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Abstract

Investigating cellular heterogeneity is of great importance for a holistic understanding of

biological processes and is therefore a focus of systems biology. This task requires sophis-

ticated models of single-cell data, which in turn need parameter estimation approaches

that are able to fit these models to given measurement data.

The first part of this thesis focuses on using ODE constrained mixture models (ODE-

MMs) for the analysis of single-cell snapshot data. With these models subpopulations can

be identified and even the source of differences between subpopulations can be detected.

We investigate the method’s applicability to the study of the alteration of subpopulation

response by the cellular environment with novel data of NGF-induced Erk signaling, a

process relevant in pain sensitization. We enhance the method by providing a mechanistic

description of the variability of the subpopulations using moment equations. In addition,

we propose ODE-MMs for the analysis of multivariate measurements, which accounts for

correlations among the measurands. Applying our method to artificial data of a con-

version process and to real multivariate data for NGF-induced phosphorylation of Erk

enables an improved insight into the underlying system.

In the second part of this thesis, we study stochastic dynamics of individuals cells that

are modeled with continuous time Markov chains (CTMCs). We introduce a likelihood-

free approximate Bayesian computation (ABC) approach for single-cell time-lapse data.

This method uses multivariate statistics on the distribution of single-cell trajectories. We

evaluate our method for samples of a bivariate normal distribution and for artificial equi-

librium and non-equilibrium single-cell time-series of a one-stage model of gene expression.

In addition, we assess our method by applying it to data generated with parameter vari-

ability and to tree-structured time-series data. A comparison with an existing method

using statistics reveals an improved parameter identifiability using multivariate statistics.

In summary, this thesis introduces two novel approaches for the analysis of multivari-

ate data that can be used to study cellular heterogeneity based on single-cell data.
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Kurzfassung

Ein tiefgehendes Verständnis für die Mechanismen von biologischen Prozessen erfordert die

Erforschung der Heterogeneität von Zellpopulationen. Aus diesem Grund bildet die Un-

tersuchung heterogener Zellpopulationen aktuell einen Forschungsschwerpunkt in der Sys-

tembiologie. Hierfür werden komplexe mathematische Modelle benötigt, welche wiederum

Parameterschätzungsmethoden erfordern, die in der Lage sind diese Modelle mit gegebe-

nen Messdaten zusammenzuführen.

Der erste Teil dieser Arbeit befasst sich mit der Analyse von Einzelzelldaten, für welche

jeweils die Verteilungen der gemessenen Konzentrationen in den Zellen zu einem bes-

timmten Zeitpunkt gegeben sind. Für diese Analyse nutzen wir ODE constrained mixture

models (ODE-MMs), sogenannte Mischmodelle, welche durch gewöhnliche Differentialgle-

ichungen beschränkt sind. Mit diesen Modellen können Subpopulationen innerhalb einer

Zellpopulation ermittelt, und sogar die Ursache für den Unterschied zwischen den Sub-

population identifiziert werden. Wir verwenden diese Methode erstmals zur Untersuchung

von Veränderung von Subpopulationsreaktionen aufgrund der Zellumgebung. Diese Anal-

yse erfolgt auf neuen Daten für die durch NGF induzierte Phosphorylierung von Erk, ein

für die Schmerzsensitivierung relevanter Prozess. Wir verbessern die Methode, indem wir

Momentengleichungen für die mechanistische Beschreibung der Subpopulationen verwen-

den. Darüberhinaus entwickeln wir ODE-MMs zur Analyse von multivariaten Messungen,

wodurch Korrelationen zwischen Messungen berücksichtigt werden. Wir testen unsere

Method anhand von artifiziellen Daten eines Konversionsprozesses und anhand multi-

variater Messungen für NGF induzierte Erk-Phosphorylierung. Es zeigt sich, dass unsere

Methode einen genaueren Einblick in das zugrundeliegende biologische System ermöglicht.

Im zweiten Teil dieser Arbeit analysieren wir stochastische Dynamiken von individuellen

Zellen, welche durch Markovketten in stetiger Zeit modelliert werden. Hierfür stellen wir

eine auf Approximate Bayesian Computation (ABC) basierende, likelihood-freie Methode

zur Parameterschätzung von Einzellzellzeitreihen vor. Diese Methode nutzt multivariate

Statistiken auf der Verteilung von Einzellzelltrajektorien. Wir evaluieren unsere Method
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sowohl für Daten, die durch eine bivariate Normalverteilung generiert wurden als auch

für artifizielle Einzellzellzeitreihen eines einstufigen Genexpressionmodells, welche sich in

und außerhalb ihres stationären Gleichgewichts befinden. Der Vergleich mit einer ex-

istierenden Method, die Statistiken verwendet, verdeutlicht, dass durch eine multivariate

Betrachtung die Modellparameter besser identifiziert werden können.

Zusammenfassend werden in dieser Arbeit zwei neuartige Methoden zur Analyse von

multivariaten Daten entwickelt. Diese sind geeignet um heterogene Zellpopulationen

basierend auf Einzelzelldaten zu untersuchen.
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1 Introduction

The goal of systems biology is to understand biochemical processes as a whole (Kitano,

2002). This is accomplished by analyzing biological experimental data with computational

models that describe the dynamical behavior of the system (Cho & Wolkenhauer, 2005).

Often population averaged data is considered, which only contains information about the

mean behavior of the cells. Such data is for example produced by microarrays (Malone

& Oliver, 2011) or Western blots (Renart et al., 1979). Using population averaged data,

cellular heterogeneity, i.e., differences among isogenic cells, can not be captured and sub-

population structures remain concealed (Altschuler & Wu, 2010).

Eludicating heterogeneity is a goal of current research, as it has been shown to have

important implications for cell fate decisions. The consequences of heterogeneity have

been studied for several types of cells, ranging from stem cells (e.g. (Torres-Padilla &

Chambers, 2014)) to cancer cells (e.g. (Michor & Polyak, 2010)).

1.1 Modeling and Parameter Estimation for Single-Cell

Data

Analysis of heterogeneity requires measurements performed at the single-cell level, which

can be obtained using techniques such as flow cytometry (Pyne et al., 2009) or fluores-

cent microscopy (Muzzey & Oudenaarden, 2009; Schroeder, 2011; Miyashiro & Goulian,

2007). Elowitz et al. (2002) placed two identically regulated reporter genes in the same

cell and identified different sources of heterogeneity by analyzing the corresponding single-

cell data. The overall variation of gene expression can be partitioned into extrinsic and

intrinsic noise. Variability that affects both reporter genes equally corresponds to extrin-

sic noise. Differences in gene expression arising due to random births and deaths of single

molecules are called intrinsic noise.

While most models only describe the mean behavior of the cells (Resat et al., 2009),

studying heterogeneity requires more detailed models, which take the single-cell nature of
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the data into account. A possibility to incorporate intrinsic noise is to model birth and

death processes of individual molecules as continuous time Markov chains (CTMCs) with

stochastic chemical kinetics (Gillespie, 2007). There are also deterministic approaches,

which describe statistics of CTMCs and account for variability instead of only considering

the mean behavior. An example of such an approach is the method of moments (Engblom,

2006).

Appropriate models for experimental data should not only capture important properties

of the system that are being investigated but should also consider the trade-off between

simplicity and accuracy. When the dimension of the parameter space increases, the model

generally loses predictive power. Moreover, when the model gets more detailed the simu-

lation of the model gets more complex (Wilkinson, 2009).

Understanding heterogeneity requires efficient parameter inference, since studying a data-

based model requires knowledge of the model parameters such as kinetic rates and ini-

tial conditions. However, most of these parameters can not be measured experimentally

and need to be estimated from the available data (Lillacci & Khammash, 2010). While

standard approaches to estimate parameters from observed data maximize the likelihood

function, a function that represents the probability of observing a data set given some

parameters, this approach is intractable for many stochastic models as the likelihood

function is computationally too costly. This problem is tackled by using likelihood-free

methods, which are also called approximate Bayesian computation (ABC) methods (Mar-

joram et al., 2003). These methods circumvent the evaluation of the likelihood function

by comparing observed and simulated data sets. Unfortunately, inferring the model pa-

rameters based on experimental data in general gets more challenging for stochastic mod-

els (Wilkinson, 2009).

1.2 Contribution of this Thesis

In this thesis, we study computational models that account for heterogeneity in cell popu-

lations. We calibrate these models to artificial and real experimental data at the single-cell

level with parameter estimation techniques that are suited to the complexity of the mod-

els. This thesis is structured as follows:
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Chapter 2 introduces two types of single-cell data and presents the key concepts needed for

their analysis. This comprises computational modeling of the data, which uses stochastic

chemical kinetics. Experimental data and the derived models are fitted by performing

parameter inference.

In Chapter 3, we focus on ODE constrained mixture modeling (ODE-MM), an approach

that combines mixture probabilities and a mechanistic description for the behavior of

individual subpopulations of a cell population. We evaluate the method of ODE-MMs

by using it for the detection of altered subpopulation responses under different experi-

mental conditions. For this, we consider novel single-cell snapshot data of NGF-induced

Erk phosphorylation. In addition, we enhance the method by using moment equations

for the description of the underlying biological process. Moreover, in order to gain even

more information from the data we develop the method for the analysis of multivariate

measurements. We assess our method by applying it to artificial data of a conversion

process and to real experimental data of NGF-induced phosporylation of Erk.

In Chapter 4, we develop an ABC method using multivariate test statistics for single-

cell time-lapse data that are modeled with CTMCs. We introduce two multivariate test

statistics and evaluate the respective ABC methods on a bivariate normal distribution.

In addition, we apply our method to artificial single-cell time-lapse data of a one-stage

model of gene expression, accounting for extrinsic cell-to-cell variability and cell division.

In Chapter 5 we summarize our results and draw conclusions.
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2 Background

This chapter introduces the key concepts that are needed to understand this thesis. First,

we describe the different types of experimental data that are analyzed. Afterwards, the

principles of modeling of chemical kinetics are introduced with a focus on the chemical

master equation (CME) and its approximations. Finally, we show how experimental

data and biological models can be brought together with inference. Inference consists of

parameter optimization, identifiability and uncertainty analysis, and model selection.

2.1 Experimental Data

In this thesis, we consider and distinguish two different types of single-cell data D that

provide information about cell-to-cell variability and are frequently collected in biological

research.

Single-cell snapshot data D = {{yj(tk)}j}ntk=1 provide single-cell measurements for nt

time instances tk (see Figure 2.1A). Common approaches to generate these data are, e.g.,

flow cytometry (Davey & Kell, 1996) or single-cell microscopy (Miyashiro & Goulian,

2007). A key advantage of these technologies is the possibility of measuring many genes

of plenty of single-cells with low costs. As the cells are not tracked over time, no infor-

mation about the time-course of an individual cell is available.

To obtain temporal information single-cell time-lapse data D = {{yj(tk)}ntk=1}j (see Fig-

ure 2.1B) are required. Single-cell time-lapse data are typically obtained by conducting

fluorescent time-lapse microscopy (Muzzey & Oudenaarden, 2009) followed by single-cell

tracking (Schroeder, 2011) and image analysis. This approach provides a smaller number

of cells than the technologies described before and the generation of single-cell time series

is expensive and time-consuming. On the other hand, cells are tracked over time yielding

a higher information content of the data.
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A B

Figure 2.1: Measurement data at the single-cell level adopted from Hasenauer (2013):
(A) Illustration of single-cell snapshot data of some measurement y. (B) Il-
lustration of single-cell time-lapse data for five individual cells.

2.2 Modeling Chemical Kinetics

For the detailed analysis of single-cell data, mechanistic mathematical models are used.

One possibility is the use of stochastic chemical kinetics, which model biochemical reaction

networks as continuous-time discrete-state Markov chains (CTMCs). The time evolution

of a CTMC is governed by the CME. A process defined by the CME can either be simulated

with the stochastic simulation algorithm (SSA) or its solution can be approximated e.g.

with the moment equations (ME). While stochastic modeling is especially important in the

case of low-copy numbers, we assume that for high numbers of molecules the system can

be described by its average behavior. This can be modeled in a deterministic way by first

order ordinary differential equations (ODEs) describing the evolution of concentrations of

the species.

2.2.1 Stochastic Chemical Kinetics

Stochastic models are mostly used to describe a biological process, when it is important

to consider that molecules only appear in whole numbers (Wilkinson, 2009; Resat et al.,

2009). This discreteness yields a stochasticity in the dynamics of the molecules and espe-

cially has to be taken into account if only few numbers of molecules are present.

Stochastic chemical kinetics describe the time evolution of a chemical system consist-

ing of L chemical species x1, . . . , xL that interact inside a volume Ω through M reactions

R1, . . . , RM . A reaction Rj has the form
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ν−1jx1 + . . .+ ν−LjxL
kj−→ ν+

1jc1 + . . .+ ν+
LjxL,

with stochiometric coefficients ν+
ij , ν

−
ij ∈ N0 and reaction rate kj . A state of the system is

represented by a vector x(t) ∈ NL
0 . Each entry of the vector is the number of molecules of

the corresponding species. The stochiometric matrix S = (s1, . . . , sM ) ∈ RL×M is defined

by {Sij} =
{
ν+
ij − ν−ij

}
:= {νij}. Each entry of the matrix describes the change in the

number of molecules of species xi due to a reaction of type j, i.e., the state x changes to

x + sj after reaction Rj took place. The probability that reaction Rj happens in the next

infinitesimal time interval [t, t+ dt) is aj(x)dt, with propensity function aj(x).

Several assumptions are typically made when deriving a model of a biological process,

e.g. that the system has a constant volume Ω and is well-stirred, i.e., the probability

of some molecules of a species being in one particular region is uniform over the vol-

ume (Gillespie, 2007). We consider zero-order reactions, which are independent of the

number of molecules, unimolecular reactions, in which just a single molecule is necessary

to conduct the reaction, and bimolecular reactions, for which two molecules need to col-

lide. Higher order reactions can easily be integrated into the methods proposed in this

thesis.

2.2.2 Chemical Master Equation

The CME governs the evolution of the probability that the stochastic process is in a

particular state, given by p(x, t), over time (Gillespie, 1992). The probability p(x, t|x0, t0)

is conditioned on the system being in state x0 at time t0. To obtain an evolution equation

the probability p(x, t+ dt|x0, t0) is first derived in terms of p(x, t|x0, t0), by assuming dt

is small enough that at most one reaction can occur in the time interval [t, t + dt). One

possibility for the system being in state x at time t + dt is that it already has been in

this state and no reaction has taken place since time t, which happens with probability

1−
∑M

j=1 aj(x)dt +O(dt). Another scenario is that the system has been in state x− sj

and a reaction of type j occurred with probability aj(x − sj)dt, which yields M more

possibilities. After summing up the probabilities and taking the limit dt→ 0, we obtain

the CME



8 2 Background

dp(x, t|x0, t0)

dt
=

M∑
j=1

[p(x− sj , t|x0, t0)aj(x− sj)− aj(x)p(x, t|x0, t0)] ,

with initial condition

p(x, t = t0|x0, t0) =

 1, x = x0

0, x 6= x0

.

If we neglect x0 and t0 for a simpler notation we obtain

dp(x, t)

dt
=

M∑
j=1

[p(x− sj , t)aj(x− sj)− aj(x)p(x, t)] ,

with initial condition p(x, t0) = p0(x). The CME indeed completely determines the

probability p(x, t|x0, t0) and thus totally describes the system. However, it consists of

a system of coupled ordinary differential equations (ODEs), with one ODE for every

possible state of the system. Since the state space of a biological system is mostly high

dimensional or even infinite dimensional, the CME can only be solved analytically or in

a feasible numerical way for a few simple cases (e.g. (Jahnke & Huisinga, 2007)).

2.2.3 Stochastic Simulation Algorithm

Instead of solving the CME, it is possible to simulate samples in form of trajectories and

thereby recover the underlying probability distribution. This is motivated by the fact

that the chance of a particular trajectory being simulated corresponds to the probabil-

ity given by the CME. A possibility to obtain trajectories is the SSA (Gillespie, 1977).

This algorithm enables an exact simulation of trajectories consistent with the probability

distribution and the transition probabilities that are associated with the CME. For the

direct method of stochastic simulation we define

• the sum over all reaction propensities a0(x) =
∑M

j=1 aj(x),

• the time τ to the next reaction,

• the index j of the next reaction.

It can be shown that τ is exponentially distributed with rate a0(x) and j has density
aj(x)
a0(x)

, which yields the following algorithm:
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Algorithm 2.1: Direct method

Input: Initial condition x0 ∈ NL
0 ,

final simulation time tend,

reaction propensity functions aj(x), j = 1, . . . ,M ,

stochiometric matrix S = (s1, . . . , sM ) ∈ ZLxM .

