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ABSTRACT

Motivation: Accurate automatic assignment of protein functions

remains a challenge for genome annotation. We have developed and

compared the automatic annotation of four bacterial genomes

employing a 5-fold cross-validation procedure and several machine

learning methods.

Results: The analyzed genomes were manually annotated with

FunCat categories in MIPS providing a gold standard. Features

describing a pair of sequences rather than each sequence alone

were used. The descriptors were derived from sequence alignment

scores, InterPro domains, synteny information, sequence length and

calculated protein properties. Following training we scored all pairs

from the validation sets, selected a pair with the highest predicted

score and annotated the target protein with functional categories of

the prototype protein. The data integration using machine-learning

methods provided significantly higher annotation accuracy com-

pared to the use of individual descriptors alone. The neural network

approach showed the best performance. The descriptors derived

from the InterPro domains and sequence similarity provided the

highest contribution to the method performance. The predicted

annotation scores allow differentiation of reliable versus non-reliable

annotations. The developed approach was applied to annotate the

protein sequences from 180 complete bacterial genomes.

Availability: The FUNcat Annotation Tool (FUNAT) is available

on-line as Web Services at http://mips.gsf.de/proj/funat

Contact: i.tetko@gsf.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Numerous genome-sequencing projects have caused a rapid

growth of the protein databases. In contrast to the pre-genomic

era, when the annotation of sequences was highly biased towards

known and characterized genes, the systematic exploration of

genomes allows one to assign precise functional properties

now on less studied genes. However, manual annotation of

sequences is laborious and becomes more and more infeasible

for growing amount of sequence data (Friedberg, 2006; Ruepp

and Mewes, 2006; Valencia, 2005). The field of automatic

functional annotation is rapidly evolving. Widely accepted app-

roaches include the use of sequence alignment tools, such as

BLAST, PSI-BLAST (Altschul et al., 1997), FASTA (Pearson,

1996) or more sensitive methods, such as hidden Markov

models (Sonnhammer et al., 1997) or alignment-independent

tools (Kocsor et al., 2006). These methods are applied to detect

a set of candidate genes, which were previously manually

annotated. When such set of genes is pre-selected, several

strategies are used to provide the annotation. One of the most

simplest and straightforward approaches is to annotate a target

gene with functions of a prototype gene. Homology-based

methods use the highest alignment score (‘best bidirectional

match’) to do such annotation. They were implemented in the

first workflow-based annotation systems for sequence analysis

such as GeneQuiz (Andrade et al., 1999) and PEDANT (Mewes

et al., 1999; Riley et al., 2007). In addition, these approaches

performed supplementary analyses to add multiple evidences for

the inferences made. Another strategy is to annotate proteins

using clustering algorithms applied on many proteins.

Orthologous families are detected and the consensus annotation

of all genes in the cluster is assigned (Enright et al., 2002; Tetko

et al., 2005a, b). More complicated methods that make use of a

combination of annotations of more than one homolog have

been also proposed (Abascal and Valencia, 2003; Biswas et al.,

2002; Clare et al., 2006; Clare and King, 2003; Krebs and

Bourne, 2004; Kretschmann et al., 2001; Levy et al., 2005;

Meinel et al., 2005; von Mering et al., 2007). It has been shown

that the latter strategies are suited to provide an improved

accuracy of annotation over the best match approach.
Assignment of protein function by highest-scoring ortholo-

gous match, however, provides an obvious explanation of*To whom correspondence should be addressed.
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the performed annotation. Thus, in case of doubts of the

annotation accuracy one can verify the prototype sequence,

which was manually annotated, and re-evaluate evidences used

for its annotation. By the same reason it allows an easy control

of the error-propagation. However, the ‘best’ match annotation

is usually based on just one source of information, which often

is sequence similarity. The annotation may not be correct if the

best match is not a true ortholog. Indeed, in some cases it is

extremely difficult to differentiate the true ortholog amid

several possible candidates with similar sequence similarity

scores. The highest rank in the scoring list may be the result of

considering a local but not a global similarity. While additional

evidences could be used to enhance the annotation accuracy by

pre- or post-processing (e.g. in case of similar similarity scores,

preference for transfer of annotation should be given to genes

from syntenic regions), there is a need for a comprehensive

method integrating different types of evidences. The current

work describes an algorithm that on the one hand keeps the

simplicity and advantages of the best match approach but on

the other hand provides data integration for automatic

annotation of proteins. It significantly improves the annotation

accuracy over the traditional ‘best match’ approach.

