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Abstract: Multispectral optoacoustic (photoacoustic) tomography
(MSOT) is a hybrid modality that can image through several millimeters
to centimeters of diffuse tissues, attaining resolutions typical of ultrasound
imaging. The method can further identify tissue biomarkers by decom-
posing the spectral contributions of different photo-absorbing molecules
of interest. In this work we investigate the performance of blind source
unmixing methods and spectral fitting approaches in decomposing the
contributions of fluorescent dyes from the tissue background, based on
MSOT measurements in mice. We find blind unmixing as a promising
method for accurate MSOT decomposition, suitable also for spectral
unmixing in fluorescence imaging. We further demonstrate its capacity with
temporal unmixing on real-time MSOT data obtainee/ivo for enhancing

the visualization of absorber agent flow in the mouse vascular system.
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1. Introduction

Optoacousti¢or photoacoustic) imaging is a potent imaging method that can offer high resolu-
tion visualization of optical absorption deep in living tissues [1, 2, 3]. Being a hybrid technique,

it combines the advantages of visualizing highly specific optical absorption contrast with the
high spatial resolution of ultrasound. Recording optoacoustic signals emitted by tissues from
multiple projections, in response to the absorption of ultrafast light pulses by tissue elements,
allows obtaining tomographic reconstructions of light absorbing structures in deep tissues at
resolutions of tens of micrometers and below. The potential of this technology has been demon-
strated in many applications, in particular imaging of blood vessels [4], blood flow [5, 6] or
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using various photo-absorbing agents and nanoparticles [7]. Recently, the use of acoustic de-
tectorarrays has eliminated the need for mechanical scanning of a single detector and enabled
video rate optoacoustic imaging [8, 9, 10], allowing a wide number of possible applications

in both clinical research and drug discovery. While subsurface imaging at the microscopic or
macroscopic regimes has been suggested since the early 80’s [11, 12], optoacoustic imaging
has significantly improved in recent years. Of particular importance are spectral imaging meth-
ods where tissues are excited at two or more wavelengths and generate in response images of
the bio-distribution of various tissue molecules or biomarkers, for example in visualizing oxy-
gen saturation [13], extrinsically administered fluorochromes [14], fluorescent proteins [15] or
circulating nanopatrticles [16, 17].

In many cases, the contributions of various photo-absorbing agents, such as contrast agents,
targeted probes or nanoparticles may constitute only small signal variances over the background
absorption, depending on their concentration. This may complicate the detection of the pho-
toabsorbing agent on single wavelength images, even if the selected wavelength corresponds
to the absorption maximum of the agent of interest. When data at multiple wavelengths are
obtained however, it is possible to improve the contrast and detection sensitivity by resolving
the spectral signature of the absorber agent used over other non-specific spectral contributions,
e. g. from highly absorbing hemoglobin.

Unmixing methods based on differential or fitting algorithms use the known spectral or tem-
poral information to process the image on a pixel-by-pixel basis. This separation can be chal-
lenging since the exact spectral profile of the background contribution is not always known in
in-vivo tissue imaging. In addition, the spectral signature of the agent of interest may also be
not accurately known, for instance the absorption spectrum may change in different biochem-
ical environments. Moreover, light attenuation and ultrasonic dispersion in tissues leads to a
corresponding non-linear relationship between the measured optoacoustic signals and the cor-
responding target concentration, as a function of depth, or target size [18]. This is particularly
evident for volumetric tissue imaging since the optoacoustic signals depend on the product of
the local light fluence at different depths times the local absorption coefficient of the agent of
interest and other background chromophores [19]. Finally, the spectral profile of light propagat-
ing in tissue is also altered by depth, since different wavelengths are attenuated by a different
rate, which may also contribute to intensity variations in the recorded MSOT signals with depth.