Result: Time trajectory of state vector x(t).

Set t← 0 and x← x0.

while t < tend do

Evaluate reaction propensity functions aj(x) and calculate

a0(x) =
∑M

j=1 aj(x).

Generate two uniformly distributed independent random numbers r1 and r2.

Calculate the time until the next reaction takes places by τ = 1
a0(x)

log(1/r1).

Find the index j of the next reaction that satisfies
∑M

j=1 aj(x) > r2a0(x).

Update the state of the system x← x + sj .

Update the time t← t+ τ .

end

An example of trajectories obtained by this method is shown in Figure 2.2 for a conversion

process (see Section 3.3.2). The computation can be inefficient if lots of events have to be

simulated. Therefore, approximations such as τ -leaping have been introduced (for further

information see (Gillespie, 2007)).

2.2.4 Method of Moments

A possibility to approximate the solution of the CME and thereby avoid the computational

costs of the SSA is the method of moments (Engblom, 2006). This method computes the

moments of p(x, t), i.e., the mean

mi(t) =
∑
x∈Ω

xip(x, t), i = 1, . . . , L ,

of species xi, and higher order moments such as the covariance

Cij(t) =
∑
x∈Ω

(xi −mi(t))(xj −mj(t))p(x, t), i, j = 1, . . . , L ,
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of species xi and xj . The time evolution of the moments is described by a set of ODEs,

the so-called moment equations (MEs). If the system comprises bimolecular reactions,

the calculation of higher order moments is recursive, i.e., the evolution of a moment of

order k depends on moments of order k + 1. In this case moment closure techniques

must be applied, introducing an approximation error (Lee et al., 2009). Formulas for

the first and second order moments of system with at most bimolecular reactions, can

be found in (Engblom, 2006, Proposition 2.5.). The first and second order moments,

namely mean and variance, of the solution statistics for a conversion process are depicted

in Figure 2.2. If a system comprises low- and medium/high-copy species the method

of conditional moments (Hasenauer et al., 2014a) can be used. This method conditions

the moments of species with medium or higher abundance on the states of species that

are only present in low-copy numbers. Therefore, it accounts for the stochasticity of

the processes, arising due to the discreteness of the low-abundance species. The method

avoids the computational costs arising from a full stochastic description of the system

using MEs for the medium and high-copy species.

2.2.5 Reaction Rate Equation

In the limit of large numbers of molecules, the system behaves in a more deterministic way

and the importance of considering single molecules vanishes. Therefore, measurements

are at a continuous level, in contrast to the discrete state space of stochastic modeling.

The evolution of the system is captured by the reaction rate equations (RREs) (Resat

et al., 2009; Gillespie, 2007)

dx(t)

dt
=

M∑
j=1

sjaj(x(t)) .

For some simple systems an explicit formula for the solution of the RREs can be derived,

but mostly numerical integration is need. Nevertheless, deterministic simulations of a

system are generally faster than a stochastic simulation (Szekely & Burrage, 2014).
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Figure 2.2: Example of trajectories of one species of a conversion process obtained by
the SSA (gray), the corresponding approximation with MEs (red) and RREs
(blue), where the mean described by ME and the RRE coincident.

2.3 Parameter Inference

The idea of parameter inference is to combine observed data D and a model M, which

for example has been derived with techniques presented in the previous section. Such

a model comprises parameters, for example kinetic rates or initial conditions, and some

of these parameters denoted by θ ∈ Rnθ may be unknown, because either they are not

measured or it is impossible to measure them.

2.3.1 Parameter Estimation

A common approach to estimate the parameters of a model is to maximize the likelihood

function

L(θ) = p(D|θ) ,

which describes the conditional probability of observing D given θ. Due to better numer-

ical properties for optimization, usually the negative log-likelihood function

J(θ) = − logL(θ)

is minimized. The parameters θML that maximize the likelihood function (or minimize the

negative (log-)likelihood function) are called the maximum likelihood estimates (MLE).
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In a Bayesian framework we can additionally incorporate prior knowledge about the pa-

rameters using the prior distribution p(θ) (Hastie et al., 2009). Applying Bayes’ theorem

yields the posterior distribution of the parameters

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ) .

The parameters θMAP that maximize the posterior distribution are the maximum a poste-

riori estimate (MAP), the Bayesian counterpart of the MLE. The evaluation of the normal-

izing constant p(D) =
∫
p(D|θ)p(θ)dθ can be computationally expensive or unfeasible.

However, this constant can be neglected for optimization and uncertainty analysis, as it is

only needed for model selection based on Bayes factors (Raftery, 1999). The minimization

of the negative log-likelihood function can be efficiently performed using multi-start local

optimization. For this, the initial values for the optimizer are e.g. obtained by Latin

hypercube sampling and then are chosen in a sequential way, such that the correspond-

ing objective function values are decreasing (Raue et al., 2013). For the optimization

procedure the calculation of the gradient is of great importance, as the derivative of the

objective function is used to determine the next parameter value. For the calculation

of the derivatives finite differences or sensitivity analysis can be used (Sengupta et al.,

2014). Sensitivity analysis describes the derivatives of the objective function with respect

to the parameters. Using them, the gradient can be calculated numerically more robustly.

Additionally, we use log-transformed parameters ξ = log(θ) due to better convergence

properties.

If the likelihood cannot be expressed analytically or is computationally too costly to

evaluate, so-called likelihood-free parameter estimation methods are required. This class

of methods circumvents the calculation of the likelihood function and is also known under

the name approximate Bayesian computing (ABC) (Csilléry et al., 2010). We explain

these methods in more detail in Section 4.2, as they are the focal point of the work

described in Chapter 4.

2.3.2 Identifiability and Uncertainty Analysis

Due to the structure of the examined system and limitations of the available data some

parameters can be non-identifiable (Raue et al., 2009), i.e., the parameter can not be
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determined from the data. If this is the case even for perfect data, the parameter is

structurally non-identifiable. If the parameter can not be identified due to measurement

noise or too little data, the parameter is practically non-identifiable. Studying these un-

certainties is an important step of parameter inference and explained in the following.

A common approach to analyze uncertainties of the parameters is to calculate confidence

intervals, e.g. asymptotic confidence intervals based on the curvature of the likelihood,

such as the hessian, or finite sample confidence intervals based on profile likelihoods (for

further information see (Raue et al., 2009)). A parameter θ is practically identifiable from

the corresponding data, if the corresponding confidence intervals are finite.

In a Bayesian context, in which parameters are treated as random variables, we can

get information about the uncertainty of the estimates by considering the whole posterior

distribution. Because of a possibly high dimension of the parameter space or the lack of

a closed form for the posterior, the use of numerical sampling from the posterior distri-

bution is required. Samples from the posterior distribution can be obtained by Markov

chain Monte Carlo (MCMC) methods (Gilks et al., 1996).

2.3.3 Model Selection

The last step of parameter inference is to select an optimal model of out a given set

of candidate models M1, . . . ,Ml that have been derived for some data D. On the one

hand, the chosen model should fit the data very well, which can be easily improved by

increasing the number of parameters. On the other hand, the model should be as simple

as possible to provide reliable predictions and avoid unnecessary uncertainties. We intro-

duce two existing criteria for model selection that try to solve the trade-off between over-

and underfitting of the data. Both criteria consist of a term with the likelihood value of

the maximum likelihood estimate and a penalization term for a higher complexity of the

model.

The Akaike information criterion (AIC) is based on information theoretical concepts

(Akaike, 1998). It gives an estimate for Kullback-Leibler divergence between the den-

sities of the true unknown model and of a candidate model Mk by
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AICk = −2 log(p(D|θML,k)) + 2nθ,k ,

with θML,k denoting the MLE for model Mk and nθ,k denoting the number of parame-

ters of the model. A low value of the AIC indicates that less information has been lost

considering the candidate model and therefore a higher reliability. We reject models with

∆AIC = AICk − AICmin > 10 as proposed by Burnham & Anderson (2002).

A Bayesian criterion for model selection can be derived by examining the posterior prob-

ability p(k|D) of model Mk (see (Schwarz et al., 1978) for further information). This

criterion is called the Bayesian information criterion (BIC),

BICk = −2 log(p(D|θML,k) + log(nD)nθ,k ,

with nD denoting the number of data points. As with the AIC, the model with the lowest

BIC is chosen and we reject models with ∆BIC = BICk − BICmin > 10 (Raftery, 1999).

In summary, this chapter outlined the key principles that are used in the following chap-

ters of this thesis. We introduced single-cell snapshot data and single-cell time-lapse data,

which possess different information contents and number of data points. We discussed

different approaches to solve the CME, ranging from exact solutions obtained with the

SSA to approximations with MEs and showed the link to deterministic modeling by RREs.

Moreover, this chapter contains an introduction to parameter inference, including parame-

ter estimation, identifiability and uncertainty analysis, and model selection. We presented

the approach of maximum likelihood estimation using multi-start local optimization, and

defined the posterior distribution that is used in a Bayesian context. For identifiability

and uncertainty analysis, profile likelihoods and MCMC sampling schemes can be used.

Finally, we introduced the AIC and BIC, two criteria used for model selection.
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for Multivariate Data Using Moment

Equations

The focus of this chapter is to assess, improve and extend ODE constrained mixture model-

ing (ODE-MM) (Hasenauer et al., 2014b), a method for studying dynamics and structures

of subpopulations. In Section 3.1, we introduce the underlying method and formulate the

problems that are subsequently addressed in the following sections. In Section 3.2, we

apply ODE-MMs to novel single-cell snapshot data for NGF-induced Erk signaling. We

evaluate the applicability of ODE-MMs to unravel alteration of subpopulation response

by cellular environment. In addition, we increase the insight into the underlying biological

system that can be gained using ODE-MMs. In Section 3.3, we present ODE-MMs with

moment equations (Engblom, 2006) for the mechanistic description of a biological pro-

cess, which yields the ability to account for variability within a subpopulation. Additional

knowledge of the system can also be gained by considering multivariate measurements si-

multaneously. For this, Section 3.4 provides a likelihood for ODE-MMs that is able to

take correlations between the measurements into account. Our method is validated for

the example of a conversion process and applied to real experimental multivariate data

of NGF-induced Erk signaling (Section 3.5). The results are summarized in Section 3.6,

in which we outline possible further extensions and improvements of our method.

3.1 Introduction and Problem Statement

Cell populations exhibit different degrees of heterogeneity caused by cell-to-cell variability.

Even cells with similar cell types can respond differently to identically stimuli. Studying

cell heterogeneity and its sources is important for a holistic understanding of the underly-

ing biological processes and cellular mechanisms. Therefore, this task comprises not only

the identification of subpopulations, but also the detection of how the subpopulations

differ.
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3.1.1 ODE Constrained Mixture Modeling

A recently presented method using ODE constrained mixture models (ODE-MM) (Hase-

nauer et al., 2014b) can describe the mechanisms of a process and at the same time is

able to exploit subpopulation structures. This is achieved by modeling subpopulation

dynamics with RREs and treating different subpopulations as individual components of

a mixture distribution. Combining these two approaches, the method benefits from both,

the possibility to include distributional information and from getting mechanistic insights

using ODEs. Using ODE-MMs, population snapshot data can be analyzed across different

experimental conditions. Moreover, it has been shown that even the causal differences

between subpopulations can be revealed.

Based on single-cell snapshot data {Dek}e,k the unknown parameters θ = {(wes,ψes, σes)}s,e
of properties of the ns subpopulations can be estimated maximizing the likelihood function

L(θ) :=
∏
e,k,j

ns∑
s=1

wesp
(
ye,kj |ϕes (tk)

)
(3.1)

s.t. ẋes = f (xes,ψ
e
s, u

e) , xes(0) = x0(ψes, u
e) ,

ϕes = h(xes,ψ
e
s, u

e) .

The indices e, k and j are for the experimental conditions, the time point and the single-

cells, respectively. Moreover, p
(
yk,ej |ϕe(tk)

)
is a mixture distribution, e.g. a normal or

log-normal distribution with mixture parameters ϕes = (µes, σ
e
s) and mixture weights wes

that sum up to 1. The ODE model given by reaction rate equations (RREs) is denoted

by f . The means are linked to the RRE model by the function h. The variances needs

to be estimated from the data and therefore are listed in the parameter vector θ. The

parameters ψes =
(
ξ0, ξ

e
0, ξ

0
s , ξ

e
s

)
are e.g. kinetic parameters or initial conditions. Here, ξ0

are the parameters that are the same for all conditions and subpopulations, ξe0 and ξ0
s the

parameters that are different across experiments or subpopulations, respectively, and ξes

the parameters that differ between experiments and subpopulation. We added the index

e to the subpopulation parameters ψes and the mixture weights wes to allow the parameter

to differ between experiments, since we use ODE-MMs to detect differences between

experimental conditions. The system is stimulated with an external, possibly experiment

specific stimulus denoted by ue. For an illustration of the method see Figure 3.1.
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3.1.2 Problem Statement

Despite the successes achieved using ODE-MM, there are several open issues. So far, only

the means of the subpopulations are described by ODEs and the variances are treated

as additional parameters. If many time points and experimental conditions are observed,

the unknown variances increase the dimension of the parameter space significantly. As

the predictive power of a model generally decreases with its complexity, it is desirable

to reduce the number of its parameters. Moreover, RREs provide only a description of

the averaged behavior of a subpopulation. They are neither able to describe intrinsic

noise, arising due to stochasticity of births and deaths of single molecules, nor extrinsic

noise, emerging from stochastic variability of parameters. Furthermore, it is not possible

to exploit correlation structures among multivariate measurements, as they only can be

analyzed independently. Even if subpopulations can be identified, correlation structures

among the measurements may not be detected analyzing one measurement at a time. In

particular, this chapter addresses the following problems:

Problem 1 High dimension of the parameter space.

Problem 2 No mechanistic description of intrinsic variability of subpopulations.

Problem 3 No accounting for extrinsic noise in a subpopulation.

Problem 4 No consideration and detection of correlations between multivariate mea-

surements.

Problem 5 Numerical instability arising due to mixture modeling.

In the following, we will address these problems by extending ODE-MM. Furthermore,

as there are merely two assessments of ODE-MM, will provide additional evaluations on

artificial as well as real experimental data.

3.2 Assessment of ODE-MMs Using Novel Data for

NGF-Induced Erk Signaling

Understanding intracellular signaling mechanisms that regulate pain sensitization is of

great importance for pain research. Therefore, the underlying processes of NGF-induced

Erk phosphorylation are studied. ODE-MMs have been used to investigate this pathway
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Figure 3.1: Illustration of ODE constrained mixture modeling. The combination of mix-
ture modeling of experimental data and pathway information allows us im-
proved aquisition of subpopulation structures and mechanistics. This figure
has been adopted from (Hasenauer et al., 2014b).

in primary sensory neurons (Hasenauer et al., 2014b). These cells are used to study pain

sensitization and provide a suitable application for ODE-MM due to their high hetero-

geneity.

In this section we evaluate the usage of ODE-MMs to study not only differences among

individual subpopulations, but also differences between experimental conditions. We in-

vestigate the alteration of subpopulation response by cellular environment. Therefore,

we describe a simple pathway model of NGF-induced Erk activation introduced by Hase-

nauer et al. (2014b), which builds the basis for further analysis. We analyze experimental

data of NGF-induced Erk signaling that has been generated under several experimental
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conditions by Katharina Möller and Tim Hucho1. Here, we present the analysis of two of

these conditions by applying ODE-MMs with RREs with the aim to detect the source of

difference between the conditions.

3.2.1 Pathway Model for NGF-Induced Erk Phosphorylation

The pathway model of NGF-induced Erk phosporylation proposed by Hasenauer et al.

(2014b) states that binding of NGF and the receptor TrkA results in a complex TrkA:NGF,

which induces phosporylation of Erk. This process can be described with the reactions

R1 : TrkA + NGF→ TrkA:NGF , rate = k1[TrkA][NGF] ,

R2 : TrkA→ TrkA + NGF , rate = k2[TrkA:NGF] ,

R3 : Erk→ pErk , rate = k3[TrkA:NGF][Erk] ,

R4 : Erk→ pErk , rate = k4[Erk] ,

R5 : pErk→ Erk , rate = k5[pErk] .

Assuming conservation of mass yields

[TrkA] + [TrkA:NGF] = [TrkA]0 ,

[NGF] + [TrkA:NGF] = [NGF]0 ,

[Erk] + [pErk] = [Erk]0 .

To eliminate structurally non-identifiable parameters, the model can be reparametrized.

