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Abstract

Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and

treatment progression are key motivations for the exploration of biomarkers for

allergic rhinitis and allergic asthma. The number of genes related to allergic rhini-

tis and allergic asthma increases steadily; however, prognostic genes have not yet

entered clinical application. We hypothesize that the combination of multiple

genes may generate biomarkers with prognostic potential. The current review

attempts to group more than 161 different potential biomarkers involved in respi-

ratory inflammation to pave the way for future classifiers. The potential biomark-

ers are categorized into either epithelial or infiltrate-derived or mixed origin,

epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-

specific categories. The current literature provides multiple biomarkers for poten-

tial asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9,

Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic

asthma endotypes are also classified by epithelium-derived CCL-26 and osteopon-

tin, respectively. There are currently about 20 epithelium-derived biomarkers

exclusively derived from epithelium, which are likely to innovate biomarker panels

as they are easy to sample. This article systematically reviews and categorizes

genes and collects current evidence that may promote these biomarkers to become

part of allergic rhinitis or allergic asthma classifiers with high prognostic value.

With the increasing prevalence of asthma, the continuous

lack of novel therapies and inefficient disease prevention, the

demand for predictive biomarkers for allergic rhinitis and

asthma is steadily increasing. Following the current clinical

guidelines, it is essential to identify allergen sensitization pat-

terns as well as lung function parameters.

The aim of this review was to extend the biomarker port-

folio, summarized in previous reviews (1–6), and to provide a

structured and comprehensive overview of future biomarkers

both in terms of their origin and in view of their predictive

value in different phases of the disease. The perspective is to

define molecular patterns of rhinitis and asthma as basis for

endotype definitions, rather than using clinical disease pheno-

types following the definition of Wenzel (7). Thus, the defini-

tion of an endotype is a molecular phenotype that supports a

clinical outcome. The current review summarizes the

biomarkers along with the disease stages and generates a cat-

egorized overview of biomarkers in rhinitis and asthma. The

categorization is provided in Tables 1–3 (see columns on the

right) and mirrored in the sections 2 through 6. A second

important categorization approach is the grouping according

to the producer of the biomarker, which may be blood-borne

or about to infiltrate, or may reside in the tissue in course of

the inflammation (Fig. 1).

Early life endotypes

Due to diagnostic procedure restrictions, the determination

of disease prognosis in early life faces the unique challenge of

a limited biomarker repertoire (Tables 1–3; column 1). Criti-

cal for the emerging treatments and monitoring strategy of

children is the definition of asthma endotypes (8).

Genetic dispositions and their associated endotypes

Genetic associations with genes such as ORMDL3 or NPSR1

have not led to clinically applicable asthma endotyping, as it

has been initiated for filaggrin mutations in allergic skin
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Table 1 Recently described biomakers. Potential biomarkers are listed according to cellular sources (epithelium and/or infiltrate derived) as

well as the matrices where they were described. References are described on the coloured side of the table. For better visualization and

categorization, the references are segmented into stages of disease. Asterisks indicate that the expression/secretion level of the referred

marker has been reported from the cell culture experiments
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Table 2 Recently described suface markers on innate immune cells. Surface markers of innate immune cells are listed according to the cel-

lular sources. References are described on the coloured side of the table. For better visualization and categorization, the references are seg-

mented into stages of disease
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Table 3 Recently described surface markers on innate and adaptive immune cells and fibrocytes. Surface markers of innate and adaptive

immune cells and fibrocytes are listed according to the cellular sources. References are described on the coloured side of the table. For bet-

ter visualization and categorization, the references are segmented into stages of disease
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manifestation in childhood. This mutation can be used to

define specific endotypes of atopic dermatitis characterized

by an early onset of the disease and a more severe course (9).

Clinically defined phenotypes include nonatopic wheezers,

viral-induced asthma or multitrigger wheezers that may dif-

ferentially respond to treatment or may even undergo sponta-

neous remission and therefore require personalized therapy

(10). In fact, rhinovirus infection-induced asthma exacerba-

tions in children were associated with elevated TSLP and

CCL-11 (eotaxin-1) levels that can be noninvasively detected

in nasal secretions (11). The repeated report of genetic associ-

ations of IL-33 and TSLP (12) with asthma risk is particu-

larly interesting as TSLP, IL-25 (IL-17E) and IL-33 (13) are

considered to play a role in the early commitment towards

Th2 immunity and type 2 innate (ILC2) lymphocytes (14).