These potential complications in spectral unmixing may be addressed with the use of mul-
tivariate data analysis and matrix factorization algorithms, such as principal component analy-
sis (PCA) [20], non-negative matrix factorization (NNMF) [21], multivariate curve resolution
(MCR) [22], or independent component analysis (ICA) [23]. Applications of these methods
include astronomy [24], pattern recognition [25, 26], anatomical segmentation [27], fluores-
cence imaging [28, 29], and finance [30]. Herein we have investigated PCA and ICA in spectral
unmixing of optoacoustic images and compared them with spectral fitting schemes. Contrary
to the pixel-by-pixel processing approach in the differential and fitting unmixing methods, the
key element in the multivariate approaches is the unaided identification of changes that is com-
mon across various pixels, helping to identify contrast agents that have a non-uniform spatial
bio-distribution. Of particular interest in the context of unmixing MSOT measurements was
the behavior of these algorithms concerning the dependence of the optoacoustic signals on
depth and other tissue optical parameters, as well as biologically relevant spectral shifts of the
detected fields. We have examined the performance of the unmixing methods in spectral and
temporal decomposition of tissue component®imivo andex-vivoexperiments.
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2. Theory

Generallythe term "unmixing” refers to the unsupervised decomposition of mixed observations

into usually a smaller number of endmembers [31]. Its purpose is to improve the spectral or
temporal resolution by identifying a small number of underlying sources that are superposed
to yield the measured data and to separate them into individual images. For simplicity, in the
following description we use the terminology of the spectral domain, but the methodology holds
for the temporal domain as well.

2.1. Spectral Fitting

The most commonly employed unmixing method is spectral fitting, i. e. finding the source
component that best fits a given absorption spectrum in the least-squares sense. Given the
m) multispectral measurement matf#, where n is the number of image pixels and is

the number of measurements, as well as (the m) spectral matrixS with the absorption
coefficients of th&k components at then measurement wavelengths, the data can be unmixed
with the Moore-Penrose pseudoinverse [32,33]

st=sT(ss) . 1)

With this generalized inverse, the source component reconstriRgian which best fits the
spectra irS can be determined as
Rpinv =MS". (2)

The performance of the spectral fitting method depends on the accuracy and completeness of
the absorption spectra and the absence of systematic errors in the data. It therefore becomes
challenging to apply the method when reliable spectral information for all potential contribu-
tions in the signal is not available, for instance ifowvivo tissue measurements. In such cases,
approaches that do not requaeriori spectral information may be beneficial.

2.2. Principal Component Analysis

Principal Component Analysis [34, 35] is a blind source unmixing technique, that is based on
the assumption that the source components are statistically uncorrelated. PCA yields a linear
orthogonal transformation into a new coordinate system, in which the largest data variance is
projected onto the first principal component, the largest remaining variance onto the second one,
and so on. Consequently, the correlated measurement data is unmixed by being transformed to
uncorrelated principal components. PCA can be calculated as a singular value decomposition
[36] of M or as an eigenvalue decomposition of its covariance matrix [20]. In both cases, not
only the unmixed componen®pca but also the corresponding transformation matlica

are returned by the PCA algorithm, i. e.

Reca = UpcaM. 3

Since the eigenvector matrit” is orthonormal, its inverse 9. The matrixU represents the
absorption spectra of the calculated principal components, as multiplying the principal com-
ponent vectors by it would merge them again into the measured data. This spectral estimation
can be used to identify the correspondence between a principal component and a specific ab-
sorber of interest. Furthermore, the corresponding eigenvalues are also computed; their relative
value indicates the data variance represented in the component. This can be used for dimen-
sion reduction when the number of multispectral measurements exceeds the number of source
components and to discard principal components that contain mostly noise or artifacts.
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2.3. Independent Component Analysis

Independen€Component Analysis [23] (ICA) is yet another blind source separation technique,
but it is based on a different assumption about the sources than PCA. While the latter as-
sumes uncorrelated sources, ICA finds endmembers that satisfy the more general and therefore
stronger condition of statistical independence. The algorithm seeks a transformation of the
dependent mixed spectral components into a set of independent source components and also
yields the corresponding mixing mattiXca, i. €.

Rica = UjcaM. (4)

According to the central limit theorem [37], a sum of non-gaussian variables is closer to a gaus-
sian distribution than the original variables. Consequently, the mixed multispectral measure-
ments are expected to be more gaussian than the unmixed independent components. Herein,
we employ the FastICA algorithm [38], which finds the independent sources by using a fixed
point iteration scheme in order to maximize non-Gaussianity, as measured by kurtosis, a fourth
order statistical moment. By maximizing the kurtosis of the components, a non-Gaussian, and
thus an independent representation is found. A key difference between ICA and PCA is that no
eigenvalues and hence no measure of a component’s significance is obtained.