The final RREs are (see (Hasenauer et al., 2014b) for further details)

dx1

dt
= k1[NGF]0(k3[TrkA]0 − x1)− k2x1 ,

dx2

dt
= (x1 + k4)(s[Erk]0 − x2)− k5x2 ,

y = x2 ,

with x1 = k3[TrkA:NGF] and x2 = s[pErk]. The measurand y = s[pErk] can only be

measured up to some scaling constant s. This pathway model has been studied using

1Division of Experimental Anesthesiology and Pain Research at the Department of Anesthesi-
ology and Intensive Care Medicine at the University Hospital Cologne
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Figure 3.2: Model for NGF-induced Erk phosphorylation. Low and high responsiveness
of the subpopulations to NGF stimulation can be explained by different lev-
els of the NGF receptor TrkA. The signaling intermediates Ras, Raf and
Mek are not modeled in this simple pathway model. Thicker arrows, cor-
responding to the influence of TrkA:NGF on the Erk phosphorylation, and
the higher abundance of TrkA in subpopulation 2, visualize the difference
between the subpopulations. This figure has been adopted from (Hasenauer
et al., 2014b).

several ODE-MMs with RREs based on single-cell data of NGF-stimulated primary sen-

sory neurons. This revealed that the cell population consists of two subpopulations that

differ in TrkA levels and therefore show a different response to NGF stimulation (see

Figure 3.2).

3.2.2 Experimental Data and Problem Statement

A goal of pain research is to fully understand the mechanism of pain sensitization.

Therefore, it is studied how different conditions influence the pathways mediating pain-

sensitivity. The data analyzed in this section is generated under two different experimental

conditions and each experiment has been repeated three times. Cells are stimulated with

NGF and the concentration of pErk is measured after 1, 5, 30, 60 and 120 minutes. The

data is visualized in Figure 3.3, with histograms for every time point (Figure 3.3A), the

average concentrations of pErk (Figure 3.3B) and the mean number of cells per time point

(Figure 3.3C). Two main differences between the conditions can be observed:

• The mean concentration of pErk is lower for condition 1.

• The number of cells is higher under condition 1.

These observations give rise to the question, where the differences in average pErk con-

centrations comes from: Is the relative size of the responsive subpopulation higher under

condition 2 or does it have a higher response to NGF stimulation?
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Figure 3.3: Snapshot data of NGF-induced Erk signaling under two different experi-
mental conditions. (A) Histograms of experimental data for 7 time points.
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3.2.3 Hypothesis Testing

We perform hypothesis testing to answer the question of the source of difference between

the experimental conditions. Hasenauer et al. (2014b) showed that at least two subpop-

ulations are present that differ in TrkA levels. Therefore, we assume a subpopulation

structure, which arises due to differences in TrkA levels for the following hypotheses (see

Figure 3.4):

H1 No difference between the conditions.

H2 Higher relative size of the high responsive subpopulation under condition 2.

H3 Higher response to NGF stimulation of the high responsive cells under condition 2.

H4 Higher response to NGF stimulation of both subpopulations under condition 2.

In accordance to the optimal model selected in the studies of Hasenauer et al. (2014b),

we assume a log-normal distribution parameterized by the median of the subpopulations.

H2 explains the difference by assuming that less cells of the low responsive subpopulation

exist in condition 2 and therefore the average concentration of pErk is higher. Under H3

and H4, the weighting of the subpopulations stays the same, but the response to NGF

stimulation is changed in condition 2. While H3 only allows a higher response for the

high responsive subpopulations, the responsiveness for all cells is higher under H4. H2

considers different weightings for the experimental condition, while H3 and H4 include

different responses to stimulation with NGF. The higher response is modeled by multi-

plying parameter k3[TrkA]0 by a parameter κ, which describes the stimulus-dependent

response.

To obtain estimates of the parameters we perform multi-start local optimization with

100 multi-starts. If the optimizer finds the same (possibly local) optimum less than 5

times, we increase the number of multi-starts and repeat the optimization. We restrict

the kinetic parameters to the interval [10−10, 1010], the variances to [10−1, 10], the weights

to [0, 1] and the additional parameter κ, which is used in H3 and H4 to [10−10, 1010]. Model

selection using AIC and BIC selects H3 and H4 for the pooled data, as shown in Table 3.1.

The fitted data of the optimal model is depicted in Figure 3.5. Repeating the procedure

for the single replicates shows that the significance is not as high as for the pooled data,

but nevertheless, H4 is not rejected for any replicate (see last columns of Table 3.1).
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Figure 3.4: Hypothesis testing: H1 No difference between experimental conditions.
H2 Higher relative size of responsive subpopulation for condition 2.
H3 Higher response to NGF stimulation of the high responsive cells for
condition 2. H4 Higher response to NGF stimulation of both subpopula-
tions for condition 2. Differences are visualized by thickness of arrows and
abundance of species.
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Table 3.1: Hypothesis testing for two experimental condition based on pooled data of
three biological replicates. Both criteria, AIC (lower table) and BIC (upper
table), select hypotheses H3 and H4. The last colums show the results for the
model selection based on the single replicates R1, R2 and R3. 3 indicates
that the model is not rejected and 7 that it has been rejected using AIC or
BIC for ∆BIC or ∆AIC > 10. The maximum likelihood estimate is denoted by
θML.

hypothesis nθ logL(θML)(104) BIC (104) rank ∆BIC decision R1 R2 R3

MH1 22 −2.2061 4.4337 4 > 10 rejected 3 3 7

MH2 23 −2.2052 4.4329 3 > 10 rejected 7 7 3

MH3 23 −2.2029 4.4281 2 3.808 not rejected 3 3 7

MH4 23 −2.2027 4.4277 1 0 optimal 3 3 3

hypothesis nθ logL(θML)(104) AIC (104) rank ∆AIC decision R1 R2 R3

MH1 22 −2.2061 4.4167 4 > 10 rejected 7 3 3

MH2 23 −2.2052 4.4151 3 > 10 rejected 7 3 3

MH3 23 −2.2029 4.4103 2 3.808 not rejected 3 3 3

MH4 23 −2.2027 4.4099 1 0 optimal 3 3 3

fre
qu

en
cy

0

0.05

0.1

0.15
 t = 0 min

data (condition 1)
model (condition 1)
data (condition 2)
model (condition 2)

 t = 1 min  t = 5 min

pErk level [UI]
0.1 1 10

fre
qu

en
cy

0

0.05

0.1

0.15
 t = 15 min

pErk level [UI]
0.1 1 10

 t = 30 min

pErk level [UI]
0.1 1 10

 t = 60 min

pErk level [UI]
0.1 1 10

 t = 120 min

Figure 3.5: Fit for the optimal model MH4 based on pooled data of three biological
replicates. The high responsive subpopulation is shifted to the right, due to
the higher response to NGF stimulation.

In summary, we assessed how ODE-MMs with RREs can be applied to analyze data

obtained under different experimental conditions simultaneously at the example of NGF-
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induced Erk signaling. We formulated several hypotheses about the difference between

conditions that yields a difference in mean levels of pErk. To test the hypotheses we

performed parameter estimation and model selection using a simple pathway model of

NGF-induced phosphorylation of Erk. Based on pooled data consisting of three replicates,

both BIC and AIC select models that consider a changed intracellular signaling under the

second condition. These models incorporate a higher response to NGF stimulation under

condition 2. A model that assumes a different weighting under the conditions, which

was motivated by the fact that the number of cells differs significantly under the two

conditions, has been rejected based on the pooled data. Repeating model selection for

the single replicates, the model, which assumes a higher phosphorylation of Erk in both

subpopulations under condition 2, can not be rejected for any replicate neither by AIC nor

by BIC. In the future, we will further analyze dose-response data to validate the results

of the model selection.

3.3 Modeling Variability within a Subpopulation

Considering only the averaged behavior of a cell population might not represent the be-

havior of cells at the tail of the cell distribution (Altschuler & Wu, 2010). This gets even

worse for cell populations that consist of two or more subpopulations and therefore show

a bimodal or multimodal distribution of the cells. In addition, it has been shown that

variability of measured properties carries information about the underlying biological sys-

tem (Munsky et al., 2009). These facts motivate the usage of a mechanistic description

of the variability of a system.

The previously introduced method of ODE-MMs with RREs accounts for differences be-

tween subpopulations (Hasenauer et al., 2014b). Nevertheless, modeling subpopulation

dynamics by RREs gives no mechanistic description of the cell-to-cell variability within

a subpopulation. A possibility to exploit higher order moments of the subpopulations

is to describe the dynamics of a subpopulation by moment equations (MEs) (Engblom,

2006). In this section we use ODE-MMs with MEs to solve the Problems 1-3 that have

been addressed in Section 3.1.2. First, we propose in Section 3.3.1 a likelihood function

for ODE-MMs with MEs to study univariate measurements y ∈ R. Additionally, we

describe how the MEs can be linked to a normal and log-normal mixture distribution.
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In Section 3.3.2, we validate the method for different scenarios of a conversion process.

Besides that, we compare the results of the method with those obtained using RREs for

the description of the mechanisms of the system.

3.3.1 Likelihood Function

The likelihood function of mixture modeling that is constrained by MEs is given by

L(θ) =
∏
e,k,j

ns∑
s=1

wes p
(
ȳe,kj |ϕes (tk)

)
(3.2)

with ẋes = f(xes,ψ
e
s, u

e) , xes(0) = x0(ψes, u
e) ,

ϕes = h(xes,ψ
e
s, u

e) .

In the following we neglect the indices k for the time point, and j for the single-cells. The

likelihood describes the probability of observing the measurement ȳe ∈ R as weighted sum

of mixture probabilities p(ȳ|ϕes) with parameters ϕes for subpopulation s in experiment

e. Each of the ns subpopulations has a weight denoted by wes corresponding to its size.

The parameters ψes =
(
ξ0, ξ

e
0, ξ

0
s , ξ

e
s

)
are e.g. kinetic parameters or initial conditions that

are partitioned into experiment specific and identical parameters between conditions as

in (3.1). The cells are stimulated with an experiment specific external stimulus denoted

by ue. The time evolution of the moments xes of the system are described by a function f .

The moments can be linked to the mixture parameters with function h. We also neglect

the indices e and s in the following. Since a mechanistic description of the variability

is provided by the MEs, measurement noise e.g. normal additive measurement noise or

log-normal multiplicative measurement noise

ȳ = y + ε , ε ∼ N (0, σ2
ε ) , (3.3)

ȳ = yε , ε ∼ logN (0, σ2
ε ) , (3.4)

can be considererd separately.

In this thesis, we consider second order moments. The state vector of the moments

comprises mean and variances of the L species:
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x =

 m

C

 , m = (m1, . . . ,mL) , (C)ij = Cij , i, j = 1, . . . , L .

If we assume to have at most quadratic propensities ar(m) for the M reactions and if we

neglect higher order moments, the MEs are (Engblom, 2006)

dmi

dt
=

M∑
r=1

νir

(
ar(m) +

1

2

∑
l1,l2

∂2ar(m)

∂xl1∂xl2
Cl1l2

)
,

dCij
dt

=

M∑
r=1

(
νir
∑
l

∂ar(m)

∂xl
Cjl + νjr

∑
l

∂ar(m)

∂xl
Cil +

νirνjr

(
ar(m) +

1

2

∑
l1,l2

∂2ar(m)

∂xl1∂xl2
Cl1l2

))
,

with νij being the entries of the stochiometric matrix. These moments can be linked to

the measurand without measurement noise y to obtain its mean my and variance Cy.

Example. If the output is given by y = bxl, i.e., y is proportional to the amount of xl,

we obtain the mean ml and the variance Cll from the corresponding entries of the state

vector of the moments. Thus, we can calculate the mean of the output my = bml and its

variance Cy = b2Cll.

By describing subpopulation dynamics with MEs, extrinsic noise of the cells in a sub-

population that arises due to differences e.g. in kinetic parameters, can be incorporated.

The variable parameters can be defined as states and corresponding moment equations

can be derived and simulated. We use normal and log-normal mixture distributions de-

fined by its mixture parameters ϕes = (µes, σ
e
s). Using second order moments, we can link

both parameters to the ME, which we will explain in the following. However, this yields

a reduced number of unknown parameters θ = {{wes,ψes}s , σeε}e, since no additional

parameters for the variances needs to be introduced and estimated as in (3.1).
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Mixture of Normal Distributions

Both moments of the measurand, my and Cy and their corresponding sensitivities dmy

dθ ,
dCy
dθ

can directly be linked to mixture parameters of a normal distribution by

µ = my, σ2 = Cy + σ2
ε ,

dµ

dθ
=
dmy

dθ
and

dσ

dθ
=

1

2σ

(
dCy
dθ

+
dσ2

ε

dθ

)
.

Here, σ2
ε is the variance of additive normally distributed measurement noise (3.3).

Mixture of Log-Normal Distributions

Another mixture distribution used in this thesis is the log-normal distribution. If the

mean of a log-normal distribution is linked to the mean of the moment equations, we

need to following calculations:

µ = log(my)−
1

2
σ2 ,

σ2 = log

(
1 +

Cy
m2
y

)
+ σ2

ε ,

dµ

dθ
=

1

my

dmy

dθ
− 1

2

d log
(
Cy
m2
y

+ 1
)

dθ
− 1

2

dσ2
ε

dθ
,

dσ

dθ
=

1

2σ

(
d log(Cym2

y
+ 1)

dθ
+
dσ2

ε

dθ

)
,

with
d log

(
Cy
m2
y

+ 1
)

dθ
=

1
Cy
m2
y

+ 1

m2
y
dCy
dθ − 2Cymy

dmy

dθ

m4
y

.

Here, σ2
ε is the mixture parameter of multiplicative log-normally distributed measurement

noise (3.4). The median of the distribution can be described in a similar way by the means

of the MEs.

3.3.2 Simulation Example: Conversion Reaction

To assess the method of ODE-MMs with MEs we study a conversion reaction between

some biochemical species A and B, a frequently occurring process in biology. A schematic

of the process is shown in Figure 3.6. The reaction system describing this process is
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R1 : A→ B, rate = k1u
[
A
]
,

R2 : A→ B, rate = k2

[
A
]
,

R3 : B→ A, rate = k3

[
B
]
.

For the conversion of A to B we denote a time dependent stimulus by u and distinguish

two different reactions. First, a stimulus dependent reaction R1 occurring with rate

k1u[A], where [A] denotes the concentration of species A, and second, a basal, stimulus

independent reaction R2. In reaction R3 species B is converted to A with kinetic parameter

k3. Due to conservation of mass, the sum of concentrations [A] + [B] remains constant.

Artificial Data

We generate artificial data for an external stimulus u(t) = 0 for t ≤ 0 and u(t) = 1 for

t > 0, i.e., the system is in steady state without stimulus at initial time. We generate

trajectories of 1000 cells in a volume Ω = 1000, which have a total number of molecules

N0 = 1000 using the SSA. A certain fraction of the cells shows higher response to stimulus

u. This difference is modeled with the subpopulation specific parameter k1. For every

time series we measure B at t = 0, 0.1, 0.2, 0.3, 0.5 and 1 minutes. As the use of MEs also

provides information about variability in parameters we consider three scenarios:

Scenario 1 Kinetic parameters are fixed across individual cells of a subpopulation.

Scenario 2 Kinetic parameters vary little between individual cells of a subpopulation.

Scenario 3 Kinetic parameters vary strongly between individual cells of a subpopula-

tion.

The scenarios are depicted in Figure 3.7. For every scenario we simulate two subpop-

ulations that respond differently to stimulus u, i.e., one subpopulation has a stimulus-

BA

stimulus u

measurand

Figure 3.6: Schematic representation of a conversion process between species A and B,
for which B can be measured. This figure has been adopted from (Hasenauer
et al., 2014b).
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dependent conversion with parameter k1,s1 = 0.75, while the other shows a lower response

with parameter k1,s2 = 0.1. For Scenarios 2 and 3 we assume that the parameters are

log-normally distributed with mean µki and variance σ2
ki

. The variance for Scenario 2

(σ2
ki

= 0.0016) is smaller than for Scenario 3 (σ2
ki

= 0.005). We want to emphasize that

by µki and σ2
ki

, we denote the means and variances of the parameters instead of the

corresponding parameters of the log-normal distribution.
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Figure 3.7: Artificial data for different scenarios of a conversion process of A and B with
two subpopulations that differ in the response to a stimulus: Scenarios with
(A) no parameter variability, (B) low parameter variability and (C) high
parameter variability between individual cells.
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Moment Equations for The Conversion Process without Variability in Parameters

The MEs for the conversion process are generated and simulated using the toolbox CER-

ENA developed by Kazeroonian et al. (2016). Given the system size Ω = 1000, we obtain

the following equations for the mean and variance of the concentration of B

dmB

dt
= −k3mB − (k1 + k2)(mB − 1) ,

dCB,B

dt
=
k3mB − (k1 + k2)(mB − 1)

Ω
− 2CB,B(k1 + k2 + k3) .

