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ABSTRACT level, cDNA libraries may be constructed from either infected or g
Motivation: Discovery of host and pathogen genes expressed at challenged tissues. The subsequent single-pass sequencing of thesegg

the plant—pathogen interface often requires the construction of mixed
libraries that contain sequences from both genomes. Sequence identi-
fication requires high-throughput and reliable classification of genome
origin. When using single-pass cDNA sequences difficulties arise from
the short sequence length, the lack of sufficient taxonomically rel-
evant sequence data in public databases and ambiguous sequence
homology between plant and pathogen genes.

Results: A novel method is described, which is independent of the
availability of homologous genes and relies on subtle differences in
codon usage between plant and fungal genes. We used support vec-
tor machines (SVMs) to identify the probable origin of sequences.
SVMs were compared to several other machine learning techniques
and to a probabilistic algorithm (PF-IND) for expressed sequence tag
(EST) classification also based on codon bias differences. Our soft-
ware (EcLAT) has achieved a classification accuracy of 93.1% on a
test set of 3217 EST sequences from Hordeum vulgare and Blumeria
graminis, which is a significant improvement compared to PF-IND
(prediction accuracy of 81.2% on the same test set). EST sequences
with at least 50 nt of coding sequence can be classified using EcLAT
with high confidence. EcLAT allows training of classifiers for any host—
pathogen combination for which there are sufficient classified training
sequences.

Availability: EcLAT is freely available on the Internet (http://mips.gsf.
de/proj/est) or on request as a standalone version.

Contact: friedel@informatik.uni-muenchen.de

1 INTRODUCTION

cDNAs produces expressed sequence tags (ESTs). There are cur-
rently over 100000 ESTs within the public sequence databases
clearly annotated as coming from mixed plant—pathogen interactions.

Within the realm of comparative plant genomics and gene identi-
fication there is a need to simply and reliably identify and filter out
the non-plant sequences. Although experimental techniques can be
applied for this purpose, they are laborious and time-consuming and
therefore become infeasible for large numbers of EST sequences.
Hence efficient and reliable computational EST classification meth-
ods are required. The canonical approach involves performing a
BLAST search against genetic databases such as GenBank to find a
significant unambiguous match that resolves either the plant or the
pathogen origin of sequence. This approach is based on the assump-
tion that a plant sequence will be more homologous to any other plant
sequence than to a pathogen sequence due to taxonomic proximity.
However, it has been shown that biased taxa representation in exist-
ing databases decreases reliability of this homology approach (Koski
and Golding, 2001).

An advanced method (Hsiang and Goodwin, 2003) tackles this
problem by using a restricted database for homology search con-
sisting of a single plant and fungal genome, each closely related to
the infected plant and the fungal pathogen, respectively. However,
in most cases this approach is limited by the lack of complete or
adequate genome coverage for related organisms. Moreover, diffi-
culties in classification are increased by the relatively high-sequence
homology of plant and fungal genes with conserved functions. There-
fore, amethod is desired which is independent of sequence homology
and the availability of genomic sequences.
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The characterization of interactions between plants and their patho- A suitable approach to this task employs codon usage preferences

gens is a major cpntemporary research area and has its roots w_ithﬂ:;at vary significantly between species (Shetrpl., 1988) and are

agriculture and dlseasg control. To analyze_genes expressed W'thHE)rrelated to GC-content at the third codon position (Kawabe and

plant defense mechanisms and pathogen virulence at the momcu'@ﬁyashita, 2003; Fennoy and Bailey-Serres, 1993). A probabilistic
algorithm based on this observation is PF-IND (Mabal., 2003),

*To whom correspondence should be addressed. which compares the actual nhumber of occurrences of codons of

tThe authors wish it to be known that, in their opinion, the first authors shoulddifferent types (G or C ending versus A or T ending) for particular

be regarded as joint First Authors. amino acids in an EST sequence with the expected number of
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occurrences in plant and fungus respectively using Poisson distrinatches exceeding the arbitrary expectation threshold »f10-1° were
bution. The resulting probabilities are used to classify sequences d#ered and probable CDS was collated in species specific datasets. These col-
either plant or fungal. lections of sequences were used to derive a species specific codon usage and

In this paper we show that by applying standard machine learnhexanucleotide probability tables with the FrameFinder application (Slater,
ing algorithms, classification accuracy can be improved decisivelfooo) to predict a single uninterrupted CDS for each of the unigenes. Short

. - quuences were excluded (threshold of 21 bp).
compared to the simple probabilistic approach. We present a nové
method for the classification of EST sequences based on suppoSequence attributes
vector machines (SVMs), which is independent of homology cri- . . .

