR_0001s47020* 1.50 1.14 Heat shock protein 90 (HSP90) Amino acid + 0.020 0.139 0.056 0.407 0.408 0.728 -0.9 -0.9 -1.0 0.3 0.3 0.3 



Protein metabolism 

POPTR_0006s19810* 1.48 0.83 Leucyl aminopeptidase (LAP2) Amino acid + 
Protein metabolism 0.009 0.681 0.001 0.004 0.491 0.001 0.6 0.2 0.9 0.7 0.3 1.0 

POPTR_0004s20220 1.63 0.62 Methionine synthase, vitamin-B12 
independent 

Amino acid + 
Protein metabolism 0.006 0.129 0.012 0.446 0.967 0.267 0.5 0.4 0.7 0.1 0.0 0.2 

POPTR_0004s14960 1.47 0.56 Presequence protease 1 Amino acid + 
Protein metabolism 0.007 0.020 0.096 0.697 0.512 0.915 0.6 0.8 0.5 0.1 0.2 0.0 

POPTR_0017s12240 1.84 1.67 Pyridoxal phosphate (PLP)-dependent 
transferase 

Amino acid + 
Protein metabolism 0.002 0.011 0.029 0.685 0.604 0.956 1.1 1.3 1.0 0.1 0.4 0.0 

POPTR_0006s21210* 1.03 0.61 Ribosomal protein 5A Amino acid + 
Protein metabolism 0.157 0.620 0.018 0.576 0.267 0.066 1.0 -0.6 2.9 0.4 -1.9 1.5 

POPTR_0001s35230* 1.73 0.83 Ribosomal protein L12-A Amino acid + 
Protein metabolism 0.001 0.898 0.000 0.062 0.252 0.001 1.4 0.1 2.5 0.7 -1.0 1.4 

POPTR_0013s13220* 1.07 0.78 Ribosomal protein L5 B Amino acid + 
Protein metabolism 0.112 0.556 0.095 0.926 0.615 0.528 0.5 0.3 0.8 0.0 -0.3 0.2 

POPTR_0010s16330* 1.38 0.84 S-adenosylmethionine synthetase 1 
(SAM1) 

Amino acid + 
Protein metabolism 0.004 0.336 0.002 0.513 0.418 0.092 0.9 0.4 1.4 0.2 -0.4 0.5 

POPTR_0003s20870 1.38 0.61 TCP-1/cpn60 chaperonin family protein Amino acid + 
Protein metabolism 0.047 0.261 0.081 0.125 0.440 0.156 0.4 0.3 0.4 0.3 0.2 0.3 

POPTR_0006s12740* 1.45 1.08 Cell division protein 48 (CDC48) Cell 0.013 0.708 0.002 0.096 0.754 0.011 1.8 0.5 2.7 1.1 -0.6 1.6 

POPTR_0004s01470 1.90 0.53 ATPase, F1 complex, gamma subunit 
protein Photosynthesis 0.001 0.032 0.004 0.427 0.929 0.303 0.7 0.6 0.8 0.1 0.0 0.2 

POPTR_0015s07330* 1.79 0.27 D-ribulose-5-phosphate-3-epimerase 
(RPE) Photosynthesis 0.067 0.056 0.487 0.078 0.063 0.521 0.6 1.1 0.3 0.6 1.1 0.2 

POPTR_0005s11500 1.41 0.67 Ferredoxin-NADP(+)-oxidoreductase 1 Photosynthesis 0.002 0.115 0.003 0.330 0.133 0.878 0.6 0.4 0.9 -0.2 -0.5 0.0 

POPTR_0001s08420* 1.55 0.94 Ferredoxin-plastoquinone reductase 
(PGR5-like A) Photosynthesis 0.037 0.673 0.002 0.052 0.587 0.002 0.5 -0.1 0.9 0.4 -0.2 0.9 

POPTR_0015s11320 1.55 0.96 Glutamate-1-semialdehyde-2,1-
aminomutase 2 (GSA) Photosynthesis 0.042 0.302 0.057 0.050 0.331 0.064 0.5 0.4 0.6 0.5 0.4 0.5 

