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ABSTRACT
Motivation: Discovery of host and pathogen genes expressed at
the plant–pathogen interface often requires the construction of mixed
libraries that contain sequences from both genomes. Sequence identi-
fication requires high-throughput and reliable classification of genome
origin. When using single-pass cDNA sequences difficulties arise from
the short sequence length, the lack of sufficient taxonomically rel-
evant sequence data in public databases and ambiguous sequence
homology between plant and pathogen genes.
Results: A novel method is described, which is independent of the
availability of homologous genes and relies on subtle differences in
codon usage between plant and fungal genes. We used support vec-
tor machines (SVMs) to identify the probable origin of sequences.
SVMs were compared to several other machine learning techniques
and to a probabilistic algorithm (PF-IND) for expressed sequence tag
(EST) classification also based on codon bias differences. Our soft-
ware (Eclat) has achieved a classification accuracy of 93.1% on a
test set of 3217 EST sequences from Hordeum vulgare and Blumeria
graminis, which is a significant improvement compared to PF-IND
(prediction accuracy of 81.2% on the same test set). EST sequences
with at least 50 nt of coding sequence can be classified using Eclat

with high confidence. Eclat allows training of classifiers for any host–
pathogen combination for which there are sufficient classified training
sequences.
Availability: Eclat is freely available on the Internet (http://mips.gsf.
de/proj/est) or on request as a standalone version.
Contact: friedel@informatik.uni-muenchen.de

1 INTRODUCTION
The characterization of interactions between plants and their patho-
gens is a major contemporary research area and has its roots within
agriculture and disease control. To analyze genes expressed within
plant defense mechanisms and pathogen virulence at the molecular
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†The authors wish it to be known that, in their opinion, the first authors should
be regarded as joint First Authors.

level, cDNA libraries may be constructed from either infected or
challenged tissues. The subsequent single-pass sequencing of these
cDNAs produces expressed sequence tags (ESTs). There are cur-
rently over 100 000 ESTs within the public sequence databases
clearly annotated as coming from mixed plant–pathogen interactions.

Within the realm of comparative plant genomics and gene identi-
fication there is a need to simply and reliably identify and filter out
the non-plant sequences. Although experimental techniques can be
applied for this purpose, they are laborious and time-consuming and
therefore become infeasible for large numbers of EST sequences.
Hence efficient and reliable computational EST classification meth-
ods are required. The canonical approach involves performing a
BLAST search against genetic databases such as GenBank to find a
significant unambiguous match that resolves either the plant or the
pathogen origin of sequence. This approach is based on the assump-
tion that a plant sequence will be more homologous to any other plant
sequence than to a pathogen sequence due to taxonomic proximity.
However, it has been shown that biased taxa representation in exist-
ing databases decreases reliability of this homology approach (Koski
and Golding, 2001).

An advanced method (Hsiang and Goodwin, 2003) tackles this
problem by using a restricted database for homology search con-
sisting of a single plant and fungal genome, each closely related to
the infected plant and the fungal pathogen, respectively. However,
in most cases this approach is limited by the lack of complete or
adequate genome coverage for related organisms. Moreover, diffi-
culties in classification are increased by the relatively high-sequence
homology of plant and fungal genes with conserved functions. There-
fore, a method is desired which is independent of sequence homology
and the availability of genomic sequences.

A suitable approach to this task employs codon usage preferences
that vary significantly between species (Sharpet al., 1988) and are
correlated to GC-content at the third codon position (Kawabe and
Miyashita, 2003; Fennoy and Bailey-Serres, 1993). A probabilistic
algorithm based on this observation is PF-IND (Maoret al., 2003),
which compares the actual number of occurrences of codons of
different types (G or C ending versus A or T ending) for particular
amino acids in an EST sequence with the expected number of
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occurrences in plant and fungus respectively using Poisson distri-
bution. The resulting probabilities are used to classify sequences as
either plant or fungal.