. d reli | d diff Thi hod For each sequence in the dataset codon frequencies are computed from its
teria an re, 1es only on C(,) on usage di eren(;eg Is method w eginning up to the first stop codon. To account for some codons missing
used to train a classification scheme to dls_,crlmlngtt_a between ES;l;mdomW’ pseudocounts are used. The frequency for a given codon
sequences fromordeum vulgare and Blumeria graminis and can  computed as
easily be extended to other plant—pathogen pairs.

c+1
F(c) = Zn—++64
2 METHODS ¢’eCodong’?c
) wheren; denotes the absolute number of occurrences of a coddrerefore, g
Support vector machines for each sequence 64 attributes are derived for training and classification. 3

The use of SVMs is a prevalent technique for data classification based hose attributes are computed for each of the six possible frames of a sequence §
on linear decision rules (Vapnik, 1995; Burges, 1998; Base., 1092).  Separately so that every sequence provides six training instances, one correct@

SVMs take as input i.i.d. (independent and identically distributed) trainingframe and five incorrect frames. 3
samples(x1, y1), ..., (xu, y») Wherex; represents the sample attributes and Training 3
vi € {—1,+1} the class. g
SVMs will then find a hyperplane separating the training instances byThere are two parts in building a classification model. To begin with a support §
their classes and maximizing the distance from the closest examples to theector model is calculated to distinguish between correct and wrong frames g
hyperplane (maximum-margin hyperplane). The classification of a samplén a sequence. The training instances for computing this model are chosen as g~
will be determined by the sign of the function follows. From half of the original sequences (chosen randomly) the correct 3
T frame is used, whereas from the other half a randomly chosen wrong frame is 2

f)y=w'x+>b 17

used. This is done to ensure that correct and incorrect frames are represented;
wherew andb are the parameters of the hyperplane. The examples closest dually in the training instances. First, the maximum and minimum values
the hyperplane are called support vectors and are crucial for training. for each attribute over all training instances are determined. These values are 2.

For many training sets it will not be possib|e to separate Samp|es by éhen used to scale training instances such that all attribute values lie between e
linear function in the original feature space, so training instances are mapped! and 1. Afterwards they are stored for later use in classification. After
into a higher dimensional space by a functiarSVM will then find a linear ~ scaling the instances, the support vectors are computed using a RBF kernel. ¢
maximum-margin hyperplane in this higher dimensional space. For solving The second step is then to learn a classifier for separating the two pos-
this problem it is not necessary to directly define the mapping into highesible classes (plant and fungus). In this case only the correct frame of each
dimensional space, but it is sufficient to give the dot product of two instance§eduence is used for training. As before maximum and minimum values for
in this space (Burges, 1998K (x;,x;) = ¢(xi)T¢(xj) is called a kernel  €ach attribute are calculated and the training instances are scaled appropri-
function. Commonly used kernel functions comprise linear, polynomial, sig-ately to lie in the interval—1, 1]. Then support vectors are calculated in the
moid and radial basis functions (RBF). For our purpose we used an RBfSame fashion as before. Table 1 describes the general procedure for each of
kernel, as the linear kernel has been proven to be a special case of the REfFe two steps.
kernel (Keerthi and Lin, 2003) and the sigmoid kernel appears to behav%lassification
like RBF for some parameters (Lin and Lin, 2003). Moreover, RBF has less
hyperparameters than the polynomial kernel and is less difficult numericClassifying a sequence also consists of two parts. First, the coding frame is
ally than both sigmoid and polynomial kernel. The radial basis function isdetermined and then classified as being of plant or fungus origin. To determine
defined by the correct frame, the sequence’s attributes are first scaled using the pre-
computed scaling parameters for frame determination. (Note that now the
attributes will no longer necessarily lie in the rangeefl, 1].) Following

The parameters of the maximum-margin hyperplane are calculated by sohscaling the first SVM model is then used to classify the six possible frames
ing a quadratic programming optimization problem (Bosteal., 1992) and  as being correct or incorrect. As every frame is classified independently, it
there exist several specialized algorithms for solving this problem efficientlydoes happen occasionally that all frames are classified as being incorrect or

101X0

Sfeun:

K(xi,xj) = exp—ylx —x;1%), y > 0.
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(Joachims, 1999; Platt, 1998). more than one frame is classified as being correct. In this case the reading
. frame with the largest predicted margin is chosen. Having selected the coding
Training sequences frame, scaling on the original attribute values is applied again, this time using

We used a dataset of 3974 unigene sequences of various lengths from pie scaling parameters for classification. Afterwards this frame is classified
ley (H.vulgare, 1487 sequences) and blumeBagfaminis, 2487 sequences). by the SVM model for discriminating between plant and fungus origin. See
Unigene sequences were chosen to avoid redundancy and derived as follow&ble 2 for a summary of the steps involved.