Based on these equations and the initial steady state assumption, we derive the initial

conditions for the MEs

mB(0) =
k2

k2 + k3
and CB,B(0) =

k2k3

Ω(k2 + k3)2
.

Moment Equations for The Conversion Process with Variability in Parameters

The MEs for the conversion process with accounting for additional variability in the

parameters are presented in the following. Given the means µki and standard deviations

σki of the parameters for i = 1, 2, 3, we obtain

dmB

dt
= (mB − 1)(mk3 −mk1) +mBmk2 − CB,k1 + CB,k2 + CB,k3 ,

dmki

dt
= 0 for i = 1, 2, 3 ,

dCB,B

dt
=

(mB − 1)(mk3 −mk1) +mBmk2 − CB,k1 + CB,k2 + CB,k3

Ω
+

2(CB,k3 − CB,k1)(mB − 1) + 2CB,k2mB + 2CB,B(mk3 +mk2 −mk1) ,

dCB,k1

dt
= CB,k1(mk2 +mk3 −mk1) + Ck1,k2mB − Ck1,k1(mB − 1) + Ck1,k3mB − 1 ,

dCB,k2

dt
= CB,k2(mk2 +mk3 −mk1) + Ck2,k2mB − Ck1,k2(mB − 1) + Ck2,k3mB − 1 ,

dCB,k3

dt
= CB,k3(mk2 +mk3 −mk1) + Ck2,k3mB − Ck1,k3(mB − 1) + Ck3,k3mB − 1 ,

dCki,kj
dt

= 0 for i, j = 1, 2, 3.
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By exploiting the steady state assumption, we obtain the initial conditions

mB(0) = Ω
µ2
k2

+ µk2µk3 − σ2
k2

µ2
k2

+ µk2µk3 + µ2
k3
− σ2

k2
− σ2

k3

,

mki(0) = µki ,

CB,k1(0) = 0 ,

CB,k2(0) =
Ωσ2

k2
(µ2
k3

+ µk3µk2 − σ2
k3

)

(µk2 + µk3)(µ
2
k2

+ 2µk2µk3 + µ2
k3
− σ2

k2
− σ2

k3
)
,

CB,k3(0) =
−Ωσ2

k3
(µ2
k2

+ µk3µk2 − σ2
k2

)

(µk2 + µk3)(µ
2
k2

+ 2µk2µk3 + µ2
k3
− σ2

k2
− σ2

k3
)
,

CB,B(0) =
(Ω− 1)CB,k2(0) + CB,k3(0) + Ωµk2

2(µk2 + µk3)
+

mB(0)(µk3 − µk2)− 2CB,k2(0)− 2CB,k3(0)

2(µk2 + µk3)
,

Cki,ki(0) = σ2
ki .

Hypothesis Testing for Scenario 1

To assess the extension and compare ODE-MM with RREs and with MEs, we perform

hypothesis testing for both methods based on the generated data of Scenario 1 (see Fig-

ure 3.7A):

H1 No subpopulations.

H2 Two subpopulations differing in k1.

H3 Two subpopulations differing in k2.

H4 Two subpopulations differing in k3.

The kinetic parameters are restricted to the interval [10−6, 104] and the weighting of

the subpopulations needed for H2-4 to the interval [0, 1]. As the variances need to be

estimated when using RREs, we restrict them to [10−2.5, 102.5]. Moreover, we use three

different distributions assumptions for every hypothesis, a normal distribution, for which

the mean is described by the ODEs, and a log-normal distribution, for which either the

mean or the median is parameterized by the ODE model. This yields 12 models that

are tested with multi-start local optimization and model selection using AIC and BIC.
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We perform parameter estimation with a toolbox that is internally used by the Data-

driven Computational Modeling group of the Institute of Computational Biology at the

Helmholtz Zentrum München. The results are shown in Table 3.2 for ODE-MMs with

RREs and in Table 3.3 for ODE-MMS with MEs. Both select the same optimal model,

which detects the true differences between the subpopulations. The fit of the optimal

modelMH2,1 is shown in Figure 3.8A. Furthermore, we computed the profile likelihoods of

the kinetic parameters and weights of the optimal models, which are shown in Figure 3.8B.

All parameters are identifiable and the profiles are almost indistinguishable. The number

of parameters can be reduced by at least a factor of two using MEs with nθ = 5 for MEs

and nθ = 17 using RREs. Moreover, model selection between ODE-MM with RRE and

ME yields BICRRE
min − BICME

min > 10, i.e., the model using MEs is selected in favor of the

RRE model.

Measurements at Less Time Points in Scenario 1

Additionally, we compare the performance of ODE-MMs with ME and RRE for the case

that less measurements are available. Thus, we repeat the parameter estimation for the

optimal model based on only three time points t = 0, 0.1 and 0.5 minutes. As the MEs also

can extract information from the variance of the subpopulation, the confidence intervals

are narrower for the case of using MEs instead of RREs (see Figure 3.8C). We expect

that for some other systems the uncertainties of the parameters for ODE-MMs with MEs

is much lower than using RREs. Munsky et al. (2009) already showed for some processes

that measurements at less time points are needed to obtain identifiable parameters if

second order moments are measured besides the means.
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Figure 3.8: Results for Scenario 1. (A) Fitted data of the optimal model MH2,1 using
ODE-MMs with MEs. (B, C) Comparison of profile likelihoods for ODE-
MMs with RREs (red line) and MEs (dotted dark red line) for different
numbers of measurements. (B) For the case of 7 time points, almost no
difference can be detected between the profiles. (C) If measurements of less
time points (t = 0, 0.1, 0.5 min) are available, ODE-MMs with ME yields
higher confidence in the estimates.
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Table 3.2: Results of parameter estimation and model selection for Scenario 1 using
ODE-MMs with RREs.

ns distribution ODE const. diff. nθ logL(θML)(104) BIC (104) rank ∆BIC decision

MH1,1 1 normal mean - 9 1.0821 −2.1563 12 > 10 rejected

MH1,2 1 log-normal mean - 9 1.0837 −2.1597 10 > 10 rejected

MH1,3 1 log-normal median - 9 1.0837 −2.1596 11 > 10 rejected

MH2,1 2 normal mean k1 17 1.3562 −2.6975 1 0 optimal

MH2,2 2 log-normal mean k1 17 1.3556 −2.6963 2 > 10 rejected

MH2,3 2 log-normal median k1 17 1.3556 −2.6963 3 > 10 rejected

MH3,1 2 normal mean k2 17 1.1233 −2.2318 8 > 10 rejected

MH3,2 2 log-normal mean k2 17 1.1296 −2.2445 7 > 10 rejected

MH3,3 2 log-normal median k2 17 1.1208 −2.2267 9 > 10 rejected

MH4,1 2 normal mean k3 17 1.1968 −2.3787 4 > 10 rejected

MH4,2 2 log-normal mean k3 17 1.1855 −2.3563 6 > 10 rejected

MH4,3 2 log-normal median k3 17 1.1900 −2.3652 5 > 10 rejected

Table 3.3: Results of parameter estimation and model selection for Scenario 1 using
ODE-MMs with MEs.

ns distribution ODE const. diff. nθ logL(θML)(104) BIC (104) rank ∆BIC decision

MH1,1 1 normal mean - 3 −1.6347 3.2721 12 > 10 rejected

MH1,2 1 log-normal mean - 3 −1.5787 3.1600 11 > 10 rejected

MH1,3 1 log-normal median - 3 −1.5736 3.1498 10 > 10 rejected

MH2,1 2 normal mean k1 5 1.3556 −2.7069 1 0 optimal

MH2,2 2 log-normal mean k1 5 1.3550 −2.7057 3 > 10 rejected

MH2,3 2 log-normal median k1 5 1.3551 −2.7058 2 > 10 rejected

MH3,1 2 normal mean k2 5 0.7804 −1.5564 9 > 10 rejected

MH3,2 2 log-normal mean k2 5 0.7920 −1.5796 8 > 10 rejected

MH3,3 2 log-normal median k2 5 0.7928 −1.5813 7 > 10 rejected

MH4,1 2 normal mean k3 5 1.0548 −2.1053 4 > 10 rejected

MH4,2 2 log-normal mean k3 5 1.0531 −2.1019 6 > 10 rejected

MH4,3 2 log-normal median k3 5 1.0541 −2.1038 5 > 10 rejected
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Hypothesis Testing for Scenario 2 and 3

For Scenario 2 and 3 we assess the ability of ODE-MMs with MEs to detect extrinsic

noise in a subpopulation. We perform hypothesis testing based on data that has been

generated with variable parameters (see Figures 3.7B and C) for the following hypotheses

H1 Two subpopulations that differ in k1 and fixed parameters between individual cells

of a subpopulation.

H2 Two subpopulations that differ in k1 and variability of parameters between individ-

ual cells of a subpopulation.

In this case the ground truth is H2, which assumes an additional cell-to-cell variability.

We model the data using ODE-MMs with MEs and a normal mixture distribution that

is constrained by its mean. For parameter estimation for H1 we use the same restrictions

in parameters as before. For the models of H2 the means of the kinetic parameters are

restricted to the interval [10−6, 104] and the coefficient of variation of the parameters

cvki = σki/µki to [10−6, 100].

The results are shown in Table 3.4 for low parameter variabilty (Scenario 2) and in

Table 3.5 for high parameter variability (Scenario 3). Our method is able to detect the

true model with high significance for both cases. Figures 3.9A and B show the fits of

model MH1, which allows no additional variability in parameters, and MH2, which ac-

counts for cell-to-cell variability in kinetic parameters. The fits of MH1 MH2 shows the

importance of accounting for extrinsic noise. The profiles corresponding to the optimal

model are shown in Figures 3.9C and D. The subpopulation weight and the means of

the kinetic parameters are identifiable. For the case of low parameter variability also the

coefficient of variation of k3, cvk3 , can be estimated with high confidence. As the MEs

give no exact representation of the system, it can happen that the true parameters lie

outside the confidence intervals. This is the case for cvk2 and cvk1,s1 in Scenario 2 and cvk2 ,

cvk3 and cvk1,s2 for Scenario 3. As expected, the results are better for lower variability in

parameters.

In summary, we combined ODE constrained mixture modeling with MEs for the descrip-

tion of the mechanisms of a biological process. As variances are linked to the MEs the
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Table 3.4: Model selection for data of Scenario 2 that includes low parameter variabil-
ity. Both criteria, AIC and BIC, select the true model MH2, which allows
parameters to vary between individual cells.

nθ logL(θML)(104) AIC (104) rank ∆AIC decision

MH1 5 0.6504 −1.2998 2 > 10 rejected

MH2 9 1.0280 −2.0542 1 0 optimal

nθ logL(θML)(104) BIC (104) rank ∆BIC decision

MH1 5 0.6504 −1.2965 2 > 10 rejected

MH2 9 1.0280 −2.0481 1 0 optimal

dimension of the parameter space is reduced. No additional parameters need to be intro-

duced for every time point, yielding that the availability of measurements at more time

points or more experiments, does not increase the number of parameters. Furthermore,

the proposed method provides additional insight into variability within a subpopulation.

Intrinsic noise, arising due to the inherent stochasticity of the underlying biological pro-

cesses, and extrinsic noise, which emerges, for example, from differences in parameters

of the cells in a subpopulation, can now be taken into account. Therefore, not only dif-

ferences between supopulations, but also heterogeneity of the individual subpopulations

can be studied. In addition, measurement noise can now be treated separately from the

variability of the subpopulations. Moreover, the evolution of the variability of a subpop-

ulation can be predicted, as variances at time points for which no measurements exist

can be simulated by the MEs. We validated the method on the example of a conversion

process between two species for different scenarios. We showed that the method is able

to detect the origin of difference between subpopulations and the existence of additional

parameter variability. The confidence intervals using MEs are narrower for the case of

measurements at less time points. We expect even more confidence in the estimates by

using ODE-MMs with MEs for other processes, in which more information is carried in

the variances.
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Table 3.5: Model selection for data of Scenario 3 that includes high parameter variabil-
ity. Both criteria, AIC and BIC, select the true model MH2, which allows
parameters to vary between individual cells

.

nθ logL(θML)(104) AIC (104) rank ∆AIC decision

MH1 5 −0.4511 0.9032 2 > 10 rejected

MH2 9 0.8392 −1.6766 1 0 optimal

nθ logL(θML)(104) BIC (104) rank ∆BIC decision

MH1 5 −0.4511 0.9065 2 > 10 rejected

MH2 9 0.8392 −1.6706 1 0 optimal
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Figure 3.9: Results for Scenario 2 and 3. (A) Fitted data for Scenario 2 for both models
MH1, allowing no additional parameter variability andMH2, which considers
cell-to-cell variability in the kinetic parameters. (B) Fitted data for Scenario
3 for MH1 and MH2. The true model MH2 has been selected correctly by
AIC and BIC for both scenarios. (C, D) Profiles corresponding to the
optimal model for Scenario 2 (C) and Scenario 3 (D). The true values of the
parameters, which have been used to generate the data, are indicated by a
green line.
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3.4 Simultaneous Analysis of Multivariate Measurements

In the previous section we presented ODE-MMs with MEs, which are able to capture vari-

ability within a subpopulation. However, correlations between the measurements can still

not be detected and taken into account (Problem 4). By just considering the univariate

measurements, corresponding to the marginal distributions in Figure 3.10, correlations

between the measurands cannot be detected. Figure 3.10A shows positive correlation

between measurand A and B, while Figure 3.10B shows negative correlation between the

measurements. In the following, we propose ODE-MMs, which can simultaneously analyze

multivariate measurements and therefore account for correlated behavior. Additionally,

we demonstrate and tackle the numerically instability of the likelihood calculation arising

due to the use of mixture probabilities (Problem 5).

3.4.1 Likelihood Function

The likelihood function for ODE-MMs based on multivariate measurement data is given

in a general form by

L (θ) =
∏
e,k,j

ns∑
s=1

wes p
(

ȳe,kj |ϕes (tk)
)

(3.5)

with ẋes = f (xes,ψ
e
s, u

e) , xes(0) = x0 (ψes, u
e) ,

ϕes = h (xes,ψ
e
s, u

e) .

A

B 
[a

.u
.]

A [a.u.]

B

B 
[a

.u
.]

A [a.u.]

Figure 3.10: Scatterplot and marginals of measurands A and B with (A) positive correla-
tion and (B) negative correlation. The measurements are given in arbitrary
units.
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For a simpler notation, we further neglect the indices e, k and j, corresponding to the

experiment, time point and single-cell, respectively. While (3.1) and (3.2) consider a uni-

variate measurement ȳ ∈ R, (3.5) gives the probability to observe a multivariate vector

ȳ ∈ Rd. The ns subpopulations with parameters ψs and weights ws are simulated with an

external stimulus u. The multivariate mixture distribution is defined by the parameters

ϕs. Function h links the state vector xs of the moments of the species of the system, for

which the time evolution is described by f , to the mixture parameters.

For simplicity, we further neglect the subpopulation index s. We use second order mo-

ments to describe the mechanisms of the system as in Section 3.3. The measurement is

possibly affected by some measurement noise e.g. additive normally distributed measure-

ment noise

ȳ = y + ε, ε ∼ N (0,Γ) , (3.6)

or multiplicative log-normally distributed measurement noise

ȳ = yε, ε ∼ logN (0,Γ) . (3.7)

The entries of Γ are incorporated in the parameter vector. The moments of the measurand

without measurement noise are denoted by my = (my,1, . . . ,my,d) and Cy and can be

calculated from x.

3.4.2 Multivariate Mixture of Normal and Log-Normal Distributions

In this thesis we focus on the mixture of d-dimensional multivariate normal distributions

N (y|µ,Σ) =
1

(2π)
d
2 det (Σ)

1
2

e−
1
2
(y−µ)TΣ−1(y−µ),

and multivariate log-normal distributions

logN (y|µ,Σ) =
1

(2π)
d
2 det (Σ)

1
2

(∏d
i=1 yi

)e− 1
2
(log(y)−µ)TΣ−1(log(y)−µ).

with mixture parameters ϕ = (µ,Σ).
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Gradient of Multivariate Normal and Log-Normal Distribution

The gradient of a multivariate normal distribution N (y|µ(θ),Σ(θ)) with respect to θ is

known to be

∂

∂θ
N (y|µ,Σ) = −1

2
N (y|µ,Σ) ·

(
Tr

(
Σ−1∂Σ

∂θ

)
+ (µ− y)T Σ−1

(
∂µ

∂θ

)T
+

(
∂µ

∂θ

)T
Σ−1 (µ− y) + (µ− y)T

∂Σ−1

∂θ
(µ− y)

)
.