In this paper we show that by applying standard machine learn-
ing algorithms, classification accuracy can be improved decisively
compared to the simple probabilistic approach. We present a novel
method for the classification of EST sequences based on support
vector machines (SVMs), which is independent of homology cri-
teria and relies only on codon usage differences. This method was
used to train a classification scheme to discriminate between EST
sequences fromHordeum vulgare andBlumeria graminis and can
easily be extended to other plant–pathogen pairs.

2 METHODS

Support vector machines
The use of SVMs is a prevalent technique for data classification based
on linear decision rules (Vapnik, 1995; Burges, 1998; Boseret al., 1992).
SVMs take as input i.i.d. (independent and identically distributed) training
samples(x1,y1), . . . , (xn,yn) wherexi represents the sample attributes and
yi ∈ {−1,+1} the class.

SVMs will then find a hyperplane separating the training instances by
their classes and maximizing the distance from the closest examples to the
hyperplane (maximum-margin hyperplane). The classification of a sample
will be determined by the sign of the function

f (x) = wTx + b

wherew andb are the parameters of the hyperplane. The examples closest to
the hyperplane are called support vectors and are crucial for training.

For many training sets it will not be possible to separate samples by a
linear function in the original feature space, so training instances are mapped
into a higher dimensional space by a functionφ. SVM will then find a linear
maximum-margin hyperplane in this higher dimensional space. For solving
this problem it is not necessary to directly define the mapping into higher
dimensional space, but it is sufficient to give the dot product of two instances
in this space (Burges, 1998).K(xi ,xj ) = φ(xi)

Tφ(xj ) is called a kernel
function. Commonly used kernel functions comprise linear, polynomial, sig-
moid and radial basis functions (RBF). For our purpose we used an RBF
kernel, as the linear kernel has been proven to be a special case of the RBF
kernel (Keerthi and Lin, 2003) and the sigmoid kernel appears to behave
like RBF for some parameters (Lin and Lin, 2003). Moreover, RBF has less
hyperparameters than the polynomial kernel and is less difficult numeric-
ally than both sigmoid and polynomial kernel. The radial basis function is
defined by

K(xi ,xj ) = exp(−γ ‖xi − xj‖2), γ > 0.

The parameters of the maximum-margin hyperplane are calculated by solv-
ing a quadratic programming optimization problem (Boseret al., 1992) and
there exist several specialized algorithms for solving this problem efficiently
(Joachims, 1999; Platt, 1998).

Training sequences
We used a dataset of 3974 unigene sequences of various lengths from bar-
ley (H.vulgare, 1487 sequences) and blumeria (B.graminis, 2487 sequences).
Unigene sequences were chosen to avoid redundancy and derived as follows.
Public EST sequences from bothB.graminis andH.vulgare were clustered
and assembled within the Sputnik EST analysis pipeline (Ruddet al., 2003).
The Hashed Position Tree clustering algorithm (Heumann and Mewes, 1996)
was used to cluster sequences using a similarity threshold of 0.7 and 100 net-
work iterations to describe a cluster. Sequence assembly was performed using
CAP3 (Huang and Madan, 1999) with default parameters. For each of the
derived unigenes regions of likely coding sequence (CDS) were identified
by a BLASTX comparison against a non-redundant sequence database. Best

matches exceeding the arbitrary expectation threshold of 1× 10−15 were
filtered and probable CDS was collated in species specific datasets. These col-
lections of sequences were used to derive a species specific codon usage and
hexanucleotide probability tables with the FrameFinder application (Slater,
2000) to predict a single uninterrupted CDS for each of the unigenes. Short
sequences were excluded (threshold of 21 bp).

Sequence attributes
For each sequence in the dataset codon frequencies are computed from its
beginning up to the first stop codon. To account for some codons missing
randomly, pseudocounts are used. The frequency for a given codonc is
computed as

F(c) = nc + 1
∑

c′∈Codonsnc′ + 64

whereni denotes the absolute number of occurrences of a codoni. Therefore,
for each sequence 64 attributes are derived for training and classification.
Those attributes are computed for each of the six possible frames of a sequence
separately so that every sequence provides six training instances, one correct
frame and five incorrect frames.