POPTR_0002s00840 2.39 1.06 Glyceraldehyde-3-phosphate 
dehydrogenase, subunit B Photosynthesis 0.000 0.078 0.000 0.131 0.938 0.032 2.6 2.0 3.1 0.8 -0.2 0.9 

POPTR_0007s07680* 2.05 0.52 Hydroxymethylbilane synthase Photosynthesis 0.001 0.063 0.003 0.086 0.571 0.062 1.2 1.0 1.2 0.5 0.4 0.6 

POPTR_0004s05270* 1.32 0.79 Magnesium chelatase subunit of 
protochlorophyllide reductase Photosynthesis 0.065 0.258 0.127 0.091 0.311 0.157 0.6 0.6 0.6 0.5 0.5 0.5 

POPTR_0003s09830 1.63 0.84 Phosphoribulokinase Photosynthesis 0.023 0.358 0.019 0.002 0.108 0.004 0.4 0.2 0.4 0.5 0.4 0.6 

POPTR_0001s11600* 1.08 0.67 Photosystem I reaction center, subunit 
III Photosynthesis 0.166 0.815 0.088 0.479 0.791 0.212 0.3 0.1 0.6 0.2 -0.1 0.4 



POPTR_0002s08410* 1.27 1.20 Photosystem II 22 kDa protein Photosynthesis 0.079 0.465 0.075 0.064 0.422 0.065 0.4 0.3 0.5 0.4 0.3 0.5 

POPTR_0005s22830 1.04 0.89 Photosystem II subunit P-1 (PsbP-1 ) Photosynthesis 0.293 0.601 0.331 0.287 0.594 0.326 0.5 0.4 0.5 0.5 0.4 0.5 

POPTR_0013s03700 1.79 0.59 Ribose 5-phosphate isomerase, type A 
protein Photosynthesis 0.008 0.115 0.021 0.025 0.217 0.045 0.6 0.6 0.6 0.5 0.5 0.5 

POPTR_0008s05870 1.30 1.12 Rubisco activase Photosynthesis 0.043 0.651 0.017 0.356 0.690 0.097 0.7 0.2 1.0 0.3 -0.2 0.6 

POPTR_0010s20810 2.15 0.91 Rubisco activase Photosynthesis 0.000 0.005 0.012 0.004 0.022 0.047 1.1 1.7 0.8 0.8 1.5 0.6 

POPTR_0010s20060 2.28 0.29 Sedoheptulose-bisphosphatase Photosynthesis 0.000 0.060 0.000 0.000 0.666 0.000 1.3 0.7 1.7 0.9 0.2 1.2 

POPTR_0002s14730 1.47 0.85 Transketolase Photosynthesis 0.052 0.133 0.188 0.128 0.235 0.319 0.3 0.4 0.3 0.2 0.3 0.2 

POPTR_0005s10990 2.03 1.24 Aconitase 1 (ACO1) Primary 
Metabolism 0.000 0.027 0.001 0.044 0.478 0.031 1.2 1.1 1.2 0.5 0.4 0.6 

POPTR_0015s08540* 2.08 0.66 Aldehyde dehydrogenase 2B4 (ALDH2) Primary 
Metabolism 0.000 0.041 0.000 0.002 0.352 0.000 3.0 4.8 2.6 1.7 3.7 1.5 

POPTR_0006s02850* 1.53 0.70 Alpha-L-arabinofuranosidase (ARA) Primary 
Metabolism 0.140 0.264 0.319 0.019 0.076 0.096 0.4 0.6 0.3 0.7 0.9 0.6 

POPTR_0001s34950 1.51 0.66 Carbonic anhydrase 1 Primary 
Metabolism 0.013 0.351 0.009 0.447 0.681 0.145 0.4 0.2 0.6 0.1 -0.1 0.3 

POPTR_0015s14380* 1.19 1.09 Enolase (ENO) Primary 
Metabolism 0.152 0.118 0.642 0.272 0.183 0.828 0.4 0.8 0.2 0.3 0.7 0.1 

POPTR_0008s16670 1.36 1.08 Malate dehydrogenase Primary 
Metabolism 0.240 0.936 0.088 0.008 0.258 0.006 0.3 0.0 0.6 0.9 0.5 1.2 