They are considered to be recruited to the site of allergic

inflammation and produce IL-4, IL-5, IL-13 and IL-6 (15).

Little is known about ILC2s during allergic sensitization

in vivo, but the role of ILC2 was demonstrated in the patho-

physiology of chronic rhinosinusitis (15) with nasal polyps

(14, 16) and asthma exacerbation (17), also suggesting a role

of ILC2 as amplifiers of type 2 cytokine-mediated inflamma-

tory processes. In the peripheral blood, higher frequencies of

ILC2 (18) and higher IL-33 levels (19) are observed in

asthma patients (18). Similarly increased frequency of iNKT

(CD16/CD56/CD161) cells is found in asthmatic children

upon exacerbation (20) (Table 3). As the acquisition of non-

invasive cord blood samples for life-long stem cell storage

becomes increasingly more common, these samples could at

the same time be used for the analysis of immunological

functionality. These analyses may provide additional infor-

mation for a lack of Th1 immunity represented by lower

levels of interferons (21), IL-12 and IL-15 (22, 23) and

increased Th2 markers CCL-17 (TARC), CCL-22 (MDC)

and ECP (24).

Stratification of novel paediatric endotypes

Besides genetic predisposition, immunological changes in the

airways may provide important information for allergic dis-

ease endotypes. However, sampling is restricted for ethical

reasons. Therefore, semi-invasive analysis of nasal brushings

has been experimentally performed and has revealed

increased mRNA levels of VEGF, TGF-b2 and periostin.
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Figure 1 Schematic overview on local biomarkers relevant in aller-

gic rhinitis and allergic asthma in the airways. The airway lumen

unifies cytokines and mediators both of different origins. This cov-

ers epithelial-derived cytokines as well as mediators of granulo-

cytes (left half) or lymphocytes (right half). While cytokines

produced by infiltrating cells (infiltrate derived; eosinophils, baso-

phils, neutrophils, dendritic cells, macrophages and T cells) have a

passage through the epithelial barrier, epithelial-derived cytokines

have a more direct access. The infiltration-derived biomarkers are

also present in the peripheral blood.
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These biomarkers are an option in addition to the skin prick

test that helps to distinguish atopic from nonatopic asthma

endotypes (25). Another minimally invasive option available

from school age is the analysis of saline-induced sputum,

which separates atopic from nonatopic asthma on the basis

of increased infiltrate-derived IL-2, IL-4, IL-5, IL-12 and

IFN-c levels, in comparison with higher IL-10 levels in

healthy individuals (Table 1; section infiltrate-derived

biomarkers) (26). Furthermore, sputum cell counts are vali-

dated markers of lower airway inflammation, which gener-

ated reproducible data, when standardized protocols (27) for

induction and processing were applied for the quantification

of sputum eosinophil and neutrophil counts in adults (28) or

children (29).

Characteristic differential sputum cell counts

Basophils, eosinophils and neutrophils are considered key

effector cells infiltrating the asthmatic airway together with

platelets (30). Platelets are carrying multiple mediators such as

leukotrienes (31), platelet factor 4 (CXCL-4) (32), b-thrombo-

globulin (33), CCL-5 (RANTES) (33), thromboxane (34) or

serotonin (35). These mediators are directly correlated with

severe asthma (32), and therefore, CXCL-4 may serve as a bio-

marker. Eosinophil and neutrophil counts are used to discrimi-

nate between eosinophilic and neutrophilic asthma (36). In

severe persistent asthma, their numbers are related to disease

severity (37–41), and spontaneous or induced asthma exacer-

bations, for example, during allergen-induced late-phase

responses or during tapering of corticosteroids (40, 42). The

reduction in sputum eosinophils by anti-IL-5 treatment was

associated with a mild improvement in symptom scores (43,

44) and decrease in the number of exacerbations (44, 46), but

not improvement in lung function parameters (45, 46).

Disease management based on sputum eosinophils was

shown to improve the prevention of asthma exacerbations in

an open-label study (47). Sputum eosinophil and neutrophil

counts can be used to distinguish asthma phenotypes (48);

however, severe asthmatic conditions may trigger the co-

occurrence of eosinophils and neutrophils in the sputum (49).

