1	A TonB-dependent Transporter is Responsible for Methanobactin Uptake
2	by Methylosinus trichosporium OB3b
3	
4	Ву
5	
6	Wenyu Gu ¹ , Muhammad Farhan Ul Haque ¹ , Bipin S. Baral ² , Erick A. Turpin ² , Nathan L. Bandow ²
7	Elisabeth Kremmer ³ , Andrew Flatley ³ , Hans Zischka ⁴ , Alan A. DiSpirito ² and Jeremy D. Semrau ^{1#}
8	
9	¹ Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI,
10	48109-2125, ² Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology,
11	Iowa State University, Ames, IA, 50011, ³ Institute of Molecular Immunology, Core Facility
12	Monoclonal Antibodies, Helmholtz Center Munich, German Research Center for Environmenta
13	Health, 81377 Munich, Germany, ⁴ Institute of Molecular Toxicology and Pharmacology,
14	Helmholtz Center Munich, German Research Center for Environmental Health, 85764
15	Neuherberg, Germany
16	
17	[#] To whom correspondence should be addressed. Email: <u>jsemrau@umich.edu</u> ;
18	Phone: (734) 764-6487; Fax: (734) 764-4292
19	
20	
21	Running title: Methanobactin uptake by methanotrophs
22	

23 ABSTRACT

24	Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper
25	uptake, has been found to be chromosomally encoded. The gene encoding for the polypeptide
26	precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes
27	encoding for proteins of unknown function (but speculated to be involved in methanobactin
28	formation), as well as <i>mbnT</i> , encoding for a TonB-dependent transporter hypothesized to be
29	responsible for methanobactin uptake. To determine if <i>mbnT</i> was truly responsible for
30	methanobactin uptake, a knock-out was constructed in Methylosinus trichosporium OB3b using
31	marker exchange mutagenesis. The resulting <i>M. trichosporium mbnT</i> ::Gm ^R mutant was found
32	to be able to produce methanobactin, but unable to internalize it. Further, if this mutant was
33	grown in the presence of copper and exogenous methanobactin, copper uptake was
34	significantly reduced. Expression of <i>mmoX</i> and <i>pmoA</i> , encoding for polypeptides of the soluble
35	methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO),
36	respectively, also changed significantly when methanobactin was added, indicating that the
37	mutant was unable to collect copper under these conditions. Copper uptake and gene
38	expression, however, was not affected in <i>M. trichosporium</i> OB3b wildtype, indicating that the
39	TonB-dependent transporter encoded by <i>mbnT</i> is responsible for methanobactin uptake, and
40	that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the
41	<i>mbnT</i> ::Gm ^R mutant was grown under a range of copper concentrations in the absence of
42	methanobactin, however, the phenotype of the mutant was indistinguishable from <i>M</i> .
43	trichosporium OB3b wildtype, indicating that this methanotroph has multiple mechanisms for
44	copper uptake.

Accepted Manuscript Posted Online

Page **2** of **26**

45 **INTRODUCTION**

Methanotrophs, or methane-oxidizing bacteria, are a group of microbes with great 46 environmental and industrial importance. For example, methanotrophs are well known to play 47 a key role in controlling the net emission of methane from soils, a potent greenhouse gas with a 48 49 global warming potential \sim 34x that of carbon dioxide over a 100-year time frame (1). In fact, it is estimated that as much as 90% of methane generated in anaerobic soils via methanogenesis 50 51 may be removed via methanotrophy (2). Further, methanotrophs oxidize methane under 52 ambient temperatures and pressures, and thus are attractive platforms for the valorization of 53 methane to products such as single-cell protein, bioplastics, biofuels, and osmo-protectants (3-54 5). 55 56 Methanotrophs are fairly ubiquitous, found in many different environments, including forest soils, landfill cover soils, agricultural soils, freshwater and marine sediments, as well as many 57 58 other locations (4, 6, 7). Although methane oxidation is commonly associated with oxygen reduction, in the past 15 years, methane oxidation has also been shown to be coupled to 59 60 sulfate, nitrite, and nitrate reduction (4, 8-10). Methanotrophs also show remarkable

61 phylogenetic diversity, with aerobic methanotrophs grouping in the Gammaproteobacteria and

62 *Alphaproteobacteria*, as well as in the NC10 and *Verrucomicrobia* phyla (4, 6, 8).

63

64 A key issue affecting aerobic methanotrophic activity, particularly those in the

- 65 Gammaproteobacteria and Alphaproteobacteria, is the availability of copper. It was first
- 66 discovered over 30 years ago that some methanotrophs exhibited a unique "copper-switch"