POPTR_0009s08520 1.17 0.98 NAD-malate dehydrogenase 2, 
peroxisomal 

Primary 
Metabolism 0.137 0.262 0.313 0.795 0.808 0.900 0.5 0.6 0.5 0.1 0.1 0.1 

POPTR_0008s05640 1.61 0.46 Triosephosphate isomerase Primary 
Metabolism 0.005 0.883 0.000 0.029 0.699 0.001 0.8 0.1 1.3 0.6 -0.2 1.0 

POPTR_0005s17350* 1.27 1.10 Ascorbate peroxidase (APX) Redox & Signaling 0.000 0.910 0.000 0.014 0.242 0.000 1.2 0.1 2.1 0.7 -0.7 1.3 

POPTR_0002s01080 1.55 0.80 Catalase 2 (CAT2) Redox & Signaling 0.012 0.358 0.007 0.031 0.545 0.015 0.8 0.5 1.0 0.6 0.3 0.8 

POPTR_0002s08260 1.22 0.32 Protein disulphide isomerase Redox & Signaling 0.057 0.154 0.185 0.958 0.928 0.987 0.5 0.5 0.5 0.0 0.0 0.0 

POPTR_0001s44990* 1.18 1.00 Thioredoxin-dependent peroxidase 1 
(PrxII B) Redox & Signaling 0.229 0.978 0.090 0.010 0.286 0.009 0.3 0.0 0.5 0.8 0.5 1.0 

POPTR_0002s01990* 1.82 0.53 Cinnamyl alcohol dehydrogenase-like 
protein (CAD) Second.metabolism 0.002 0.463 0.000 0.010 0.817 0.001 1.1 0.4 1.5 1.0 0.2 1.5 

POPTR_0008s03810 1.14 0.48 Phenylalanine ammonia-lyase 2 (PAL) Second.metabolism 0.040 0.030 0.320 0.158 0.536 0.331 -1.4 -1.7 -0.8 -0.8 -1.1 -0.1 



POPTR_0007s04700* 1.89 1.18 UVB-resistance protein (UVR8) Stress 0.001 0.200 0.000 0.025 0.903 0.003 4.1 3.5 4.3 1.7 1.0 1.7 

POPTR_0016s02620* 1.36 1.07 Alpha-N-arabinofuranosidase 1 (ARA) Structural Function 0.001 0.020 0.003 0.002 0.043 0.008 1.1 1.4 0.9 0.9 1.2 0.8 

POPTR_0001s37650* 1.61 0.58 Fasciclin-like arabinogalactan 1 Structural Function 0.010 0.120 0.026 0.026 0.206 0.050 0.6 0.5 0.6 0.5 0.4 0.5 

POPTR_0015s06950* 1.18 1.04 Protein of unknown function (DUF1118) Not assigned 0.002 0.047 0.010 0.036 0.237 0.064 1.2 1.4 1.1 0.8 1.0 0.7 

POPTR_0005s11300* 1.33 1.08 3-Dehydroquinate synthase, putative Other 0.064 0.233 0.137 0.195 0.440 0.281 0.4 0.4 0.4 0.3 0.3 0.3 

POPTR_0012s10830 2.09 1.06 Alpha-mannosidase Other 0.000 0.007 0.003 0.066 0.247 0.135 0.9 1.0 0.9 0.4 0.5 0.3 

POPTR_0005s23110 1.50 0.50 Chloroplast stem-loop binding protein of 
41 kDa Other 0.033 0.399 0.028 0.182 0.826 0.099 0.5 0.3 0.7 0.3 0.1 0.5 

POPTR_0006s10480 1.50 0.86 Ferretin 1 Other 0.057 0.315 0.082 0.017 0.167 0.037 0.7 0.7 0.7 0.9 0.9 0.9 

POPTR_0005s01370* 1.21 0.55 NAD-dependent epimerase/dehydratase Other 0.048 0.373 0.052 0.508 0.920 0.304 0.4 0.3 0.5 0.1 0.0 0.2 

POPTR_0016s14310 1.54 0.74 NADPH dependent ketone reductase 
(AOR) Other 0.013 0.384 0.008 0.106 0.871 0.037 0.4 0.2 0.6 0.3 0.0 0.4 