Public EST sequences from bdBxgraminis andH.vulgare were clustered

and assembled within the Sputnik EST analysis pipeline (FRudd, 2003). Software
The Hashed Position Tree clustering algorithm (Heumann and Mewes, 199@JcLAT is an implementation of the described method and is available online
was used to cluster sequences using a similarity threshold of 0.7 and 100 ndhttp://mips.gsf.de/proj/est). It consists of a web-frontend and Java packages.
work iterations to describe a cluster. Sequence assembly was performed usi@@mputing of SVMs is done using the freely available software package
CAP3 (Huang and Madan, 1999) with default parameters. For each of theIBSVM (Chang and Lin, 2001, http://www.csie.ntu.edutwjlin/libsvm),
derived unigenes regions of likely coding sequence (CDS) were identifiedvhich provides implementations for support vector classification, regression
by a BLASTX comparison against a non-redundant sequence database. Bestd distribution estimation based on the algorithms SMO (Platt, 1998) and
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Table 1. Training procedurei = 1 for frame modeli = 2 for class model  discriminating plant from fungal ESTs. Performance was measured
in terms of prediction accuracy using the mixed barley/blumeria
dataset described before but including only sequences longer than
100 bp. Accuracy is defined as the percentage of correctly classified
(1) For each attribute; compute instances. For this comparison, performance was calculated only on
* max; < MaXera; (1) the correct frame. The machine learning algorithms applied to the
o _min; < Minera;(H) . . task comprised SVMs (LIBSVM; Chang and Lin, 2001), artifical
(2) Scale traiining instances using mpand " fpr qttnbutea,- neural networks (ASNN; Tetko, 2002, http://www.vcclab.org), ran-
(3) Calculate support vectors using scaled training instances L 1 EEES - ) ) !
dom forests (WEKA implementation; Witten and Frank, 2000),
Naive Bayes (WEKA), decision trees (J4.8 from WEKA) and
Rule learning (JRip from WEKA). Additionally PF-IND (Maor
Table 2. Classification procedure et al., 2003) was evaluated, an algorithm designed specifically to
separate ESTs from mixed plant—fungus EST-pools. To allow high-
throughput analysis the method described by Maat., 2003 was

Let T be the set of all training instances

Lets be an unclassified sequence re-implemented using the same codon usage frequencies. We com-
(1) Calculate codon frequencies for each frame pared the predictions of the original implementation and our version
(2) Scale frames with miry and may;, j € [1,64) for several sequences. Not only did we get the same predictions for

(3) Determine correct frame using SVM model
(4) Scale correct frame with min and may;, j € [1, 64
(5) Classify frame using SVM model

those sequences, but also the same scores for all frames. Thus, the
original and our version of PF-IND calculated the same results for
this test and both implementations do not differ.

For evaluation three kinds of attributes were calculated for each
sequence: codon frequencies (64 attributes), %GC3 (18 attributes)
l]Iand fungus probabilities (18 attributes). Codon frequencies were
computed as described in the Methods section. The %GC3 for an
amino acid denotes the ratio of occurrence of GC-ending codons
Frontend The user interface consists of two HTML input forms for clas- to overall occurrence of the amino acid ’[hey are Coding for. These
sification and training mode respectively. The server is based on Tomcaittributes were included since the main source of variation in codon
as container. For handling of incoming _requests JSP and Java are u;e&as are the levels of C- and G-ending codons (Fennoy and Bailey-
AII request parameters are first stored in a Java Bgan, tested for Va“dSerres, 1993; Kawabe and Miyashita, 2003). Fungus probabilities
ity (e.g. correct sequence format) and transformed into the XML formatEescribe the probability that a given number of GC- and AT-ending

defined as internal data interface. After processing the request, an XS ina for th - id will . f h
template and a modified version of the tag libraries of the Jakarta projec?Odons coding for the same amino acid will occurin an EST from the