AEN

Page **3** of **26**

67	where the form and activity of the methane monooxygenase (MMO) dramatically changes with
68	changing copper availability. Specifically, it was found that under copper-limiting conditions,
69	some methanotrophs synthesized a cytoplasmic, or soluble methane monooxygenase (sMMO).
70	As copper levels increased, expression of sMMO decreased, while expression and activity of a
71	membrane-bound, or particulate methane monooxygenase (pMMO) increased (4, 11,12). The
72	sMMO has a broad substrate range and as a result has great versatility for use in biocatalysis
73	and bioremediation, but also has relatively poor affinity for methane. (4, 13-16). pMMO,
74	conversely, has a relatively narrow substrate range and greater specificity for methane,
75	suggesting that strategies to utilize methanotrophs to reduce methane emissions and/or
76	remove methane from the atmosphere should target pMMO-expressing methanotrophs (14,
77	17, 18).
77 78	17, 18).
77 78 79	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper-
77 78 79 80	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper- binding compound, or chalkophore called methanobactin. Methanobactin is a small, modified
77 78 79 80 81	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper- binding compound, or chalkophore called methanobactin. Methanobactin is a small, modified polypeptide (< 1200 Da) with two heterocyclic rings, either an imidazole, oxazolone or
77 78 79 80 81 82	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper- binding compound, or chalkophore called methanobactin. Methanobactin is a small, modified polypeptide (< 1200 Da) with two heterocyclic rings, either an imidazole, oxazolone or pyrazinedione ring, each with an associated enethiol group that together are responsible for
77 78 79 80 81 82 83	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper- binding compound, or chalkophore called methanobactin. Methanobactin is a small, modified polypeptide (< 1200 Da) with two heterocyclic rings, either an imidazole, oxazolone or pyrazinedione ring, each with an associated enethiol group that together are responsible for copper binding (19-22). Biochemical analyses indicated that methanobactin could be formed
77 78 79 80 81 82 83 84	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper- binding compound, or chalkophore called methanobactin. Methanobactin is a small, modified polypeptide (< 1200 Da) with two heterocyclic rings, either an imidazole, oxazolone or pyrazinedione ring, each with an associated enethiol group that together are responsible for copper binding (19-22). Biochemical analyses indicated that methanobactin could be formed from a polypeptide precursor with the heterocyclic rings derived from a -X-Cys dipeptide
77 78 79 80 81 82 83 83 84 85	17, 18). The mechanism underlying this "copper-switch" was recently found to involve a novel copper- binding compound, or chalkophore called methanobactin. Methanobactin is a small, modified polypeptide (< 1200 Da) with two heterocyclic rings, either an imidazole, oxazolone or pyrazinedione ring, each with an associated enethiol group that together are responsible for copper binding (19-22). Biochemical analyses indicated that methanobactin could be formed from a polypeptide precursor with the heterocyclic rings derived from a -X-Cys dipeptide sequence (22). Interrogation of available methanotrophic genomes found one possible

- 87 indeed is the precursor of methanobactin and that it is part of a gene cluster (Figure 1), with
- many genes of unknown function (possibly involved in methanobactin formation) as well as an 88

Page **4** of **26**

110

aminotransferase (also possibly involved in methanobactin formation) and an extrusion protein 89 90 (that may serve to secrete methanobactin). Upstream of *mbnA* is a gene encoding for a TonB-91 dependent transporter (mbnT) that has been suggested, but not shown to be involved in methanobactin uptake (23). 92 93 To elucidate the role of *mbnT* in methanobactin uptake, we created mutants of *M*. 94 trichosporium OB3b in which mbnT has been selectively knocked out via marker exchange 95 96 mutagenesis. 97 MATERIALS AND METHODS 98 **Growth conditions** 99 *Methylosinus trichosporium* OB3b wildtype and the *mbnT*::Gm^R mutant (constructed as 100 101 described below) were grown on nitrate mineral salt (NMS) medium (24) at 30 °C with CH₄ 102 added at a methane-to-air ratio of 1:2. Liquid cultures were grown in 250 ml side-arm 103 Erlenmeyer flasks with 30-50 ml of medium shaken at 200 rpm. Copper (as $CuCl_2$) and 104 methanobactin from *M. trichosporium* OB3b were filter-sterilized and added to NMS medium as described earlier (25). Growth was monitored by measuring the optical density at 600 nm 105 (OD₆₀₀) with a Genesys 20 Visible spectrophotometer (Spectronic Unicam, Waltham, MA) at 3-106 107 12-hour intervals. Cultures were grown in at least duplicate biological replicates and harvested 108 at late-exponential phase for analysis of specific gene expression and metal distribution. 109

Page **5** of **26**

111 Knockout of mbnT

112	Marker-exchange mutagenesis was applied to create a knockout of <i>mbnT</i> , encoding for a TonB-
113	dependent transporter using the protocol described in Semrau, et al., 2013 (23). Briefly 3' and
114	5' DNA regions of <i>mbnT</i> (Arm A and B, respectively) were selectively amplified by PCR using
115	primers listed in Table 1. These PCR products were then digested with BamHI, separated by gel
116	electrophoresis and purified using the QIAquick Gel Extraction Kit (Qiagen) following the
117	manufacturer's instructions. Arms A and B were ligated and again PCR-amplified. The amplified
118	product was digested with EcoRI and HindIII and inserted into pK18mobsacB yielding construct
119	pWG01. The gentamycin resistance gene (Gm ^R) was then excised from plasmid p34S-Gm using
120	BamHI. This was then inserted into the BamHI site between Arm A and B to give the construct
121	pWG011. This was then used to transform <i>Escherichia coli</i> S17.1 (26). <i>E. coli</i> S17.1 was then
122	conjugated with <i>M. trichosporium</i> OB3b as described by Martin and Murrell (27).
123	Transconjugants were identified by plating onto NMS plates with 2.5 μ g• ml ⁻¹ gentamycin.
124	Residual contamination by E. coli S17.1 was then removed by subsequently growing the
125	resulting <i>mbnT</i> ::Gm ^R mutant of <i>M. trichosporium</i> OB3b in NMS medium with 2.5 μg• ml ⁻¹
126	gentamycin and 10 μ g• ml ⁻¹ nalidixic acid. Successful knockout of <i>mbnT</i> via double homologous
127	recombination was confirmed by screening of kanamycin-sensitive and sucrose-resistant
128	phenotype, PCR, and sequencing.
129	
130	RNA extraction and reverse transcription

131 RNA was isolated using the method described earlier (23). Briefly, 2.5 ml of stop solution (5%

132 buffer equilibrated phenol [pH 7.3] in ethanol) was first added to cultures (22.5 ml) to stop