POPTR_0009s07040* 2.33 0.83 NIFS-like cysteine desulfurase, 
chloroplastic Other 0.000 0.029 0.001 0.061 0.570 0.037 1.7 1.6 1.7 0.7 0.6 0.7 

POPTR_0001s26960* 1.04 0.85 Protein of unknown function (DUF3411) Other 0.180 0.411 0.273 0.246 0.491 0.335 0.3 0.3 0.3 0.3 0.3 0.3 

POPTR_0001s25630* 1.92 0.74 Thiamine biosynthesis protein (ThiC) Other 0.000 0.179 0.000 0.061 0.735 0.005 1.5 0.8 2.1 0.6 -0.3 1.0 

 



Supplemental Table S4. Constitutively S-nitrosylated proteins, which are differentially 

abundant in isoprene-emitting (IE: WT/EV, n = 6 biological replicates per line) and non-emitting 

(NE: Ra1/Ra2, n = 6 biological replicates per line) gray poplar under steady-state conditions 

(only control samples). Functional categorization was done according to MapMan BIN 

(http://ppdb.tc.cornell.edu/dbsearch/searchacc.aspx). *LC-MS/MS quantification based on one 

unique peptide. 

 

Accession VIP 
score SE Log2 

NEC/IEC Annotation MapMan BIN 
category 

P-value 
(t-test) 

POPTR_0010s20810 2.15 0.91 1.5 RuBisCO activase PS/calvin cyle 0.004 
POPTR_0016s02620* 1.36 1.07 1.2 Alpha-N-arabinofuranosidase Cell wall 0.050 
POPTR_0001s01630* < 1 - 1.3 Phosphoribulokinase PS/calvin cyle 0.004 
POPTR_0010s21270* < 1 - 1.0 Heat shock protein 70 Protein folding 0.023 
POPTR_0013s13150 < 1 - 0.8 O-acetylserine(thiol)lyase Amino acid metabolism 0.004 
POPTR_0019s14050 < 1 - -0.6 Photosystem II, assembly protein PS/lightreaction 0.003 

 

 



Supplermental Table S5. S-nitrosylated proteins, which are differentially abundant in ozone 

and control treatments of (A) isoprene-emitting (IE: WT/EV, n = 6 biological replicates per line) 

and (B) non-isoprene-emitting (NE: Ra1/Ra2, n = 6 biological replicates per line) gray poplar 

samples. Functional categorization was done according to MapManBIN 

(http://ppdb.tc.cornell.edu/dbsearch/searchacc.aspx). *LC-MS/MS quantification based on one 

unique peptide. 

Table S5A IE genotypes 

Accession VIP 
score SE Log2 

OIE/CIE Annotation MapMan BIN 
category 

P-value 
(t-test) 

POPTR_0005s10990 2.03 1.24 1.1 Aconitase 1 (ACO1) TCA / org.transformation 0.035 

POPTR_0017s12240 1.84 1.67 1.3 Pyridoxal phosphate-dependent 
transferases superfamily protein 

Amino acid 
metabolism/synthesis 0.009 

POPTR_0016s02620* 1.36 1.07 1.4 Alpha-N-arabinofuranosidase 1 Cell wall 0.037 

POPTR_0015s08540* 2.08 0.66 4.8 Aldehyde dehydrogenase 2B4 
(ALDH2) Fermentation 0.023 

POPTR_0012s10830 2.09 1.06 1.0 Alpha-mannosidase Misc/gluco-, galacto- and 
mannosidases 0.003 

POPTR_0015s06950* 1.18 1.04 1.4 Protein of unknown function 
(DUF1118) Not assigned/unknown 0.098 

POPTR_0014s02410 1.66 1.22 0.8 Granulin repeat cysteine protease 
family protein Protein/degradation 0.016 

POPTR_0004s14960 1.47 0.56 0.8 Presequence protease 1 Protein/degradation 0.071 

POPTR_0018s07410 1.66 0.87 -0.9 Chaperonin 20 Protein/folding 0.072 

POPTR_0001s47020* < 1 - -0.9 Heat shock protein 90  Protein/folding 0.006 

POPTR_0008s05470* < 1 - 1.3 Heat shock protein 70 Protein/folding 0.028 

POPTR_0010s20810 2.15 0.91 1.7 RuBisCO activase PS/calvin cyle 0.002 

POPTR_0015s07330* < 1 - 1.1 D-ribulose-5-phosphate-3-epimerase PS/calvin cyle 0.016 