2 DATA

The MIPS BFAB data set (Tetko et al., 2005a) composed of

four bacterial genomes, Bacillus subtilis, Helicobacter pylori,

Listeria innocua and Listeria monocytogenes (in total 7335

annotated sequences) was used. These genomes were manually

annotated according to the Functional Catalogue FunCat

(Ruepp et al., 2004) by the MIPS curators over several years.

For each analyzed protein we considered its sequence alignment

to all other proteins from the BFAB set. The pre-calculated

Smith-Waterman (SW) alignment scores (optscores �80) from

the SIMAP database (Rattei et al., 2008) were used. The choice

of the optscore threshold has been described in the primary

SIMAP publication (Arnold et al., 2005) as a compromise of

sensitivity and size of the matrix, which is currently 1.3 TB.

Although this threshold value looks somewhat liberal, our

assumption was that the other features, such as common

InterPro domains, should play an important role and provide

complementary information for the annotation of proteins. We

did not consider hits where both proteins belong to the same

bacteria specie, and also skipped pairs where both genes come

from different Listeria genomes since they are highly conserved.

A total number of 104 092 pairs was calculated.
We also automatically annotated complete bacterial genomes

with calculated InterPro domains, which are available in the

PEDANT (Riley et al., 2007) database. A total number of 180

genomes (378 974 sequences) contributed 12 975 190 protein

pairs. Each pair included a sequence from one of the 180

genomes and the other sequence from the annotated genes

(BFAB set).

2.1 Descriptors to represent a protein pair

The basic object for our analysis was a pair of proteins. In order

to distinguish between the sequences in the pair, we will refer

to the sequence to be annotated as the ‘target’ and the sequence,

which provides the annotation as the ‘prototype’. Features

describing a pair rather than each sequence alone were selected

for the analysis. The descriptors were selected following

discussions with members of MIPS annotation group and

were subdivided into several categories:

(1) Sequence similarity. The pairwise sequence similarity

optscore, calculated with the Smith-Waterman (SW)

algorithm (Smith and Waterman, 1981) as well as

length overlap, identity and global similarity, G_SIM,

were retrieved from the MIPS SIMAP database (Rattei

et al., 2008). While the optscore (or its normalized

analog, e-value) is traditionally used to estimate the

quality of a sequence alignment, the last three descriptors

provide a quantitative estimate of the degree of sequence

similarity of both proteins.

(2) Sequence length attributes. The difference between

lengths of proteins was mentioned by the MIPS curators

as an important descriptor for manual annotation. Thus

the absolute difference of sequence lengths L_DIF¼

abs(length(a)� length(b)), the difference weighted by

sum of sequence lengths L_PERC¼L_DIF/(length(a)þ

length(b)) were used. The third descriptor was based

on the density distribution function pdf(x) of lengths of

all protein sequences in 180 genomes (x is the protein

length). For a given pair the distance in the space of

sequences, L_PDF, was calculated as an integralR
pdfðxÞdx from the shorter, Lshort, to the longer protein,

Llong, in the pair. It corresponded to a fraction of

proteins having length in [Lshort, Llong] interval in the

database.

(3) Synteny information. Gene neighborhoods have been

shown to be an important feature in detecting protein

clusters with conserved functions (Kolesov et al., 2001;

Marcotte et al., 1999). The synteny score represents the

probability of a set of proteins, which are within a

specified window (�10 genes or less) on a target genome,

to be detected within the same window on the prototype

genome. The log10 value of this score was used as a

descriptor (SYN).

(4) Alignment free sequence similarity. Previous studies have

indicated the importance of compression algorithms in

comparing the similarity of sequence data. In this study

we used bzip2 to calculate the alignment free sequence

similarity of sequences using compression-based metrics

(CBM) (Cilibrasi and Vitanyi, 2005; Kocsor et al., 2006):

CBMða, bÞ ¼
Cðaþ bÞ �min CðaÞ,CðbÞ½ �ð Þ

max CðaÞ,CðbÞ½ �
ð1Þ

where C(x) denotes the length of sequence (text string) x,

that is compressed by the bzip2 algorithm.

