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A role for MCP-1/CCR2 in interstitial lung disease in children
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Abstract
Background: Interstitial lung diseases (ILD) are chronic inflammatory disorders leading to
pulmonary fibrosis. Monocyte chemotactic protein 1 (MCP-1) promotes collagen synthesis and
deletion of the MCP-1 receptor CCR2 protects from pulmonary fibrosis in ILD mouse models. We
hypothesized that pulmonary MCP-1 and CCR2+ T cells accumulate in pediatric ILD and are related
to disease severity.

Methods: Bronchoalveolar lavage fluid was obtained from 25 children with ILD and 10 healthy
children. Levels of pulmonary MCP-1 and Th1/Th2-associated cytokines were quantified at the
protein and the mRNA levels. Pulmonary CCR2+, CCR4+, CCR3+, CCR5+ and CXCR3+ T cells
were quantified by flow-cytometry.

Results: CCR2+ T cells and MCP-1 levels were significantly elevated in children with ILD and
correlated with forced vital capacity, total lung capacity and ILD disease severity scores. Children
with lung fibrosis had significantly higher MCP-1 levels and CCR2+ T cells in bronchoalveolar lavage
fluid compared to non-fibrotic children.

Conclusion: The results indicate that pulmonary CCR2+ T cells and MCP-1 contribute to the
pathogenesis of pediatric ILD and might provide a novel target for therapeutic strategies.

Background
Interstitial lung diseases (ILD) are chronic inflammatory
disorders characterized by restrictive lung disease and dif-
fuse pulmonary infiltrates. Although the precise incidence

is not known, ILD are less frequent in children than adults
[1-3]. Lungs of ILD patients show inflammation with alve-
olar wall thickening by leukocytes and pulmonary fibro-
sis. Despite immunosuppressive treatment and
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supportive measures, the progressive course leading to
irreversible lung fibrosis sometimes can not be prevented.
Therefore, the development of additional therapeutic
strategies is of high importance.

Monocyte chemotactic protein 1 (MCP-1, CCL2) is pro-
duced in response to inflammatory stimuli by a variety of
cells, including monocytes/macrophages, lymphocytes
and airway epithelial cells [4-6]. MCP-1 stimulates colla-
gen synthesis and production of the pro-fibrotic factor
transforming growth factor β (TGF-β) in fibroblasts, while
MCP-1 antisense oligonucleotides reduce TGF-β produc-
tion[7,8]. Application of MCP-1 into murine lungs
induces an inflammatory cytokine response and pulmo-
nary leukocyte accumulation. In adult patients with ILD,
increased levels of MCP-1 were observed in serum[9,10]
and bronchoalveolar lavage fluid (BALF) [11-14].
Although MCP-1 was originally described for its chemo-
tactic activity on monocytes, in vitro studies revealed an
even higher activity on T cells[15]. This occurs through
MCP-1 binding to its sole receptor CCR2[16]. Deletion of
the CCR2-gene or receptor blockade with anti-CCR2 anti-
bodies leads to a dramatic inhibition of leukocyte accu-
mulation in murine lungs[17]. Furthermore, CCR2-/-
mice are protected from fluorescein (FITC) or bleomycin
induced lung fibrosis[18]. Thus far, CCR2+ T cells in BALF
of patients with fibrotic lung diseases have not been
determined.

In addition to the MCP-1/CCR2 axis, Th2 cytokines seem
to mediate pulmonary fibrosis [19-22]. IL-4 stimulates
fibroblast proliferation and collagen synthesis[23,24],
while IFN-γ inhibits this process [25-28]. In a Th2 mouse
model fibroblasts expressed more CCR2 protein and
higher levels of MCP-1 and TGF-β as compared to fibrob-
lasts from a Th1-mouse model[8]. Furthermore, increased
levels of IL-4 were observed in animal models of pulmo-
nary fibrosis[29] and lungs of patients with idiopathic
pulmonary fibrosis (IPF)[30] or cryptogenic fibrosing
alveolitis[31].

The contribution of MCP-1 to ILD has been investigated
exclusively in adults. However, the spectrum of ILD differs
considerably between adults and children and some
forms are unique to children while others, such as idio-
pathic pulmonary fibrosis (IPF), are extremely rare in
childhood[32].