For simplicity we write µ = µ(θ) and Σ = Σ(θ). The derivative for the multivariate

log-normal distribution can be obtained using the relation

logN (y|µ,Σ) = N (log(y)|µ,Σ)

(
d∏
i=1

yi

)−1

.

To simplify and speed up the calculation of the gradient we use the identity

Tr
(
ATB

)
=
∑
i,j

(A ◦B) ,

with (A ◦B)ij = (AijBij) being the Hadamard product.

Mixture of Multivariate Normal Distributions

We now present the calculations needed to constrain the mean and covariance of a mul-

tivariate normal distribution by MEs. Given the means my, covariances Cy and the

corresponding sensitivities ∂my

∂θ and ∂Cy

∂θ , we can directly define µ = my, Σ = Cy and

the derivatives

∂µ

∂θ
=
∂my

∂θ
, and

(
∂Σ

∂θ

)
ij

=

(
∂Cy

∂θ

)
ij

=
∂Cy,ij

∂θ
.

The multivariate normal distributions can e.g. be used together with additive normal

measurement noise Σ = Cy + Γ as in (3.6). An example for assuming independent

measurement noise is given by
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Γ =


σ2
ε,1 0 0

0
. . . 0

0 0 σ2
ε,d

 .

Other considerations, such as correlated behavior of the measurement noise for the dif-

ferent measurements, can also be included.

Mixture of Multivariate Log-Normal Distributions

For the log-normal distribution we use two different parametrizations. If the mean ob-

tained by the MEs describes the mean of the log-normal distribution, we use

my,i = eµi+
1
2
Σii ,

Cy,ij = eµi+µj+
1
2
(Σii+Σjj)(eΣij − 1) ,

for i, j = 1, . . . , d. This yields the mixture parameters

µi = log(my,i)−
1

2
Σii ,

Σij = log(
Cy,ij

my,imy,j
+ 1) ,

and their derivatives

∂µi
∂θ

=
1

my,i

∂my,i

∂θ
− 1

2

∂Σii

∂θ
,

∂Σij

∂θ
=

1
Cy,ij

my,imy,j
+ 1

∂
(

Cy,ij

my,imy,j

)
∂θ

=
1

Cy,ij

my,imy,j
+ 1

my,imy,j
∂Cy,ij

∂θ − Cy,ij(my,i
∂my,j

∂θ +my,j
∂my,i

∂θ )

(my,imy,j)2
.

Another parametrization is given by assuming that the mean obtained by the MEs de-

scribes the median of the log-normal distribution. This distribution assumption is com-

bined with log-normally distributed measurement noise (3.7).
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3.4.3 Robust Computation of Mixture Probabilities

When using mixture models, the calculation of the likelihood is generally unstable (Prob-

lem 5). We explain and address this problem in the following. We are interested in the

likelihood function of a mixture model with ns mixture components given by

p(y|θ) =

ns∑
s=1

wsp(y|ϕs), with θ = {(ws,ϕs)}nss=1 .

For simplicity we denote p(y|θ) by p and the probabilities p(y|ϕs) for the individual

components by ps. The goal is to calculate the log-likelihood

log(p) = log

(
ns∑
s=1

wsps

)

in a numerically stable way, which can be achieved by the following reformulation. Let

qs = log(ps) for s = 1 . . . , ns, then

smax = arg max
s

qs ,

log(p) = log

(
ns∑
s=1

wse
qs

)

= log

(
(
∑ns

s=1wse
qs)wsmaxe

qsmax

wsmaxe
qsmax

)
= log

(∑ns
s=1wse

qs

wsmaxe
qsmax

)
+ log (wsmaxe

qsmax )

= log

1 +
∑
s6=smax

ws
wsmax

(
eqs−qsmax

)+ log(wsmax) + qsmax .

As 0 ≤ eqs−qsmax ≤ 1 the reformulation gives better numerical properties than the direct

computation of log(p), which gets unstable for p close to 0. For the calculation of the

gradient, we have

d log(p)

dθ
=

1

p

dp

dθ
=

ns∑
s=1

ps∑ns
j=1wjpj

Hs ,
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with Hs such that

psHs =
dwsps
dθ

= ps
dws
dθ

+ ws
dps
dθ

. (3.8)

This is again unstable for p close to 0 and needs to be reformulated. Using

ps∑ns
j=1wjpj

=

ps
psmax∑ns

j=1wj
pj

psmax

=
eqs−qsmax∑ns

j=1wje
qj−qsmax

,

we obtain

d log(p)

dθ
=

1∑ns
j=1wje

qj−qsmax

ns∑
s=1

eqs−qsmaxHs . (3.9)

Example (Normal Distribution). For a normal distributionN (µs, σ
2
s) with parameters

ϕs = (µs, σs) and ws that depend on θ, we calculate

qs(y|ϕs) = −1

2

(
y − µs
σs

)2

− log(
√

2π)− log(σs) .

The term Hs defined in (3.8) is

Hs =
dws
dθ

+
ws
σs

(
y − µs
σs

dµs
dθ

+

((
y − µs
σs

)2

− 1

)
dσs
dθ

)
.

and can be used for the stable calculation of the gradient according to (3.9).

Comparison of Calculations of The Log-Likelihood Function

To evaluate the recalculation, we performed the parameter estimation in the next section

for the multivariate case with and without the reformulation above. Both procedures find

the same optimum. While the optimizer has a convergence rate of 0.71 using the robust

calculation, the convergence rate without the reformulation is 0.01. The corresponding

log-likelihood values are shown in Figure 3.11.
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Figure 3.11: Performance comparison for the numerically more stable and the classical
calculation of the likelihood. The red circles mark the value of the log-
likelihood function corresponding to the ML estimate. (A, B) show the
optimizer output for the robust calculation. (A) All (local) optima found
by the optimizer. (B) The best log-likelihood value is found in 71 out of
100 runs. The difference of the values is below 10−10. (C) Only 1 initial
value of 100 has a probabilty greater than 0 using the classical calculation.

3.4.4 Simulation Example: Conversion Reaction

For the validation of the method we generate data of a conversion process as in Sec-

tion 3.3.2, comprising the conversion between two species A and B.

Artificial Data

As we want to analyze multivariate data, we measure both species A and B. We generate

trajectories of 1000 cells in some volume Ω = 1000. The total number of molecules

N0 = A + B is log-normally distributed with mean µN0
= 1000 and variance σ2

N0
= 2500.

The cell population has a subpopulation structure due to differences in the response to

stimulus u. The parameter k1, describing the stimulus dependent conversion of A to

B, is set to k1,s1 = 0.1 for the low responsive subpopulation and to k1,s2 = 0.75 for

the high responsive subpopulation. Both subpopulations have the same size (w = 0.5).

The parameters shared by the subpopulations are given by k2 = 0.5 and k3 = 1.5.

Measurements y of the absolute numbers of A and B are assumed to be recorded at

t = 0, 0.1, 0.2, 0.3, 0.5 and 1 minutes. The parameter vector that needs to be estimated

from the data is given by θ = (k1,s1, k1,s2, k2, k3, µN0
, σN0

, w)T .
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Figure 3.12: Artificial multivariate data of a conversion process of A and B with cell-
to-cell variability in the total number of molecules N0.

Moment Equations for a Conversion Process with Variability in N0

To obtain the MEs, we assume to have three species A, B and N0 = A + B. The number

of molecules for species A and B changes according to the reactions of the conversion

process introduced in Section 3.3.2. The total number of molecules N0 is assumed to be

distributed with some mean µN0
and variance σN0

across the cells. Within an individual

cell, the number of molecules is constant. This yields the MEs (Kazeroonian et al., 2016)

dmB

dt
= (k1 + k3)mA − k2mB ,

dmA

dt
= k2mB − (k1 + k3)mA ,

dmN0

dt
= 0 ,

dCB,B

dt
= (k1 + k3)mB + k2mA + 2(k1 + k3)CB,A − 2k2CB,B ,

dCB,A

dt
= −(k1 + k3)mB − k2mA − (k1 + k2 + k3)CB,A + k1CA,A + k2CB,B ,

CB,N0

dt
= (k1 + k3)CA,N0

− k2CB,N0
,

CA,A

dt
= (k1 + k3)mA + k2mB + 2k2CB,A − 2(k1 + k3)CA,A ,

CA,N0

dt
= −(k1 + k3)CA,N0

+ k2CB,N0
,

CN0,N0

dt
= 0 .
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Using conservation of mass and calculation rules for covariances we obtain the following

initial conditions

mB(0) =
k2

k2 + k3
µN0

,

mA(0) =

(
1− k2

k2 + k3

)
µN0

,

mN0
(0) = µN0

,

CA,A(0) = σ2
N0
− 2CB,N0

+ CB,B(0) ,

CB,B(0) =
k2mA(0) + k3mB(0) + 2k2CB,N0

2(k2 + k3)
,

CA,N0
(0) =

k2

k2 + k3
σ2
N0
,

CB,N0
(0) =

k3

k2 + k3
σ2
N0
,

CN0,N0
= σ2

N0
.

Comparison of Multivariate and Univariate Analysis of Measurements

To analyze how much information is gained by considering multivariate measurements,

we perform parameter estimation first by simultaneously analyzing both measurements

and then by analyzing one measurement at a time. The parameter restrictions are the

same for both cases, namely the kinetic parameters and mean number of molecules µN0

are assumed to lie in [10−6, 104], the weight within [0, 1] and the coefficient of varia-

tion for the number of molecules cvN0
= σN0

/µN0
within [10−6, 104]. For the univariate

case we analyze the measurements of A and B independently, while we simultaneously

use both measurements in the likelihood (3.5) for the multivariate case. The fits corre-

sponding to the best parameters of 100 multi-start local optimization runs are depicted

in Figures 3.13A-C. The model can explain the data quite well. The comparison of the

likelihoods in Figure 3.13D shows that information is gained by using both measurements

at the same time.

We presented a method, which considers multivariate measurements simultaneously to

infer parameters. This allows to capture correlated behavior between the measurements,

which would not be possible if the measurements are considered separately. More in-

formation can be extracted from the data yielding higher confidence in the estimates.
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Furthermore, we proposed a reformulation of the likelihood of mixture probabilities to

obtain a robust computation, which cannot only be used within ODE-MM, but can be

applied to other approaches that require the calculation of mixture probabilities.
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Figure 3.13: Results of parameter estimation and identifiability analysis. (A, B) Fitted
data for species A and B using the univariate implementation of ODE-MMs.
(C) Fitted multivariate measurements of A and B. The level sets of the
multivariate normal mixture distribution are visualized. (D) Comparison
of the profile likelihoods for both cases. The confidence intervals are wider
if the measurements are considered seperately.
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3.5 Application Example: NGF-Induced Erk Signaling

In the previous sections, we implemented a method based on ODE-MMs, which is able to

capture variability within a subpopulation and analyze multivariate measurements. We

apply our method to data of NGF-induced Erk signaling in primary sensory neurons, a

process that has already been explained and studied in Section 3.2.1.

3.5.1 Experimental Data

We investigate three experiments, comprising kinetics and dose responses. For experiment

1 and 2, only the pErk concentration has been measured (see Figures 3.14A and B). For

experiment 3, multivariate measurements of pErk and total Erk levels are available (see

Figure 3.14C). For details of the collection of the data we refer to (Hasenauer et al., 2014b),

in which the first two experiments have been analyzed with ODE-MMs using RREs. As

this method is not able to analyze multivariate data simultaneously, the two-dimensional

measurements have not yet been included into the parameter estimation procedure and

have only been used to validate the results obtained based on the univariate measurements.

3.5.2 Moment Equations for The Simple Pathway Model of

NGF-Induced Erk Signaling with Variability in Total Erk Levels

Since the data visualized in Figure 3.14C shows that the total Erk levels vary between

individual cells, our model assumes total Erk levels to be distributed with some mean

and variance. As we use MEs that describe the evolution of the concentrations, we

assume a volume of Ω = 500µm3 for a neuron. We scale the system with ΩAv = 301.1,

with Av being Avogadros constant. The concentration, which is obtained by dividing

the number of molecules by ΩAv, is given in units of nM. The concentration of the

complex TrkA:NGF is denoted by C, [pErk] by P, [Erk]0 by E0 and [TrkA]0 by T0. The

system is stimulated with [NGF]0 denoted by NGF0, corresponding to u in (3.5). Given

the parameters k1, k2, k3, k4, k5,T0, µE0
and σE0

, we obtain the following MEs using the

toolbox CERENA (Kazeroonian et al., 2016):

dmC

dt
= − k2mC + k1

CC,C + (ΩAvNGF0 −mC)(T0 −mC)

ΩAv
,

dmP

dt
= − k5mP − k4(mP −mE0

) + k3
CC,E0

− CC,P −mC(mP −mE0
)

ΩAv
,

dmE0

dt
= 0 ,
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Figure 3.14: Experimental data of NGF-induced Erk phosphorylation. (A) Univariate
kinetic measurements of pErk for 18797 cells. (B) Univariate dose response
measurements of pErk for 12205 cells. (C) Multivariate dose response
measurements of pErk and total concentration of Erk for 4134 cells.
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dCC,C

dt
= k2(mC − 2CC,C) + k1

CC,C + (ΩAvNGF0 −mC)(T0 −mC)

ΩAv
−

2CC,C(ΩAvNGF0 + T0 − 2mC)

ΩAv
,

dCC,P

dt
= k4(CC,E0

− CC,P)− k5CC,P − k2CC,P+

k3
CC,E0

mC − CC,PmC − CC,C(mP −mE0
)

ΩAv
− k1

CC,Pk1(ΩAvNGF0 + T0 − 2mC)

ΩAv
,

dCC,E0

dt
= − k2CC,E0

− k1
CC,E0

(ΩAvNGF0 + T0 − 2mC)

ΩAv
,

dCP,P

dt
= k4(2CP,E0

− 2CP,P − (mP −mE0
)) + k5(mP − 2CP,P) +

k3
CC,E0

− CC,P − 2CP,PmC + 2CP,E0
mC − 2CC,P(mP −mE0

)−mC(mP −mE0
)

ΩAv
,

dCP,E0

dt
= k4(CE0E0

− CP,E0
)− k5CP,E0

+ k3
CE0,E0

mC − CP,E0
mC − CC,E0

(mP −mE0
)

ΩAv
,

dCE0,E0

dt
= 0 .

The initial condition is the steady state of the system without stimulus, i.e., NGF0 = 0,

mP(0) =
k4

k4 + k5
µE0

,

mE0
(0) = µE0

,

CP,P(0) =
2k2

4σ
2
E0

+ 2k4k5µE0

2(k4 + k5)2
,

CP,E0
(0) =

k4

k4 + k5
σ2

E0
,

CE0,E0
(0) = σ2

E0
,

mC(0) = 0, CC,C(0) = 0 , CC,P(0) = 0 , CC,E0
(0) = 0 .

The measurements ye for the univariate kinetic (e = 1) and dose response (e = 2) data,

and the multivariate dose response data (e = 3) are then given in concentrations by

ye = s1P = s1[pErk] , for e = 1, 2 ,

ye =

 s2P + b

s3E0

 =

 s2[pErk] + b

s3[Erk]0

 , for e = 3 ,

with additional experiment-specific scaling parameters s1, s2, s3 and offset parameter de-

noted by b.
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Table 3.6: Results for model selection for NGF-induced Erk signaling.

ns nθ logL(θML)(104) AIC (104) ∆AIC BIC (104) ∆BIC rank decision

MH1 1 13 −4.1263 8.2252 > 10 8.2662 > 10 3 rejected

MH2 2 15 −3.9135 7.8300 > 10 7.8427 > 10 2 rejected

MH3 2 16 −3.9079 7.8190 0 7.8325 0 1 optimal

3.5.3 Hypothesis Testing

To assess our method for real experimental data, we test the following hypotheses:

H1 No difference between subpopulations.

H2 Different levels of TrkA (TrkA0,i for subpopulation i).

H3 Different levels of TrkA and different mean concentrations of Erk (TrkA0,i and µE0,i

for subpopulation i).

As the log-normal distribution parametrized by its median has been selected as the op-

timal distribution by Hasenauer et al. (2014b) based on the univariate data, we use a

multivariate log-normal distribution as mixture distribution and constrain the median by

the MEs. H1 includes variability in total Erk levels, but assumes that the cell population

consist of only one population. H2 and H3 consider a subpopulation structure, emerging

due to different levels of TrkA. For H3, also the parameter µE0,i
describing the mean of

total Erk levels differs between the subpopulations. We parametrize the variance σ2
E0,i

by the coefficient of variation cvE0,i
. In addition, we assume independent log-normally

distributed multiplicative measurement noise. All parameters besides the subpopulation

weight, which is assumed to lie within [0, 1], are restricted to the interval [10−10, 1010].