AEM

Page **6** of **26**

133	synthesis of new mRNA. Cell pellets were then collected by centrifugation at 4,300 \times g for 15
134	min at 4 °C. The cells were re-suspended in 0.75 ml of extraction buffer [100 mM Tris-HCl (pH
135	8.0), 1.5 M NaCl, 1% (w/v) hexadecyltrimethylammonium bromide (CTAB)] before lysis using 20
136	% SDS, 20% lauryl sarkosine, and bead beating. Subsequent steps of RNA extraction were then
137	performed as described previously (23-25). Total RNA was then subjected to RNase-free DNase
138	treatment until free of DNA contamination as proven via PCR amplification of the 16S rRNA
139	gene. The purified RNA was quantified spectrophotometrically using NanoDrop (NanoDrop
140	ND1000; NanoDrop Technologies, Inc., Wilmington, DE). RNA samples were stored at -80 °C and
141	used for cDNA synthesis within 2 days of extraction. DNA-free total RNA (500 ng) was treated
142	with Superscript III reverse transcriptase for reverse transcription of mRNA to cDNA
143	(Invitrogen, Carlsbad, CA) following the manufacturer's instructions.
144	

145Reverse transcription-quantitative PCR (RT-qPCR)

146 RT-qPCR analyses were performed to determine the relative expression of the pmoA, mmoX, and *mbnA* genes in *M. trichosporium* OB3b and *mbnT*::Gm^R mutant strains grown at various 147 concentrations of copper and methanobactin. Gene specific primers (Table 1) were used for the 148 149 RT-qPCR analyses whose specificity had been verified by sequencing and gel electrophoresis. 150 Measurements were performed in 96-well reaction PCR plates using CFX Connect Real Time PCR Detection System (Bio-Rad, Hercules CA). In each well, qPCR reaction (20 μl) consisted of 151 152 0.8 µl cDNA, 1 x iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules CA), 0.5 µM of each of 153 forward and reverse primers, and nuclease-free sterile water (Ambion/Life Technologies, Grand 154 Island, NY). A three-step thermal cycler program, with an initial denaturation at 95°C for 3 min

Page **7** of **26**

and 40 cycles of denaturation (94°C for 20 s), annealing (58°C for 20 s) and extension (68°C for
30 s), was performed. The specificity of qPCR products was again confirmed by melting curve
analysis with temperature ranging from 55 °C to 95 °C after the completion of amplification
cycles. The threshold amplification cycle (Ct) values were then imported from CFX Manager
Software (Bio-Rad) into Microsoft Excel to quantify the relative expression of different genes.
The comparative Ct method (2^{-ΔΔCt}) (28) was used to calculate relative gene expression levels
using 16S rRNA as the housekeeping gene.

162

163 Metal analysis

164	Copper associated	d with the biomass of	M. trichosporium	OB3b wild-type and	l <i>mbnT</i> ::Gm [~]
-----	-------------------	-----------------------	------------------	--------------------	---------------------------------

165 mutant was determined as described previously (29). Briefly, cultures were harvested by

166 centrifugation at 4,300 g for 15 min. The cell pellets were re-suspended in 1mL MOPS buffer

167 before being stored at -80° C. Before metal measurement, 1 mL of 70% nitric acid (vol/vol) was

added to the cell suspension and incubated for 2 hours at 95°C with inversion every 20 min.

169 Copper associated with biomass was subsequently analyzed using an inductively coupled

170 plasma mass spectrometry (Agilent Technologies, Santa Clara, CA). At least duplicate biological

samples for every condition were analyzed.

172

173 Methanobactin in spent media and in cell-extracts

174 For characterization of the location of methanobactin from *M. trichosporium* OB3b wildtype

- and *mbnT*::Gm^R mutant, cells were cultured in 12 l of NMS medium amended with 0.2 μ M CuCl₂
- in a 15 l New Brunswick fermenter at 30°C for 48 h. Following the incubation period, 10 l of the

Page **8** of **26**

culture was removed and 10 l of fresh NMS media was added to the fermenter and the copper concentration increased to 5 μ M. This sequence was then repeated with increasing copper

179 concentration to 10 and 20 μM in subsequent fermenter turnovers.

180

181 The extracellular fraction and cells from each 10 I sample were separated via tangential flow filtration using a 10,000 Da molecular mass filter as previously described (30). The cells from 182 183 the retentate were then harvested by centrifugation at 13,200 x g at 4°C. The pellet was resuspended in 10 mM phosphate buffer, pH 7.3 and centrifuged at $13,200 \times g$ at $4^{\circ}C$. This cell 184 pellet was then re-suspended in a minimal volume of 10 mM phosphate buffer, at a pH of 6.8 185 plus 1µg DNAase \bullet ml⁻¹ and lysed by three passes through an EmlusiFex C3 high-pressure 186 187 homogenizer at 15,000 psi (Avestin. Inc. Ottawa, ON, Canada) at 4°C. The cell extract was then centrifuged at 13,000 x g for 20 min to remove un-lysed cells followed by filtration though 0.2 188 189 μm Millipore filters (Billerica, MA).

190

191 Methanobactin antibody generation

Antibodies to methanobactin from *M. trichosporium* OB3b were produced in Lou/c rats which
were immunized subcutaneously and intraperitoneally with a methanobactin-ovalbumine
fusion protein (50 μg), 5 nmol CPG oligonucleotide (Tib Molbiol, Berlin), 500 μl phosphate
buffered saline and 500 μl incomplete Freund's adjuvant. A boost without adjuvant was given
six weeks after the primary injection. Tissue culture supernatants (TCS) were tested in a solidphase immunoassay with methanobactin coupled to BSA or an irrelevant peptide coupled to
BSA coated ELISA plates at a concentration of 4 μg• ml⁻¹. Antibodies (mAb) from TCS bound to

Page **9** of **26**

IgG isotypes (TIB173 IgG2a, TIB174 IgG2b, TIB170 IgG1 all from ATCC, R-2c IgG2c homemade),
thus avoiding mAbs of IgM class. HRP was visualized with ready to use 3,3',5,5'-

methanobactin were detected with horseradish peroxidase conjugated mAbs against the rat

202 tetramethylbenzidine (TMB; 1-StepTM Ultra TMB-ELISA, ThermoFisher, Waltham, MA).