Therefore, eosinophil-based diagnosis benefits from addi-

tional assessment of surface markers such as CD69 (50) and

sputum mediator profiles (e.g. cysteinyl leukotrienes, prosta-

glandin D2, IL-13), which facilitate the differentiation

between asthma phenotypes or endotypes and predicted

responsiveness to treatment with current leukotriene modi-

fiers such as montelukast or potential future therapeutics, for

example enzyme inhibitors or certain monoclonal anticy-

tokine antibodies (51–53). As leukotrienes are recognized as

central mediators in neonatal and childhood phenotypes, the

measurement of sputum leukotriene levels may be particu-

larly promising to monitor the development of asthmatic

inflammation early in life (54, 55).

Disease progression in children

Besides disease classification, the monitoring of disease pro-

gression and development such as degree of inflammation

and tissue remodelling are essential for personalized treat-

ment strategies. For this purpose, noninvasive sampling in

preschool age is particularly important, using, for example,

exhaled breath condensate (EBC) to detect asthma develop-

ment-associated biomarkers of the infiltration type (Table 1;

section infiltrate-derived biomarkers), such as IL-4, IL-8, IL-

10, IL-13 and sICAM1 (56). CCL-5 significantly correlates

with both reduction in FEV1 and increase in airway resis-

tance, while increased levels of TNF-a and TGF-b signifi-

cantly correlate with nonspecific bronchial hyper-

responsiveness. In addition, ratios of IL-4 to IFN-c in

exhaled breath condensate are higher in children with asthma

compared to asthmatic children under inhaled steroid therapy

(57). Also, the eosinophilic factor and Th2 cytokine IL-5 was

elevated in EBC of children with atopic dermatitis, allergic

rhinitis and asthma in comparison with healthy children,

whereas the nasal IL-5 concentrations are higher in asthma

and allergic rhinitis than in healthy children (58). Recently,

the assessment of leukotrienes in noninvasive EBC has been

extended to paediatric asthma, using fractionated EBC sam-

pling to show selectively increased leukotriene B4 levels in the

small airway and alveolar fraction of EBC in children with

more severe airway obstruction (59).

Minimally invasive biomarkers, such as peripheral blood

measurements, allow both cellular and soluble mediator anal-

yses. However, the analysis of cytokines secreted from aller-

gen-specific Th2 cells without additional in vitro culture is

technically challenging and does not allow asthma endotype

discrimination (60). In summary, local, noninvasive methods

are applicable for the diagnostic separation of asthma endo-

types, assessment of steroid response and correlation with

lung function or bronchial hyper-responsiveness. However,

these biomarkers are only based on infiltrate or the mixed

infiltrate/epithelial type (Table 1), while pure epithelium-

derived biomarkers remain to be discovered and validated

along with the infiltrate type.

Disease onset and asthma prevention

In patients with manifested disease (Tables 1–3, column 2), it

is critical to prevent the spread of sensitization (61), the shift

from rhinitis to asthma and further disease progression (62,

63), for example, by specific immunotherapy.

B-cell-associated biomarkers

The assessment of the disease status and its classification into

mono-, oligo- and polysensitized (atopic) is already providing

important prognostic information for clinical outcomes. For

instance, polysensitized endotypes are more frequently prone

to hospital admissions (64). Profiling of immunoglobulin

specificities is currently performed on the level of IgE (multi-

component protein array analysis). Most recent studies

demonstrate that distinct patterns of IgE responses to differ-

ent protein families are associated with different clinical

symptoms (65). Furthermore, the balance of Ig subclasses

may complete the overall picture of the B-cell response, such

as IgG4 investigated in specific immunotherapy (66). Possibly
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underestimated are immunoglobulin (Ig) IgG1, IgG2, IgG3,

IgM and IgD as well as IgA (67) that may provide important

insights into the overall response of the B-cell immunological

memory on systemic level. The early differentiation of B cells

is difficult to diagnose in clinical settings; however, a Th2

influence can be assessed by CD86 on CD23+ B cells (68)

(Table 3). Generally, increased CD19+CD20+ B-cell counts

are found in local allergic inflammation and in the blood of

patients with atopic dermatitis (69). This study also demon-

strates the systemic expansion of transitional and chronically

activated CD27+ IgE+ memory subsets, which was also

described in rhinitis patients and suggested as potential IgE+

blast precursor cell (70). CD38+ or CD138+ plasmablasts

were found both locally and in peripherally (71–73). Impor-

tantly, too, local allergen-specific immunoglobulins have been

reported to play a pivotal role in symptomatic allergic reac-

tions (74, 75).