Training
There are two parts in building a classification model. To begin with a support
vector model is calculated to distinguish between correct and wrong frames
in a sequence. The training instances for computing this model are chosen as
follows. From half of the original sequences (chosen randomly) the correct
frame is used, whereas from the other half a randomly chosen wrong frame is
used. This is done to ensure that correct and incorrect frames are represented
equally in the training instances. First, the maximum and minimum values
for each attribute over all training instances are determined. These values are
then used to scale training instances such that all attribute values lie between
−1 and 1. Afterwards they are stored for later use in classification. After
scaling the instances, the support vectors are computed using a RBF kernel.

The second step is then to learn a classifier for separating the two pos-
sible classes (plant and fungus). In this case only the correct frame of each
sequence is used for training. As before maximum and minimum values for
each attribute are calculated and the training instances are scaled appropri-
ately to lie in the interval[−1, 1]. Then support vectors are calculated in the
same fashion as before. Table 1 describes the general procedure for each of
the two steps.

Classification
Classifying a sequence also consists of two parts. First, the coding frame is
determined and then classified as being of plant or fungus origin. To determine
the correct frame, the sequence’s attributes are first scaled using the pre-
computed scaling parameters for frame determination. (Note that now the
attributes will no longer necessarily lie in the range of[−1, 1].) Following
scaling the first SVM model is then used to classify the six possible frames
as being correct or incorrect. As every frame is classified independently, it
does happen occasionally that all frames are classified as being incorrect or
more than one frame is classified as being correct. In this case the reading
frame with the largest predicted margin is chosen. Having selected the coding
frame, scaling on the original attribute values is applied again, this time using
the scaling parameters for classification. Afterwards this frame is classified
by the SVM model for discriminating between plant and fungus origin. See
Table 2 for a summary of the steps involved.

Software
Eclat is an implementation of the described method and is available online
(http://mips.gsf.de/proj/est). It consists of a web-frontend and Java packages.
Computing of SVMs is done using the freely available software package
LIBSVM (Chang and Lin, 2001, http://www.csie.ntu.edu.tw/∼cjlin/libsvm),
which provides implementations for support vector classification, regression
and distribution estimation based on the algorithms SMO (Platt, 1998) and
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Table 1. Training procedure:i = 1 for frame model,i = 2 for class model

Let T be the set of all training instances

(1) For each attributeaj compute
• maxij ← maxt∈T aj (t)

• minij ← mint∈T aj (t)

(2) Scale training instances using maxij and minij for attributeaj

(3) Calculate support vectors using scaled training instances

Table 2. Classification procedure

Let t be an unclassified sequence

(1) Calculate codon frequencies for each frame
(2) Scale frames with min1j and max1j , j ∈ [1, 64]
(3) Determine correct frame using SVM model
(4) Scale correct frame with min2j and max2j , j ∈ [1, 64]
(5) Classify frame using SVM model

SVMLight (Joachims, 1999). For communication between the frontend and
the Java application, an XML format has been defined.

Frontend The user interface consists of two HTML input forms for clas-
sification and training mode respectively. The server is based on Tomcat
as container. For handling of incoming requests JSP and Java are used.
All request parameters are first stored in a Java Bean, tested for valid-
ity (e.g. correct sequence format) and transformed into the XML format
defined as internal data interface. After processing the request, an XSL
template and a modified version of the tag libraries of the Jakarta project
(http://jakarta.apache.org) are used to transform XML result data into HTML
for presenting it to the user.

Application layer Classes have been implemented in Java for data storage,
training and classifying as well as managing the process. For support vector
classification Java implementations of LIBSVM are used, which allows for
fast training and classification.

The application starts by parsing the XML input to determine the mode
(training or classification) which is to be performed. If training mode is
chosen, the training sequences are read. For each of the training sequences
codon frequencies are computed for all six frames. These attributes are used
to perform training as described above. Additional unclassified sequences
can be classified afterwards using the trained model. To estimate perform-
ance of the trained classifier 10-fold cross-validation can be chosen. This
will slow down the training process as 10 additional training rounds have
to be performed, each with a training set nine-tenths the size of the original
training set.