Therefore, we asked whether levels of MCP-1 and frequen-
cies of CCR2+ T cells are increased in BALF of children
with ILD and, if so, how levels of MCP-1 and CCR2+ T
cells relate to disease severity in pediatric ILD.

To address these questions levels of MCP-1 and frequen-
cies of CCR2+ T cells in BALF were compared between chil-
dren with ILD and children without lung disease.

To evaluate the contribution of the pulmonary Th1/Th2
micromilieu to the pathogenesis of pediatric ILD, CCR4+

and CCR3+ (Th2) and CCR5+ and CXCR3+ (Th1) cells
were determined in BALF together with an array of pulmo-
nary Th1- and Th2-associated cytokines.

Our results indicate that pulmonary CCR2+ T cells and lev-
els of MCP-1 are characteristic components in BALF of
children with ILD. A pathophysiological role in pediatric
ILD seems likely as their levels relate to restrictive lung
function and ILD disease severity.

Methods
Characterization of the patients
Children attending the Department of Pulmonology and
Allergology of the University Children's Hospital of
Munich during 1999–2004 were considered for inclusion
in this study. Children suspective of ILD underwent a
comprehensive clinical evaluation, including patient his-
tory, physical examination, routine laboratory tests, lung
function testing, chest radiography, high resolution com-
puted tomography (HRCT) and bronchoalveolar lavage
(BAL). Children were assigned to the ILD group according
to the criteria of Fan[33]: (i) ≥3 months of respiratory
symptoms characteristic for ILD, i.e. non-productive
cough, dyspnoea, tachypnea, crackles and/or rales, exer-
cise intolerance and/or hypoxemia, (ii) diffuse infiltrates
on chest radiographs and HRCT and (iii) restrictive lung
function (decreased forced vital capacity (FVC) and total
lung capacity (TLC)) according to the ATS criteria[34].

The diagnosis of the specific form of ILD was established
by patient history, physical examination, HRCT, BAL and/
or lung biopsy according to consensus criteria[33,35].
Two thoracic radiologists independently evaluated all
lobes on HRCT for ground glass opacity and pulmonary
fibrosis as described previously[36,37]. A pathologist spe-
cialized on pediatric ILD[38] evaluated the lung sections
systematically[39,40]. Furthermore, the disease severity of
each ILD patient was characterized using the clinical ILD
score of Fan[41]: 1 = asymptomatic, no desaturation; 2 =
symptomatic but normoxic (>90%) under all conditions;
3 = symptomatic with desaturation during sleep or with
exercise; 4 = symptomatic with desaturation at rest. None
of the included children had familial idiopathic pulmo-
nary fibrosis. Patients with congenital heart disease or sus-
pected or proven bacterial pulmonary infection were
excluded from the study.

Twenty-five children with ILD (median age: 7 ± 3.6 years;
male/female = 16/9) were included (Table 1).
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Ten age-matched children were selected as the control
group (median age: 7.5 ± 2.9 years, m/f: 6/4). These chil-
dren were considered as healthy, i.e. had no systemic dis-
ease, had no suspected or proven pulmonary disease and
were free of respiratory tract infections. These children
underwent elective tonsillectomy under general anaesthe-
sia. BAL was performed prior to the surgical procedure.

Ten age-matched children with chronic severe asthma
(median age: 8.7 ± 1.6 years, m/f: 5/5), from a previous
study[42], who were comparable to the ILD group in
terms of gender and age were included as disease control
group. All parents and/or patients gave their informed
consent prior to bronchoscopy and the institutional
review board approved the study protocol.

Bronchoalveolar lavage
Bronchoscopy with BAL was performed as described pre-
viously[43]. Residual BALF cells were used for flow cytom-
etry. The BALF recovery and the viability of cells did not
differ significantly between the patient groups. Cellular
profiles are shown in Table 2.