(http://jakarta.apache.org) are used to transform XML result data into HTMLfUNgUs species. This was an approach similar to PF-IND, but without

for presenting it to the user. previous selection of amino acids. These probabilities were estim-

Application] ) ) ated using Poisson distribution and codon usage frequencies obtained
pplication|ayer Classeshave beenimplemented in Javafor datastoraggy m the online database site http://www.kazusa.or.jp/codon/. Note

training and classifying as well as managing the process. For support Vea%at the last two types of attributes were computed for each amino
classification Java implementations of LIBSVM are used, which allows for ™~ . .
acid separately, excluding methionine and tryptophan.

fast training and classification. . - .
The application starts by parsing the XML input to determine the mode 10 €stimate performance, repeated holdout with stratification was

(training or classification) which is to be performed. If training mode is @pplied on the dataset. The holdout procedure consisted of split-
chosen, the training sequences are read. For each of the training sequentistg the data randomly into training and test sets. One-third of the

codon frequencies are computed for all six frames. These attributes are uselhtaset was chosen for testing and the remainder for training. The
to perform training as described above. Additional unclassified sequencesdditional use of stratification ensured that both classes were repres-
can be classified afterwards using the trained model. To estimate performanteqd by the same proportions in both training and test sets. With each

ance of the trained classifier 10-fold cross-validation can be chosen. Thig,achine learning algorithm a classifier was learned from the training
will slow down the training process as 10 additional training rounds have

:?a?n?n‘;e;gmed’ each with a training set nine-tenths the size of the origin 0 times with different random splits to decrease any bias due to a

In classification mode all unclassified sequences are read from the XMLpartlcuIar sample choice. For PF'IND no training was necessary as
input. Codon frequencies are computed for each frame of each sequence. TREECOMputed codon frequencies were used, but to make perform-
information is then used to classify the sequence by the presented method. &1c€ comparable only sequences from the respective test sets were
doing this, the user has the choice to apply either the online available modéllassified. Table 3 shows the average results for the 10 holdouts. No
for H.vulgareandB.graminisor to use a model previously trained wiLAT significant differences between the performances of SVMs and arti-
for any other plant-fungus pair. ficial neural networks were detected using a pairéest; therefore,

both performed equally well on the given dataset.

SVMLight (Joachims, 1999). For communication between the frontend an
the Java application, an XML format has been defined.

3 RESULTS Comparison of different subsets of attributes concerning
Comparison of different machine learning algorithms prediction accuracy
and PF-IND We evaluated the attribute types described before separately and com-

Several machine learning algorithms as well as a probabilistidined with regard to performance as instance attributes for support
algorithm were compared with regard to their performance orvector classification on the same random training and test splits as
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Table 3. Estimates for classification accuracy of machine learning algorithms using repeat holdout with stratification on the barley/blumeria dataset

Accuracy (in %) Algorithm

SVM ASNN Random Forest Naive Bayes JRip J4.8 PF-IND
Average 92.9 92.4 88.9 87.8 85.9 82.2 82.0
SD 0.6 0.5 1.0 0.9 1.8 1.6 0.9

Results for the different holdout splits were averaged. Accuracy is defined as the number of correctly classified instances divided by the total number of instances. No abstaining on
instances is applied yet, thus error rate and accuracy sum up to one.

Table 4. Estimates for classification accuracy using different subsets ofTable 5. Estimates for classification accuracy BELaT and PF-IND in

attributes predicting the correct reading frame

o

g
Attributes Accuracy (in %) Algorithm Accuracy (%) o
Type # Average SD Average SD %
CF 64 93.5 0.8 EcLAT 97.7 0.4 %
%GC3 18 88.9 0.5 PF-IND 71.4 0.7 E
FP 18 62.6 2.6 =
CF+ %GC3 82 93.5 0.6 Resullts for the 10 random holdout splits were averaged. g:
CF+FP 82 93.1 0.5 gh
%GC3+ FP 36 88.6 0.8 3
All 100 92.9 0.6 shorter than 100 nt from the dataset (leaving 3217 sequences). The &