T-cell-associated biomarkers

T cells are also infiltrating the affected tissue and are antici-

pated to play an important role in disease development and

progression. Their assessment in the peripheral blood is diffi-

cult due to the low frequency of allergen-specific Th2 cells,

while local Th2 endotypes are most visible in sputum (76,

77). However, sputum T lymphocytes are predominantly of

activated intraepithelial phenotype (CD103+CD69+) that are

known to belong to the long-lived memory pool, which

rapidly responds to antigen challenge (78).

IL-4, IL-5 and IL-13 are detectable in the serum (1–50 pg/

ml range) of asthma patients in an acute episode (79). How-

ever, once recruited to the local tissue, T cells are more likely

to reflect changes in immunopathology. Among the infiltrat-

ing T cells, the impact of Th2 cells is well characterized and

used in biomarker panels (Table 1, column 2; section infil-

trate-derived biomarkers); however, Th2 surface markers

(CRTH2/CD294 and TIM-3) are not covering all IL-4-pro-

ducing T cells (80, 81).

Regulatory T cells (Tregs) are characterized by intracellu-

lar FoxP3 expression and surface expression of CD25,

CTLA-4, GITR, TLR4 and are negatively correlated with

IgE levels in serum (82, 83). The expression of CD39 and

CD73 on the surface of CD4+ T cells and Tregs in asthma

patients was negatively correlated with the number of IL-17-

producing T cells (Th17) (84). Both Th17 and Th22 cells (85)

were described to be important for allergic inflammation.

Th22 cells are present in lung biopsies of asthma patients

where they play an anti-inflammatory role (86). We speculate

that Th22 cell frequency could provide an indication for dis-

ease remission and/or tissue repair (87, 88). The Th22 fre-

quency is currently considered as a biomarker for disease

progression in several diseases (89–92). This finding illustrates

that not only Th2 cells are important for allergy, rhinitis and

asthma, but also other subsets such as Th9 cells (93), which

remain to be further characterized.

Another recently discovered subset of Th2 cells has the

plasticity to express IL-17 in addition to IL-4. The frequency

of this Th2-IL-17+ subset in the BAL fluid correlated with

BAL and blood eosinophilia with PC20 following meta-

choline provocation (94). This study also showed that the

more plastic T-cell phenotype expressing IL-17 in addition to

IL-4 occurs mainly in rather established, severe disease

exhibiting steroid resistance. Because steroid resistance is a

critical determinant in guideline classifications, it appears

possible that memory lymphocytes may have to be taken into

consideration in the definition of asthma endotypes. Further-

more, IL-4, IL-13 and IL-17A synergistically promote the

proliferation of CD34+COL1+ fibrocytes and collagen

expression (95). Fibrocytes constitutively expressed the scav-

enger receptors CD163 and CD204 as well as the mannose

receptor CD206 (96). Taken together, the analysis of

biomarkers derived from local, infiltrating cells of the

immune memory cells (T and B cells) is rewarding because of

their disease-modifying capacity, but the detection of such

biomarkers may be limited by the low frequency of antigen-

specific source cells (97, 98).

Epithelium-associated biomarkers

The role of tissue cells in the early phase of disease is largely

unknown, but could provide important information about

the pathologic development and could help to identify the

causal relationships (99). The use of lining fluids such as

nasal secretions (100), sputum supernatants (101) and tear

fluids (102) may increase assay sensitivity compared to sys-

temic biomarkers diluted in the peripheral fluids. In fact,

most genetic associations with allergic diseases point to genes

in structural or barrier contexts rather than classical immune

contexts, for example ORMDL3 expressed by epithelial cells

and filaggrin expressed by keratinocytes. Furthermore, aller-

gen challenge induces IL-25 (IL-17E) and its receptor in the

asthmatic bronchial mucosa and skin dermis of atopic sub-

jects (103). Like biomarkers in early disease, epithelium-

derived, infiltration-independent biomarkers are still

unknown.