Flow cytometry
BALF cells were analyzed by four-colour flow cytometry
(FACSCalibur, Becton-Dickinson, Heidelberg, Germany)
as described previously[42]. The following antibodies
were used: CD4-allophycocyanine (APC) mouse IgG1,
CD8-phycocyanine 5 (PC5) mouse IgG1 (Immunotech,
Marseille, France), CD69-PE mouse IgG1, CCR5-PE
mouse IgG2a, CCR4-PE mouse IgG2a (BD Pharmingen,
Heidelberg, Germany), CCR2-PE mouse IgG2b, CXCR3-

Table 1: Patients' characteristics

No Sex Age 
[years]

Interstitial 
lung disease

Diagnosis 
finding

Radiographic findings Fibrotic 
changes 
(CT)

ILD 
Score*

Dyspnoe Cough Cyanosis Exercise 
Intolerance

Failure to 
thrive

Medication FVC 
[% of pred.]

TLC % 
[of pred.]

1 F 7 LIP CT, LB • diffuse interstitial involvement + 4 ++ + + + + CS, AZT 34 56
• reticular-nodular pattern
• follicular bronchiolitis

2 M 14 U-ILD, IPH CT, BAL patchy interstitial involvement - 2 + - - - - CS 77 89
3 M 8 U-ILD CT, LB • ground-glass opacity + 3 ++ - - + - 46 74
4 M 4 IPH CT, BAL, LB interstitial involvement - 3 + - - - - 77 168
5 M 16 U-ILD CT, BAL interstitial involvement + 2 + - - + + 76 95
6 F 7 U-ILD CT, BAL interstitial involvement - 2 + + - - + AZT 50 68
7 M 4 CPI CT, LB • diffuse infiltrates + 3 + - - + + AZT 58 64

• ground-glass opacity
8 F 3 NSIP CT, LB • interstitial involvement + 3 ++ - + + + CS n.d. n.d.

• alveolar infiltrates
9 M 8 Sarcoidosis CT, BAL, LB • interstitial involvement + 2 ++ + - + + CS 56 63

• perivascular nodules
10 F 8 U-ILD CT, BAL, LB ground-glass opacity - 1 - + - + - 76 87
11 F 8 CPI CT, LB • interstitial involvement + 2 + + - + + CS 37 74

• ground-glass opacity
12 M 9 U-ILD CT interstitial involvement - 2 + - - - - 70 98
13 M 5 NSIP CT, LB • interstitial involvement + 3 ++ - - + - CS 61 76

• ground-glass opacity
14 F 6 U-ILD CT reticular-nodular pattern + 3 ++ + - - - AZT 60 68
15 F 4 U-ILD CT interstitial involvement + 2 + + - - + n.d. n.d.
16 M 12 U-ILD CT interstitial involvement - 2 + - - - - 68 75
17 M 3 PAP† CT, BAL, LB • ground glass opacity - 4 +++ + + + + CS n.d. n.d.
18 M 6 NSIP CT, BAL, LB • alveolar infiltrates + 4 +++ + + + + CS, AZT 63 72

PAP • ground glass opacification
19 F 3 PAP† CT, BAL, LB • ground glass opacity + 4 ++ - + + + CS n.d. n.d.

• alveolar infiltrates
20 F 9 NSIP CT, LB • interstitial involvement + 3 ++ + + + + CS, AZT 55 74

• honeycombing
21 M 7 U-ILD CT reticular-interstitial pattern + 3 + + - + + AZT, MT 38 59
22 M 7 Cholesterol CT, BAL, LB • interstitial involvement + 4 +++ + + + + CS 16 24

pneumonitis† • reticular-interstitial pattern
23 M 4 U-ILD CT, LB • interstitial involvement - 2 + - - + + CS 102 99

• honeycombing
24 M 8 U-ILD CT interstitial involvement - 2 + + - + - CS 63 78
25 M 7 NSIP CT, LB • interstitial involvement + 3 + + - + - CS 60 76

ILD-NC: children with interstitial lung disease without systemic corticosteroid treatment; ILD-C: children with interstitial lung disease with systemic 
corticosteroid treatment;
U-ILD: undefined/idiopathic interstitial lung disease: no specific diagnosis could be made; PAP: pulmonary alveolar proteinosis; CGD: chronic 
granulomatous disease; IPH: idiopathic pulmonary hemosiderosis; LIP: lymphocytic interstitial pneumonia; CPI: Chronic pneumonitis of infancy
CS: corticosteroids, AZT: azathioprine, MT: methotrexat
n.d.: lung function testing not done (children < 5 years); † symbolizes patients who died due to respiratory failure.
CT: Computed tomography; BAL: Bronchoalveolar lavage; LB: Lung biopsy
* ILD score according to Fan[41]
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fluorescein isothiocyanate (FITC) mouse IgG1 and CCR3-
FITC rat IgG2a (R&D Systems, Wiesbaden, Germany).
Mouse IgG1-FITC, mouse IgG1-PE, mouse IgG2a-PE,
mouse IgG2b-PE (Immunotech, Marseille, France) and rat
IgG2a-FITC (kindly provided by Dr. E. Kremmer, GSF-
Institute of Molecular Immunology, Munich, Germany)
were used as isotype controls.