203 Hybridomas that reacted specifically with methanobactin were frozen and the antibody

204 containing TCS were used in subsequent blots.

205

199

206 Derivation of polyvinylidene difluoride membranes

207 The N-terminus of methanobactin from *M. trichosporium* OB3b is lost during ring formation

208 (19, 21), preventing methanobactin from binding to polyvinylidene difluoride (PVDF)

209 membranes (31). Poly(allylamine) was therefore attached to PVDF membranes, which enables

210 methanobactin binding via its C-terminus. Poly(allylamine) was attached to PVDF membranes

211 by the derivatization procedure described by Rodrigues *et al.* (32). Briefly, PVDF sheets were

212 etched in alcoholic KOH, then reacted with poly(allylamine) under alkaline conditions. Next, the

amino groups were reacted with 1,4-phenylene diisothiocyanate (DITC), converting the amino

214 modified PVDF to DITC-functionalized membranes (DITC-PAA-PVDF membranes).

215

216 Chemiluminescence western dot-blots

217 DITC-PAA-PVDF transfer membranes were sized to fit an 8 x 12 well Bio-Rad Bio-Dot dot blot

218 (Bio-Rad Inc. Hercules, CA), washed with 20mM Tris-HCl plus 0.5M NaCl (TBS) at pH 7.5, and

219 loaded with filter paper onto this dot blotter. Samples (spent media and cell extracts) were

then loaded under vacuum and dried for 30 min under vacuum. The membrane was then

AEN

Page **10** of **26**

221	wetted with 50% CH $_3$ OH:50% H $_2$ O and washed twice in TBS at room temperature. The
222	membrane was then incubated overnight in 0.2% nonfat dry milk in TBS overnight at 4°C, with
223	the TBS subsequently decanted. The membrane was then re-suspended in TBS plus 0.1%
224	Tween 20 (TTBS) at pH 7.5 and incubated for 10 minutes at room temperature. The membrane
225	was then suspended in fresh TTBS and incubated at room temperature for 1 h. The TTBS was
226	decanted and the membrane re-suspended in the primary antibody buffer - TTBS plus 0.2%
227	nonfat dry milk (antibody buffer) plus 5.7 μg Amb $ullet$ ml $^{-1}$ (primary antibody solution) - and
228	incubated overnight at 4° C. Following incubation, the primary antibody solution was decanted,
229	the membrane re-suspended in TTBS and incubated for 10 min with agitation followed by one
230	change in TTBS with incubation for an additional 10 min. The TTBS was decanted and the
231	membrane re-suspended in Secondary Antibody Solution consisting of 33 μL of Goat anti Rat Ig
232	(H/L):Alkaline Phosphatase from AbD Serotec (Atlanta, GA) to 100 ml of antibody buffer and
233	incubated for 2 h. Following incubation, the secondary antibody solution was decanted and the
234	membrane washed three times with TTBS as described above. Visualization of the blot was
235	done via Bio Rad Immun-Star AP substrate for chemiluminescence (Hercules, CA, USA) following
236	manufacturer's suggested procedure.
237	

238 RESULTS

- 239 Using marker-exchange protocols, a transconjugant colony with a double homologous
- 240 recombination event in which *mbnT* was successfully knocked out was identified (Figure 2).
- 241 This was confirmed by sequencing, as well as verification of the mutant being gentamycin and
- sucrose resistant but sensitive to kanamycin (data not shown).

244	The phenotype of the <i>mbnT</i> ::Gm ^R mutant was then further examined and compared to that of
245	<i>M. trichosporium</i> wildtype. When grown in varying copper concentrations, both <i>mbnT</i> ::Gm ^R
246	mutant and wildtype had increasing amounts of copper associated with biomass (Figure 3A).
247	Further, gene expression in both mutant and wildtype showed clear evidence of the "copper-
248	switch". i.e., as copper increased, expression of <i>mmoX</i> decreased by several orders of
249	magnitude, while <i>pmoA</i> expression increased over an order of magnitude (Figure 3B, C).
250	Finally, expression of <i>mbnA</i> , encoding for the precursor polypeptide of methanobactin,
251	decreased substantially in both in <i>M. trichosporium</i> OB3b wildtype and <i>mbnT</i> ::Gm ^R mutant as
252	copper increased, indicating that the knock-out of <i>mbnT</i> did not affect methanobactin
253	expression (Figure 3D).
254	
255	These findings suggest that either <i>mbnT</i> is not involved in copper uptake (i.e., binding of
256	copper-methanobactin complexes) or there are multiple mechanisms for copper uptake in <i>M</i> .
257	trichosporium OB3b such that the copper-switch is still operative. To differentiate between
258	these possibilities, methanobactin in the spent medium and cell extracts of the <i>mbnT</i> ::Gm ^R
259	mutant and wildtype strain of <i>M. trichosporium</i> OB3b was assayed for a wide range of copper
260	concentrations using immuno-blotting assays. As shown in Figure 4, as the growth
261	concentration of copper increased, the amount of methanobactin in the spent medium
262	decreased in <i>M. trichosporium</i> OB3b wildtype, but was readily apparent in the spent medium of
263	the <i>mbnT</i> ::Gm ^R mutant at all tested copper concentrations. Conversely, methanobactin was
264	found in the cell extract of <i>M. trichosporium</i> OB3b under all conditions, indicating that

265 methanobactin was taken up after secretion. No methanobactin was ever observed in the cell extract of the *mbnT*::Gm^R mutant, indicating that the mutant produced and secreted 266 267 methanobactin, but was unable to subsequently take it up.