average accuracy in predicting the origin of sequence was 93.1% for
Abbreviations: CF, codon frequencies; %GC3, percentage of synonymous codons endECLAT. As 10-fold cross-validation provided a prediction for each
ing at G or C; FP, probability of fungus origin of sequence (%GC3 and FP computedsingle instance in the dataset, performance of PF-IND was estimated
separately for each amino acid). Results for the 10 random holdout splits were average8n all barley/blumeria sequences longer than 100 bp, which resulted
in an estimated prediction accuracy of 81.2% for PF-IND.
above (Table 4). Using only codon frequencies as sequence attrib- e .
utes resulted in an average classification accuracy of 93.5%, whic ependence of classification performance on
was significantly better than using the complete attribute set. (SigSeduence length
nificance was tested with pairedests.) Additional use of %GC3 The length of an EST sequence determines the accuracy of its clas-
or fungus probabilities with codon frequencies did have no signific-sification. In short sequences it will not be possible to estimate the
ant effect on prediction performance. Contrary to codon frequencieanderlying codon frequencies correctly, as only few codons occur
the subset containing exclusively probabilities of fungal origin per-at all. In this case pseudocounts will dominate the calculated codon
formed poorly with a prediction accuracy at 62.8%. When we triedfrequencies. To study this effect, different sequence intervals were
probabilities of plant origin of sequence or ratios of both insteadanalyzed inrelation to the resulting accuracy. Repeated 10-fold cross-
these results did not improve. validation was performed with sequence length boundaries of 50,
L . 100, 200, 300, 400 and 500 bp for testing. Results of this analysis
Prediction of the correct reading frame can be seen in Table 6. The same intervals were used in estimating
To assesEcLAT’s capability of predicting the correct reading frame, the performance of PF-IND.
the first step of the classification procedure was evaluated separ- EcLAT predictions became less precise for shorter sequences,
ately. For that purpose frame prediction performancEafar was  but still for sequence lengths between 50 and 100 the origin of a
determined on the previously described 10 holdout splits and comsequence could be determined with an average accuracy of 90%.
pared to PF-IND predictions (Table 5). Analysis showed H@atat The highest prediction accuracies were achieved for sequences
predictions of the correct frame were highly reliable (average prebetween 300 and 500 bp, whereas for sequences longer than 500 bp
diction accuracy of 97.7%) whereas PF-IND predicted the frame oficcuracies decreased slightly. PF-IND performance also increased
only 71.4% of the sequences correctly. with sequence length, but for sequences longer than 500 bp classi-
e fication accuracy dropped as low as 71.8%. We examined if PF-IND
Performancein discriminating plant and results for long sequences could be improved by recalculating
fungal sequences codon usage based only on long sequences. However, classification
So far the accuracy of each of the two steps offfbeaT methodo-  accuracy did not increase.
logy has been examined separately. To estimate performance of the
complete procedure 10-fold cross-validation was repeated 10 time&€f formance on EST sequences from GenBank
Ten-fold cross-validation consisted of splitting the barley/blumeriaThe performance cEcLAT and PF-IND additionally was tested on
dataset randomly into 10 parts and then alternatingly using on&ST sequences from GenBank. These sequences were deposited in
part for testing and the remainder for training, excluding sequence&enBank in the second part of 2003 or later and did not overlap
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Table 6. Estimates for classification accuracylfLaT and PF-IND for different sequence length intervals

Sequence length (bp)

[21, 50] [51, 100] [101, 200] [201, 300] [301, 400] [401, 500] >500
No. of sequences 431 326 748 768 646 502 5563
EcLAT
Average accuracy (%) 78.8 90.0 90.6 92.2 95.6 95.7 94.4
SD (%) 0.9 0.9 0.4 0.4 0.3 0.5 0.5
PF-IND
Accuracy (%) 719 81.6 81.0 83.5 86.7 81.1 71.8

Estimates were performed by repeated 10-fold cross-validation. Results for the 10 repeats were averaged.

Table 7. Estimates for classification accuracy BELAT (with and without 4 DISCUSSION

abstention) and PF-IND on EST sequences from GenBank . - . _
Previous approaches to the prediction of species origin for sequences

from mixed plant—pathogen EST collections have utilized homology-

Accuracy (%) based methods. The objectiveliifLAT was to provide an easy-to-use
Algorithm H.vulgare B.graminis interface for high-throughput, automatic classification of ESTs
derived from pathogen-infected plants, which does not rely on the
ECLAT 81.0 91.9 existence of homologous sequences in public databases. Differences
EcLAT with abstention 87.6 96.5 in codon frequencies between plant and fungi have already proven
PF-IND 56.6 90.1 to be a reliable basis for fast computational EST classification (Maor