Established disease and prevention of remodelling

Once disease has manifested for several years and therapies

failed to interrupt the allergic march, the diagnostic attention

should be drawn to the prevention of further damage and

irreversible remodelling of the tissue (Tables 1–3; column 3).

For atopic dermatitis, the ongoing inflammation is associated

with keratinocyte apoptosis and spongiosis of the epidermis.

Most recently, a discrete molecular signature including

NOS2, IL36G and CCL-27 (CTACK) that takes advantage

of highly discriminative gene expression measured in the

biopsies of atopic dermatitis and psoriasis patients was

described (104). However, it is currently not known whether

these genes can also be used to distinguish airway manifesta-

tions.

Local microbiome as biomarker source

Future biomarker development may benefit not only from

the mediators released of the tissue-infiltrating T cells (Th1,
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Th2, Th9, Th17, Th22), but also from the antimicrobial

repertoire of the epithelial defence (e.g. defensins, S100,

cathelicidins). This broad panel of genes selectively determi-

nes the composition of the local epithelial microbiome. The

microbiome itself is considered as a potential biomarker

source in interstitial pulmonary fibrosis (IPF), because colo-

nization with Staphylococcus aureus correlates with disease

progression of IPF (105). In addition, the antimicrobial pep-

tides play a critical role in the mucosal defence, and it can be

speculated that distinct defence patterns relate to different

microbiome and rhinitis/asthma endotypes.

Biomarkers of airway remodelling

Airway remodelling is associated with local matrix deposi-

tion, vascularization, epithelial hyperplasia and changes in

the submucosa, such as smooth muscle cell hyperplasia and

fibroblast proliferation. The development of biomarkers pre-

dictive for airway remodelling is very important in order to

adjust therapy and to reassure the maintenance of lung func-

tion. However, serological remodelling markers such as

YKL-40 (106, 107), MMPs (108) and osteopontin (109) are

under validation process in multiple studies. Of note, YKL-

40 levels showed in this study remarkable correlations with

subepithelial basal membrane thickening. Their use as local

biomarkers might further improve biomarker-based diagnosis

due to higher concentrations at the site of inflammation.

However, the access to brushings, bronchoalveolar lavage

fluid (BALF) or lung biopsies is restricted due to ethical rea-

sons, but their analysis showed a correlation of tissue Th2

signatures with serum IgE as well as BALF and blood eosi-

nophil frequency (110). Furthermore, periostin is a well-

investigated, systemic biomarker of eosinophilic inflammation

in asthmatic patients that is superior to blood eosinophil

counts (111). In contrast, minimally invasive sputum fluids

show better amplitude and facilitate the discrimination of the

osteopontin levels between mild, moderate and severe/refrac-

tory asthma (112). In addition, theses studies showed a

highly significant correlation with smoke-induced neutrophilic

infiltration, but not with bronchial hyper-responsiveness

(113). Furthermore, the MMP-9/TIMP ratio was demon-

strated to correlate with disease severity (114, 115) or airway

remodelling (116), whereas VEGF correlates with airway vas-

cular permeability index even in post-treatment asthmatics

(117). VEGF and angiogenin are found in increased amounts

in the sputum supernatants of patients with acute asthma

attacks (118); however, their correlation with the degree of

vascularization remains to be demonstrated. In contrast, indi-

cators of vascular endothelial cell perturbation, specifically

von Willebrand factor (vWF) and P-selectin, but not CXCL-4,

correlated with airway structural changes and ventilation

defects (119). MMP-9 also correlates with eosinophil fre-

quency, but not with bronchial hyper-responsiveness (120),

and can even be noninvasively detected in EBC (121). In

addition, levels of IL-2 and IL-10 in EBC were increased in

asthmatic patients, but only IL-2 levels significantly

correlated with predicted reductions in FEV1 in nonallergic

asthma (122).