268

The *mbnT*::Gm^R mutant and wildtype strain of *M. trichosporium* OB3b were then grown in the 269 270 presence of $1 \,\mu$ M copper and varying amounts of copper-free methanobactin. As shown in Figure 5A, in the presence of either 5 or 50 μ M methanobactin, copper associated with biomass 271 of the *mbnT*::Gm^R mutant decreased over three-fold, while no significant change in copper 272 273 levels of *M. trichosporium* OB3b wildtype was observed. Further, expression of *mmoX* increased over three orders of magnitude in the *mbnT*::Gm^R mutant while *pmoA* expression 274 275 dropped by approximately eight-fold. No significant change in expression of either *mmoX* or 276 pmoA was observed, however, in M. trichosporium OB3b wildtype (Figure 5B, C). Collectively, 277 these data show that in the presence of molar excess of methanobactin, copper was still bioavailable to *M. trichosporium* OB3b wildtype, but was not for the *mbnT*::Gm^R mutant. 278 279 Additionally, it was assayed if the addition of exogenous methanobactin affected mbnA expression in *M. trichosporium* OB3b wildtype and *mbnT*::Gm^R mutant. As shown in Figure 5D, 280 281 as increasing amounts of methanobactin were added, mbnA expression increased in both 282 wildtype and mutant strains. 283 DISCUSSION 284

285 Since the discovery of the methanobactin gene cluster, it has been speculated that a TonB-

286 dependent transporter encoded by *mbnT* is responsible for methanobactin uptake (23). Here

Page **13** of **26**

we show that methanobactin uptake is indeed mediated by *mbnT*, as: (1) methanobactin could be taken up by *M. trichosporium* OB3b wildtype but not the *mbnT*::Gm^R mutant, and; (2) the *mbnT*::Gm^R mutant of *M. trichosporium* OB3b was unable to take up copper if methanobactin was exogenously added to bind copper, but *M. trichosporium* OB3b wildtype was.

291

292 The data also show, however, M. trichosporium OB3b has an alternative mechanism(s) for copper uptake, i.e., in the absence of any exogenous methanobactin, the amount of copper in 293 the wildtype and *mbnT*::Gm^R strains of *M. trichosporium* OB3b was indistinguishable. The 294 295 conclusion of multiple copper uptake systems, however, is not novel, as it was reported earlier 296 that at least two pathways for copper uptake exist in *M. trichosporium* OB3b (33). Such 297 redundancy in copper uptake systems in methanotrophs, although unusual when compared to 298 other microbes, can be explained when one considers the importance of copper in methanotrophic metabolism. That is, methanotrophs expressing pMMO have a strong need for 299 300 copper as it occupies at least two of three metal centers found in purified pMMO (4, 33-35). 301 302 An interesting issue is that, as found earlier in a mutant of *M. trichosporium* OB3b where *mbnA* encoding for the precursor polypeptide of methanobactin was knocked out, the "copper-303 switch" still existed in the *mbnT*::Gm^R mutant. Genomic analyses have found that *mbnT* is part 304 of a FecIRA-like gene cluster, i.e., mbnT is preceded by mbnR and mbnI, encoding for a putative 305 306 membrane sensor and an extracytoplasmic function sigma factor, respectively (36). Such a 307 system is frequently found in siderophore synthesis where an outer membrane transporter 308 binds a ferri-siderophore, transmitting a signal to a membrane sensor that then activates an

Page **14** of **26**

309

310

311

312

313

314

315

controlled (36).

316	The findings presented here, however, suggest that although such a signal cascade may exist
317	after MbnT binds copper-methanobactin, such a regulatory scheme does not include the
318	"copper-switch" between sMMO and pMMO. It is also difficult to conclude from our data that
319	this signal cascade affects expression of <i>mbnA</i> . That is, <i>mbnA</i> expression in both <i>M</i> .
320	<i>trichosporium</i> OB3b wildtype and the <i>mbnT</i> ::Gm ^R mutant decreased significantly with
321	increasing copper, but the magnitude of the drop in expression was greater in wildtype (Figure
322	3D). Further, in the presence of 1 μ M copper and varying amounts of exogenous
323	methanobactin, <i>mbnA</i> expression in <i>M. trichosporium</i> OB3b wildtype and <i>mbnT</i> ::Gm ^R mutant
324	responded with the same pattern (Figure 5D). It appears that another regulatory circuit is
325	involved in controlling expression of <i>mbnA</i> , but the possibility that such expression is also
326	controlled to some extent by mbnl, which is indirectly activated by MbnT binding copper-
327	methanobactin, cannot be excluded at this time.
328	
329	In conclusion, here we report the successful knock-out of <i>mbnT</i> , and show that this is

extracytoplasmic function sigma factor. This ultimately induces expression of genes required

for siderophore synthesis, as well as in some cases genes unrelated to siderophore production

or uptake, e.g., genes encoding for exotoxins and proteases (e.g., 37-43). Given this similarity,

it has been speculated that after MbnT binds copper-methanobactin, a signal cascade results

whereby methanobactin synthesis, and possibly expression of mmo and pmo operons is

responsible for methanobactin uptake. The phenotype of the *mbnT*::Gm^R mutant, however, 330

Page 15 of 26

indicates that *M. trichosporium* OB3b has multiple systems for copper uptake. It is tempting to
speculate that methanobactin may serve as a high affinity system to collect copper, but when
copper is not limiting, an alternative lower affinity system is used. Such a hypothesis is
supported by the finding that expression of *mbnA* decreases with increasing copper both in *M. trichosporium* OB3b wildtype and the *mbnT*::Gm^R mutant.