The results for parameter estimation with 1000 multi-starts and model selection using

AIC and BIC are shown in Figure 3.15 and Table 3.6. The fits indicate that the model

can explain the data. Both criteria select MH3, indicating that the origin of difference

are not only TrkA levels, but also different means of total levels Erk.

We applied ODE-MMs to kinetic and dose response experiments of NGF-induced Erk

signaling, comprising different dimensions of measurements. Using not only the measure-

ments of pErk, but also the two-dimensional measurements of pErk and total Erk levels
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gives a more detailed insight into the underlying system. By performing parameter es-

timation and model selection with our proposed method, it was possible to account for

variability in total Erk levels and to identify a further difference between the subpopula-

tions, namely the mean of total Erk levels.

3.6 Discussion and Outlook

In this chapter, we used and extended ODE-MMs to study subpopulation structures and

dynamics. Based on novel data for NGF-induced Erk signaling, we evaluated the methods

applicability to unravel differences in subpopulation response between experimental con-

ditions. A mechanistic description of the subpopulation by MEs yields not only a reduced

number of parameters, it also enables us to capture intrinsic and extrinsic variability of

a subpopulation. In addition, we enhanced the method to analyze multivariate measure-

ments and therefore account for correlations between the measurands. We successfully

tackled numerical instability, which not only arises for ODE-MMs but for other methods

using mixture distributions. The application of our method to examples for a conversion

process and real data of NGF-induced Erk signaling revealed an improved acquisition of

the data.

In this thesis, we used the normal and log-normal distribution to mix the subpopulations.

Other distributions, for example the t-distribution and the skew-t distribution (Pyne et

al., 2009) can also be used within ODE-MMs. For distributions that are defined by more

than their first two moments, higher order MEs can be used to describe the system and

be linked to the mixture distributions.

Not only the mixture distribution can be exchanged. Other representations of the sys-

tem, which also account for variability within the subpopulations can be studied, e.g. the

linear noise approximation (Kampen, 2007, Chapter X). If the system comprises species

of low- and high-copy numbers, the method of conditional moment equations described

in Section 2.2.4 can be incorporated into ODE-MMs.

So far, the number of subpopulations needs to be predefined and can be chosen by perform-

ing model selection for different numbers of mixture components . An adaptive approach
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to choose this number would be a Bayesian version of the method that uses reversible

jump Markov chain Monte Carlo techniques (Murphy, 2012). These methods are able

to select an appropriate number of subpopulations by performing parameter estimation

across parameter spaces of different dimensions.

In summary, our results prove that ODE-MMs are a flexible tool for the analysis of

heterogeneous populations. Our extensions facilitate to extract more information from

the data and therefore provide an improved insight into the mechanisms of the biological

processes.



56 3 ODE Constrained Mixture Modeling for Multivariate Data

A

fre
qu

en
cy

0

0.05

0.1  t = 0 min
Kinetic for [NGF]0 = 1nM

data
model

 t = 5 min

fre
qu

en
cy

0

0.05

0.1  t = 15 min

pErk level [UI]
100 102  

 t = 30 min

pErk level [UI]
100 102  

fre
qu

en
cy

0

0.05

0.1  t = 60 min

B

fre
qu

en
cy

0

0.05

0.1  [NGF]0 = 0 nM
Dose response for t = 30 min

data
model

 [NGF]0 = 0.001 nM

fre
qu

en
cy

0

0.05

0.1  [NGF]0 = 0.01 nM  [NGF]0 = 0.1 nM

pErk level [UI]
100 102  

fre
qu

en
cy

0

0.05

0.1  [NGF]0 = 1 nM

pErk level [UI]
100 102  

 [NGF]0 = 10 nM

C

pE
rk

 le
ve

l [
U

I]

10-1

100

 [NGF]0 = 0 nM

Dose response for t = 30 min

data
model

fre
qu

en
cy

1

1.5

2

2.5

3

3.5

4

4.5

5

pE
rk

 le
ve

l [
U

I]

10-1

100

total Erk level [UI]
10-1 100

 [NGF]0 = 1 nM

Figure 3.15: Fitted data of NGF-induced Erk phosphorylation for modelMH3. (A) Uni-
variate fit of kinetic measurements of pErk. (B) Univariate fit of dose
response measurements of pErk. (C) Multivariate fit for dose response
measurements of pErk and total concentration of Erk. The model is rep-
resented by level sets of the frequency, given by a multivariate log-normal
distribution.



4 Approximate Bayesian Computation

for Single-Cell Time-Lapse Data

Using Multivariate Statistics

In the previous chapter we focused on modeling and parameter estimation for single-cell

snapshot data. We provided and assessed a method, which not only considers the mean

behavior of the cell population, but also the second order moments. In this chapter we

go one step further in the direction of treating cells as individuals by modeling single-cell

time-lapse data with continuous time Markov chains (CTMCs) (Gillespie, 2007).

In Section 4.1, we formulate the key problems that arise in parameter inference for single-

cell time-lapse data and that are addressed in this chapter. Section 4.2 introduces approx-

imate Bayesian computation (ABC), a method used for parameter estimation without the

usage of a likelihood function. An essential step of ABC is the comparison of two data

sets. Therefore, we present in Section 4.3 two multivariate test statistics that are suitable

for the task of comparing time-series. We study how these statistics can be incorporated

into the ABC scheme. Different approaches are evaluated on a bivariate normal distribu-

tion. In Section 4.4, our method is applied to artificial time-series of a one-stage model of

gene expression. Here, we assess our method for equilibrium and non-equilibrium data as

well as for data including parameter variability and tree-structured data. In Section 4.5,

we summarize and discuss our results.

4.1 Introduction and Problem Statement

For small molecule numbers stochastic effects may complicate the analysis on the popu-

lation level. Thus, the system should be modeled in a stochastic way accounting for the

randomness of the underlying processes (Wilkinson, 2009). CTMCs model the births and

deaths of single molecules and therefore capture intrinsic noise.
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To estimate parameters of a CTMC, likelihood-based methods can be applied. These

methods consider all possible paths of the stochastic process by evaluating the transition

density, e.g. using the finite state projection (FSP) (Munsky & Khammash, 2006). As

this is computationally demanding and merely tractable for simple processes and mod-

erate system sizes, likelihood-free approaches have been developed, which are also called

approximate Bayesian computation (ABC) methods (Marin et al., 2012). ABC meth-

ods circumvent the evaluation of the likelihood. A parameter is accepted if the distance

between simulated and measured data is sufficiently small, and rejected otherwise. The

performance and convergence of ABC depends crucially on the employed distance mea-

sure.

Single-cell time-lapse data are highly multivariate, especially if measurements at several

time points exist. While it is possible to collect thousands of measurements e.g. flow cy-

tometry, the generation of single-cell time-series is time-consuming, as its requires several

steps and the cell tracking often has to be done manually. On the other hand, information

is gained as cells are tracked over time, and this source of information should be taken

into account in the parameter estimation procedure. When inferring the parameters for

single-cell time-lapse data, the following problems arise:

Problem 1 Single-cell time-series are multivariate and appropriate distance measures

are not yet available.

Problem 2 The sample size of single-cell time-series is small.

In this thesis, we will take a population perspective rather than fitting trajectories individ-

ually (Dargatz, 2010). Trajectories of individual cells are samples from a high-dimensional

path distribution. Accordingly, distance measures for ABC are provided by multivariate

test statistics.
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4.2 Extended Introduction to Approximate Bayesian

Computation

Approximate Bayesian computation (ABC) has first been introduced by Pritchard et al.

(1999). The method has been extended and improved continuously (see e.g. (Marin et al.,

2012)) and covers a broad range of applications (see (Csilléry et al., 2010) for an overview).

4.2.1 Algorithms

The most basic ABC algorithm is the ABC rejection sampler, which is explained in Algo-

rithm 4.1. The goal is to obtain samples from the posterior distribution p(θ|Dobs) of the

parameters based on observed data Dobs. Therefore, a data set Dsim is simulated with

respect to a parameter θ that has been sampled from the prior distribution p(θ). This

data set is then compared to the experimental data set. The comparison is carried out by

calculating some distance d(Dobs,Dsim) between both data sets. If the distance is below

a certain predefined threshold ε, the sampled parameter is accepted as a sample of the

posterior distribution. Otherwise, the sample is rejected and another parameter is sam-

pled from the prior until it produces a distance below the desired threshold. This whole

procedure is repeated several times to obtain P samples of the posterior approximation

of interest. The approximated posterior then converges to the true posterior for ε→ 0.

The main drawback of ABC rejection is that the acceptance rate can be low if prior

and posterior distribution are very different. Some extensions tackle this problem by

combining ABC with other methods such as Markov chain Monte Carlo (Marjoram et al.,

2003) or sequential Monte Carlo methods (Toni et al., 2009). The latter algorithm, ABC

with sequential Monte Carlo (ABC SMC) is explained in Algorithm 4.2. The first step

is basically an ABC rejection step, in which the particles are sampled from the prior

and are accepted if the corresponding simulated data set produces a distance below the

first threshold ε1. Every particle obtains a weight w
(t)
i , which is used to sample the next

population. For intermediate populations with an index t > 2, the particles are sampled

from the previous population and additionally perturbed with respect to the perturbation

kernel Kt(·|·). The particles of the final population are then the desired samples of the

approximated posterior distribution.
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Algorithm 4.1: ABC rejection

Input: Data set Dobs, prior p(θ), threshold ε, simulation function p(D|θ), number

of particles P .

Result: Samples of p(θ|d(Dobs,Dsim) ≤ ε).

for i = 1, . . . , P do

repeat

Draw θ
(1)
i ∼ p(θ) and simulate Dsim ∼ p(D|θi).

until d(Dobs,Dsim) < ε

end

Algorithm 4.2: ABC SMC (Toni et al., 2009)

Input: Data set Dobs, prior p(θ), perturbation kernel Kt(·|·), threshold schedule

ε1 > . . . > εT for the T populations, simulation function p(D|θ), number

of particles P

Result: Samples of p(θ|d(Dobs,Dsim) ≤ ε).

Set population index t = 1.

for i = 1, . . . , P do

repeat

Draw θ
(1)
i ∼ p(θ) and simulate Dsim ∼ p(D|θ(1)

i )

until d(Dobs,Dsim) < ε1

Set w
(t)
i = 1/P , the weight of particle θ

(t)
i .

for t = 2, . . . , T do

for i = 1, . . . , P do

repeat

Pick θ∗i from the θ
(t−1)
j ’s with probabilities w

(t−1)
j .

until p(θ∗i ) > 0

repeat

Draw θ
(t)
i ∼ Kt(θ

(t)
i |θ∗i ) and simulate Dsim ∼ p(D|θ(t)

i ).

until d(Dobs,Dsim) < εt

Compute new weights as w
(t)
i =

p(θ
(t)
i )∑

j w
(t−1)
j Kt(θ

(t)
i |θ

(t−1)
j )

.

end

Normalize w
(t)
i over i = 1, . . . , P .

end

end
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4.2.2 Configurations of The Algorithm

There are several user-specified aspects and algorithm settings that have a major influence

on the performance and accuracy of the algorithm. Thus, the configuration need to be

chosen carefully, but for most of them no general rule of thumb exists. In the following, we

discuss the different tuning parameters and settings, their influence on the performance

and accuracy of the algorithm, and possible choices of the parameters.

Summary Statistics

The efficiency of the algorithm crucially depends on the marginal probability to observe

the data set. Low probabilities of p(Dobs) have the consequence that the acceptance rate

of the parameters is also low. Therefore, the calculation of the distances between the data

sets d(Dobs,Dsim) is often replaced by the calculation of the distances d(S(Dobs),S(Dsim))

between summaries. As p(S(Dobs)) is usually larger than p(Dobs), this results in a higher

acceptance rate. If it holds for the summary statistics that p(θ|D) = p(θ|S(D)), meaning

that the statistic is sufficient, the true posterior can be obtained for ε → 0 (Nunes &

Balding, 2010).

Examples for summary statistics are e.g. moments (see e.g. (Wegmann et al., 2009;

Beaumont et al., 2002)) of the data. Other approaches that are based on concepts of hy-

pothesis testing are proposed by Lillacci & Khammash (2013) and Ratmann et al. (2013).

Given a predefined set of summary statistics, methods to choose summary statistics exist

in the literature (see (Blum et al., 2013) for a detailed comparison of methods to select

summary statistics). As they mostly need a candidate set of statistics, this has the con-

sequence that the efficiency of these methods depends on this initial choice of summary

statistics.

Using summary statistics has some drawbacks. If the statistic does not capture enough

information about the data, i.e. if its not sufficient, the difference between approximated

and true posterior distribution is unknown (Marjoram & Tavaré, 2006). If the likelihood

is unknown, it is not possible to identify whether a summary statistic is sufficient (Wilkin-

son, 2013).
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Stopping Criterion

The decision whether the algorithm has converged or the approximation is good enough

can be difficult. If the final tolerance level is too high, the approximation can be quite

different from the true posterior. Conversely, if the tolerance level is too low, the compu-

tation time is longer than needed to obtain a reasonable approximation.

One possibility is to determine the minimal distance between observed and simulated

data εend data-driven for example by subsampling. Assume there are n observed samples,

then the following procedure can be repeated several times

• Randomly pick two equally-sized subsets D1,D2 ⊂ Dobs (e.g. with replacement)

• Calculate ε = d(S(D1),S(D2))

and e.g. a certain percentile of the calculated ε values is chosen as final distance that needs

to be achieved. This has the disadvantage that if the distance function depends on the

number of samples n, the determined value may not represent the true minimal distance

between observed and simulated data. Lenormand et al. (2013) presented an adaptive

population Monte Carlo ABC scheme which additionally gives a stopping criterion based

on the acceptance rate. But still, a minimal value for the acceptance rate needs to be

defined.

Threshold Schedule

The choice of the ε-schedule is crucial for the performance of the algorithm. If the se-

quence decreases too slowly the computation time will be quite long until a reasonable

approximation is achieved. On the other hand if it decreases too fast the acceptance rate

will be too low which also results in a high computation time. The tolerances should

always be determined considering the data, model and prior (Silk et al., 2013).

The most common approach is a quantile selection scheme. This approach determines εt

at the beginning of the sampling of population t by calculating εt in a way that a given

percentage of the particles in population t− 1 generated a smaller distance (Drovandi &

Pettitt, 2011; Del Moral et al., 2012; Lenormand et al., 2013; Beaumont et al., 2009).
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Silk et al. (2013) proposed to choose the next threshold based on an estimation of the

acceptance rate curve.

Perturbation Kernel

The particles that are sampled for the intermediate and final distributions are additionally

perturbed with respect to some perturbation kernel Kt(·|·). For large numbers of param-

eters that need to be estimated from the data, or computational expensive models, the

acceptance rate can drastically decrease if no suitable perturbation kernel is used (Filippi

et al., 2013). The trade-off between the acceptance rate, which tends to be better if the

particles are not moved a lot, and the exploration of the parameter space, which needs a

higher perturbation of the particle, has to be considered.

Filippi et al. (2013) listed several perturbation kernels, which aim to resemble the true

posterior distribution. This list comprises e.g. component-wise kernels such as a uniform

kernel and multivariate kernels such as a multivariate normal kernel. The former uses the

width of the previous population that already fulfill the tolerance criterion for the current

population to calculate the width of the kernel. The latter is based on the covariance of

the particles of the previous population. A quite flexible and more local kernel is a multi-

variate normal kernel with k-nearest neighbors. This kernel uses a multivariate Gaussian

distribution centered around the sampled parameter. The covariance is given by the em-

pirical covariance of the k-nearest neighbors of the parameter, e.g. the k parameters that

have the smallest euclidean distance to the sampled parameter.

Number of Particles Per Population

One advantage of ABC SMC is that it is able to obtained better approximations of

multimodal posteriors than ABC rejection (Toni et al., 2009). For this, it is necessary to

find an appropriate number of particles P . The approximation gets better if more samples

are used. But especially for the last populations the acceptance rates can be really low,

which potentially results in a long computation time until the desired number of samples

is obtained. Mostly, the number is predetermined by intuition and increased if the results

are not reproducible.
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Number of Samples to Generate for The Simulated Data Sets

Another parameter that needs to be chosen is the number of samples in the simulated

data set denoted by m. Since the main idea is to reproduce the observed data set, an

intuitive choice for m is to set it equal to the number of observed data points n. For large

values of n this can result in long simulation times. Therefore, Lillacci & Khammash

(2013) calculate within the method INSIGHT (see Section 4.2.3) the number of samples

needed to decide whether to accept or reject an particles at a confidence level α.