(5) InterPro Domain (Mulder et al., 2007) composition. The

InterPro data (v 16.0) were downloaded from http://

www.ebi.ac.uk/interpro/ and used as a primary source of

domain composition of protein sequences. We counted

the number of distinct domains in both proteins

(I_DIST), the number of common domains (I_COM),

the ratio of common to total distinct domains
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(I_RATIO) and the log probability score of domains, k,

detected in both proteins in the pair as

I PROB ¼

P
i log ci � ðci � 1Þð Þ

N� ðN� 1Þð Þ
ð2Þ

where ci is the total number of proteins with domain

i, and N is the total number of proteins in the database.

Summation was performed over all domains that were

found in both analyzed proteins in the pair. Some

InterPro domains have hierarchical structures, in which

‘parent’ domains are more general compared to the

‘children’ domains. Use of the previous measures,

e.g. Equation (2), does not reflect this kind of relation-

ship. To account for this problem, we introduced

additional scores. The I_SCORE for the InterPro

domains was calculated in similar way as the score used

to estimate the accuracy of FunCat annotation (see

section 2.2). Other descriptors were based on informatics-

theoretic, I_ITS, (Azuaje et al., 2006; Lin, 1998; Resnik,

1995) and the total ancestry method (Yu et al., 2007).

(6) Calculated protein properties. Distance measures

calculated from PEDANT (Riley et al., 2007) properties

were used. The first two, S_EU and S_CLASS, were

calculated using predictions of the secondary structure of

proteins with PREDATOR (Frishman and Argos, 1997).

The ratio of amino acids, n(a)i, assigned to a given

class of secondary structure, i¼ [helix, extended, coil]

were used to calculate the first descriptor,

S EU ¼ sqrt ð
P

i ðnðaÞi � nðbÞiÞ
2
Þ. Binary descriptors

(0,1) were used to describe similarity in the predicted

class of secondary structure (‘all alpha’, ‘all beta’, ‘alpha/

beta’). We assigned a distance value of 0 if both proteins

in the pair had the same prediction of the considered

property, and 1 otherwise. The next five numerical

descriptors were absolute differences in calculated iso-

electric points (ip), percentage of low complexity regions

(lc), number of transmembrane regions (TMHMM), dis-

ordered regions (do), and coiled-coil regions (co).

PEDANT3 uses the SEG algorithm (Wootton and

Federhen, 1993) to compute low complexity regions,

TMHMM v. 2.0 (Krogh et al., 2001) to predict trans-

membrane helices, GlobPlot v. 1.1 (Linding et al., 2003)

to predict regions with disordered secondary structure,

and COILS v. 2.1 (Lupas, 1996) to predict coiled-coiled

regions.

2.2 Annotation score

The MIPS FunCat categories (Ruepp et al., 2004) were used for

protein annotation. The FunCat is an annotation scheme for

the functional description of proteins from prokaryotes,

unicellular eukaryotes, plants and animals (Mewes et al.,

1997; Ruepp et al., 2004). Taking into account the broad and

highly diverse spectrum of known protein functions, FunCat

consists of 28 main functional categories (or branches) that

cover general fields like cellular transport, metabolism and

signal transduction. The main branches exhibit a hierarchical,

tree-like structure with up to six levels of increasing specificity.

The FunCat 2 includes 1445 functional categories both for
prokaryotic and eukaryotic genomes. The total number of 413

distinct categories was available for the BFAB set. The manual

functional classifications were presented for 7335 proteins.
We used a matching score (Tetko et al., 2005b) to estimate

the accuracy of annotation. In order to illustrate it, let us

consider a case when a protein with annotation

01.01.03.03, metabolism of proline;
01.05 C-compound and carbohydrate metabolism and
70.03, cytoplasm;

has a best match to a protein annotated with

01.01.03.03.01, biosynthesis of proline and
70.03, cytoplasm.

The annotation of both proteins is similar, but there are a

number of categories that are different between them. The

differences can be due to precise and more comprehensive

biological knowledge of the second protein compared to the

first one (01.01.03.03.01), or the result of incomplete annota-

tion (missed category 01.05) assignment to the second protein.