337 The nature of this imputed low affinity copper uptake mechanism is still elusive, but clues from 338 other methanotrophs, e.g., Methylomicrobium album BG8 and Methylococcus capsulatus Bath 339 may provide some suggestions. That is, it has been shown that in *M. album* BG8, an outer 340 membrane protein, CorA, exists that is copper-repressible and may serve to bind copper (44). 341 Further, it has been found that *M. capsulatus* Bath synthesizes a similar outer membrane 342 protein, MopE, as well as a secreted truncated form, MopE* that both bind Cu(II) (45-47). A gene encoding for a protein similar to CorA and MopE, *mbnP*, is adjacent to the methanobactin 343 344 gene cluster in M. trichosporium OB3b (36), and it may be that this serves as an alternative 345 copper uptake mechanism in *M. trichosporium* OB3b. To determine if this is indeed the case, it 346 is recommended that the protein and lipid composition of the outer membrane of M. 347 trichosporium OB3b be characterized under varying copper concentrations to see if any significant changes in MbnP occur. It may also be informative to create double knockouts, e.g., 348 knockouts of both mbnP and mbnT or mbnP and mbnA to determine if the resulting double 349 350 mutants of *M. trichosporium* OB3b are severely inhibited in their ability to collect copper. 351

352 FUNDING INFORMATION

Page **16** of **26**

- 353 This research was supported by the Office of Science (Biological and Environmental Research),
- 354 U.S. Department of Energy, Grant #DE-SC0006630 to JDS and AAD. The funders had no role in
- 355 study design, data collection and interpretation, or the decision to submit the work for

356 publication.

357

358

Page **17** of **26**

360	1.	IPCC (Intergovernmental Panel on Climate Change) - Fifth Assessment Report, Chapter 8.
361		Anthropogenic and Natural Radiative Forcing. Myhre G, Shindell D, Breon F-M, Collins W,
362		Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A,
363		Stephens G, Takamura T, Zhang H. Edited by TF Stocker, D Qin, GK Plattner, MMB Tignor,
364		SK Allen, J Boschung, A Nauels, Y Xia, V Bex, and PM Midgley. 2013. 8: 659-740.
365	2.	Chowdury TR, Dick RP. 2013. Ecology of aerobic methanotrophs in controlling methane
366		fluxes from wetlands. Appl Soil Ecol. 65: 8-22.
367	3.	Khmelenina VN, ON Rozova, SY But, II Mustakhimov, AS Reshetnikov, AP Beschastnyl,
368		Trotsenko YA. 2015. Biosynthesis of secondary metabolites in methanotrophs:
369		biochemical and genetic aspects (review). Appl Biochem Microbiol. (Russian) 51: 150-
370		158.
371	4.	Semrau JD, DiSpirito AA, Yoon S. 2010. Methanotrophs and copper. FEMS Microbiol Rev
372		34 : 496-531.
373	5.	Strong PJ, S Xie, Clarke WP. 2015. Methane as a resource: can the methanotrophs add
374		value? Environ. Sci. Technol. 49: 4001-4008.
375	6.	Op den Camp H, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM,
376		Birkeland N-K, Pol A, Dunfield PF. 2009. Environmental, genomic and taxonomic
377		perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306.
378	7.	Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol Rev 60:439–471.
379	8.	Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers, MM, Schreiber F,
380		Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels, HJ, van Alen T, Luesken F, Wu ML,

Page **18** of **26**

381		van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ,
382		Stunnenberg H, Weissenbach J, Jetten MS, Strous M. 2010. Nitrite-driven anaerobic
383		methane oxidation by oxygenic bacteria. Nature 464 :543–548.
384	9.	Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown
385		process. Annu Rev Microbiol 63 :311–334.
386	10	. Haroon MF, Hu S, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. 2013. Anaerobic
387		oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature
388		500 :567–570.
389	11	. Choi D-W, Kunz R, Boyd ES, Semrau JD, Antholine WE, Han J-I, Zahn JA, Boyd JM, de la
390		Mora A, DiSpirito AA. 2003. The membrane-associated methane monooxygenase
391		(pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus
392		capsulatus Bath. J Bacteriol. 185: 5755-5764.
393	12	. Stanley SH, Prior SD, Leak DJ, Dalton H. 1983. Copper stress underlies the fundamental
394		change in intracellular location of methane monooxygenase in methane-oxidising
395		organisms: Studies in batch and continuous cultures. Biotechnol Lett 5 : 487-492.
396	13	. Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in
397		methanotrophic bacteria. Metabol Eng. 29: 142-152.
398	14	. Lee SW, DR Keeney, DH Lim, AA DiSpirito, Semrau JD. 2006. Mixed pollutant degradation
399		by Methylosinus trichosporium OB3b expressing either soluble or particulate methane
400		monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol. 72 : 7503-7509.
401	15	. Semrau JD. 2011. Bioremediation via methanotrophy: overview of recent findings and
402		suggestions for future research. Front Microbiol. 2: Article 209.