et al., 2003). In this paper, we demonstrated that utilization of
machine learning methods (SVMs) could improve results decisively
compared to the existing probabilistic algorithm PF-IND. Analysis
with the training set used to develop the method. The second test sef sequences longer than 100 bp from a mixed barley—blumeria EST
contained 931 sequences from blumeria and 9312 sequences fraataset showed an average accuracy of 93%E€mnT compared
barley. The composition of the test set mirrored the taxa bias in ESTo 81% for PF-IND. For a second test set containing sequences
databases towards plant EST sequences. Furthermore, a minimifrom GenBank both classifiers performed worse than in previous
sequence length threshold of 100 bp was applied again. The resultssts. This drop in accuracy can be explained by vector contam-
are shown in Table 7. inations or low-quality regions within EST sequences deposited in
In this test classification, accuracy for blumeria was comparablelatabases. Further detrimental effects may result from high redund-
to previous results foEcLAT and increased for PF-IND, whereas for ancy within EST databases as well as the fact that many of the tested
barley classification accuracy dropped significantly for déthat EST sequences may not contain a coding sequence at all. In fact, it
and PF-IND. We also tested if classification accuracy could becould be shown that classification accuracy could be increased further
increased by abstaining, i.e. not classifying sequences for whichy abstaining from classifying sequences where no frame was pre-
no frame is classified as correct. Indeed, this did raise classificatiodicted as correct. This suggests that for a large fraction of ESTSs, the
accuracy by more than 6% for barley and almost 5% for blumeriaobserved codon frequencies deviate from the expected due to a lack
However,~19% of the sequences remained unclassified. Contrary tof coding sequence or contamination. This violates basic assump-
that only 1.3% of the barley/blumeria unigene sequences remainetibns of bothEcLAaT and PF-IND. Therefore, before usifiyLAT
unclassified when using 10-fold cross-validation with abstentioncare should be taken to remove vector contaminations and to assess

which was not done in the previous tests. sequence quality.
o ) ) ) Currently EcLAT only provides a pre-built model for the plant—
Application to different organism pairs fungus pair barley and blumeria, but the design of the software allows

To test if our methodology is also applicable to a wider range of bio-extensions to more organism pairs, as it does not rely on any spe-
logical targets, we used a second dataset containing EST sequenagfic characteristics of barley and blumeria except for codon bias
from cotton (Gossypium arboreum, 2028 sequences) and cotton differences. Researchers have the possibility to Eairnt specific-

root knot nematode (Meloidogyne incognita, 2040 sequences). Thisally for plant—fungus pairs of interest using EST sequences from
training setwas derived using the same method as before, so the metheir laboratories. In general, we believe that it will be impossible
odology remains consistent with what has already been done. The specify some objective criteria to predict the accuracy of EST
prediction accuracy of a model trained on this dataset as estimateseparation ‘a priori’. Nevertheless, it is always possible to develop a
by 10-fold cross-validation is-87.3%. This result clearly indicates new classifier using the available data and test its performance with
that the methodology is also applicable to other systems, such agoss-validation to decide if the proposed methodology can or cannot
plant/nematode. Since the classification performance is lower conbe applied in each particular case.

pared to the barley/blumeria analysis, we can conclude that the codon The use of two additional types of attributes derived from codon
compositions of both these species are similar and their ESTs afeequencies proved to have a neutral or even detrimental effect on
more difficult to separate. prediction accuracy. The results suggest that both types of attributes
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hardly contribute any new information compared to the original Alternative applications oEcCLAT may comprise automatic predic-
codon frequencies. Furthermore, the slightly but significantly lowertion of high- and low-expressed genes, since gene expression levels
accuracy on the complete attribute set implies overfitting effectsand codon bias are positively correlated (Duret and Mouchiroud,
None of the additional attribute sets taken separately did perform at999), or the detection of putative alien sequences in a genome,
well as codon frequencies. Unexpectedly the probabilistic attributesvhich have originated from horizontal transfer events.
performed very poorly, although a good algorithm based on these
probabilities exists (Maaat al., 2003). The exclusion of those attrib- ACKNOWLEDGEMENTS
u;es prov@sd mgdel S|m.pI|C|ty, Wl’llllch |ZQe_s|red toreduce 0\;]en;|tt|ng-|-hiS work was supported by grant 031U118A from NGFN (to
effects, Wlt. out decreasing overa prec iction accuracy. In the “t“rGH.W.M.), BFAM and INTAS 00-0363 grant.
further attribute types should be considered that are not dependent
on codon frequencies such as occurrences of short sequence mo%?iFERENCES
or GC-content. ) o ) ) _
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