A set of non-redundant FunCat subcategories, i.e. 01, 01.01,
01.01.03, etc. could be determined for each annotation. In the

above example the common annotation of both proteins

consists of the categories 01.01.03.03 and 70.03, which contain

6 subcategories (01, 01.01, 01.01.03, 01.01.03.03, 70, 70.03).

There are also two non-common subcategories, i.e. 01.05 and

01.01.03.03.01. The overall score is calculated as

A score ¼
Nc

Ntot
ð3Þ

where Nc is the number of common subcategories and Ntot is
the number of all subcategories in both proteins. The A_score is

6/8¼ 0.75 in this example. This score measures the protein

functional similarity based on a comprehensive functional

classification scheme. It was used as a target value (accuracy of

prediction) for the development of analyzed approaches.

3 METHODS

A 5-fold cross-validation procedure was used to benchmark algorithms.

All descriptor values were normalized on [0,1] interval. The training set

for each split included 4/5 of the cases while 1/5 of the samples were

used as the test set and were not involved in training. The machine

learning methods were trained to predict the functional annotation

scores for each pair. After the training, the protein pairs from the test

set were scored and the training procedure was repeated using another

training and test set. At the end of the 5-fold cross-validation

procedure, the scores for the test sets were used to annotate the

proteins. First, a protein pair with the maximum calculated score was

detected and then the annotation of the prototype protein in the pair

was transferred to the target protein. Thus, the procedure of annotation

used in our study is similar to annotation using the ‘best match’

according to sequence similarity, but it was different since the

calculated scores were provided by machine learning methods.

Three methods were analyzed.Multiple Linear Regression (MLRA) is

an in-house program developed using the IMSL Fortran library as

described elsewhere (Tetko et al., 2006). The k-Nearest Neighbor

Method (kNN) method programmed in-house (Tetko et al., 2006) was

applied using Euclidian distance. The number of neighbors, k, was
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optimized for eachvalidation split using the corresponding training set.

The Associative Neural Network (ASNN) represents a combination of

an ensemble of feed-forward neural networks and kNN. The ASNN

version available on-line at http://www.vcclab.org was used (Tetko

et al., 2005c). The algorithm calculates correlation between ensemble

responses as a measure of distance amid the analyzed cases and

performs the kNN (or Parzen window) correction as described

elsewhere (Tetko, 2002a, b). Thus, ASNN does kNN in the space of

ensemble residuals (i.e. space of models). Neural network ensembles of

100 networks with one hidden layer were used. The number of neurons

selected after few preliminary runs was 3 in the hidden layer. Its

variation in the range of 2–5 did not affect the performance of the

method. We also developed a model using the entire training set (four

organisms) to predict proteins from 180 genomes. The InParanoid

algorithm proposed by Sonnhammer et al. (Remm et al., 2001) detects

in-paralogs, i.e. orthologous groups of genes, which were duplicated

after the specification event. In case of one-to-many or many-to-one

types of orthology, the InParanoid algorithm assigns confidence

bootstrap scores for the in-paralogs. A recent version of the algorithm

was obtained from the authors.

To compare methods, we calculated the AC50 value, which

corresponds to the annotation accuracy of 50% of the proteins with

the highest scores.

4 RESULTS

The accuracy of annotation using several descriptors as scores
is shown in Figure 1. The ideal annotation, e.g. when each

protein is correctly annotated with all its functional categories,
corresponds to a value of 1 for all proteins. However, since we

consider only pairs with the significant SW scores (i.e. optscore

�80), there is a fraction of proteins that do not have any cor-
responding prototype proteins with exactly the same annota-

tion amid all considered pairs. Therefore, the ‘achievable’
maximum annotation score for such proteins is below 1. The

second upper curve indicates this ‘theoretically achievable
annotation’ for our data set. One can notice that �67% of

proteins can be theoretically annotated without any errors with

a score ‘1’ in the analyzed data set. The lowest curve (‘random
annotation’) indicates the annotation accuracy (0.27) that can

be achieved by annotating a pair of proteins (having a sig-
nificant SW score) by chance.