POPTR_0004s01470 1.90 0.53 0.6 ATPase, F1 complex, gamma 
subunit protein PS/lightreaction 0.072 

POPTR_0009s07040* 2.33 0.83 1.6 NIFS-like cysteine desulfurase, 
chloroplastidic S-assimilation 0.078 

POPTR_0008s03810 1.14 0.48 -1.7 Phenylalanine ammonia-lyase 2 
(PAL) Secondary metabolism 0.027 

 

Table S5B NE genotypes 

Accession VIP 
score SE Log2 

ONE/CNE Annotation MapMan BIN 
category 

P-value 
(t-test) 

POPTR_0004s01030 1.730 0.600 1.8 Glycine cleavage T-protein family Amino acid 
metabolism/degradation 0.009 

POPTR_0004s01320* 1.490 0.782 0.9 Glyoxalase I homolog Amino acid 
metabolism/degradation 0.015 

POPTR_0010s16330* 1.380 0.836 1.4 S-adenosylmethionine synthetase 1 
(SAM1) 

Amino acid 
metabolism/synthesis 0.001 

POPTR_0004s20220 1.633 0.624 0.7 Methionine synthase, vitamin-B12 
independent 

Amino acid 
metabolism/synthesis 0.011 

POPTR_0017s12240 1.841 1.672 1.0 Pyridoxal phosphate-dependent 
transferases superfamily protein 

Amino acid 
metabolism/synthesis 0.069 



POPTR_0008s00350 < 1 - 0.9 Serine 
transhydroxymethyltransferase 1 C1-metabolism 0.020 

POPTR_0016s02620* 1.359 1.067 0.9 Alpha-N-arabinofuranosidase 1 Cell wall 0.011 

POPTR_0001s37650* 1.615 0.578 0.6 Fasciclin-like arabinogalactan 1 Cell wall 0.033 

POPTR_0006s12740* 1.447 1.084 2.7 Cell division protein 48 (CDC48) Cell division 0.028 

POPTR_0001s25630* 1.917 0.736 2.1 Thiamine biosynthesis protein 
(ThiC) 

Co-factor and vitamine 
metabolism 0.003 

POPTR_0015s08540* 2.083 0.659 2.6 Aldehyde dehydrogenase 2B4 
(ALDH2) Fermentation 0.002 

POPTR_0008s05640 1.605 0.456 1.3 Triosephosphate isomerase Glycolysis 0.002 

POPTR_0008s08400* < 1 - 1.1 Phosphoglycerate kinase Glycolysis 0.024 

POPTR_0017s01390* < 1 - 0.4 UDP-glucose pyrophosphorylase 2 Glycolysis 0.050 

POPTR_0012s10830 2.090 1.057 0.9 Alpha-mannosidase Misc.gluco-, galacto- and 
mannosidases 0.019 

POPTR_0016s14310 1.537 0.739 0.6 NADPH dependent ketone 
reductase (AOR) 

Misc.oxidases - copper, 
flavone etc. 0.011 

POPTR_0015s06950* 1.180 1.042 1.1 Protein of unknown function 
(DUF1118) Not assigned 0.008 

POPTR_0007s07780* < 1 - 1.0 Photosystem II stability/assembly 
factor 

Protein assembly and 
cofactor ligation 0.024 

POPTR_0004s14960 < 1 - 0.5 Presequence protease 1 Protein degradation 0.040 

POPTR_0001s08770 < 1 - 0.8 RAB GTPase homolog E1B Protein synthesis 0.013 

POPTR_0004s23490* < 1 - 1.5 Elongation factor 1-gamma 1, 
putative Protein synthesis 0.026 

POPTR_0001s26970* < 1 - 1.2 Ribosomal protein Protein synthesis 0.034 

POPTR_0006s19810* 1.482 0.826 0.9 Leucyl aminopeptidase (LAP2) Protein degradation 0.002 