Detection of MCP-1 and cytokines
Levels of MCP-1 and Th1 (IL-2, IFN-γ), Th2 (IL-4, IL-5, IL-
10) and pro-inflammatory cytokines (TNF-α, IL-6) were
quantified by a multiplex, particle-based assay (Bio-Rad
Laboratories, Minneapolis, USA) as described previ-
ously[42]. The detection limits for all cytokines were 1.5–
2.5 pg/ml (min.) and 1000 pg/ml (max.).

Quantitative RT-PCR
BALF cells were lysed in Trizol LS Reagent (Invitrogen, Life
Technologies, Karlsruhe, Germany) and were stored at -
20°C until mRNA extraction. Total mRNA was isolated
according to the manufacturer's instructions and reverse
transcribed into cDNA. Contamination with genomic
DNA was excluded by mRNA controls without reverse
transcriptase in the cDNA synthesis reaction. The follow-
ing oligonucleotide primers were used: MCP-1 (5-
TGAAGCTCGCACTCTCGCCT-3; 5- GTGGAGTGAGTGT-
TCAAGTC-3); and GAPDH (5-GAGGTGAAGGTCG-
GAGTC-3; 5-AAGATGGTGATGGGATTTC-3). Expression
levels were determined in duplicates by Real time RT-PCR
using SYBR green and the iCycler iQ detection system
(Biorad, Hercules, CA, USA) according to the
manufacturer's instructions. Threshold cycle (CT) values

for genes of interest were normalized to GAPDH and used
to calculate the relative mRNA expression.

Statistical analysis
The non-parametric Mann-Whitney U test was applied.
Correlations were tested with Spearman's rank correlation
test. A probability of p < 0.05 was regarded as signifi-
cant[44] (SPSS statistical program, version 11.5, SPSS Inc.
Chicago, USA).

Results
MCP-1 levels and CCR2+ T cells in BALF
Levels of MCP-1 were significantly higher in children with
ILD (n = 25) as compared to the control group at protein
and mRNA level (Figure 1A, B). MCP-1 protein and
mRNA expression levels correlated positively with each
other (r = 0.72, p < 0.01). ILD children with pulmonary
fibrosis had significantly higher MCP-1 levels in BALF as
compared to children with non-fibrotic ILD (Figure 1C).
MCP-1 levels related positively to the stage of disease (Fig-
ure 1D). The highest levels of MCP-1 were observed in the
three patients who died after respiratory failure (Table 1;
P17, P19, P22). Furthermore, MCP-1 levels correlated
negatively with restrictive lung function parameters (TLC,
FVC) (Figures 2A, B).

To test whether increased MCP-1 levels are associated with
increased frequencies of CCR2+ T cells, BALF lymphocytes
were quantified by flow cytometry. CCR2 was expressed
on a higher percentage of CD4+ than CD8+ T cells. The
majority of CCR2+ T cells showed an activated phenotype
(75% CCR2+CD69+). Children with ILD had significantly
higher percentages of CCR2+CD4+and CCR2+CD8+ T cells

Table 2: Bronchoalveolar lavage cells

ILD-NC ILD-C Control

Total cells × 103/ml 230 (2.1–1124)** 144 (11–268)* 89 (83–97)
Recovery (%) 55 (25–86) 49 (34–75) 54 (35–70)
Neutrophils (%) 10.5 (1–44)* 8.5 (3–30)* 2 (0–3)
Eosinophils (%) 1 (0–6) 1.5 (0–3) 0 (0–1)
Mast cells (%) 2 (0–43) 2 (1–4) 0 (0-0)
Plasma cells (%) 0 (0–4) 0 (0–4) 0 (0-0)
Macrophages (%) 60 (7–97)* 49 (26–77)* 94 (81–92)
Lymphocytes (%) 24 (2–54)** 22 (5–34)** 4 (2–13)
CD4+ T cells (%)† 23 (9–45) 29 (9–82) 23 (15–28)
CD8+ T cells (%)† 29 (6–62) 27 (2–83) 25 (15–31)
CD4/8 ratio 0.7 (0.3–6) 1.1 (0.1–55) 0.7 (0.4–0.9)