The accuracy of annotation increased and then stayed
approximately constant at 0.90 even for very high values of

the Smith-Waterman optscore. This descriptor calculated the
highest accuracy according to the AC50 value. Other descrip-

tors also show strong positive correlation with the functional
annotation score. However, each descriptor alone achieved

annotation scores above 0.90 only for a small fraction of

proteins. The sequences with synteny scores reached the highest
accuracy of 0.95 for �10% of the proteins. This result confirms

previous studies indicating the importance of gene neighbor-
hood as an indication of the conservation of functions of

protein sequences. However, synteny scores were available for
530% (2206) of the proteins and thus only a small number of

sequences could be annotated using this descriptor. The quality

of annotation using machine learning methods (Fig. 2) was
considerably higher compared to the annotation using opt-

score. The highest accuracy was calculated using the ASNN
method. This method annotated �45% of the proteins with an

average accuracy40.96.
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Fig. 1. Annotation scores for MIPS FunCat calculated using different

descriptors. For each target protein in the data set we selected a

prototype protein with the maximum descriptor value. The functional

categories of the prototype protein were used to annotate target

proteins and the annotation scores were calculated. These annotation

scores were sorted in order of decreasing values of the descriptors.

Average annotation scores as a function of the coverage (the averaging

was done to cover at least 5% or more proteins with the identical score)

are shown in the figure. For example, the average annotation score of

0.89 was calculated for annotation of 5% of proteins with maximum

optscores (in the range of 6574–2212, the values are not shown). The

higher average annotation score 0.91 was calculated for the next 5% of

proteins. The average annotation accuracy 0.73 was calculated for 16%

proteins for which a prototype protein with exactly the same length was

found (notice a larger bin). Thus, the higher values of descriptors

correspond to pairs with higher annotation scores. Notice, that

optscore corresponds to the traditional annotation by sequence

similarity.
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Fig. 2. Automatic functional annotation of BFAB proteins with

different machine learning methods. The predictions were sorted in

order of decreasing annotation scores (see Fig. 1 for details) and the

plot shows the annotation accuracy versus the coverage. The upper

green line corresponds to maximal theoretically achievable accuracy of

annotation (see Results). The annotation results using optscore are also

shown for comparison.
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Neural network methods have a long tradition of applica-

tions for functional annotation of protein sequence as exempli-

fied by, e.g. works of Brunak and collaborators (Bendtsen

et al., 2004; Jensen et al., 2002, 2003; Nielsen et al., 1999).

In this work we used an extension of this method, the

associative neural networks, which may provide the higher

accuracy of the traditional methods due to the bias correction

of the ensemble using the kNN method, as described elsewhere

(Tetko, 2002a, b).
The SVM using the Radial Basis Function kernel imple-

mented in the libSVM package (Chang and Lin, 2001) was also

used as suggested by the reviewers. We performed grid optimi-

zation of SVM parameters (width of the kernel, �, and two

parameters, C, ", controlling the SVM regression) for each

cross-validation fold as proposed in the manual of this package

and described elsewhere (Tetko et al., 2006). The optimized

parameters were used to predict the corresponding test sets.

This analysis was completed in 34 days and the calculated score

AC50¼ 0.94 was lower compared to the score AC50¼ 0.96 for

the neural networks.

InParanoid detected in-paralogs for 5559 genes, including

4307 genes having pairs with the highest confidence score of

100. The calculated AC50¼ 0.87 for this method coincided with

the score calculated using the optscore only. This result is not

surprising considering that the detection of ortholog relations

in InParanoid algorithm is done according the sequence

similarity, namely the BLAST scores only. Notice, that in

Figures 1 and 2 several curves, e.g. the curve for optscore, have

accuracies higher than the achievable annotation, i.e. FunCat

line, for some ranges of coverage values. Since, there are only

67% with achievable accuracy of 1, no protein with A_score¼ 1

can be detected in, e.g. coverage range [95%, 100%]. Indeed,

only proteins with the lowest A_scores will be in this region.