As a consequence, ICA requires some preprocessing when dealing with large datasets be-
cause it attempts to retrieve as many components as the number of available measurements and
cannot sort out superfluous signals on its own. Thus, many independent components merely
represent noise or minor signal variations, which makes the interpretation of the results more
difficult. A logical solution would be using PCA as a preprocessing step. Thereby, the data are
initially analyzed by PCA and the insignificant principal components, mainly containing noise,
can be discarded. This step not only serves to eliminate the noise but also reduces the dimension
of the data, presenting the ICA algorithm with a better conditioned problem. \Rhen is
the reduced PCA subset, the unmixing is denoted by

.
Rpcajica = UlcaR'pca = UjcaU'pcaM. ®)

Equation (5) also shows that the estimated spectral characteristics of the unmixed components
can be retrieved as the product of the two mixing matridps, andU'pea.

3. Experimental Methods
3.1. Experimental system and data processing

Experimental MSOT measurements were performed with a real-time MSOT scanner, previ-
ously described in Ref. [10]. Briefly, a tunable (680 — 950 nm) pulsed«s) optical para-

metric oscillator laser (Opotek Inc., Carlsbad, CA, USA) with a 10 Hz repetition rate is used for
signal generation. The laser beam is guided into a silica fused-end fiber bundle (CeramOptec
GmbH, Bonn, Germany) creating a ring shaped illumination patter/oinm width upon the
surface of the animal. Signal collection is based on a custom-made 64-element focused trans-
ducer array (Imasonic SaS, Voray, France) covering a solid angle 6faté2nd the imaged
object, while the detection plane coincided with the center of the illumination ring. The indi-
vidual detection elements are manufactured using piezocomposite technology with a central
frequency of 5 MHz, a bandwidth (—6 dB) of more than 50% sensitivity-df8uV/Pa and

are shaped to create a cylindrical focus at 40 mm. The detected signals are digitized at a sam-
pling frequency of 60 MHz by 8 multi-channel analog to digital converters (Model PXI5105,
National Instruments, Austin, TX, USA) with noise floor 6f3.8 nV/yv/Hz. A linear stage
(NRT150, Thorlabs GmbH, Karlsfeld, Germany) allows linear translation of the animal holder
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in the axialz direction. The data acquisition is synchronized so that the signals are acquired
only when the stage comes to a complete rest. For all experiments the optoacoustic pressure
distribution was reconstructed with a filtered backprojection algorithm [39].

3.2.  Animal preparation and imaging

For spectral unmixing, a nude mouse cadaver phantom with two inclusions of fluorophores sim-
ulating tumors was prepared. The inclusions consisted of 1% agar solution and 1% intralipid
(Sigma-Aldrich, St. Louis, MO, USA), which was initially heated to"® While cooling down
to 50°C, solutions of 12 uM of ICG (peak absorptiorz 800 nm, Pulsion Medical, Munich,
Germany) and 3.tM of Cy7 Cyanine Dye (peak absorptien 750 nm, GE Healthcare, Little
Chalfont, UK) were prepared to both have 2 choptical density at their absorption peaks. At
35°C, 50 uL of each solution was injected subcutaneously in the upper back / neck area of a
euthanized mouse and were left to equilibrate with room temperature and solidify to a shape
that is similar to a subcutaneous tumor.
The mouse was positioned in supine position inside a water-impenetrable yet transparent mem-
brane, providing a wide tomographic view €f180°. A total of 31 spectral measurements in
the 700 — 850 nm range were acquired in steps of 5 nm and reconstructed with the filtered
backprojection algorithm [39]. Interwavelength variations have been normalized by powerme-
ter readings (Model FieldMaxIl-TOP, Coherent GmbH, Dieburg, Germany) for quantitative
multispectral reconstructions.

For imaging and unmixing in the time domain, a white CD1 mouse was anesthetized with
ketamine and xylazine mixture, catheterized in the right tail vein and injected with_56f
black india ink saline solution as contrast medium. An axial slice in the pelvic region, approxi-
mately 2 cm away from the catheter towards the heart, was imaged with MSOT for 80 s, using
herein data at 1 Hz frame rate, after performing 10 signal averages at a wavelength of 800 nm.
After imaging, the mouse was euthanieditu.