results are expressed as medians with ranges shown in parenthesis.
ILD-NC: children with interstitial lung disease without systemic corticosteroid treatment;
ILD-C: children with interstitial lung disease with systemic corticosteroid treatment;
*p < 0.05, **p < 0.01 as compared to the control group, Mann-Whitney-U Test.
Total cells and differential cell count were obtained from cytospin slides, CD4+, CD8+ and CD4/CD8 T cells using flow cytometry.
†CD4+ T cells and CD8+ T cells are shown as the percentage of total lymphocytes in BALF, i.e. cells gated in the lymphocyte population. 
Neutrophils, eosinophils, mast cells, plasma cells, macrophages and lymphocytes are shown as percentage of total cells in BALF.
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MCP-1 levels in children with ILDFigure 1
MCP-1 levels in children with ILD. MCP-1 levels in bronchoalveolar lavage fluid (BALF) of children with interstitial lung dis-
eases (ILD) and healthy controls are shown at the (A) protein and at the (B) mRNA level. (C) MCP-1 levels in BALF of ILD chil-
dren with and without pulmonary fibrosis. Pulmonary fibrosis was assessed by computed tomography according to [36,37]. (D) 
MCP-1 levels in ILD children related to ILD disease severity according to the criteria of Fan [33]. 1 = asymptomatic, no desat-
uration; 2 = symptomatic but normoxic (> 90%) under all conditions; 3 = symptomatic with desaturation during sleep or exer-
cise; 4 = symptomatic with desaturation at rest; MCP-1 protein levels were quantified in BALF by a multiplex, particle-based 
assay (Bio-Rad Laboratories, Minneapolis, USA) as described previously [42]. MCP-1 mRNA levels were quantified in BALF 
cells by Real time RT-PCR using SYBR green and the iCycler iQ detection system (Biorad, Hercules, CA, USA) and were nor-
malized to GAPDH. Median values are shown by horizontal bars. Differences between the patient groups were tested with the 
Mann-Whitney U test; * p < 0.05, *** p < 0.001; Children with systemic corticosteroid therapy are shown as grey circles. P: 
Pulmonary alveolar proteinosis; S: Sarcoidosis; † symbolize children who died due to respiratory failure.
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in BALF as compared to control children (Figure 3A). Sim-
ilar to MCP-1, percentages of CCR2+CD4+ cells were sig-
nificantly higher in ILD children with pulmonary fibrosis
as compared to children with non-fibrotic ILD (Figure
3B). Again, the highest percentages of CCR2+CD4+ T cells
were observed in the three deceased patients and
CCR2+CD4+ cells related positively to the stage of ILD
(Figure 4). Furthermore, percentages of CCR2+CD4+ T
cells correlated negatively with FVC and TLC in ILD
patients (Figures 5A, B). Pulmonary levels of MCP-1 cor-
related positively with CCR2+CD4+ T cells (Figure 5C). No
association between MCP-1/CCR2+ cells and immuno-
suppressive treatment was found in ILD patients.

Correlation of MCP-1 levels with lung function parameters in children with ILDFigure 2
Correlation of MCP-1 levels with lung function 
parameters in children with ILD. MCP-1 levels in bron-
choalveolar lavage fluid (BALF) correlated with (A) forced 
vital capacity (FVC) and (B) total lung capacity (TLC) in chil-
dren with interstitial lung disease (ILD). FVC and TLC are 
shown as % of predicted. MCP-1 levels in BALF were quanti-
fied by a multiplex, particle-based assay; P: Pulmonary alveo-
lar proteinosis; S: Sarcoidosis;