The main advantage of ABC methods is that they are applicable to any stochastic model

for which a forward simulation is possible. However, the methods have a lot of tuning pa-

rameters and configurations that have a great influence on the accuracy and performance

of the algorithm. This can be seen as a huge disadvantage of the method, especially, as

for most of the configurations no general applicable approach exists.

4.2.3 State-of-The-Art: ABC for Stochastic Models of Single-Cell

Snapshot Data

ABC methods have been successfully applied for the analysis of single-cell snapshot data

collected e.g. using flow cytometry. The Inference for Networks of Stochastic Interactions

among Genes using High-Throughput data (INSIGHT) algorithm has already been used

for high-dimensional models (Lillacci & Khammash, 2013). Since cells are discarded after

being measured in flow cytometry, the measurements at the nt different time points are

independent. The distance between observed and simulated data sets can be calculated

in the ABC rejection step using the maximal Kolmogorov-Smirnov (KS) distance:

dKS(Dobs,Dsim) := max
k
‖F̂Xk

− ĜYk
‖∞ , (4.1)

with Dobs = {Xk}ntk=1, Dsim = {Yk}ntk=1 , and F̂Xk
, ĜYk

being the corresponding empir-

ical cumulative distributions. Here, a sample Xk contains the fluorescence levels of the

n single-cells for a time point that is indexed by k and each Yk comprises m samples.

INSIGHT achieves good results, benefiting from large sample sizes provided by flow cy-

tometry, from using the two-sample Kolmogorov-Smirnov test to compare the data sets,

and from exploiting relationships between configurations of the ABC algorithm and the



4.3 Approximate Bayesian Computation with Multivariate Test Statistics 65

test statistic. Given some threshold ε, the critical value of m
(c)
KS(α, ε), needed to decide

whether to accept or reject the particle at a confidence level α, can be calculated by

investigating properties of the KS distance (see (Lillacci & Khammash, 2013, Supplemen-

tary Information)):

m
(c)
KS(α, ε) =


− log(1−

√
1−α

2 )

2

(
ε−
√
− 1

2n log(1−
√

1−α
2 )

)2


. (4.2)

Given a fixed value for m, the critical value ε
(c)
KS(α,m) can be computed:

ε
(c)
KS(α,m) =

√(
− 1

2n
log

(
1−
√

1− α
2

))
+

√(
− 1

2m
log

(
1−
√

1− α
2

))
. (4.3)

We will adapt the idea of using test statistics for the development of an ABC SMC method

for single-cell time-lapse data, which we later will compare with INSIGHT.

4.3 Approximate Bayesian Computation with

Multivariate Test Statistics

One of the problems arising when inferring parameters from single-cell time-lapse data is

the dimensionality of the time-series (Problem 1). This requires to study, how ABC can be

used to infer parameters based on multivariate data. In the following, we develop an ABC

method for single-cell time-lapse data using hypothesis testing (Lillacci & Khammash,

2013; Ratmann et al., 2013).

4.3.1 Multivariate Test Statistics

The goal is to decide whether to accept or reject a parameter based on the observed data

and the data set that has been generated with respect to the parameter. In the context

of test statistics, this can be done using a two-sample test. If the test indicates that

both underlying distributions are equal, the parameter is accepted as sample from the

posterior approximation. For the case of data sets that comprise only one-dimensional
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samples, tests relying on the KS distance can be used as proceeded in INSIGHT (Lillacci &

Khammash, 2013). Since we want to apply ABC SMC with test statistics to multivariate

data, we need to find an appropriate multivariate test statistic for the two-sample problem

(see (Gretton et al., 2012, Section 3.3.3) for an overview of multivariate two-sample tests).

In the following we introduce the cross-match test, which compares two distributions

based on distances between samples, and the maximum mean discrepancy, which calcu-

lates the largest difference in expectation over functions in the unit ball of a reproducing

kernel Hilbert space.

Cross-Match Test

Rosenbaum (2005) presented an exact and distribution-free test to compare two multivari-

ate distributions based on multivariate samples, which for example consist of continuous

or discrete vectors of possibly infinite dimension. For the test, which is named cross-match

test, a complete graph is defined, in which nodes correspond to samples and edge weights

correspond to distances between the samples. To obtain the test statistic a minimum

weight non-bipartite matching is performed, i.e., the set of edges is found under the con-

dition that every node is incident to exactly one edge of this set and the sum of weights

of these edges is minimal. The number of cross-matches A1, i.e., the matched pairs that

comprising one observed and one simulated sample, then indicates, whether all samples

are drawn from the same distribution. The null distribution of A1 is

Pr(A1 = a1) =
2a1
(
n+m

2

)
!(

n+m
n

)
a0!a1!a2!

, (4.4)

with al being the number of matches with exactly l observed samples. For the case of

n+m being uneven see (Rosenbaum, 2005). Note that the distribution only depends on

the numbers of observed and simulated samples.

We want to decide whether to reject or accept the null hypothesis, based on c obtained

cross-matches. If the probability to observe c or less cross-matches under the null hy-

pothesis is greater than the confidence level α, we cannot reject the hypothesis. If the

probability is smaller, we conclude that the samples are drawn from different distribu-

tions. Given
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Pr(A1 ≤ c) =

c∑
i=0

2i n+m
2 !(

n+m
n

)
(n+m

2 − n+i
2 )!i!(n−i2 )!

≤ α, (4.5)

we can fix m and α and find numerically the critical value c
(c)
CM(α,m), the minimum num-

ber of cross-matches, which has to be exceeded to reject the null hypothesis. Moreover,

we can fix α and c to find the minimum number of samples m
(c)
CM(α, c) needed to decide

whether A1 > c.

We implemented the cross-match test in MATLAB. For this, we integrated a blossom

V algorithm1 Kolmogorov, 2009 to perform the minimum-weight non-bipartite match-

ing, which requires O((n + m)3) arithmetic operations. Moreover, we use the euclidean

distance for the calculation of the distances between the nodes. The cross-match test is

visualized in Figure 4.1.

The main advantage of the cross-match test is that it is distribution-free and exact, i.e.,

it does not make assumptions about the underlying distribution and the null distribution

is known in closed form.

Maximum Mean Discrepancy

An alternative multivariate test statistic for the two-sample problem is based on the

maximum mean discrepancy (MMD), which has first been introduced by Borgwardt et al.

(2006)

MMD[F , p, q] := sup
f∈F

(Ep[f(x)]− Eq[f(y)]) .

If the distributions p and q are equal, the MMD is zero. Moreover, F is a class of functions

f : X → R that is chosen to be the unit ball in a universal reproducing kernel Hilbert

space H, to achieve a trade-off between over- and underfitting. If F comprises not enough

functions, the MMD may not be able to detect differences between the distributions p and

q. Contrarily, if the class is to powerful, for p = q the MMD may be significantly greater

than zero for finite sample sizes. Given samples X = (x1, . . . ,xn) and Y = (y1, . . . ,ym)

of p and q, respectively, an empirical estimate of the MMD is

1Available at http://pub.ist.ac.at/~vnk/software.html.

http://pub.ist.ac.at/~vnk/software.html
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Figure 4.1: Illustration of the cross-match test. The blue dots mark the observed data
Dobs, which has been generated by a bivariate normal distribution with co-
variance matrix Σ = I2 and mean µ = (2, 5)T . The red dots mark the simu-
lated data Dsim. The connected points are matched together by a minimum-
weight non-bipartite matching. Bold lines highlight the cross-matches. (A)
A higher number of cross-matches indicating a higher similarity of the data
sets. The parameter would be accepted. (B) The particles produces a sim-
ulated data set, which is less similar to the observed data set in terms of
number of cross-matches, and thus would be rejected.

MMD[F ,X,Y] := sup
f∈F

(
1

n

n∑
i=1

f(xi)−
1

m

m∑
j=1

f(yj)

)
.

Using a kernel k(x,y) = Φ(x)TΦ(y) with nonlinear feature space mapping Φ(x) (see (Bishop,

2006) for further information), the MMD can be rewritten in terms of the mean embedding

µp := Ep[Φ(x)] as

MMD[F , p, q] = sup
f∈F
〈µp − µq, f〉 = ‖µp − µq‖H .

With µX = 1
n

∑n
i=1 Φ(xi) and k(x,y) = 〈Φ(x),Φ(y)〉 the empirical estimate of MMD is

MMD[F ,X,Y] =
(

1

n2

n∑
i6=j

k(xi,xj) +
1

m2

m∑
i6=j

k(yi,yj)−
2

nm

n,m∑
i,j=1

k(xi,yj)
) 1

2

. (4.6)
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Figure 4.2: Function f̂ ∗ witnesses the MMD between a Gaussian and Laplace distribu-
tion. This figure has been adopted from (Gretton et al., 2012).

For the incorporation of the MMD into the ABC scheme, we exploit the following bound-

ary (Gretton et al., 2012, Corollary 9)

MMD[F ,X,Y] < ε
(c)
MMD(α,m) :=

√
2/m

(
1 +
√

2 logα−1
)
, (4.7)

that assumes m = n. We use a MATLAB implementation of the MMD2 that has been

developed by Gretton et al. (2012). The computational costs for the evaluation of (4.6)

are O((n + m)2) and the test has shown to perform good even for low sample sizes and

high dimensional data. A connection to summary statistics is given by the fact, that a

feature map of a kernel is a sufficient statistic for the exponential family (Song, 2008).

4.3.2 Comparison of Test Statistics in ABC for Samples of a

Bivariate Normal Random Variable

In the following, we assess the properties of the aforementioned multivariate test statistics

and ABC SMC methods using them. We generate n = 100 samples x of a bivariate

normal random variable with mean µ = (µ1, µ2)T = (0, 0)T and the identity covariance

matrix Σ = I2 (see Figure 4.3A). We assume the covariance to be known, which yields two

unknown parameters θ = (µ1, µ2)T that are estimated from the data. Using a multivariate

normal conjugate prior with location parameter µ0 and covariance Σ0 (Murphy, 2012)

2Available at http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm.

http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm
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p(θ) = N (θ|µ0,Σ0) ,

the posterior distribution is given by

p(θ|Dobs,Σ) = N (θ|µn,Σn) ,

Σ−1
n = Σ−1

0 + nΣ−1 , (4.8)

µn = Σn

(
Σ−1(nx̄) + Σ−1

0 µ0

)
.

Here, x̄ is the sample mean of the data. This posterior can be compared to the posterior

approximation obtained by ABC SMC sampling. We implemented the ABC SMC Algo-

rithm 4.2 in MATLAB, using a k-nearest neighbor perturbation kernel with k = P/5 and

a 25th percentile approach for the selection of the threshold for the next population. The

parameters for the prior are chosen as

µ0 =

 0

0

 and Σ0 =

 100 0

0 100

 ,

yielding the posterior parameters

µn =

 0.0195

−0.0202

 and Σn =

 0.01 0

0 0.01

 . (4.9)

Since the efficiency of the algorithm depends on configurations such as the threshold

schedule, we only compare the approaches in terms of convergence, i.e., whether it is

possible to obtain a reasonable approximation, and not in terms of performance.

Fixed Number of Simulations and Final Threshold Calculated by Test Statistic

Inequalities

As there exists no general stopping criterion, we study, whether a final threshold can be

determined by exploiting the relationship between distance value and number of simu-

lations. We calculate the desired threshold of the last population corresponding to the

given number of simulations m = n according to (4.3), (4.5) and (4.7) and compare:
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• Cross-match test (CM) with cend = c
(c)
CM(0.05, 100) = 40.

• Maximum mean discrepancy (MMD) with εend = ε
(c)
MMD(0.05, 100) = 0.4876.

• Kolmogorov-Smirnov distance (KS) with εend = ε
(c)
KS(0.05, 100) = 0.2956.

Note that in contrast to MMD and KS, a high value for the CM indicates a good agree-

ment. The resulting posterior approximations are shown in Figure 4.3B. The approxima-

tions of the posterior are much wider than the true posterior, which has been calculated

using (4.8) and (4.9). This means that for this simple example, the critical threshold

values can not be used as stopping criterion. We expect this approach to give an even

worse threshold for higher dimensions and more complex examples.

Fixed Number of Simulations and Lower Final Tolerance

To study, whether a reasonable approximation of the posterior can be obtained with the

distance calculations, we increased the desired number of cross-matches (cend = 56) and

decreased the final distances (εMMD,end = 0.0664, εKS,end = 0.11). We chose these values

according to the 10th percentile of the distances obtained by simulating 10000 data sets

with the true parameters and calculating the corresponding test statistics. Figure 4.3C

shows the distributions of the test statistics. The gray shaded area indicates for which

values of the statistic a parameter is accepted in the final population of ABC SMC.

For CM, additionally the exact null distribution is visualized calculated with (4.4). We

repeated the ABC SMC sampling for all distances, again for a fixed number of simulated

samples m = n. The results are shown in Figure 4.3D. ABC with MMD and KS give

a reasonable approximation of the posterior, while the posterior using the cross-match

test is much wider than the true posterior distribution. Decreasing the tolerance did not

improve the approximation significantly.

Adaptive Number of Simulations and Corresponding Threshold Schedule Using

The KS Distance

The inequality for the KS distance can also be used if n and m are different. Therefore,

we want to study, whether the method benefits from using an adaptive determination

of m given some pre-defined threshold schedule, as proceeded in INSIGHT. We fixed the

threshold schedule to ε = 0.99, 0.7, 0.5, 0.4, 0.2 and 0.17 and calculated the corresponding

critical values of m = 4, 8, 18, 35, 802, and 4435 using (4.2). The value of m for the last
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population in the adaptive approach is much higher than for m = n. Moreover, using the

adaptive selection of m yields a total number of simulations in the ABC SMC algorithm

which is more than twice as much as for m = n. The approximation obtained for this

threshold value is much wider than the true posterior (see Figure 4.3D). An even lower

final threshold εend increases the number of simulations for the last population drastically,

since the value approaches the pol of (4.2) at ε =

√
− 1

2n log
(

1−
√

1−α
2

)
. Crossing this

value yields a decreasing sequence for m which violates the assumptions of INSIGHT.

Inferring Parameters of The Covariance Matrix of a Bivariate Normal Distribution

We evaluate ABC SMC with MMD, CM and KS for a second data set comprising n = 100

samples (see Figure 4.4A). We generate samples of a bivariate normal distribution with

known mean µ = (0, 0)T and a covariance matrix of the form

Σ =

 θ1 θ2

θ2 θ1

 .

As the covariance matrix needs to be positive definite, both eigenvalues λ1 = θ1 + θ2 and

λ2 = θ1 − θ2 need to be greater than zero. This yields the restrictions θ1 + θ2 > 0 and

θ1 − θ2 > 0. Therefore, we use the following prior

p(θ) =

 1
100 , for 0 < θ1 < 10, 0 ≤ θ2 < θ1

0 , otherwise
,

for the parameters θ = (θ1, θ2)T , which are estimated in the following.

The final tolerances, cend = 56, εMMD,end = 0.055 and εKS,end = 0.99 are chosen with

respect to the distances obtained by simulating data and calculating the statistics with

the ground truth. The results of ABC SMC are visualized in Figure 4.4B. ABC SMC

with MMD and CM is able to estimate the parameters. The confidence obtained using

MMD is much higher than for CM. The KS approach provides an estimation of θ1 only.

The posterior approximation for θ2 is much wider and only restricted by the relationship

|θ2| ≤ θ1. The difference can be explained by the lack of information included in the

marginal distributions that are examined using KS. Information about θ1 can only be
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Figure 4.3: ABC SMC using test statistics to estimate the mean of a bivariate nor-
mal distribution. (A) Data generated from a bivariate normal distribu-
tion. (B) Posterior approximations for m = n simulations for every popula-
tion and final threshold calculated using inequalities for the test statistics.
(C) Distributions of CM, MMD and KS statistics. The gray shaded area
shows the region for which the parameters are accepted. (D) Posterior ap-
proximations with m = n simulations for CM, MMD and KS with a lower
tolerance to accept the corresponding parameters than in (B). The dotted
line shows the marginal distribution for the case of an adaptive number of
simulations m with KS.
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Figure 4.4: ABC SMC using test statistics to estimate entries of the covariance matrix of
a bivariate normal distribution. (A) Depiction of 100 samples x ∼ N2 (µ,Σ),
with µ = (0, 0)T and Σ =
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)
, with θ1 = 1 and θ2 = 0.5. (B) Results

of ABC with CM, MMD and KS. The yellow shaded are shows the region,
where the prior p(θ) > 0.

gained by investigating the correlations among the measurements. The quality of the

approximation did not improve significantly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For

the estimation of the entries of the covariance matrix, only ABC SMC with multivariate

statistics, CM and MMD, was able to estimate the parameters. The CM test requires a

higher computation time than the MMD and yields less accurate approximations of the

true posterior distribution for the example of a bivariate normal distribution. Accordingly,

we use the MMD for our subsequent studies.