Page **19** of **26**

403	16. Trotsenko YA, Murrell JC. 2008 Ch. 5. Metabolic aspects of aerobic obligate
404	methanotrophy. In Advances in Applied Microbiology, Vol 63. pp. 183-229.
405	17. Lontoh S, Semrau JD. 1998. Methane and trichloroethylene degradation by
406	Methylosinus trichosporium expressing particulate methane monooxygenase. Appl
407	Environ Microbiol 64 : 1106-1114.
408	18. Yoon S, Carey JN, Semrau JD. 2009. Feasibility of atmospheric methane removal using
409	methanotrophic biotrickling filters. Appl Microbiol Biotechnol. 83:949-956.
410	19. Behling LA, Hartsel SC, Lewis DE, DiSpirito AA, Choi DW, Masterson LR, Veglia G,
411	Gallagher WH. 2008. NMR, mass spectrometry and chemical evidence reveal a different
412	chemical structure for methanobactin that contains oxazolone rings. J. Amer. Chem. Soc.
413	130 :12604-12605.
414	20. El Ghazouani A, Baslé A, Gray J, Graham DW, Firbank SJ, Dennison C. 2012. Variations in
415	methanobactin structure influences copper utilization by methane-oxidizing bacteria.
416	Proc. Natl. Acad. Sci. 109 : 8400-8404.
417	21. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D,
418	Sherwood PMA. 2004. Methanobactin, a copper-acquisition compound from methane-
419	oxidizing bacteria. Science. 305 : 1612–1615.
420	22. Krentz BD, Mulheron HJ, Semrau JD, DiSpirito AA, Bandow N, Haft DH, Vuilleumier S,
421	Murrell JC, McEllistrem MT, Hartsel SC, Gallagher W. 2010. A comparison of
422	methanobactins from Methylosinus trichosporium OB3b and Methylocystis species SB2
423	predicts they are synthesized from diverse ribosomally produced peptide precursors

Page **20** of **26**

424	modified to create a common core for binding and reducing copper ions. Biochemistry.
425	49 : 10117-10130.
426	23. Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC,
427	Baral BS, Bandow NS, Vorobev A, Haft DH, Vuilleumier S, Murrell JC. 2013.
428	Methanobactin and MmoD work in concert to act as the "copper-switch" in
429	methanotrophs. Environ Microbiol 15 : 3077-3086.
430	24. Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some
431	properties of methane-utilizing bacteria. J Gen Microbiol 61: 205-218.
432	25. Vorobev A, Jagadevan S, Baral BS, DiSpirito AA, Freemeier BC, Bergman BH, Bandow NL,
433	Semrau JD. 2013. Detoxification of mercury by methanobactin from Methylosinus
434	<i>trichosporium</i> OB3b. Appl Environ Microbiol 79 : 5918-5926.
435	26. Simon R. 1984. High frequency mobilization of gram-negative bacterial replicons by the
436	in vitro constructed Tn5-Mob transposon. Molecul Gen Genetics MGG 196 : 413-420.
437	27. Martin H, Murrell JC. 1995. Methane monooxygenase mutants of Methylosinus
438	trichosporium OB3b constructed by marker-exchange mutagenesis. FEMS Microbiol
439	Lett. 127 : 243–248.
440	28. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C_{T}
441	method. Nat Protoc 3 : 1101–1108.
442	29. Kalidass B, Ul-Haque MF, Baral BS, DiSpirito AA, Semrau JD. 2015. Competition between
443	metals for binding to methanobactin enables expression of soluble methane
444	monooxygenase in the presence of copper. Appl Environ Microbiol 81: 1024-2031.

Page **21** of **26**

445	30. Bandow NL, Gallagher WH, Behling L, Choi DW, Semrau JD, Hartsel SC, Gilles VS,
446	Dispirito AA. 2011. Isolation of methanobactin from the spent media of methane-
447	oxidizing bacteria. Meth Enzymol 495 :259-269.
448	31. Zahn JA, DiSpirito AA. 1996. Membrane-associated methane monooxygenase from
449	Methylococcus capsulatus (Bath). J Bacteriol 178 :1018-1029.
450	32. Rodrigues JA, Combrink J, Brandt WF. 1994. Derivatization of polyvinylidene diflluoride
451	membranes for solid-phase sequencing analysis of a phosphorylated sea urchin embryo
452	histone H1 peptide. Anal Biochem 216 :365 – 372.
453	33. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC.
454	2010. Oxidation of methane by a biological dicopper centre. Nature. 465 : 115-119.
455	34. Hakemian AS, Kondapalli KC, Tesler J, Hoffman BM, Stemmler TL, Rosenzweig AC. 2008.
456	The metal centers of particulate methane monooxygenase from Methylosinus
457	trichosporium OB3b. Biochemistry 47: 6793-6801.
458	35. Martinho, M, Choi DW, DiSpirito AA, Antholine WE, Semrau JD, Münck E. 2007.
459	Mössbauer studies of the membrane-associated methane monooxygenase from
460	Methylococcus capsulatus Bath: Evidence for a dinuclear iron center. J Am Chem Soc.
461	129 :15783 – 15785.
462	36. Kenney GE, Rosenzweig AC. 2013. Genome mining for methanobactins. BMC Biology
463	11 :17.
464	37. Braun V, Mahren S, Sauter A. 2006. Gene regulation by transmembrane signaling.
465	BioMetals. 19 : 103-113.