CCR2+ T cells in children with ILDFigure 3
CCR2+ T cells in children with ILD. (A) Percentages of 
CCR2+CD4+ and CCR2+CD8+ T cells in in bronchoalveolar 
lavage fluid (BALF) of children with interstitial lung diseases 
(ILD) and healthy children. (B) Percentages of CCR2+CD4+ 

and CCR2+CD8+ T cells in BALF of children with and with-
out pulmonary fibrosis. Percentages of CCR2+CD4+ and 
CCR2+CD8+ T cells were analyzed in BALF by flow cytome-
try. Pulmonary fibrosis was assessed by computed tomogra-
phy according to [36,37]. Median values are shown by 
horizontal bars. Differences between the patient groups 
were tested with the Mann-Whitney U test; * p < 0.05; *** p 
< 0.001; Children with systemic corticosteroid therapy are 
shown as grey circles. P: Pulmonary alveolar proteinosis; S: 
Sarcoidosis; † symbolize the children who died due to respi-
ratory failure.
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To verify if increased levels of MCP-1 and percentages of
CCR2+ T cells are characteristic for pediatric ILD, we ana-
lyzed these markers in ten selected age-matched children
with well-characterized allergic asthma who are described
in detail in a previous study[42]. Levels of MCP-1 and
CCR2+ T cells from asthmatic children were in the range of
the control group and did not correlate with each other
(data not shown).

To assess the value of CCR2+CD4+ T cells and MCP-1 lev-
els in the longitudinal course, three consecutive therapeu-
tical BALs were analyzed in three patients with PAP (P17,
P18, P19) and one patient with cholesterol pneumonitis
(P22). Two PAP patients (P17, P19) and the patient with
cholesterol pneumonitis worsened in the clinical course
continuously (increasing oxygen requirement, increasing

dyspnoe) and died from respiratory failure, while one
PAP patient remained clinically stable (P18). The
deceased PAP patients had continuously rising levels of
MCP-1 and increasing percentages of CCR2+CD4+ T cells
in the three follow-up BALs (Figures 6A, B; black circles)
while the clinically stable patient showed steady levels of

CCR2+CD4+ T cells and ILD disease severityFigure 4
CCR2+ CD4+ T cells and ILD disease severity. Percent-
ages of CCR2+CD4+ T cells in bronchoalveolar lavage fluid 
(BALF) of children with interstitial lung disease (ILD) related 
to ILD disease severity. Percentages of CCR2+CD4+ T cells 
were analyzed in BALF by flow cytometry. ILD disease sever-
ity was scored according to the ILD score of Fan(40): 1 = 
asymptomatic, no desaturation; 2 = symptomatic but nor-
moxic (> 90%) under all conditions; 3 = symptomatic with 
desaturation during sleep or with exercise; 4 = symptomatic 
with desaturation at rest; Median values are shown by hori-
zontal bars. Differences between the patient groups were 
tested with the Mann-Whitney U test; * p < 0.05, ** p < 0.01; 
Children with systemic corticosteroid therapy are shown as 
grey circles. P: Pulmonary alveolar proteinosis; S: Sarcoidosis; 
† symbolize the children who died due to respiratory failure.

CCR2+CD4+ T cells and lung function parameters in children with ILDFigure 5
CCR2+CD4+ T cells and lung function parameters in 
children with ILD. Correlation of CCR2+CD4+ T cells in 
bronchoalveolar lavage fluid (BALF) with (A) forced vital 
capacity (FVC) and (B) total lung capacity (TLC) in children 
with interstitial lung diseases (ILD). Correlation of percent-
ages of CCR2+CD4+ T cells with levels of MCP-1 in BALF of 
children with ILD (C). FVC and TLC are shown as % of pre-
dicted. Percentages of CCR2+CD4+ T cells were analyzed in 
BALF by flow cytometry. P: Pulmonary alveolar proteinosis; 
S: Sarcoidosis
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MCP-1 and percentages of CCR2+CD4+ T cells (Figures 6A,
B; white circles).

Th1- and Th2-lymphocytes and cytokines in BALF
To test whether increased CCR2+ T cells and levels of
MCP-1 were paralleled by a pulmonary Th1/Th2-shift,
CCR4+ and CCR3+(Th2) and CCR5+an d CXCR3+ (Th1)
cells were determined in BALF together with an array of
pulmonary Th1/Th2 cytokines.