POPTR_0008s05470* < 1 - 0.9 Heat shock protein 70 Protein folding 0.001 

POPTR_0010s14660 1.167 1.158 1.6 Chaperone protein htpG family 
protein Protein folding 0.004 

POPTR_0001s35230* 1.727 0.829 2.5 Ribosomal protein L12-A Protein synthesis 0.002 

POPTR_0006s21210* 1.029 0.607 2.9 Ribosomal protein 5A Protein synthesis 0.040 

POPTR_0010s20060 2.280 0.285 1.7 Sedoheptulose-1,7-bisphosphatase PS/calvin cyle 0.000 

POPTR_0008s05870 1.295 1.117 1.0 RuBisCO activase PS/calvin cyle 0.004 

POPTR_0002s00840 2.390 1.062 3.1 Glyceraldehyde-3-phosphate 
dehydrogenase, subunit B PS/calvin cyle 0.014 

POPTR_0003s09830 1.630 0.839 0.4 Phosphoribulokinase PS/calvin cyle 0.015 

POPTR_0013s03700 1.787 0.588 0.6 Ribose 5-phosphate isomerase, 
type A protein PS/calvin cyle 0.030 

POPTR_0010s20810 2.152 0.906 0.8 RuBisCO activase PS/calvin cyle 0.059 

POPTR_0001s08420* 1.552 0.940 0.9 Ferredoxin-plastoquinone 
reductase (PGR5-like A) PS/lightreaction 0.001 

POPTR_0005s11500 1.407 0.672 0.9 Ferredoxin-NADP(+)-
oxidoreductase 1 PS/lightreaction 0.001 

POPTR_0004s01470 1.901 0.535 0.8 ATPase, F1 complex, gamma 
subunit protein PS/lightreaction 0.004 

POPTR_0008s15100* 1.144 0.477 3.0 Photosystem I subunit D-2 PS/lightreaction 0.151 

POPTR_0001s11600* < 1 - 0.6 Photosystem I reaction center, 
subunit III PS/lightreaction 0.036 



POPTR_0019s14050 < 1 - 0.8 Photosystem II, assembly  PS/lightreaction 0.000 

POPTR_0005s17350* 1.275 1.095 2.1 Ascorbate peroxidase Redox 0.000 

POPTR_0009s02070 < 1 - 0.5 Ascorbate peroxidase Redox 0.008 

POPTR_0002s01080 1.549 0.800 1.0 Catalase 2 (CAT2) Redox 0.025 

POPTR_0002s08260 < 1 - 0.5 Protein disulphide isomerase Redox 0.038 

POPTR_0005s01370* < 1 - 0.5 RNA binding, chloroplast RNA/regulation of 
transcription 0.008 

POPTR_0013s00760 < 1 - -0.7 RNA binding, chloroplast RNA/regulation of 
transcription 0.027 

POPTR_0005s23110 1.501 0.499 0.7 Chloroplast stem-loop binding 
protein of 41 kDa 

RNA/regulation of 
transcription 0.004 

POPTR_0009s07040* 2.333 0.827 1.7 NIFS-like cysteine desulfurase, 
chloroplastidic S-assimilation 0.004 

POPTR_0002s01990* 1.822 0.532 1.5 Cinnamyl alcohol dehydrogenase-
like protein Secondary metabolism 0.005 

POPTR_0015s06230* < 1 - 0.4 Calcium sensing receptor, 
extracellular Signaling 0.048 

POPTR_0007s04700* 1.888 1.176 4.3 UVB-resistance protein (UVR8) Stress/abiotic 0.011 

POPTR_0001s34950 1.505 0.658 0.6 Carbonic anhydrase 1 TCA / org.transformation 0.000 

POPTR_0005s10990 2.033 1.239 1.2 Aconitase 1 (ACO1) TCA / org.transformation 0.004 

POPTR_0007s07680* 2.048 0.520 1.2 Hydroxymethylbilane synthase Tetrapyrrole synthesis 0.006 

POPTR_0015s11320 < 1 - 0.6 Glutamate-1-semialdehyde-2,1-
aminomutase 2 Tetrapyrrole synthesis 0.046 
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