In classification mode all unclassified sequences are read from the XML
input. Codon frequencies are computed for each frame of each sequence. This
information is then used to classify the sequence by the presented method. In
doing this, the user has the choice to apply either the online available model
for H.vulgare andB.graminis or to use a model previously trained withEclat

for any other plant–fungus pair.

3 RESULTS

Comparison of different machine learning algorithms
and PF-IND
Several machine learning algorithms as well as a probabilistic
algorithm were compared with regard to their performance on

discriminating plant from fungal ESTs. Performance was measured
in terms of prediction accuracy using the mixed barley/blumeria
dataset described before but including only sequences longer than
100 bp. Accuracy is defined as the percentage of correctly classified
instances. For this comparison, performance was calculated only on
the correct frame. The machine learning algorithms applied to the
task comprised SVMs (LIBSVM; Chang and Lin, 2001), artifical
neural networks (ASNN; Tetko, 2002, http://www.vcclab.org), ran-
dom forests (WEKA implementation; Witten and Frank, 2000),
Naive Bayes (WEKA), decision trees (J4.8 from WEKA) and
Rule learning (JRip from WEKA). Additionally PF-IND (Maor
et al., 2003) was evaluated, an algorithm designed specifically to
separate ESTs from mixed plant–fungus EST-pools. To allow high-
throughput analysis the method described by Maoret al., 2003 was
re-implemented using the same codon usage frequencies. We com-
pared the predictions of the original implementation and our version
for several sequences. Not only did we get the same predictions for
those sequences, but also the same scores for all frames. Thus, the
original and our version of PF-IND calculated the same results for
this test and both implementations do not differ.

For evaluation three kinds of attributes were calculated for each
sequence: codon frequencies (64 attributes), %GC3 (18 attributes)
and fungus probabilities (18 attributes). Codon frequencies were
computed as described in the Methods section. The %GC3 for an
amino acid denotes the ratio of occurrence of GC-ending codons
to overall occurrence of the amino acid they are coding for. These
attributes were included since the main source of variation in codon
bias are the levels of C- and G-ending codons (Fennoy and Bailey-
Serres, 1993; Kawabe and Miyashita, 2003). Fungus probabilities
describe the probability that a given number of GC- and AT-ending
codons coding for the same amino acid will occur in an EST from the
fungus species. This was an approach similar to PF-IND, but without
previous selection of amino acids. These probabilities were estim-
ated using Poisson distribution and codon usage frequencies obtained
from the online database site http://www.kazusa.or.jp/codon/. Note
that the last two types of attributes were computed for each amino
acid separately, excluding methionine and tryptophan.

To estimate performance, repeated holdout with stratification was
applied on the dataset. The holdout procedure consisted of split-
ting the data randomly into training and test sets. One-third of the
dataset was chosen for testing and the remainder for training. The
additional use of stratification ensured that both classes were repres-
ented by the same proportions in both training and test sets. With each
machine learning algorithm a classifier was learned from the training
set and performance was estimated on the test set. This was repeated
10 times with different random splits to decrease any bias due to a
particular sample choice. For PF-IND no training was necessary as
precomputed codon frequencies were used, but to make perform-
ance comparable only sequences from the respective test sets were
classified. Table 3 shows the average results for the 10 holdouts. No
significant differences between the performances of SVMs and arti-
ficial neural networks were detected using a pairedt-test; therefore,
both performed equally well on the given dataset.

Comparison of different subsets of attributes concerning
prediction accuracy
We evaluated the attribute types described before separately and com-
bined with regard to performance as instance attributes for support
vector classification on the same random training and test splits as
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Table 3. Estimates for classification accuracy of machine learning algorithms using repeat holdout with stratification on the barley/blumeria dataset

Accuracy (in %) Algorithm
SVM ASNN Random Forest Naive Bayes JRip J4.8 PF-IND

Average 92.9 92.4 88.9 87.8 85.9 82.2 82.0
SD 0.6 0.5 1.0 0.9 1.8 1.6 0.9

Results for the different holdout splits were averaged. Accuracy is defined as the number of correctly classified instances divided by the total number of instances. No abstaining on
instances is applied yet, thus error rate and accuracy sum up to one.