Children with ILD had significantly higher percentages of
CCR4+CD4+ (Th2) cells as compared to control children
(Figure 7A). CCR4 was predominantly expressed on CD4+

cells. The majority of CCR4+CD4+ cells had an activated
phenotype (68% CCR4+CD69+). CCR3+ (Th2) cells were
not detectable in BALF. Percentages of CCR5+ and CXCR3+

T cells (both Th1) were low and did not differ among the
patient groups (Figures 7B, C).

Levels of IFN-γ were increased in ILD patients (p < 0.05),
whereas the remaining cytokines did not differ among the
patient groups (data not shown).

Discussion
The present work demonstrates that BALF levels of MCP-
1 are consistently increased in pediatric ILD. This is
accompanied by increased frequencies of the correspond-
ing CCR2 + T cells. Levels of MCP-1 and frequencies of
CCR2+ T cells were higher in fibrotic than in non-fibrotic
forms of ILD and correlated with restrictive lung function
parameters and ILD disease severity, indicating a rele-
vance of the MCP-1/CCR2 axis in the pathogenesis of
pediatric ILD. Infiltrating T cells are a characteristic feature
of pulmonary tissue from ILD patients[45] and T cells in
BALF were found to correlate with T cells in pulmonary
tissue[46]. In line with previous findings[47,48], T cells
were increased in BALF of our children with ILD as com-
pared to control patients, suggesting a contribution of T
cells to the pathogenesis of pediatric ILD. Studies in adult
patients indicated that MCP-1 plays a role in the patho-
genesis of different forms of ILD, including IPF[9,12,13],
PAP[11,14], sarcoidosis[12], scleroderma with lung
involvement[49] and granulomatous lung diseases[50].
Serum levels of MCP-1 were significantly elevated in adult
patients with ILD[9,51] and were closely related to the
clinical course[9]. However, as outlined above, ILD in
children differs noticeably from ILD in adulthood. Pediat-
ric ILD is extremely rare and little data exist with respect to
pathoimmunological mechanisms. Thus, it is very hard to
study a large patient group and to find enough children
for each ILD subtype. We found elevated levels of MCP-1
and CCR2+ T cells in various etiologies of ILD, which
suggests a common pulmonary T cell response for various
forms of pediatric ILD.

Thus far, frequencies of BALF CCR2+ T cells in human ILD
have not been determined. The parallel increase of MCP-
1 and CCR2+ T cells in BALF of ILD children further sub-
stantiates the importance of this chemokine and its recep-
tor in the pathogenesis of ILD, as suggested by mouse
models. In these models, the relevance of the MCP-1/
CCR2 interaction was mainly addressed with respect to
pulmonary fibrosis. Our children with pulmonary fibrosis
had increased levels of MCP-1 and increased percentages
of CCR2+ cells compared to children with non-fibrotic

Longitudinal analysis of MCP-1 levels and CCR2+CD4+ T cellsFigure 6
Longitudinal analysis of MCP-1 levels and 
CCR2+CD4+ T cells. Longitudinal analysis of (A) MCP-1 
levels and (B) CCR2+CD4+ T cells in three consecutive bron-
choalveolar lavage fluids (BALF) of four children with intersti-
tial lung diseases, including two children with pulmonary 
alveolar proteinosis (P) and one child with cholesterol pneu-
monitis (CP). The child with cholesterol pneumonitis and 
one child with pulmonary alveolar proteinosis died by respi-
ratory failure (†), while one child with pulmonary alveolar 
proteinosis stayed clinically stable. † symbolize the childen 
who died. MCP-1 levels were quantified in BALF by a multi-
plex, particle-based assay. Percentages of CCR2+CD4+ T 
cells were analyzed in BALF by flow cytometry.
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ILD. However, MCP-1 levels and percentages of CCR2+ T
cells were elevated both in fibrotic and non-fibrotic ILD
children as compared to controls. In addition, MCP-1 and

CCR2+ T cells were also elevated in pediatric PAP that usu-
ally does not progress to pulmonary fibrosis. In fact, one
of the three patients with the highest levels of MCP-1 and
CCR2+ T cells had PAP without any indication of fibrosis.
Similar observations were made recently for MCP-1 in
adult PAP patients[11]. A possible biological relevance of
MCP-1 levels and CCR2+ T cells in pediatric ILD is further
suggested by their correlation with restrictive lung func-
tion parameters and the ILD disease severity score and by
the finding that the deceased children with the most
severe course of disease exhibited the highest BALF levels
of these markers. The possibility that MCP-1 and CCR2+ T
cells are a general phenomenon of pediatric lung diseases
seems very unlikely, since these markers were present only
at low levels in BALF of children with severe allergic
asthma. This is in line with findings in an Aspergillus-
induced allergic mouse model, where a Th2-mediated
lung pathology occured in the absence of MCP-1 or
CCR2[52].