The ordering of proteins according to optscore will ignore

information on the accuracy of annotation. Instead, protein

pairs with optscores similar to the threshold value of 80 will be

collected in this region. It is possible that some of the protein

pairs with optscores of 80 will have A_score¼ 1 for this

coverage range. Thus the accuracy of annotation for this

coverage range will be higher for protein ordered according to

the optscore compared to the proteins ordered according to

their achievable accuracy of annotation.
Figure S1 shows that the predicted scores are strongly

correlated with the observed accuracy of annotations. In the

ideal case both scores should be close to identity. This was the

case when predicted and observed scores were considered for all

104 092 pairs. However, since we performed selection of ‘best’

pairs with highest scores (we selected only 7335 pairs—one per

protein from the benchmarking set), we introduced a selection

bias. Thus values detected by such selection procedure are ‘over

optimistic’ and may not correspond to the observed annotation

values (notice a similar problem for multiple tests in statistics,

e.g. the Bonferonni correction or the Gumble distribution in

sequence similarity searches). The predicted scores, never-

theless, are well suited to distinguish reliable versus non-reliable

predictions. Using the calibration curve shown in Figure S1 one

can estimate the expected annotation accuracy for each

predicted value. For example, if the maximal calculated score

is only 0.5, one can expect annotation accuracy of ca 0.3,

i.e. about the same as annotating a protein simply by chance.
Which groups of descriptors did contribute most to the

accuracy of annotation? Table 1 summarizes the prediction

accuracy of the ASNN method when excluding different groups

of descriptors. The exclusion of InterPro descriptors provided

the largest decrease in the performance of the method. Thus the

information on the domain composition of proteins represented

the strongest signal for the annotation. The sequence similarity

descriptors provided the second major contribution. The

exclusion of each of the other group only slightly decreased

the prediction accuracy of the method.
An alternative method to estimate the importance of groups

of descriptors consisted of the development of neural networks

using just one or few types of them. The predictors developed

using sequence similarity descriptors or InterPro domains had

the same AC50 value 0.88. However, the accuracies of either of

these predictors were below 0.93 even for the most reliable

predictions (data not shown). The combination of sequence

similarity scores and InterPro domains dramatically increased

the accuracy of the method (which was nevertheless signifi-

cantly lower, P50.01, compared to the performance of the

method developed using all descriptors). Thus, both InterPro

and sequence similarity scores contributed complementary

information which was nicely integrated by the ASNN method.
A number of descriptors used for model development were

highly interrelated. Which descriptors contribute most to the

accuracy of annotation? We addressed this question using

so-called neural network pruning methods, which score each

descriptor from the training set according to the neuron weights

(LeCun et al., 1990; Wikel and Dow, 1993) using the ensemble

of neural networks (Tetko et al., 1996). The descriptor

with minimal score is deleted (‘pruned’) and training process,

scoring and pruning is repeated again until all descriptors

Table 1. Annotation accuracy for different groups of descriptors

Descriptors (number) AC50� standard error of the mean

only descriptors

from col. 1

excluding descriptors

from col. 1

All (24) 0.96� 0.02 –

Optscore (1) 0.87� 0.03a 0.96� 0.03

Sequence similarity (4) 0.88� 0.04 0.95� 0.03*

Sequence length

attributes (3)

0.69� 0.06 0.96� 0.03

Synteny scores (1) 0.64� 0.07a 0.96� 0.03

Alignment free

sequence similarity (1)

0.70� 0.06a 0.96� 0.03

InterPro domain (8) 0.88� 0.04 0.92� 0.03*

PEDANT3 properties (7) 0.49� 0.07 0.99� 0.03

Sequence similarityþ

InterPro domain (12)

0.95� 0.03 0.85� 0.05

PEDANT3 propertiesþ

InterPro domain (15)

0.93� 0.07 0.91� 0.05*

aNo machine learning was used; *significant difference at P50.01 according to

the bootstrap test with 10 000 replicas.
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are eliminated. Each combination of descriptors was analyzed
using 5-fold cross-validation. The pruning procedure and
evaluation of each subset of descriptors required about a week

using Athlon 3 CPU for one pruning method. The pruning of up
to 14 descriptors did not significantly influence the prediction
ability of the models, which fluctuated and stayed within

P40.05 of the AC50all calculated with all descriptors.
However, there was a significant drop in the performance

(compared to the performance calculated with all descriptors)

of models developed with58–10 descriptors. The minimal sets
of descriptors, which provided AC50 values not significantly
different compared to the AC50all are summarized in Table S2.