Table 4. Estimates for classification accuracy using different subsets of
attributes

Attributes Accuracy (in %)
Type # Average SD

CF 64 93.5 0.8
%GC3 18 88.9 0.5
FP 18 62.6 2.6
CF+ %GC3 82 93.5 0.6
CF+ FP 82 93.1 0.5
%GC3+ FP 36 88.6 0.8
All 100 92.9 0.6

Abbreviations: CF, codon frequencies; %GC3, percentage of synonymous codons end-
ing at G or C; FP, probability of fungus origin of sequence (%GC3 and FP computed
separately for each amino acid). Results for the 10 random holdout splits were averaged.

above (Table 4). Using only codon frequencies as sequence attrib-
utes resulted in an average classification accuracy of 93.5%, which
was significantly better than using the complete attribute set. (Sig-
nificance was tested with pairedt-tests.) Additional use of %GC3
or fungus probabilities with codon frequencies did have no signific-
ant effect on prediction performance. Contrary to codon frequencies
the subset containing exclusively probabilities of fungal origin per-
formed poorly with a prediction accuracy at 62.8%. When we tried
probabilities of plant origin of sequence or ratios of both instead
these results did not improve.

Prediction of the correct reading frame
To assessEclat’s capability of predicting the correct reading frame,
the first step of the classification procedure was evaluated separ-
ately. For that purpose frame prediction performance ofEclat was
determined on the previously described 10 holdout splits and com-
pared to PF-IND predictions (Table 5). Analysis showed thatEclat

predictions of the correct frame were highly reliable (average pre-
diction accuracy of 97.7%) whereas PF-IND predicted the frame of
only 71.4% of the sequences correctly.

Performance in discriminating plant and
fungal sequences
So far the accuracy of each of the two steps of theEclat methodo-
logy has been examined separately. To estimate performance of the
complete procedure 10-fold cross-validation was repeated 10 times.
Ten-fold cross-validation consisted of splitting the barley/blumeria
dataset randomly into 10 parts and then alternatingly using one
part for testing and the remainder for training, excluding sequences

Table 5. Estimates for classification accuracy ofEclat and PF-IND in
predicting the correct reading frame

Algorithm Accuracy (%)
Average SD

Eclat 97.7 0.4
PF-IND 71.4 0.7

Results for the 10 random holdout splits were averaged.

shorter than 100 nt from the dataset (leaving 3217 sequences). The
average accuracy in predicting the origin of sequence was 93.1% for
Eclat. As 10-fold cross-validation provided a prediction for each
single instance in the dataset, performance of PF-IND was estimated
on all barley/blumeria sequences longer than 100 bp, which resulted
in an estimated prediction accuracy of 81.2% for PF-IND.

Dependence of classification performance on
sequence length
The length of an EST sequence determines the accuracy of its clas-
sification. In short sequences it will not be possible to estimate the
underlying codon frequencies correctly, as only few codons occur
at all. In this case pseudocounts will dominate the calculated codon
frequencies. To study this effect, different sequence intervals were
analyzed in relation to the resulting accuracy. Repeated 10-fold cross-
validation was performed with sequence length boundaries of 50,
100, 200, 300, 400 and 500 bp for testing. Results of this analysis
can be seen in Table 6. The same intervals were used in estimating
the performance of PF-IND.

Eclat predictions became less precise for shorter sequences,
but still for sequence lengths between 50 and 100 the origin of a
sequence could be determined with an average accuracy of 90%.
The highest prediction accuracies were achieved for sequences
between 300 and 500 bp, whereas for sequences longer than 500 bp
accuracies decreased slightly. PF-IND performance also increased
with sequence length, but for sequences longer than 500 bp classi-
fication accuracy dropped as low as 71.8%. We examined if PF-IND
results for long sequences could be improved by recalculating
codon usage based only on long sequences. However, classification
accuracy did not increase.