4. Spectral domain unmixing

We showcase the described methods on the reconstructions from the absorber implantation ex-
periment, where the presence of two contrast agents with an overlapping spectrum presents a
challenging unmixing problem. Reconstructions of an axial slice in the neck area at 4 represen-
tative wavelengths are shown in Fig. 1

Fig. 1. Optoacoustic reconstruction of an axial slice at the neck area at 4 representative
excitation wavelengths. The green and the cyan highlighted areas in the first image indicate
the locations of the ICG and Cy7 implantations.

The two implantations can be easily identified in the left and the right side of the mouse neck
under the skin. It can be observed that the reconstructed optoacoustic signal at the Cy7 implan-
tation area has a peak at about 750 nm while at the ICG area the peak is at around 800 nm, which
correlates well with the expected absorption peaks of the corresponding dyes. The ICG, Cy7
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and background components, unmixed by fitting (pseudoinverse), PCA, and ICA are displayed

in Fig. 2. The spectral absorption data of the two fluorochromes and deoxygenated hemoglobin,
that were used for the fitting unmixing method, as well as the corresponding spectra calculated

by ICA, are shown in Fig. 3. Deoxygenated hemoglobin was chosen as the background absorber
since it is assumed to be the dominant absorber in the dead tissue.

fitting PCA ICA

ICG background

Cy7

Fig. 2. Comparison of the performance of the unmixing methods, showing the respective
sourcecomponents calculated for the ICG and Cy7 inclusions and the tissue background
with the three unmixing methods.

The images show that all three methods successfully managed to isolate the two fluorochrome
components from the background. However, fitting with the pseudoinverse algorithm yielded
crosstalk of the background signal into the ICG and Cy7 components. Unmixing with PCA
also exhibited crosstalk, which is attributed to the orthogonality criterion that is imposed. On
the other hand, ICA accurately unmixed the components and the spectra calculated are very
close to the expected spectra of the employed fluorochromes. The correspondence between
the ICA spectra and the known absorption curves was determined by visual inspection and
the ICA components were allocated accordingly. Using Pearson’s product moment correlation
coefficientp, the correlation between the known spectra and the ones estimated by ICA was
calculated to b@ = 0.91 for the backgroungh = 0.83 for ICG andp = 0.96 for Cy7. In order

to evaluate the performance of the unmixing methods the signal-to-background ratios (SBR)
were calculated using the standard deviation of the pixel values for the two fluorochrome in-
clusions. The results, as shown in Table 1 coincide with the visual examination that the ICA
unmixing method outperforms fitting and PCA.

The proposed preprocessing of ICA by PCA was also applied to this dataset. While it reduced
the number of components and, thus, made the identification and allocation of the components
easier, the unmixed images did not improve upon ICA alone, since the two results were virtually
indistinguishable.

The results demonstrate the usefulness of blind source unmixing methods in the analysis of
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Fig. 3. Absorption spectra of ICG and Cy7 (solid lines) and the corresponding spectra
estimatedy the ICA analysis (lines with markers). Dashed lines are fitting curves for the
ICA spectra.

Table 1.Signal-to-Background Ratio (SBR) of the Two Inclusion Areas for the Differ-
ent Unmixing Methods

Unmixing method | ICG inclusion Cy7 inclusion
fitting 2.9 7.8
PCA 1.8 3.4
ICA 6.7 10.4

MSOT measurements. In particular, ICA appears more suited for MSOT imaging as it yields
betterseparation of components than PCA or spectral fitting methods, exhibiting a significantly
higher SBR for both ICG and Cy?7.

5. Time domain unmixing

The imaging of circulation dynamics by MSOT in combination with time domain unmixing is
demonstrated on the experimental data shown in Fig. 4. In the field of view, various anatomical
structures can be seen, such as the bladder, spine, and the extensions of the right and the left
tail veins in the torso (Fig. 4a). The right tail vein appears to be less absorbing because of the
lower blood volume due to the restriction of flow from catheterization.

Images acquired at different time points are shown in Figs. 4b-d. ICG was injected at
10 s leading to a notably increasing and then gradually decreasing signal in the right vein.
A few seconds later the signal in the left vein showed an oscillatory pattern that eventually
faded out, indicating that the absorber was fully diluted in the blood stream after 50 s. To
investigate the unmixing methods in the time domain, we examined the ability to separate
the tissue components based on the dynamic changes of the images. The first three principle
components from PCA on the full 80-frame time-series and the corresponding temporal profiles
(eigenvectors) are shown in Figs. 5a-d.