The descriptors derived from the InterPro domains dominated
amid descriptors that were found as significant with pruning
methods. The use of (Wikel and Dow, 1993) method calculated

a minimal set of descriptors. It is interesting that there were no
PEDANT3 descriptors in this set. The sets of descriptors

selected with other two pruning methods included S_EU and
DO PEDANT3 properties (Table S2). Thus, in some combina-
tions the PEDANT3 descriptors also provided important

contribution to the prediction performance of the method.
The difference in the sequence lengths was selected as a sig-
nificant descriptor for (Tetko et al., 1996) method. Since 24

descriptors is a small number compared to4100 000 pairs, we
decided to keep all descriptors in the final model.
We used our algorithm to automatically annotate 180

complete bacterial genomes available in the MIPS database.
The proteins from the benchmarking set analyzed in the article
were used as prototypes. Thus we propagated the annotation

from four genomes to 180 new genomes. Table S1 summarizes
the annotation results for new proteins. The developed method
annotated 33% of the proteins with an expected accuracy of

0.96. These protein pairs had the largest number of common
InterPro domains, high SW score and 17% of them were from

syntenic regions (Table S1). A considerable number of proteins,
34%, had predicted annotation score of 0.5 or lower. These
proteins had low SW scores (average 100) compared to other

proteins in the BFAM set, which were near to the minimum
value (80). Less than 10% of these proteins had InterPro
domains. It appears that this set enclosed sequences that had

functions very different to those observed for the proteins in the
BFAB set. The annotation of such proteins without additional
experiments could be hardly possible. The other scores

corresponded to annotation with an intermediate accuracy.
The use of general upper-level FunCat categories increased the
prediction ability of the method. For example, for proteins with

predicted scores in the range of 0.8–0.96 the expected accuracy
increased from 0.82 to 0.86 and 0.84 when FunCat categories
were restricted to one (e.g. 01—metabolism, 02—energy) and to

two (e.g. 01.01—amino acid metabolism, 01.02—nitrogen and
sulfur metabolism) upper-level categories, respectively.

5 DISCUSSION

One of the most important features of the proposed method is its

ability to predict the accuracy of annotation. This makes it
possible to distinguish between reliable versus non-reliable
predictions and to decide whether the current annotation has

an acceptable quality or not. To our knowledge, only few other

methods, e.g. ProtoMap (Yona et al., 2000), ProtoNet (Kaplan
et al., 2004), or annotation of protein function based on family
identification (Abascal and Valencia, 2003) also provide a

confidence of annotation. These methods, however, mainly
explore sequence similarity, while our approach derives annota-
tion scores by integrating different sources of information.

A comparison with InParanoid indicated that integration of
multiple evidences in new method provided better identification
of orthologs compared to the former method, as evidenced by

the higher accuracy of annotation of the FUNAT. In principle,
the developed approach can be simplistically considered as an
ortholog detection tool that is based on machine learning

approaches and data integration. For such use the developed
system can be applied to any pair of genomes independently
whether the analyzed genomes are annotated or not.

The developed system allowed an accurate annotation of
�33% of genes from 180 genomes. With growth of the
database containing experimentally verified functional assign-

ment, the number of annotations with high prediction accuracy
will increase. The developed system was implemented as a first
public server, which provides real-time on-line annotation of

new protein sequences with the MIPS FunCat categories.
Notice that, e.g. PEDANT provides on-line annotation of
sequences from full genomes available in its database only. We

have also shown that data integration can provide a significant
increase in the performance of methods compared to the use
of the only one source of information, thus confirming previous

conclusions of (Lanckriet et al., 2004; Troyanskaya et al.,
2003).
Manual annotation is difficult and time-consuming work.

Annotation using the ‘best’ match approach is very popular due
to the simplicity of interpreting the results: one can always
identify the prototype protein used to assign annotation to the

target protein. Such annotation method can easily prevent
propagation of annotation errors, i.e. in case of annotation
miss-assignments one can always trace back their origin.

Moreover, as soon as the annotation of the prototype protein
has been changed, e.g. due to new experimental facts, the
annotation of all target proteins can be also reassigned. An

analysis of annotations of proteins, which have high-calculated
scores, but different experimental annotations between target
and prototype proteins can help to easily detect mistakes in the

annotation.
If required, one can easily expand the method by averaging

the annotation of k prototype proteins. Such extension can

predict new combinations of FunCats, which are not currently
present in the database. This analysis, however, is beyond the
scope of this study.