Performance on EST sequences from GenBank
The performance ofEclat and PF-IND additionally was tested on
EST sequences from GenBank. These sequences were deposited in
GenBank in the second part of 2003 or later and did not overlap
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Table 6. Estimates for classification accuracy ofEclat and PF-IND for different sequence length intervals

Sequence length (bp)
[21, 50] [51, 100] [101, 200] [201, 300] [301, 400] [401, 500] ≥500

No. of sequences 431 326 748 768 646 502 553
Eclat

Average accuracy (%) 78.8 90.0 90.6 92.2 95.6 95.7 94.4
SD (%) 0.9 0.9 0.4 0.4 0.3 0.5 0.5

PF-IND
Accuracy (%) 71.9 81.6 81.0 83.5 86.7 81.1 71.8

Estimates were performed by repeated 10-fold cross-validation. Results for the 10 repeats were averaged.

Table 7. Estimates for classification accuracy ofEclat (with and without
abstention) and PF-IND on EST sequences from GenBank

Accuracy (%)
Algorithm H.vulgare B.graminis

Eclat 81.0 91.9
Eclat with abstention 87.6 96.5
PF-IND 56.6 90.1

with the training set used to develop the method. The second test set
contained 931 sequences from blumeria and 9312 sequences from
barley. The composition of the test set mirrored the taxa bias in EST
databases towards plant EST sequences. Furthermore, a minimum
sequence length threshold of 100 bp was applied again. The results
are shown in Table 7.

In this test classification, accuracy for blumeria was comparable
to previous results forEclat and increased for PF-IND, whereas for
barley classification accuracy dropped significantly for bothEclat

and PF-IND. We also tested if classification accuracy could be
increased by abstaining, i.e. not classifying sequences for which
no frame is classified as correct. Indeed, this did raise classification
accuracy by more than 6% for barley and almost 5% for blumeria.
However,∼19% of the sequences remained unclassified. Contrary to
that only 1.3% of the barley/blumeria unigene sequences remained
unclassified when using 10-fold cross-validation with abstention,
which was not done in the previous tests.

Application to different organism pairs
To test if our methodology is also applicable to a wider range of bio-
logical targets, we used a second dataset containing EST sequences
from cotton (Gossypium arboreum, 2028 sequences) and cotton
root knot nematode (Meloidogyne incognita, 2040 sequences). This
training set was derived using the same method as before, so the meth-
odology remains consistent with what has already been done. The
prediction accuracy of a model trained on this dataset as estimated
by 10-fold cross-validation is∼87.3%. This result clearly indicates
that the methodology is also applicable to other systems, such as
plant/nematode. Since the classification performance is lower com-
pared to the barley/blumeria analysis, we can conclude that the codon
compositions of both these species are similar and their ESTs are
more difficult to separate.

4 DISCUSSION
Previous approaches to the prediction of species origin for sequences
from mixed plant–pathogen EST collections have utilized homology-
based methods. The objective ofEclat was to provide an easy-to-use
interface for high-throughput, automatic classification of ESTs
derived from pathogen-infected plants, which does not rely on the
existence of homologous sequences in public databases. Differences
in codon frequencies between plant and fungi have already proven
to be a reliable basis for fast computational EST classification (Maor
et al., 2003). In this paper, we demonstrated that utilization of
machine learning methods (SVMs) could improve results decisively
compared to the existing probabilistic algorithm PF-IND. Analysis
of sequences longer than 100 bp from a mixed barley–blumeria EST
dataset showed an average accuracy of 93% forEclat compared
to 81% for PF-IND. For a second test set containing sequences
from GenBank both classifiers performed worse than in previous
tests. This drop in accuracy can be explained by vector contam-
inations or low-quality regions within EST sequences deposited in
databases. Further detrimental effects may result from high redund-
ancy within EST databases as well as the fact that many of the tested
EST sequences may not contain a coding sequence at all. In fact, it
could be shown that classification accuracy could be increased further
by abstaining from classifying sequences where no frame was pre-
dicted as correct. This suggests that for a large fraction of ESTs, the
observed codon frequencies deviate from the expected due to a lack
of coding sequence or contamination. This violates basic assump-
tions of bothEclat and PF-IND. Therefore, before usingEclat

care should be taken to remove vector contaminations and to assess
sequence quality.