The first principal component contains mainly the parts of the image that remain constant, the
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a: anatomical b: t=11s c t=17s d: t=25s

Fig. 4. Temporal optoacoustic images of the pelvic region (axial slices). a) high contrast (to
enhancehe anatomical features) b-d) reconstruction in three representative time points. i.:
injection vein, m.: monitor vein.
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Fig. 5. Temporal unmixing of tissue components. a-c) the first three principal components
of PCA. d) the temporal profiles associated with these components. e-g) the two vein com-
ponents after the combined PCA-ICA analysis and their overlay onto the anatomical image.
h) the temporal profiles of the injection in the monitor vein.

second one shows the most prominent changes in the images, whereas the third one shows the
changes with respect to the two previous ones and so forth. Due to the orthogonality criterion,
the PCA components do not disentangle the two types of veins and the temporal profiles also
show negative values that make it difficult to identify a specific temporal pattern. Principal
components from 8 to 80 mostly contain noise. On the other hand, performing ICA directly on
the full set of 80 images yielded a large number of independent components (not shown), which
were not found useful as they represented minor changes in the images, such as variations
introduced by laser power fluctuations, mouse movement and noise. A third combinational
method proved to be most viable, where PCA was employed as a preprocessing step for ICA.
As stated above, the first eight PCA components practically contain all the useful information
on the temporal variations. This reduced subset can subsequently be used as an input into ICA,
feeding the algorithm with a better-conditioned dataset. After noise reduction achieved by PCA
pre-processing, ICA yielded the components shown in Figs. 5e-g. The temporal profiles can be
computed as a product of the PCA and ICA mixing matrices and are shown in Fig. 5f.

#137541 - $15.00 USD Received 2 Nov 2010; revised 25 Jan 2011; accepted 30 Jan 2011; published 3 Feb 2011
(C) 2011 OSA 14 February 2011/ Vol. 19, No. 4 / OPTICS EXPRESS 3183



6. Discussion and Conclusion

With the emergence of real-time MSOT [10, 17], spectral decomposition of various tissue
biomarkers and dynamic monitoring of internal or external photo-absorbing molecules has be-
come possible in small animals. The post-processing of the generated spectral and temporal
data requires however a robust and reliable method for decomposing the constitutive contribu-
tions from the measurements. In this paper, we have suggested and experimentally examined
the blind source unmixing approach as a very promising alternative to separating mixed com-
ponent data by fitting. Fitting requires the knowledge of the spectral or temporal profiles of
all components to compute a generalized inverse of the mixing matrix. However, these are of-
ten not available for all sources with the necessary accuracy. The primary advantage of blind
unmixing is that naa priori information is needed, making the technique suitable for a wide
range of applications. It can separate contrast agents of a common spectral or temporal bio-
distribution from background absorbers such as hemoglobin. The unmixing quality of PCA
and ICA demonstrated herein on mouse measurements was found to be superior to spectral
fitting, further generating components that can lead to spectral identification of specific tissue
biomarkers such as hemoglobin or the contributions of intrinsically expressed or administered
molecular probes. Additionally, the use of blind unmixing was successfully demonstrated in
the time domain by separation of blood veins based on dynamic changes of an optoacoustic
image sequence. It is evident, that the sensitivity of the imaging systems directly benefits from
an improved unmixing performance.

Among the discussed blind source methods ICA appears to be the superior method, yielding
a cleaner unmixing compared to PCA in the spectral domain. Contrary to spectral unmixing,
it is unlikely to have ara priori knowledge of temporal profiles of biological processes or the
contrast agent’s temporal biodistribution in living organisms. Therefore fitting procedures are
not common in dynamic measurements. In response, we found that temporal unmixing based
on blind decomposition methods required a combination of PCA and ICA to lead to clearly
perceived time components.

Future research will aim to further evaluate the performance of blind source techniques in
the unmixing of MSOT data and to define suitable pre- and post-processing steps that can
help to automate the procedure and also guide the unmixingavghiori information that
may be available. Applications of these unmixing methods are envisioned also in the field
of optical fluorescence imaging, where they can help to increase detection sensitivity, and in
autofluorescence removal.
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