Page **22** of **26**

466	38. Brooks BE, Buchanan SK. 2008. Signaling mechanisms for activation of extracytoplasmic
467	function (ECF) sigma factors. Biochim Biophys Acta. 1778 : 1930-1945.
468	39. Crosa JH. 1997. Signal transduction and transcriptional and posttranscriptional control
469	of iron-regulated genes in bacteria. Microbiol Mol Biol Rev. 61 : 319-336.
470	40. Große C, Friedrich S, Nies DH. 2007. Contribution of extracytoplasmic function sigma
471	factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol
472	Microbiol Biotechnol. 12 : 227-240.
473	41. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. 2002. Siderophore-mediated
474	signaling regulates virulence factor production in Pseudomonas aueroginosa. Proc Natl
475	Acad Sci. 99 : 7072-7077.
476	42. Mahren S, Braun V. 2003. The Fecl extracytoplasmic-function sigman factor of
477	Escherichia coli interacts with the β' subunit of RNA polymerase. J Bacteriol. 185 : 1796-
478	1802.
479	43. Visca P, Leoni L, Wilson MJ, Lamont IL. 2002. Iron transport and regulation, cell signaling
480	and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol. 45: 1177-
481	1190.
482	44. Berson O, Lidstrom ME. 1997. Cloning and characterization of corA, a gene encoding for
483	a copper-repressible polypeptide in the type I methanotroph, Methylomicrobium albus
484	BG8. FEMS Microbiol Lett. 148 : 169-174.
485	45. Karlsen OA, Berven FS, Stafford GP, Larsen Ø, Murrell JC, Jensen HB, Fjellbirkeland A.
486	2003. The surface-associated and secreted MopE protein of Methylococcus capsulatus

Page **23** of **26**

Page **24** of **26**

499 Figure 1. Methanobactin gene cluster in *Methylosinus trichosporium* OB3b.

500

501 Figure 2. Verification of knock-out of *mbnT* in *M. trichosporium* by PCR. M: Molecular weight

502 markers; Lane 1: PCR of *mbnT* from *M. trichosporium* OB3b *mbnT*::Gm^R mutant; Lane 2: PCR of

503 *mbnT* from *M. trichosporium* OB3b wildtype; Lane 3, PCR of pK18*mobsacB* backbone in *M.*

504 *trichosporium* OB3b *mbnT*::Gm^R; Lane 4: PCR of pK18*mobsacB* backbone in pWG011.

505

506	Figure 3. Characterization of <i>M. trichosporium</i> OB3b wildtype (■) and <i>mbnT</i> ::Gm ^R mutant (□)
507	grown in the presence of varying amounts of copper: (A) Copper associated with biomass; (B)
508	RT-qPCR of <i>pmoA</i> ; (C) RT-qPCR of <i>mmoX</i> ; (D) RT-qPCR of <i>mbnA</i> . Error bars indicate standard
509	deviation of at least duplicate biological replicates. Indicated P values are from one-way
510	analysis of variation (ANOVA).
511	
512	Figure 4. Immuno-blotting assays for location of methanobactin in <i>M. trichosporium</i> OB3b
513	wildtype and <i>mbnT</i> ::Gm ^R mutant as a function of concentration of copper in the growth medium
514	(0.2, 5, 10 or 20 μM copper). 50 nmol lysozyme (lys) and 50 nmol methanobactin (mb) were
515	used as negative and positive controls, respectively.
516 517	Figure 5. Characterization of <i>M. trichosporium</i> OB3b wildtype (■) and <i>mbnT</i> ::Gm ^R mutant (□)
518	grown in the presence of 1 μ M copper and varying amounts of methanobactin (MB): (A) Copper
519	associated with biomass; (B). RT-qPCR of <i>pmoA</i> ; (C) RT-qPCR of <i>mmoX</i> ; (D) RT-qPCR of <i>mbnA.</i>

AEM

- 520 Error bars indicate standard deviation of at least duplicate biological replicates. Indicated P
- 521 values are from one-way analysis of variation (ANOVA).

Page **26** of **26**

Table 1.	Primers	used in	this	study.
----------	---------	---------	------	--------

Primer Targeted gene		Sequence* (5' – 3')	Reference		
Arm A Forward	mbraT	ATTTTTgaattcCCAGAAATATGAGATTCCGC [§]	This study		
Arm A Reverse	тат	ATTTTTggatccCACGACCAGATCGATGATAC [§]	i nis study		
Arm B Forward	mhnT	ATTTTTggatccTTCGGTTCGATCAACGAGG [§]	This study		
Arm B Reverse	тат	ATTTTTaagcttGCCAATCAGCGTGGAGAACC§	This study		
qpmoA_FO	n m o 4	TTCTGGGGCTGGACCTAYTTC	10		
qpmoA_RO	ρποΑ	CCGACAGCAGCAGGATGATG	48		
qmmoX_FO	m m o V	TCAACACCGATCTSAACAACG	10		
qmmoX_RO	ΠΠΟΧ	TCCAGATTCCRCCCCAATCC	48		
q16S rRNA_FO		GCAGAACCTTACCAGCTTTTGAC	10		
q16S rRNA_RO	102 1 KINA	CCCTTGCGGGAAGGAAGTC	48		
qmbnA_FO	mhnA	TGGAAACTCCCTTAGGAGGAA	22		
qmbnA_RO	mona	CTGCACGGATAGCACGAAC	23		

*Y, S and R are the IUPAC DNA codes for C/T, C/G and A/G nucleobases respectively.

[§]Lower case letters indicate *Eco*RI, *Bam*HI, or *Hind*III restriction site sequences included in these primers.

AEM

AEM

	wild type				<i>mbnT</i> ::Gm ^R				
	0.2µM Cu	5.0µM Cu	10µM Cu	20µM Cu		0.2µM Cu	5.0µM Cu	10µM Cu	20µM Cu
10µl					10µl	۰			
20µl					20µl	•			
50µl					50µl		•		•
10µg					10µg				
50µg					20µg				
50µg					50µg				
lys					lys				
mb				•	mb				

Applied and Environmental Microbiology

AEM

Applied and Environmental Microbiology spent media

cell extract

I

Applied and Environmental Microbiology