Surrogate biomarkers for lung function

In addition to diagnostic quantification of remodelling medi-

ators, it is critical to determine the markers that are associ-

ated with airway functions. Simultaneous increase in IL-4,

IL-6, IL-8, IL-10, TNF-a, TGF-b, CCL-3 (MIP-1a), CCL-4
(MIP-1b) and CCL-5 was identified in EBC among adult

steroid-na€ıve asthmatic patients (123). Sputum levels of CCL-

11 (eotaxin-1) and CCL-24 (eotaxin-2) correlate positively

with bronchial hyper-responsiveness (124, 125), while CCL-

11 and CCL-26 (eotaxin-3) correlate with decreased FEV1,

asthma exacerbations and frequencies of sputum eosinophils

(126). In addition, increased levels of IL-13 in sputum and

bronchial biopsy specimens are features of severe asthma

(127); TSLP and CCL-17 expression correlates with airway

obstruction (128, 129). Increased levels of CCL-11 induce

eosinophilic accumulation to the airway wall, their activation

as well as degranulation. Patients with uncontrolled asthma

showed higher CCL-11 levels compared to stabilized asth-

matic patients (130). Furthermore, reduction in CCL-11

levels after omalizumab treatment among patients with severe

asthma reflected remission of eosinophilic inflammation

(131). The degree of airway hyper-responsiveness correlates

with macrophage activation markers such as CD14, CD16,

CD18, CD29, CD32, HLA class I and HLA DQ (132).

The extent of local infiltration can be monitored in exhaled

breath condensate (EBC) on the basis of TNF-a (133), which

correlates with methacholine inhalation challenge threshold

(123).

In biopsies, multiple genes and cells were demonstrated to

play a confirmatory role for the selection of future biomark-

ers. The expression of IL-15 was shown to be associated with

Th1-mediated chronic inflammatory diseases of the lung

(134). Furthermore, IL-22 might control the extent of IFN-c-
mediated lung inflammation and therefore plays a tissue-

restricted regulatory role (86), whereas TGF-b isoform

expression was increased after allergen challenge (135). Also,

high expression levels of IL-20 in the airway epithelium of

asthma patients were found as well as a positive correlation

between IL-20 and Th2 cytokines IL-4, IL-5 and IL-13 (136).

Correlations were also observed between TSLP, CCL-17 and

CCL-22 expression and airway obstruction, which were most

tightly associated in the epithelium (128).

Surrogate biomarkers of the upper airways

In contrast to lower airway biopsies, the upper airways allow

minimally invasive access to epithelial cell. Nasal epithelial

cells can be used as surrogate marker source for bronchial

epithelial cells (137), as they were shown to express signifi-

cantly higher levels of pro-remodelling factors VEGF and

TGF-b compared to healthy individuals even after air liquid

cell culture (25). Furthermore, they mirror the increased local

expression of CCL-11 and CCL-26 (eotaxin-3) in allergic

rhinitis and asthma (138). In these patients, nasal mucosa is

showing seasonal changes such as increased neutrophil levels

expressing CD11b, CD66b and CD63 (139). In contrast,

nasal mucosal expression upon rhinovirus exposure showed
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expression changes in IL-1b, IL-24, MMP-10, but also in

lysyl oxidase-like 2 (LOXL2) expression, indicating that lipid

mediators are involved in early activation of the epithelium

(140). The Th2-promoting alarmin TSLP was increased in

polyps and chronic rhinosinusitis (141), and also, osteopontin

was detectable in nasal tissues both in infiltrating cells and

within the epithelial layer (142). Taken together, CCL-11 and

CCL-26 are epithelium-derived indicators of Th2-driven,

eosinophilic asthma and correlate with airway function, while

osteopontin appears to be related to a neutrophil asthma

phenotype and indicates disease severity.

Response to environment and treatment

Monitoring environment and treatment is highly variable

with responding cells and pathways compared to defined cau-

sal relationships (Tables 1–3; column 4).

Response to environmental challenge

The dynamics of disease pathology in allergy, rhinitis and

asthma were investigated by allergen challenge in skin, nose

and lung and were found to be not only characterized by an

increase in Th2 cytokines, but also by potentially regulatory

(143) or remodelling factors such as TGF-b detected in skin

biopsies, nasal secretions, BALF and sputum (144–146) or

ADAM metalloproteinase family members (147). In the lung,

the response to allergen challenge can be characterized by the

infiltration of eosinophils expressing CD244 (148) and FceR1a
(149–151) and in the late-phase response also CD25 and

CD62L (152). Of note, the IL-5Ra (CD125) expression drops

on eosinophils following allergen challenge (153). In contrast,

neutrophils of the late-phase response are expressing increased

surface levels of CD11b, CD11b/18, CD16, CD32, CD35,

CD62E, CD62L, CD64 and CD66b (152). Also, the macro-

phage phenotype is influenced by allergen challenge, displaying

increased surface expression of CD14 and CD86 (154–156). It
is not yet clear whether the M2 macrophage phenotype

(CD163, CD206) (157) can be utilized for Th2 endotyping.