The object of our analysis was a pair rather than a single
protein sequence and we used the annotation score as the target
value for the development of machine learning methods. This

allowed us to dramatically decrease the complexity of analysis
by using a unified framework for the comparison of sequences.
It also allowed the generation of a large training data set for

our analysis. To some extent a similar idea to use machine
learning to represent protein similarity was used by Paccanaro
et al. (2006) to cluster protein sequences. Our approach has a

number of apparent advantages over the previous studies,
where the authors attempted to develop a predictor for each

I.V.Tetko et al.

626

 at G
SF Forschungszentrum

 on O
ctober 18, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


functional category (multi-class approaches) (Biswas et al.,

2002; Clare et al., 2006; Clare and King, 2003; Kretschmann

et al., 2001). Firstly, for the development of multi-class

approaches one could easily face a problem of inadequate

data for some rare categories, which have just few data cases

(i.e. just 1–2 proteins per category). Therefore, in some studies

only predictors for the FunCat categories of sufficient size were

considered (Clare and King, 2003). Secondly, when predicting

functions with multi-class approaches, one should be aware of

the problem of multiple testing: indeed, theoretically each

target protein can be assigned to each of the MIPS FunCat

categories and up to 413 classifiers can be tested to assign

function. While the number of classifiers can be decreased by

incorporating knowledge on, e.g. hierarchical structure of the

catalog (Barutcuoglu et al., 2006), the use of multiple classifiers

can result in a higher rate of false positive predictions (false

positive predictions could be expected for each of the

predictions) compared to the use of single predictor. Thirdly,

the results of multi-class approaches are more difficult to

interpret (i.e. different classifiers were used to annotate

different functional categories) and thus can easily contribute

to annotation error propagation.

The methodology proposed in this article is free of these

limitations and, moreover, it provides an easy generalization

across multiple subsets of data, which would be treated

separately for the development of multi-class approaches.

The approach can be straightforward extended to include new

descriptors derived from, subcellular localization (Nakai and

Horton, 1999), post-translational modifications (Jensen et al.,

2002), microarray data (Mateos et al., 2002) protein fusion

(von Mering et al., 2007) or protein–protein interactions

(Vazquez et al., 2003) and etc. These descriptors could increase

accuracy of inter-genome annotations.
The current study was to specifically develop a prediction

system for the annotation of protein sequences using FunCat

categories. However, the proposed annotation scheme is not

limited to the FunCat only. It can be also applied to provide

functional annotation using other functional schemas, e.g. GO

categories (Ashburner et al., 2000) or SwissProt (Bairoch et al.,

2005) keywords. However, when applying the algorithm to such

data a correct selection of the scoring function may dominate in

the performance of the method. The FunCat manual annota-

tions used in our study were done by one team of highly skilled

scientists and during a relatively short period of time

(56 months). All annotations are consistent and have similar

accuracy. A simple scoring function allowed us to achieve high

annotation accuracy. The use of inconsistently annotated data,

which happens when annotation is contributed by different

groups [see e.g. (Frishman, 2007)], may require a search of a

different scoring function, the choice of which can significantly

contribute to the performance of the method. While such study

is definitely challenging, it is far beyond the scope of this article,

which has proposed an original and highly accurate approach

to predict MIPS FunCat categories for bacterial genomes.

Moreover, the functional similarity calculated with our method

has built-in measure of accuracy of prediction and allows

differentiation of reliable versus non-reliable automatic anno-

tations. The data (Tetko et al., 2005a) as well as results of this

study are freely available and can be used for benchmarking of

annotation methods by other groups.
The developed approach can be used to perform large-scale

annotations of in-house data. The users can submit new

sequences using the Funat WebServices (see for more details

and example of use http://mips.gsf.de/proj/funat/funatclient.

html) and retrieve the results in asynchronous mode as soon as

annotation will be completed. In case if the analyzed sequence

was already pre-calculated, the annotation results will be

available immediately. It is also possible to download the

ASNN program from http://www.vcclab.org and to develop

new models.
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