To assess the value of CCR2+ T cells and MCP-1 levels in
the longitudinal course of children with ILD, three con-
secutive BALs were performed in four children with ILD
including three ILD patients who died and one patient
who stayed clinically stable. The three deceased children
had high and continuously rising levels of MCP-1 and
CCR2+CD4+ T cells, while the stable patient had low levels
of MCP-1 and percentages of CCR2+CD4+ T cells. Thus,
levels of MCP-1 and percentages of CCR2+CD4+ T cells
might reflect the disease progression in pediatric ILD.

Interestingly, immunosuppressive treatment was not
associated with altered levels of MCP-1 and CCR2+ T cells
in BALF (data not shown). This is in contrast to a study of
Suga et al.[9] in adult ILD patients where serum levels of
MCP-1 were closely related to the effectiveness of corticos-
teroid therapy. Given the assumption that MCP-1 and
CCR2 are important players in the pathophysiology of
ILD in children, the lack of association with corticosteroid
therapy might explain, at least in part, why corticosteroids
are sometimes unable to control the progression of pedi-
atric ILD.

Several studies indicated that MCP-1 and CCR2 are
involved in Th1[53,54] and Th2 immunity [55-58]. Fur-
thermore, it has been suggested that ILD and pulmonary
fibrosis are associated with a Th2 immune response[20-
22,59-61]. Experiments in mice showed that a lack of
MCP-1[62] leads to decreased Th1 responses while MCP-
1 over-expression[58] results in increased levels of Th2
cytokines. Th1/Th2 cytokine levels in BALF were low or
undetectable in BALF of our children. However,
CCR4+CD4+ T cells were moderately but significantly ele-
vated in ILD patients. On the other hand, CCR4+CD4+ T
cells are clearly less frequent in ILD compared to allergic

Pulmonary CCR4+, CCR5+, and CXCR3+ T cellsFigure 7
Pulmonary CCR4+, CCR5+, and CXCR3+ T cells. Per-
centages of (A) CCR4+CD4+, CCR4+CD8+, (B) CCR5+CD4+ 

and CCR5+CD8+ and (C) CXCR3+CD4+ and CXCR3+CD8+ 

T cells in bronchoalveolar lavage fluid (BALF) are shown in 
children with interstitial lung diseases (ILD) and healthy con-
trols. Percentages of CCR4+CD4+, CCR4+CD8+, 
CCR5+CD4+, CCR5+CD8+, CXCR3+CD4+ and 
CXCR3+CD8+ T cells were analyzed in BALF by flow cytom-
etry. Median values are shown by horizontal bars. Differ-
ences between the patient groups were tested with the 
Mann-Whitney U test; * p < 0.05; ** p < 0.01
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asthma[42]. Thus, a strong Th2 response seems unlikely
in our ILD patients. Beneath T-cells, MCP-1 attracts
CCR2+ monocytes/macrophages[63]. In mouse models,
MCP-1 was found to attract monocytes to the inflamed
lung, which was accompanied by a concomitant downreg-
ulation of pulmonary MCP-1 levels[64]. We found no
difference in the percentage of CCR2+ alveolar macro-
phages in BALF between children with ILD and control
children or between fibrotic and non-fibrotic forms of ILD
(data not shown). Instead, we found a strong correlation
between percentages of CCR2+ T cells and levels of MCP-
1 in BALF of ILD patients. Therefore, we assume that pul-
monary MCP-1 acts on CCR2+ T cells, which accumulate
in the BALF of children with ILD.

Conclusion
In conclusion, CCR2+ T cells and levels of MCP-1 are char-
acteristic components in BALF of children with ILD. A
pathophysiological role in pediatric ILD seems likely as
their levels relate to restrictive lung function and ILD
disease severity. Therefore, pharmacological targeting of
the MCP-1/CCR2 axis might represent an additional
option for the treatment of ILD in children.
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