Some of the ADAM family members are genetically associ-

ated with asthma (147). Environmental exposure to smoke

increases IL-6, IL-7 and IL-12 and thus lacks a Th2 finger-

print (158). In contrast, fungal sensitization with Alternaria

alternata or rhinovirus-triggered asthma exacerbations are

reported to stimulate increases in IL-33-mediated ILC2 num-

bers and Th2 cell numbers (159, 160). CCR4 and CXCR3

are up-regulated in Aspergillus fumigatus-specific T cells from

non-ABPA-allergic asthmatics (161).

Drug hypersensitivities are commonly tested by ex vivo

basophil activation assays (BAT) to predict drug reactions.

Here, the expression of inside–outside markers is used to

determine degranulation (CD63, CD69, CD203c, CCR3)

(162, 163).

Biomarker usage in treatment monitoring

The control of environmentally triggered inflammation by

systemic glucocorticoids (GC) leads to reduced CCL-5 and

CXCL-10 (IP10), while CCL-4 is increased in nonsmokers

(158). Because CCL-5 is infiltrate derived, while CXCL-10 is

most likely of epithelial origin, it can be speculated that the

impact of GC is based both on local and on systemic effects

on the immune cells. Furthermore, steroid resistance was

reported both on the level of resident cells (airway smooth

muscle cell-derived IL-6, CCL-11) and on the level of

infiltrated cells (macrophage-derived IL-6, IL-13/IL-12 ratio,

IL-5, IL-15) (134, 164–168). Taken together, systemic treat-

ment effects influence local and infiltrating cells, while steroid

resistance has been investigated so far only with respect to

infiltrating cells.

Interestingly, topical treatment also affects infiltrating cells

despite the insoluble property of inhalative GC, which pre-

vents systemic side-effects. It has been demonstrated that

inhalative GC reduced Th2 cytokines in nasal fluids (IL-1a,
IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12,
IL-13, IL-15, CCL-11, CCL-5, CCL-2 (MCP1), CCL-3,

CXCL-10, GM-CSF, IFN-c and TNF-a) (169), but increased
the relative frequency of Tregs that express the latent form of

TGF-b1 (83, 170). Also, systemic treatments with herbal

drugs reduced nasal levels of IL-8 and leukotriene B4 (171).

Furthermore, phospho-STAT6 unresponsiveness in central

CD4+CD161+ T cells identified steroid-resistant asthma

patients (172). As shown for GC therapy, infiltrate-derived

levels of IL-4, IL-9, IL-13, CCL-11 and mast cell tryptase

were reduced in nasal secretions after allergen challenge and

correlated with improvements in clinical symptoms in

patients who had received immunotherapy as compared to

allergic controls (173). Up-regulation of serum osteopontin

after venom immunotherapy has diagnostic potential compa-

rable to asthma biomarkers (174). Nevertheless, there is cur-

rently no predictive indicator for treatment success. Allergen-

specific IgG4 is induced and its avidity is correlating with

symptom-rescue medication scores (66). We could recently

show that allergen-specific Th2 immunity can be long last-

ingly diminished by coadministration of an anti-IL-4 biologi-

cal together with a grass-specific immunotherapy (175).

Stand-alone anti-Th2 therapies such as anti-IL-4 receptor

(dupilumab) or anti-IL-13 (lebrikizumab) treatment show

efficacy even without immunotherapy, when patients are

stratified for Th2 phenotypes or endotype by eosinophil or

periostin levels (176, 177).

Biomarkers for disease severity and exacerbation

Overall, a great body of information is available on biomark-

ers derived from local, infiltrating cells, while the response of

tissue cells is currently underrepresented and might further

improve therapy and exposition monitoring (Table 1; section

infiltrate-derived biomarkers). Disease severity is monitored

by cytokines of infiltrative cells, with the exception of

CXCL-10: patients with an ‘IL-5, IL-17A, IL-25-high’ airway

inflammatory pattern are typical among uncontrolled asthma

patients (178, 179). Sputum levels of uric acid, ECP, CXCL-

10 and TNF-a are elevated upon asthma exacerbation (180,

181). In the peripheral blood, CD45+Col1+CXCR4+ fibro-

cytes were more frequently found in patients suffering from
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severe asthma (182). CXCR4 and CCR7 mediated fibrocyte

transmigration in acute asthma exacerbation and in chronic

obstructive asthma, respectively (183).