CurrentlyEclat only provides a pre-built model for the plant–
fungus pair barley and blumeria, but the design of the software allows
extensions to more organism pairs, as it does not rely on any spe-
cific characteristics of barley and blumeria except for codon bias
differences. Researchers have the possibility to trainEclat specific-
ally for plant–fungus pairs of interest using EST sequences from
their laboratories. In general, we believe that it will be impossible
to specify some objective criteria to predict the accuracy of EST
separation ‘a priori’. Nevertheless, it is always possible to develop a
new classifier using the available data and test its performance with
cross-validation to decide if the proposed methodology can or cannot
be applied in each particular case.

The use of two additional types of attributes derived from codon
frequencies proved to have a neutral or even detrimental effect on
prediction accuracy. The results suggest that both types of attributes

1387

 at G
SF Forschungszentrum

 on O
ctober 18, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


C.C.Friedel et al.

hardly contribute any new information compared to the original
codon frequencies. Furthermore, the slightly but significantly lower
accuracy on the complete attribute set implies overfitting effects.
None of the additional attribute sets taken separately did perform as
well as codon frequencies. Unexpectedly the probabilistic attributes
performed very poorly, although a good algorithm based on these
probabilities exists (Maoret al., 2003). The exclusion of those attrib-
utes provided model simplicity, which is desired to reduce overfitting
effects, without decreasing overall prediction accuracy. In the future
further attribute types should be considered that are not dependent
on codon frequencies such as occurrences of short sequence motifs
or GC-content.

Several standard machine learning algorithms were evaluated on
the task of training models to classify EST sequence data. Here
SVMs and artificial neural networks proved to be equally capable,
but SVMs, at least the used implementation, had the advantage of
speed, which becomes an important factor when learning with large
training sets. Unfortunately SVMs produce ‘black box’ models, i.e.
the reason for misclassification of sequences in most cases is unclear.
Nevertheless, some tendencies can be observed, such as a negative
correlation between the absolute value of the margin of a sequence
and its probability to be classified. PF-IND could establish the origin
of 94 of 100 test sequences in a previous test (Maoret al., 2003),
whereas on the 3217 sequences from barley and blumeria used for
our estimates its prediction accuracy reached only 82% on average.

Although programs exist for predicting correct reading frames in
ESTs,Eclat does not use any of these, but instead applies machine
learning techniques, reaching an accuracy of 98%. Of course, the
task here has been simplified as only two organisms have to be
considered. Nevertheless training data for each of the two classes
(correct versus incorrect frame) are heterogeneous since they con-
tain sequences from both organisms. The high classification accuracy
therefore suggests, that the difference in codon usage is more severe
between correct and incorrect frames than between organisms. A
possible explanation could be that incorrect frames contain codons,
which are never or rarely observed for the correct frames. Since the
same problem is relevant for both plant and fungi, the algorithm
correctly identifies the coding frames for both of them.

The prediction accuracy of bothEclat and PF-IND increases
with sequence length but decreases again for sequences longer than
500 bp. Yet the drop in prediction accuracy for very long sequences is
much more pronounced for PF-IND. This is consistent with the obser-
vation that quality within EST sequences rapidly degrades as length
exceeds an optimum of∼400 nt (S. Rudd, unpublished data). For
sequences of<50 nt, the distribution of codon frequencies deterio-
rates to a uniform distribution with peaks for only a few codons, thus
making classification difficult.

Eclat assists in the rapid and automatic analysis of ESTs. Nev-
erthelessEclat should not replace BLAST analysis, which gives
additional hint to gene function, but be used complementarily to val-
idate BLAST results and give predictions when no close homolog
can be found.

AlthoughEclat was developed primarily for the purpose of clas-
sification of sequences from mixed plant–fungus EST-pools, our
tests have shown that these methods are also applicable to other
pairs of evolutionarily distinct organisms such as plant/nematode.

Alternative applications ofEclat may comprise automatic predic-
tion of high- and low-expressed genes, since gene expression levels
and codon bias are positively correlated (Duret and Mouchiroud,
1999), or the detection of putative alien sequences in a genome,
which have originated from horizontal transfer events.
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