4.4 Simulation Example: Single-Cell Time-Series of a

One-Stage Model of Gene Expression

In this section we apply the ABC SMC scheme described before to simulation examples

of a one-stage model of gene expression (see Figure 4.5A).
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4.4.1 Implementation

For the generation of artificial data of the one-stage model of gene expression we use a C

implementation of the stochastic simulation algorithm (SSA) developed by Dennis Rickert.

We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and

use the following settings:

• We sample from the posterior distribution of the log10-transformed parameters.

• For all scenarios, we use an uninformative component-wise uniform prior distribution

U [−6, 4] for the log10-transformed parameters.

• To compare simulated and observed data sets, we use a multivariate statistic, the

MMD (4.6) and a univariate statistic, the maximal Kolmogorov-Smirnov distance

(4.1).

• For the threshold schedule we use an adaptive quantile approach with the 25th

percentile.

• We use a multivariate k-nearest neighbor perturbation kernel with k = P/5.

• We sample P = 500 particles per population.

• The final threshold εend is chosen in a data-driven fashion.

Since stochastic simulations can be computationally expensive for some proposed param-

eter combinations, we try to avoid a too high perturbation of the proposed particle, but

still want to have enough flexibility to explore the parameters space. This is achieved

by using a k-nearest neighbor perturbation kernel. We increase the number of particles

and repeat the approximation if the result are not reproducible, i.e., if we do not obtain

a similar approximation of the posterior within three repetitions. As we know the true

parameters for the simulation study, we generate 1000 data sets using the true values of

the parameters and calculate the corresponding distances. We use a threshold below the

5th percentile of those distances.

In the following, we consider two scenarios:

Scenario 1 The initial mRNA number is zero for all cells.

Scenario 2 The initial mRNA number is sampled from the steady state distribution.
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Figure 4.5: Illustration of artificial single-cell time-lapse data. (A) One stage model
of gene expression with mRNA synthesis rate λ and degradation rate γ.
(B) Artificial non-equilibrium time-series of n = 10 cells sampled every 1

5
h.

(C) Equilibrium time-series of n = 10 cells measured at nt = 100 time
points.

For both scenarios we generate n = 10, 100 and 1000 single-cell time-series for the synthesis

rate λ = 5 h−1 and degradation rate γ = 0.3 h−1 using the SSA. The initial conditions

are [mRNA](0) = 0 for Scenario 1 and [mRNA](0) ∼ Poi(λ/γ) for Scenario 2 (Shahrezaei

& Swain, 2008). We simulate the system for 20 h and record the mRNA at nt = 100

equidistant time points. The data sets are visualized for the case of n = 10 cells in

Figures 4.5B-C. For the evaluation of our method we assume λ and γ to be unknown and

estimate them from the data.

4.4.2 Out of Steady State Time-Series

In the following, we describe the results for Scenario 1, in which the population exhibits

transient behavior and the data comprises non-equilibrium time-series. Performing ABC

SMC with the settings described in Section 4.4.1, we obtain the posterior approximations

shown in Figures 4.6A and B. As expected, increasing the number of cells yields a more

narrow posterior distribution. The scatter plot of the samples shows that the parameters

are highly correlated. Moreover, the results are reproducible, indicated by the fact that

three repetitions of the sampling with the same parameter settings yield almost the same

approximation of the posterior distribution.

For the case of 100 cells and 100 measurements, the MAP estimates are given by θMAP
MMD =

(4.8259, 0.2945)T and θMAP
KS = (5.0069, 0.3078)T . We generated 1000 time-series based on

the MAP estimates and compared the mean and variance of the molecule numbers (see
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Figure 4.6C) as well as mean and variance of the corresponding autocorrelation function

(see Figure 4.6D). The fits and the corresponding properties of the data are almost indis-

tinguishable.

We additionally compare the approximations with those obtained by the finite state pro-

jection (FSP) (Munsky & Khammash, 2006). This approach truncates the state space of

the species and can be used for small and medium-sized systems. We sample from the

posterior using a FSP-based likelihood and the MCMC toolbox DRAM (Haario et al.,

2006). The results are shown in Figure 4.6. The approximations obtained by the ABC

sampler are wider than the approximation using the FSP. ABC with MMD and KS yield

similar results. To study the influence of the dimension of the time-series, we generated

a scenario, in which 10 cells are measured at only 10 time points. While the approxi-

mation does not significantly improve compared to the FSP-based approximation for an

increasing numbers of cells, the algorithm produces a better approximation for the case

of measurements at nt = 10 time points.

4.4.3 Steady State Time-Series

The results for Scenario 2 are shown in Figure 4.7. ABC SMC using KS is only able to

estimate the fraction λ/γ (Figure 4.7B). This is explained by the fact that the marginals

analyzed using the KS distance do not change over time. In contrast, the proposed

multivariate methods using MMD exploits the temporal fluctuations and can infer both

parameters (Figure 4.7A). The posterior distribution illustrated in Figure 4.7B differs only

slightly from the initial uniform prior distribution. Surprisingly, the posterior distribution

is shifted towards smaller parameter values and the true values are only at the boundary

of the posterior approximations.

The fits for the case of n = 100 cells and nt = 100 are shown in Figures 4.7C and D. The

corresponding MAP estimates are θMAP
MMD = (4.4388, 0.2650)T and θMAP

KS = (0.0005, 0.0003)T .

As the kinetic rates estimated by the univariate consideration of the trajectories are much

smaller than the true values, the corresponding number of molecules does not change

within the simulation time of 20 h. Therefore, the autocorrelation function is not defined,

since the corresponding time-series are constant.
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Figure 4.6: Results of ABC SMC for non-equilibrium time-series data. (A, B) Posterior
approximations obtained by ABC SMC with (A) MMD and (B) KS. (C)
Fitted mean and variance of molecule numbers for 1000 simulation generated
with the MAP estimates. Single trajectories are illustrated in gray. (D) Fit-
ted mean and variance of the autocorrelation function for 1000 simulation
generated with the MAP estimates. The observed and simulated means and
variances are nearly indistinguishable for both, MMD and KS. (E) Com-
parison of marginals and FSP results for 10 cells and 10 time points (left),
and 10, 100, 1000 cells with 100 measurements. The different lines show the
marginals for different repetitions of the sampling procedure.
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Comparing the results with those obtained by the FSP (see Figure 4.7E) shows that ABC

SMC with MMD produces a much wider approximation of the posterior distribution. The

approximation is not as good as for Scenario 1, which can be explained by the fact that a

lot of information about the parameters can be extracted by the MMD from the dynamics

of the cells. The results for the case of less measurements (nt = 10) are better than for the

case of 100 measurements. This has also been observed for Scenario 1 (see Figure 4.6E).

4.4.4 Parameter Variability

Cell-to-cell variability of gene expression can be partitioned into intrinsic and extrinsic

noise (Elowitz et al., 2002). So far, only intrinsic noise has been considered, but the

proposed approach can in principle also be used to infer extrinsic sources of cell-to-cell

variability. In the following example, we model extrinsic noise by assuming variability in

the mRNA synthesis and degradation rates. The parameters λ and γ are assumed to be

log-normally distributed with means µλ, µγ and variances σ2
λ, σ

2
γ . The data comprises

n = 100 time-series measured at nt = 100 time points. The true parameters used for

the data generation are θ = (µλ, σ
2
λ, µγ , σ

2
γ)T = (5, 0.1, 0.3, 0.05)T . The time-series are

depicted in Figure 4.8A. The overall variability is higher than in the scenarios without

additional variability, e.g. as shown in Figure 4.5B and 4.6C.

The results obtained for the ABC SMC are depicted in Figure 4.8B. Here, also the inter-

mediate distributions corresponding to different tolerance values are visualized showing

the convergence of the algorithm. It reveals that the posterior distributions of the pa-

rameters µλ, µγ and σ2
γ are narrow, indicating identifiability. The posterior distribution

for σ2
λ is wider and merely an upper bound can be determined. Accordingly, our analysis

shows that in principle stochastic and deterministic variability can be reconstructed from

single-cell time-lapse data.

4.4.5 Tree Structure

Single-cell time-lapse data often contain information about the ancestors of a cell (Et-

zrodt et al., 2014). Using this information, ABC has e.g. been used to infer parameters

by comparing differentiation probabilities (Marr et al., 2012). We propose an approach

to include tree-structured data in our ABC SMC sampler that uses the MMD to compare
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Figure 4.7: Results of ABC SMC for steady state time-series data. (A, B) Posterior
approximations obtained by ABC SMC with (A) MMD and (B) KS. (C)
Fitted mean and variance of number of molecules for 1000 simulation gen-
erated with the MAP estimates. The single trajectories are illustrated in
gray. (D) Fitted mean and variance of the autocorrelation function for 1000
simulation generated with the MAP estimates of the MMD. (E) Comparison
of marginals to results obtained by FSP for 10 cells and 10 time points (left),
and 10, 100, 1000 cells with 100 measurements. The different lines show the
marginals for different repetitions of the sampling procedure.
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gence.

individual time-series. For this, we assume that a simple tree comprises one mother and

its two daughter cells. One sample is given by xi = (xi,mother, xi,daughter1 , xi,daughter2), as

visualized in Figure 4.9A. Since the samples need to have the same dimension when using

the MMD, we consider a fixed time interval before and after cell division. This is further

motivated by the fact that the time-series exhibit transient dynamics after division before

reaching the equilibrium, and therefore have a higher information content. Time-series of

different lengths could also be interpolated and scaled to the same interval. To assess the

method, we generate n = 50 simple trees (Figure 4.9B) that each includes one division

process. A cell, which is measured at 50 time points, divides after 10 h. The molecules are

equally split among its daughter cells. Both daughters are simulated for 10 h and mea-

sured at 50 time points. In the sample vector, the time-series of the mother is followed

by the time-series of the cell, which has the higher molecule content at the end of the

simulation.

Figure 4.9C visualizes the posterior approximations for three repetitions of the ABC

sampling with MMD. As the posterior distributions are quite narrow, the parameters can

be estimated with high confidence. This demonstrates the applicability of our method to

not only time-series, but also single-cell time-lapse data with additional tree structure.
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Fig. 4. Results for Scenario1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fitted mean and variance of number of molecules for 1000
simulation generated with the MAP estimates. The single trajectories are illustrated
in gray. (d) Fitted mean and variance of the autocorrelation function. (e) Comparison
with FSP. The different lines show the marginals for different repetitions of ABC.

5 Discussion and Outlook

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
ters based on single-cell time-lapse data. We assessed the method for multivariate
data sampled from a bivariate normal distribution and compared different test
statistics to compare observed and simulated data sets. Both parameters could
only be estimated with high confidence for the case of using a multivariate test
statistics.

In addition, we found that for this example no advantage is gained by ex-
ploiting the relationships between thresholds and simulations needed for a given
confidence level ↵. The final tolerances determined by inequalities for the test
statistics are too high and yield no reasonable approximation of the posterior
distribution. Only the error of falsely rejecting a true sample of the posterior

Figure 4.9: ABC SMC for tree structured data. (A) Sample comprising time-series of
a mother and its two daughter cells. (B) Artifical data of n = 50 simple
trees. (C) Posterior approximations for ABC SMC with MMD. The joint
posterior as well as the marginal posteriors of the parameters λ and γ are
shown for three repetitions of the sampling.

This approach, accounting for connections between the time-series of the mother and

the daughter cells, might improve the insight gained into the underlying process. For

example, parameters of the partitioning process could be estimated.

4.5 Discussion and Outlook

In this chapter, we introduced and evaluated an ABC SMC method to infer parameters

of CTMCs. The method uses multivariate test statistics on the distribution of single-cell

trajectories. We assessed our method for data from a bivariate normal distribution and

for artificial single-cell time-series. We studied the use of different test statistics, com-

prising the multivariate statistics MMD and CM, and the univariate KS distance as used

in INSIGHT (Lillacci & Khammash, 2013). For several examples, identifiability for the

parameters was only achieved using multivariate statistics and ABC with MMD provided

the best approximations of the posterior distributions. We found that for equilibrium

single-cell time-lapse data the tracking information is important to identify the individual

parameters.

A drawback of the method is the high computation time arising due to computation-

ally expensive stochastic simulations. Thus, efficient simulation methods, such as τ -

leaping (Gillespie, 2007) or the method of conditional moments (Hasenauer et al., 2014a)
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could be used instead of the SSA. These should be combined with appropriate threshold

schedules (Silk et al., 2013) and stopping criteria.

Using the acceptance region of the hypothesis test based on a given confidence level did

not yield suitable approximations. This could arise due to low sample sizes, the higher

dimension of the samples and imprecise boundaries for the test statistics. Thus it should

be studied, whether better results can be achieved by considering more precise bound-

aries. It would probably also be worth to study how computation time can be saved by

adapting the method to different numbers of observed and simulated samples (m < n).

Furthermore, as more and more lineage information becomes available, its information

content should be evaluated.

In summary, the proposed ABC SMC method using multivariate test statistics seems

promising for the analysis of time-lapse single-cell data. It provides a general and flexible

framework, which can easily be extended to similar data types. Using model selection,

even sources of cell-to-cell variability might be unraveled.
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5 Summary and Discussion

In this thesis, we studied models and parameter estimation methods for single-cell data

that are able to account for cellular heterogeneity. We developed two methods, ODE-MMs

with MEs for multivariate measurements (Chapter 3) and ABC SMC using multivariate

test statistics (Chapter 4). While ODE-MMs have merely been used for single-cell snap-

shot data, the latter method, ABC SMC with multivariate statistics, can be applied to

single-cell time-lapse data. Both of our methods can account for intrinsic and extrinsic

noise sources and therefore are suitable tools for the elucidation of cell heterogeneity.

Two main extensions for ODE-MMs enable us on the one hand to account for cell-to-cell

variability, and on the other hand to exploit correlations between multivariate measure-

ments. Since the MEs that are used for the description of the subpopulation dynamics

govern the evolution of the second order moments, the variances do not have to be esti-

mated from the data. This yields a reduced number of parameters. Taking into account

multivariate information of the data revealed a higher confidence in the estimates. In ad-

dition, we successfully tackled problems that arise when performing parameter estimation

for advanced models. We proposed a numerically stable way to calculate the likelihood

function of mixture probabilities and its gradient.

For the case of inferring parameters from single-cell time-lapse data, a key problem is

the lack of a computational tractable likelihood function, which can be tackled by using

likelihood-free ABC methods. We included temporal information of the data by consider-

ing single-cell trajectories as samples of a higher dimensional space. The distance between

time-series needed for the ABC SMC algorithm is given by multivariate test statistics,

which yields an improved parameter identifiability.

In conclusion, using more sophisticated modeling approaches rather than deterministic

models enables us to extract more information from single-cell data. Since these models

generally complicate parameter estimation, efficient and suitable methods are required.

However, we presented two flexible methods for the analysis of single-cell snapshot and
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single-cell time-lapse data. They consider both, appropriate models that account for

cell-to-cell variability and suitable approaches to calibrate those models to measurement

data. Therefore, applying our methods to experimental data could help to obtain a deeper

understanding of cell heterogeneity and the underlying biological processes.
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Kazeroonian, A., Fröhlich, F., Raue, A., Theis, F. J. & Hasenauer, J. (2016). CERENA:

ChEmical REaction Network Analyzer - a toolbox for the simulation and analysis of

stochastic chemical kinetics. PLoS One (accepted).

Kitano, H. (2002). Computational systems biology. Nature 420(6912), 206–210.

Kolmogorov, V. (2009). Blossom V: a new implementation of a minimum cost perfect

matching algorithm. Mathematical Programming Computation 1(1), 43–67.

Lee, C. H., Kim, K.-H. & Kim, P. (2009). A moment closure method for stochastic reaction

networks. The Journal of Chemical Physics 130(13), 134107.

Lenormand, M., Jabot, F. & Deffuant, G. (2013). Adaptive approximate Bayesian com-

putation for complex models. Computational Statistics 28(6), 2777–2796.

Lillacci, G. & Khammash, M. (2010). Parameter estimation and model selection in com-

putational biology. PLoS Computational Biology 6(3), e1000696.

Lillacci, G. & Khammash, M. (2013). The signal within the noise: efficient inference of

stochastic gene regulation models using fluorescence histograms and stochastic simula-

tions. Bioinformatics, 2311–2319.

Malone, J. H. & Oliver, B. (2011). Microarrays, deep sequencing and the true measure of

the transcriptome. BMC Biology 9(1), 34.

Marin, J.-M., Pudlo, P., Robert, C. P. & Ryder, R. J. (2012). Approximate Bayesian

computational methods. Statistics and Computing 22(6), 1167–1180.



90 Bibliography
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