Due to the systemic involvement, asthma exacerbation can

also be monitored or even predicted by urinary metabolites

including arachidonic derivatives such as leukotrienes (184,

185) and urinary trypsin inhibitor (186). Exacerbated allergic

asthma is accompanied with increased BAL levels of quino-

linic acid, tryptophan, ECP, eosinophils (187), decreased

CD29 (32) and CD44 (188) on eosinophils and elevated

CD203c expression on basophils, which decreases signifi-

cantly during remission (101). In contrast to this Th2-type

eosinophilic response, CD161+ central memory T cells are

displaying an activated CD69+ phenotype predominantly of

a Th1 (IFN-c+) phenotype in acute asthma attacks (189).

While early or mild conditions are well-reflected local

biomarkers, it appears that moderate to severe disease condi-

tions are even visible in the peripheral blood.

Future directions

Exosomes and microvesicles in various body fluids

In addition to cells and their locally produced mediators,

body fluids can contain extracellular vesicles (exosomes or

microvesicles (EMVs)), which are very stable and can be

found even weeks after their ‘parent’ cells have emigrated or

died. EMVs contain potentially disease-associated molecules,

including microRNAs and lipid mediators that have been

suggested as future biomarkers for a variety of diseases

(190). In the last decade, potential pathological roles of exo-

somes in airway inflammation have been suggested by work

showing the capacity of these vesicles to carry pro-inflamma-

tory mediators (191, 192). Moreover, eosinophils from asth-

matic patients were recently shown to release increased

amounts of exosomes (193). Thus, profiling the content of

EMVs from all the body fluids discussed above using current

‘omics’ approaches may result in the identification of specific

molecular signatures in vesicles from distinct populations of

allergy and asthma patients.

Novel lipidomics approaches

While studies of the past mainly used immunoassays and

simple HPLC or GC methods to quantify eicosanoid

biomarkers such as LTs and 8-isoprostane (54, 194), more

comprehensive lipid mediator profiling of local and systemic

body fluids by state-of-the-art LC-MS/MS approaches holds

great potential to identify disease-specific eicosanoid signa-

tures in the near future (195–197). Notably, recent ‘fluxomic’

approaches should enable clinicians to monitor eicosanoid

profiles over time and during treatment (198). New data

analysis tools will also facilitate the integration of lipidomic,

proteomic and transcriptomic data sets, which will likely

result in more precise and meaningful biomarker applications

in future.

Conclusion

For historic reasons, allergy biomarkers are mainly blood-

borne, while local biomarkers or those derived from cells

infiltrating the site inflammation are only more recently stud-

ied with increased interest. However, genetic association stud-

ies mainly revealed tissue-specific genes such as filaggrin,

ORMDL or IL-33 highlighting the important role of tissue

and epithelium. This example highlights that the quality of a

predictive biomarker may also depend on polymorphisms or

to the extent it drains into body fluids or occurs on cell sur-

faces. In addition to these genetic markers, this review illus-

trated multiple potential biomarkers for early life, disease

onset and established disease that originate from local inflam-

mation processes, of which it is currently not clear whether

they can be translated into preferable systemic indicators.

Future studies are required to translate this panel of at least

161 potential biomarkers into validated sets that display an

optimal ROC profile of false-positive rates (specificity) to

true-positive rates (sensitivity).

An exception to this situation are asthma exacerbations

that can be more easily monitored by systemic parameters

such as urine-based mediators and blood-borne biomarkers.

Recently described epithelium-derived mediators have diag-

nostic potential for asthma endotyping, disease progression

and treatment monitoring. B- and T-cell biomarker classifiers

may characterize the disease endotypes; in fact, Th2 finger-

prints have frequently been observed. About 20 genes are

exclusively expressed by epithelial cells, of which many are

chemokines, matrix related and only a smaller fraction are

cytokines. Some of these genes have great potential also for

paediatric assessment, as the epithelial secretion may allow

noninvasive sampling by nasal lining fluid or EBC.
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